151
|
Sorkin B, Ricouvier J, Diamant H, Ariel G. Resolving entropy contributions in nonequilibrium transitions. Phys Rev E 2023; 107:014138. [PMID: 36797967 DOI: 10.1103/physreve.107.014138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 02/03/2023]
Abstract
We derive a functional for the entropy contributed by any microscopic degrees of freedom as arising from their measurable pair correlations. Applicable both in and out of equilibrium, this functional yields the maximum entropy which a system can have given a certain correlation function. When applied to different correlations, the method allows us to identify the degrees of freedom governing a certain physical regime, thus capturing and characterizing dynamic transitions. The formalism applies also to systems whose translational invariance is broken by external forces and whose number of particles may vary. We apply it to experimental results for jammed bidisperse emulsions, capturing the crossover of this nonequilibrium system from crystalline to disordered hyperuniform structures as a function of mixture composition. We discover that the cross-correlations between the positions and sizes of droplets in the emulsion play the central role in the formation of the disordered hyperuniform states. We discuss implications of the approach for entropy estimation out of equilibrium and for characterizing transitions in disordered systems.
Collapse
Affiliation(s)
- Benjamin Sorkin
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Joshua Ricouvier
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Haim Diamant
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| |
Collapse
|
152
|
Huang C, Jiang Y, Li Y, Zhang H. Droplet Detection and Sorting System in Microfluidics: A Review. MICROMACHINES 2022; 14:mi14010103. [PMID: 36677164 PMCID: PMC9867185 DOI: 10.3390/mi14010103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Since being invented, droplet microfluidic technologies have been proven to be perfect tools for high-throughput chemical and biological functional screening applications, and they have been heavily studied and improved through the past two decades. Each droplet can be used as one single bioreactor to compartmentalize a big material or biological population, so millions of droplets can be individually screened based on demand, while the sorting function could extract the droplets of interest to a separate pool from the main droplet library. In this paper, we reviewed droplet detection and active sorting methods that are currently still being widely used for high-through screening applications in microfluidic systems, including the latest updates regarding each technology. We analyze and summarize the merits and drawbacks of each presented technology and conclude, with our perspectives, on future direction of development.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
153
|
Meng Z, Tayyab M, Lin Z, Raji H, Javanmard M. A Smartphone-Based Disposable Hemoglobin Sensor Based on Colorimetric Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 23:394. [PMID: 36616992 PMCID: PMC9823837 DOI: 10.3390/s23010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Hemoglobin is a biomarker of interest for the diagnosis and prognosis of various diseases such as anemia, sickle cell disease, and thalassemia. In this paper, we present a disposable device that has the potential of being used in a setting for accurately quantifying hemoglobin levels in whole blood based on colorimetric analysis using a smartphone camera. Our biosensor employs a disposable microfluidic chip which is made using medical-grade tapes and filter paper on a glass slide in conjunction with a custom-made PolyDimethylSiloaxane (PDMS) micropump for enhancing capillary flow. Once the blood flows through the device, the glass slide is imaged using a smartphone equipped with a custom 3D printed attachment. The attachment has a Light Emitting Diode (LED) that functions as an independent light source to reduce the noise caused by background illumination and external light sources. We then use the RGB values obtained from the image to quantify the hemoglobin levels. We demonstrated the capability of our device for quantifying hemoglobin in Bovine Hemoglobin Powder, Frozen Beef Blood, and human blood. We present a logarithmic model that specifies the relationship between the Red channel of the RGB values and Hemoglobin concentration.
Collapse
|
154
|
Foroushani FT, Dzobo K, Khumalo NP, Mora VZ, de Mezerville R, Bayat A. Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater Res 2022; 26:80. [PMID: 36517896 PMCID: PMC9749192 DOI: 10.1186/s40824-022-00314-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Silicone breast implants are commonly used for cosmetic and oncologic surgical indications owing to their inertness and being nontoxic. However, complications including capsular contracture and anaplastic large cell lymphoma have been associated with certain breast implant surfaces over time. Novel implant surfaces and modifications of existing ones can directly impact cell-surface interactions and enhance biocompatibility and integration. The extent of foreign body response induced by breast implants influence implant success and integration into the body. This review highlights recent advances in breast implant surface technologies including modifications of implant surface topography and chemistry and effects on protein adsorption, and cell adhesion. A comprehensive online literature search was performed for relevant articles using the following keywords silicone breast implants, foreign body response, cell adhesion, protein adsorption, and cell-surface interaction. Properties of silicone breast implants impacting cell-material interactions including surface roughness, wettability, and stiffness, are discussed. Recent studies highlighting both silicone implant surface activation strategies and modifications to enhance biocompatibility in order to prevent capsular contracture formation and development of anaplastic large cell lymphoma are presented. Overall, breast implant surface modifications are being extensively investigated in order to improve implant biocompatibility to cater for increased demand for both cosmetic and oncologic surgeries.
Collapse
Affiliation(s)
- Fatemeh Tavakoli Foroushani
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | | | | | - Ardeshir Bayat
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
155
|
Kitagawa A, Ota M, Watamura T, Tonooka T, Murai Y. Microplastic particle trapping through microfluidic devices with different shaped pillars. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
156
|
Goel S, Amreen K. Laser induced graphanized microfluidic devices. BIOMICROFLUIDICS 2022; 16:061505. [PMID: 36483020 PMCID: PMC9726225 DOI: 10.1063/5.0111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
With the advent of cyber-physical system-based automation and intelligence, the development of flexible and wearable devices has dramatically enhanced. Evidently, this has led to the thrust to realize standalone and sufficiently-self-powered miniaturized devices for a variety of sensing and monitoring applications. To this end, a range of aspects needs to be carefully and synergistically optimized. These include the choice of material, micro-reservoir to suitably place the analytes, integrable electrodes, detection mechanism, microprocessor/microcontroller architecture, signal-processing, software, etc. In this context, several researchers are working toward developing novel flexible devices having a micro-reservoir, both in flow-through and stationary phases, integrated with graphanized zones created by simple benchtop lasers. Various substrates, like different kinds of cloths, papers, and polymers, have been harnessed to develop laser-ablated graphene regions along with a micro-reservoir to aptly place various analytes to be sensed/monitored. Likewise, similar substrates have been utilized for energy harvesting by fuel cell or solar routes and supercapacitor-based energy storage. Overall, realization of a prototype is envisioned by integrating various sub-systems, including sensory, energy harvesting, energy storage, and IoT sub-systems, on a single mini-platform. In this work, the diversified work toward developing such prototypes will be showcased and current and future commercialization potential will be projected.
Collapse
Affiliation(s)
- Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
157
|
Yang Z, Liu X, Cribbin EM, Kim AM, Li JJ, Yong KT. Liver-on-a-chip: Considerations, advances, and beyond. BIOMICROFLUIDICS 2022; 16:061502. [PMID: 36389273 PMCID: PMC9646254 DOI: 10.1063/5.0106855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 05/14/2023]
Abstract
The liver is the largest internal organ in the human body with largest mass of glandular tissue. Modeling the liver has been challenging due to its variety of major functions, including processing nutrients and vitamins, detoxification, and regulating body metabolism. The intrinsic shortfalls of conventional two-dimensional (2D) cell culture methods for studying pharmacokinetics in parenchymal cells (hepatocytes) have contributed to suboptimal outcomes in clinical trials and drug development. This prompts the development of highly automated, biomimetic liver-on-a-chip (LOC) devices to simulate native liver structure and function, with the aid of recent progress in microfluidics. LOC offers a cost-effective and accurate model for pharmacokinetics, pharmacodynamics, and toxicity studies. This review provides a critical update on recent developments in designing LOCs and fabrication strategies. We highlight biomimetic design approaches for LOCs, including mimicking liver structure and function, and their diverse applications in areas such as drug screening, toxicity assessment, and real-time biosensing. We capture the newest ideas in the field to advance the field of LOCs and address current challenges.
Collapse
Affiliation(s)
| | | | - Elise M. Cribbin
- School of Biomedical Engineering, University of Technology Sydney, New South Wales 2007, Australia
| | - Alice M. Kim
- School of Biomedical Engineering, University of Technology Sydney, New South Wales 2007, Australia
| | - Jiao Jiao Li
- Authors to whom correspondence should be addressed: and
| | - Ken-Tye Yong
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
158
|
Heijo H, Merten CA, Hara Y. Differential contribution of nuclear size scaling mechanisms between Xenopus species. Dev Growth Differ 2022; 64:501-507. [PMID: 36308491 PMCID: PMC11520979 DOI: 10.1111/dgd.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 12/31/2022]
Abstract
Size of the nucleus, a membrane-bound organelle for DNA replication and transcription in eukaryotic cells, varies to adapt nuclear functions to the surrounding environment. Nuclear size strongly correlates with cytoplasmic size and genomic content. Previous studies using Xenopus laevis have unraveled two modes, cytoplasmic and chromatin-based mechanisms, for controlling nuclear size. However, owing to limited comparative analyses of the mechanisms among eukaryotic species, the contribution of each mechanism in controlling nuclear size has not been comprehensively elucidated. Here, we compared the relative contribution utilizing a cell-free reconstruction system from the cytoplasmic extract of unfertilized eggs of Xenopus tropicalis to that of the sister species X. laevis. In this system, interphase nuclei were reconstructed in vitro from sperm chromatin and increased in size throughout the incubation period. Using extracts from X. tropicalis, growth rate of the reconstructed nuclei was decreased by obstructing the effective cytoplasmic space, decreasing DNA quantity, or inhibiting molecules involved in various cytoplasmic mechanisms. Although these features are qualitatively identical to that shown by the extract of X. laevis, the sensitivities of experimental manipulation for each cellular parameter were different between the extracts from two Xenopus species. These quantitative differences implied that the contribution of each mode to expansion of the nuclear envelope is coordinated in a species-specific manner, which sets the species-specific nuclear size for in vivo physiological function.
Collapse
Affiliation(s)
- Hiroko Heijo
- Evolutionary Cell Biology Laboratory, Faculty of ScienceYamaguchi UniversityYamaguchi CityJapan
| | - Christoph A. Merten
- Laboratory of Biomedical Microfluidics (LBMM), Department of Bioengineering, School of EngineeringSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of ScienceYamaguchi UniversityYamaguchi CityJapan
| |
Collapse
|
159
|
Pskowski A, Bagchi P, Zahn JD. Hematocrit skewness along sequential bifurcations within a microfluidic network induces significant changes in downstream red blood cell partitioning. BIOMICROFLUIDICS 2022; 16:064104. [PMID: 36483019 PMCID: PMC9726222 DOI: 10.1063/5.0110235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
There has been a wealth of research conducted regarding the partitioning of red blood cells (RBCs) at bifurcations within the microvasculature. In previous studies, partitioning has been characterized as either regular partitioning, in which the higher flow rate daughter channel receives a proportionally larger percentage of RBCs, or reverse partitioning, in which the opposite occurs. While there are many examples of network studies in silico, most in vitro work has been conducted using single bifurcation. When microfluidic networks have been used, the channel dimensions are typically greater than 20 μm, ignoring conditions where RBCs are highly confined. This paper presents a study of RBC partitioning in a network of sequential bifurcations with channel dimensions less than 8 μm in hydraulic diameter. The study investigated the effect of the volumetric flow rate ratio (Q*) at each bifurcation, solution hematocrit, and channel length on the erythrocyte flux ratio (N*), a measure of RBC partitioning. We report significant differences in partitioning between upstream and downstream bifurcations even when the flow rate ratio remains the same. Skewness analysis, a measure of cell distribution across the width of a vessel, strongly suggests that immediately following the first bifurcation most RBCs are skewed toward the inner channel wall, leading to preferential RBC perfusion into one daughter channel at the subsequent bifurcation even at higher downstream flow rate ratios. The skewness of RBC distribution following the first bifurcation can either manifest as enhanced regular partitioning or reverse partitioning at the succeeding branch.
Collapse
Affiliation(s)
- Andrew Pskowski
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Prosenjit Bagchi
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jeffrey D. Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
160
|
MacHugh E, Antony G, Mallik AK, Kaworek A, McCormack D, Duffy B, Oubaha M. Development and Characterisation of a Whole Hybrid Sol-Gel Optofluidic Platform for Biosensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4192. [PMID: 36500816 PMCID: PMC9740286 DOI: 10.3390/nano12234192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
This work outlines, for the first time, the fabrication of a whole hybrid sol-gel optofluidic platform by integrating a microfluidic biosensor platform with optical waveguides employing a standard photolithography process. To demonstrate the suitability of this new hybrid sol-gel optofluidic platform, optical and bio-sensing proof-of-concepts are proposed. A photoreactive hybrid sol-gel material composed of a photopolymerisable organically modified silicon alkoxide and a transition metal complex was prepared and used as the fabrication material for the entire optofluidic platform, including the optical waveguides, the sensing areas, and the microfluidic device. The most suitable sol-gel materials chosen for the fabrication of the cladding and core of the waveguides showed a RIC of 3.5 × 10-3 and gave thicknesses between 5.5 and 7 μm. The material was optimised to simultaneously meet the photoreactive properties required for the photolithography fabrication process and the optical properties needed for the effective optical operability of the microstructured waveguides at 532 and 633 nm with an integrated microfluidic device. The optical proof-of-concept was performed using a fluorescent dye (Atto 633) and recording its optical responses while irradiated with a suitable optical excitation. The biosensing capability of the platform was assessed using a polyclonal primary IgG mouse antibody and a fluorescent labelled secondary IgG anti-mouse antibody. A limit of detection (LOD) of 50 ug/mL was achieved. A correlation between the concentration of the dye and the emission fluorescence was evidenced, thus clearly demonstrating the feasibility of the proposed hybrid sol-gel optofluidic platform concept. The successful integration and operability of optical and microfluidic components in the same optofluidic platform is a novel concept, particularly where the sol-gel fabrication material is concerned.
Collapse
Affiliation(s)
- Emma MacHugh
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus Grangegorman, D07 H6K8 Dublin, Ireland
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| | - Graceson Antony
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus Grangegorman, D07 H6K8 Dublin, Ireland
- Centre for Industrial and Engineering Optics (IEO), FOCAS Institute, Technological University Dublin, Camden Row, D07 H6K8 Dublin, Ireland
| | - Arun Kumar Mallik
- Photonics Research Centre, Technological University Dublin, City Campus Grangegorman, D07 H6K8 Dublin, Ireland
| | - Alicja Kaworek
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| | - Declan McCormack
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus Grangegorman, D07 H6K8 Dublin, Ireland
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| | - Mohamed Oubaha
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| |
Collapse
|
161
|
Liu H, Yang C, Wang B. Rapid Customization and Manipulation Mechanism of Micro-Droplet Chip for 3D Cell Culture. MICROMACHINES 2022; 13:2050. [PMID: 36557350 PMCID: PMC9783585 DOI: 10.3390/mi13122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
A full PDMS micro-droplet chip for 3D cell culture was prepared by using SLA light-curing 3D printing technology. This technology can quickly customize various chips required for experiments, saving time and capital costs for experiments. Moreover, an injection molding method was used to prepare the full PDMS chip, and the convex mold was prepared by light-curing 3D printing technology. Compared with the traditional preparation process of micro-droplet chips, the use of 3D printing technology to prepare micro-droplet chips can save manufacturing and time costs. The different ratios of PDMS substrate and cover sheet and the material for making the convex mold can improve the bonding strength and power of the micro-droplet chip. Use the prepared micro-droplet chip to carry out micro-droplet forming and manipulation experiments. Aimed to the performance of the full PDMS micro-droplet chip in biological culture was verified by using a solution such as chondrocyte suspension, and the control of the micro-droplet was achieved by controlling the flow rate of the dispersed phase and continuous phase. Experimental verification shows that the designed chip can meet the requirements of experiments, and it can be observed that the micro-droplets of sodium alginate and the calcium chloride solution are cross-linked into microspheres with three-dimensional (3D) structures. These microspheres are fixed on a biological scaffold made of calcium silicate and polyvinyl alcohol. Subsequently, the state of the cells after different time cultures was observed, and it was observed that the chondrocytes grew well in the microsphere droplets. The proposed method has fine control over the microenvironment and accurate droplet size manipulation provided by fluid flow compared to existing studies.
Collapse
Affiliation(s)
- Haiqiang Liu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chen Yang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bangbing Wang
- School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
162
|
Jiang L, Li Q, Liang W, Du X, Yang Y, Zhang Z, Xu L, Zhang J, Li J, Chen Z, Gu Z. Organ-On-A-Chip Database Revealed-Achieving the Human Avatar in Silicon. Bioengineering (Basel) 2022; 9:685. [PMID: 36421086 PMCID: PMC9687773 DOI: 10.3390/bioengineering9110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Organ-on-a-chip (OOC) provides microphysiological conditions on a microfluidic chip, which makes up for the shortcomings of traditional in vitro cellular culture models and animal models. It has broad application prospects in drug development and screening, toxicological mechanism research, and precision medicine. A large amount of data could be generated through its applications, including image data, measurement data from sensors, ~omics data, etc. A database with proper architecture is required to help scholars in this field design experiments, organize inputted data, perform analysis, and promote the future development of novel OOC systems. In this review, we overview existing OOC databases that have been developed, including the BioSystics Analytics Platform (BAP) developed by the University of Pittsburgh, which supports study design as well as data uploading, storage, visualization, analysis, etc., and the organ-on-a-chip database (Ocdb) developed by Southeast University, which has collected a large amount of literature and patents as well as relevant toxicological and pharmaceutical data and provides other major functions. We used examples to overview how the BAP database has contributed to the development and applications of OOC technology in the United States for the MPS consortium and how the Ocdb has supported researchers in the Chinese Organoid and Organs-On-A-Chip society. Lastly, the characteristics, advantages, and limitations of these two databases were discussed.
Collapse
Affiliation(s)
- Lincao Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Weicheng Liang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xuan Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Yi Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Zilin Zhang
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Lili Xu
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Jing Zhang
- Jiangsu Avartarget Biotechnology Corp., Suzhou 215163, China
| | - Jian Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou # 2, Nanjing 210096, China
| |
Collapse
|
163
|
Lee JB, Kim H, Kim S, Sung GY. Fabrication and Evaluation of Tubule-on-a-Chip with RPTEC/HUVEC Co-Culture Using Injection-Molded Polycarbonate Chips. MICROMACHINES 2022; 13:mi13111932. [PMID: 36363953 PMCID: PMC9698344 DOI: 10.3390/mi13111932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
To simulate the ADME process such as absorption, distribution, metabolism, and excretion in the human body after drug administration and to confirm the applicability of the mass production process, a microfluidic chip injection molded with polycarbonate (injection-molded chip (I-M chip)) was fabricated. Polycarbonate materials were selected to minimize drug absorption. As a first step to evaluate the I-M chip, RPTEC (Human Renal Proximal Tubule Epithelial Cells) and HUVEC (Human Umbilical Vein Endothelial Cells) were co-cultured, and live and dead staining, TEER (trans-epithelial electrical resistance), glucose reabsorption, and permeability were compared using different membrane pore sizes of 0.4 μm and 3 μm. Drug excretion was confirmed through a pharmacokinetic test with metformin and cimetidine, and the gene expression of drug transporters was confirmed. As a result, it was confirmed that the cell viability was higher in the 3 μm pore size than in the 0.4 μm, the cell culture performed better, and the drug secretion was enhanced when the pore size was large. The injection-molded polycarbonate microfluidic chip is anticipated to be commercially viable for drug screening devices, particularly ADME tests.
Collapse
Affiliation(s)
- Ju-Bi Lee
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Hyoungseob Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Sol Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Major in Materials Science and Engineering, School of Future Convergence, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
164
|
Leontidou T, Yu Z, Hess J, Geisler K, Smith AG, Coyne A, Abell C. Microfluidic preparation of composite hydrogel microparticles for the staining of microalgal cells. Colloids Surf B Biointerfaces 2022; 221:113026. [DOI: 10.1016/j.colsurfb.2022.113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
165
|
Shahrivari S, Aminoroaya N, Ghods R, Latifi H, Afjei SA, Saraygord-Afshari N, Bagheri Z. Toxicity of trastuzumab for breast cancer spheroids: Application of a novel on-a-chip concentration gradient generator. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
166
|
Loveday EK, Sanchez HS, Thomas MM, Chang CB. Single-Cell Infection of Influenza A Virus Using Drop-Based Microfluidics. Microbiol Spectr 2022; 10:e0099322. [PMID: 36125315 PMCID: PMC9603537 DOI: 10.1128/spectrum.00993-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022] Open
Abstract
Drop-based microfluidics has revolutionized single-cell studies and can be applied toward analyzing tens of thousands to millions of single cells and their products contained within picoliter-sized drops. Drop-based microfluidics can shed insight into single-cell virology, enabling higher-resolution analysis of cellular and viral heterogeneity during viral infection. In this work, individual A549, MDCK, and siat7e cells were infected with influenza A virus (IAV) and encapsulated into 100-μm-size drops. Initial studies of uninfected cells encapsulated in drops demonstrated high cell viability and drop stability. Cell viability of uninfected cells in the drops remained above 75%, and the average drop radii changed by less than 3% following cell encapsulation and incubation over 24 h. Infection parameters were analyzed over 24 h from individually infected cells in drops. The number of IAV viral genomes and infectious viruses released from A549 and MDCK cells in drops was not significantly different from bulk infection as measured by reverse transcriptase quantitative PCR (RT-qPCR) and plaque assay. The application of drop-based microfluidics in this work expands the capacity to propagate IAV viruses and perform high-throughput analyses of individually infected cells. IMPORTANCE Drop-based microfluidics is a cutting-edge tool in single-cell research. Here, we used drop-based microfluidics to encapsulate thousands of individual cells infected with influenza A virus within picoliter-sized drops. Drop stability, cell loading, and cell viability were quantified from three different cell lines that support influenza A virus propagation. Similar levels of viral progeny as determined by RT-qPCR and plaque assay were observed from encapsulated cells in drops compared to bulk culture. This approach enables the ability to propagate influenza A virus from encapsulated cells, allowing for future high-throughput analysis of single host cell interactions in isolated microenvironments over the course of the viral life cycle.
Collapse
Affiliation(s)
- Emma Kate Loveday
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Humberto S. Sanchez
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Mallory M. Thomas
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Connie B. Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
167
|
Gardner K, Uddin MM, Tran L, Pham T, Vanapalli S, Li W. Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets. LAB ON A CHIP 2022; 22:4067-4080. [PMID: 36214344 PMCID: PMC9706597 DOI: 10.1039/d2lc00462c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.
Collapse
Affiliation(s)
- Karl Gardner
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, Texas, USA.
| | - Md Mezbah Uddin
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, Texas, USA.
| | - Linh Tran
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, Texas, USA.
| | - Thanh Pham
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, Texas, USA.
| | - Siva Vanapalli
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, Texas, USA.
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, 807 Canton Ave, Lubbock, Texas, USA.
| |
Collapse
|
168
|
Jiang B, White A, Ou W, Van Belleghem S, Stewart S, Shamul JG, Rahaman SO, Fisher JP, He X. Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval. Bioact Mater 2022; 16:346-358. [PMID: 35386332 PMCID: PMC8965690 DOI: 10.1016/j.bioactmat.2022.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
The conventional approach for fabricating polydimethylsiloxane (PDMS) microfluidic devices is a lengthy and inconvenient procedure and may require a clean-room microfabrication facility often not readily available. Furthermore, living cells can't survive the oxygen-plasma and high-temperature-baking treatments required for covalent bonding to assemble multiple PDMS parts into a leak-free device, and it is difficult to disassemble the devices because of the irreversible covalent bonding. As a result, seeding/loading cells into and retrieving cells from the devices are challenging. Here, we discovered that decreasing the curing agent for crosslinking the PDMS prepolymer increases the noncovalent binding energy of the resultant PDMS surfaces without plasma or any other treatment. This enables convenient fabrication of leak-free microfluidic devices by noncovalent binding for various biomedical applications that require high pressure/flow rates and/or long-term cell culture, by simply hand-pressing the PDMS parts without plasma or any other treatment to bind/assemble. With this method, multiple types of cells can be conveniently loaded into specific areas of the PDMS parts before assembly and due to the reversible nature of the noncovalent bonding, the assembled device can be easily disassembled by hand peeling for retrieving cells. Combining with 3D printers that are widely available for making masters to eliminate the need of photolithography, this facile yet rigorous fabrication approach is much faster and more convenient for making PDMS microfluidic devices than the conventional oxygen plasma-baking-based irreversible covalent bonding method.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alisa White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Sarah Van Belleghem
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
169
|
Liu J, Enloe C, Li-Oakey KD, Oakey J. Optimizing Immunofunctionalization and Cell Capture on Micromolded Hydrogels via Controlled Oxygen-Inhibited Photopolymerization. ACS APPLIED BIO MATERIALS 2022; 5:5004-5013. [PMID: 36174120 DOI: 10.1021/acsabm.2c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With circulating tumor cells (CTCs) playing a critical role in cancer metastasis, the quantitation and characterization of CTCs promise to provide precise diagnostic and prognostic information in service of personalized therapies. However, as CTCs are extremely rare, high yield, high purity strategies are required to target and isolate CTCs from patient samples. Recently, we demonstrated the selective capture of CTCs upon antibody-functionalized polyethylene glycol diacrylate (PEGDA) hydrogels photopolymerized within polydimethylsiloxane (PDMS) microfluidic molds. Isolated CTC purity was subsequently enriched by selectively releasing desired cells from photodegradable hydrogel capture surfaces. However, the fabrication of these acrylate-based hydrogels by photopolymerization is subject to oxygen inhibition, which dramatically affects the physical and chemical properties of hydrogel interfaces formed in proximity to PDMS boundaries. To evaluate how antibody conjugation density and cell capture is impacted by fabrication parameters affected by oxygen inhibition, PEGDA hydrogel features were polymerized within PDMS micromolds under different UV exposure conditions and linker (acrylate-PEG-biotin) concentrations. Predictions of acrylate conversion throughout the hydrogel feature were performed using a 1D reaction-diffusion model that describes oxygen-inhibited photopolymerization. The functional consequences of photopolymerization parameters and solution stoichiometry on CTC capture were experimentally quantified and evaluated. Results show that hydrogel surfaces polymerized under shorter exposure times and with higher linker concentrations display superior functionalization and higher CTC capture efficiency. Conversely, highly cross-linked hydrogel surfaces polymerized under longer exposure times are insensitive to functionalization and display poor capture, regardless of linker concentration. By highlighting the importance of oxygen-inhibited photopolymerization, these findings provide guidelines to design micromolded hydrogels with controlled ligand expression. In addition to enhancing the selective cell capture capacity of immunofunctional hydrogels, the ability to quantifiably design hydrogel interfaces described here will improve the sensitivity of hydrogel biosensors, provide a platform to finely screen cell-matrix interactions, and generally enhance the fidelity of micromolded hydrogel features.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Cassidy Enloe
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Katie D Li-Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
170
|
Lee C, Cho H, Ko J, Kim S, Ko Y, Park S, Kang Y, Yun YJ, Jun Y. Color balanced transparent luminescent solar concentrator based on a polydimethylsiloxane polymer waveguide with coexisting polar and non-polar fluorescent dyes. OPTICS EXPRESS 2022; 30:37085-37100. [PMID: 36258626 DOI: 10.1364/oe.470467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Color balance is a critical concept in the application of functional transparent polymers from a customer's standpoint. In this study, multiple polar and non-polar fluorescent dyes are embedded simultaneously for the first time in a polydimethylsiloxane (PDMS) polymer matrix. Five dyes successfully coexist with the optimum blending ratio. Furthermore, simultaneous dispersing of polar and non-polar dyes in the polymer is achieved. Absorption and photoluminescence characteristics of multiple fluorescent dyes in PDMS medium are systemically deconvoluted and discussed. The competitive average visible transmittance and color balance of synthesized multi-fluorescent dye embedded PDMS is demonstrated by high color rendering index and CIE color space coordinates close to the white point. Additionally, the luminescent solar concentrator device demonstrates improved power conversion efficiency and light utilization efficiency than the pure PDMS waveguide-based device. Moreover, the long-term storage stability is demonstrated successfully. The findings, therefore, demonstrate the applicability of multi-fluorescent dye embedded PDMS to advanced transparent devices.
Collapse
|
171
|
Barbosa VB, Rodrigues CF, Cerqueira L, Miranda JM, Azevedo NF. Microfluidics combined with fluorescence in situ hybridization (FISH) for Candida spp. detection. Front Bioeng Biotechnol 2022; 10:987669. [PMID: 36213081 PMCID: PMC9539416 DOI: 10.3389/fbioe.2022.987669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most prevalent healthcare-associated infection is the urinary tract infection (UTI), caused by opportunistic pathogens such as Candida albicans or non-albicans Candida species (NACS). Urine culture methods are routinely used for UTI diagnostics due to their specificity, sensitivity and low-cost. However, these methods are also laborious, time- and reagent-consuming. Therefore, diagnostic methods relying on nucleic acids have been suggested as alternatives. Nucleic acid-based methods can provide results within 24 h and can be adapted to point-of-care (POC) detection. Here, we propose to combine fluorescence in situ hybridization (FISH) with a microfluidic platform for the detection of Candida spp. As a case study we used C. tropicalis, which is reported as the second most common NACS urine isolate obtained from patients suspected with UTI. The microfluidic platform proposed in this study relies on hydrodynamic trapping, and uses physical barriers (e.g., microposts) for the separation of target cells from the suspension. Using a specific peptide nucleic acid (PNA) probe, the FISH procedure was applied onto previously trapped C. tropicalis cells present inside the microfluidic platform. Fluorescence signal intensity of hybridized cells was captured directly under the epifluorescence microscope. Overall, the PNA probe successfully detected C. tropicalis in pure culture and artificial urine (AU) using FISH combined with the microfluidic platform. Our findings reveal that FISH using nucleic acid mimics (PNA) in combination with microfluidics is a reliable method for the detection of microorganisms such as C. tropicalis. As such, this work provides the basis for the development of a POC detection platform in the future.
Collapse
Affiliation(s)
- Violina Baranauskaite Barbosa
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Célia F. Rodrigues
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- *Correspondence: Laura Cerqueira, ; João M. Miranda,
| | - João M. Miranda
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- CEFT–Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- *Correspondence: Laura Cerqueira, ; João M. Miranda,
| | - Nuno F. Azevedo
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
172
|
Wang J, Yang L, Wang H, Wang L. Application of Microfluidic Chips in the Detection of Airborne Microorganisms. MICROMACHINES 2022; 13:1576. [PMID: 36295928 PMCID: PMC9611547 DOI: 10.3390/mi13101576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The spread of microorganisms in the air, especially pathogenic microorganisms, seriously affects people's normal life. Therefore, the analysis and detection of airborne microorganisms is of great importance in environmental detection, disease prevention and biosafety. As an emerging technology with the advantages of integration, miniaturization and high efficiency, microfluidic chips are widely used in the detection of microorganisms in the environment, bringing development vitality to the detection of airborne microorganisms, and they have become a research highlight in the prevention and control of infectious diseases. Microfluidic chips can be used for the detection and analysis of bacteria, viruses and fungi in the air, mainly for the detection of Escherichia coli, Staphylococcus aureus, H1N1 virus, SARS-CoV-2 virus, Aspergillus niger, etc. The high sensitivity has great potential in practical detection. Here, we summarize the advances in the collection and detection of airborne microorganisms by microfluidic chips. The challenges and trends for the detection of airborne microorganisms by microfluidic chips was also discussed. These will support the role of microfluidic chips in the prevention and control of air pollution and major outbreaks.
Collapse
Affiliation(s)
- Jinpei Wang
- College of Medicine, Xi’an International University, Xi’an 710077, China
- Engineering Research Center of Personalized Anti-Aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an 710077, China
- Applied Research Center for Life Science, Xi’an International University, Xi’an 710077, China
| | - Lixia Yang
- College of Medicine, Xi’an International University, Xi’an 710077, China
- Engineering Research Center of Personalized Anti-Aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an 710077, China
- Applied Research Center for Life Science, Xi’an International University, Xi’an 710077, China
| | - Hanghui Wang
- College of Medicine, Xi’an International University, Xi’an 710077, China
- Xi’an International Medical Center Hospital, Xi’an 710100, China
| | - Lin Wang
- College of Medicine, Xi’an International University, Xi’an 710077, China
- Engineering Research Center of Personalized Anti-Aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an 710077, China
- Applied Research Center for Life Science, Xi’an International University, Xi’an 710077, China
| |
Collapse
|
173
|
Responsive Hyaluronic Acid–Ethylacrylamide Microgels Fabricated Using Microfluidics Technique. Gels 2022; 8:gels8090588. [PMID: 36135299 PMCID: PMC9498840 DOI: 10.3390/gels8090588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Volume changes of responsive microgels can probe interactions between polyelectrolytes and species of opposite charges such as peptides and proteins. We have investigated a microfluidics method to synthesize highly responsive, covalently crosslinked, hyaluronic acid microgels for such purposes. Sodium hyaluronate (HA), pre-modified with ethylacrylamide functionalities, was crosslinked in aqueous droplets created with a microfluidic technique. We varied the microgel properties by changing the degree of modification and concentration of HA in the reaction mixture. The degree of modification was determined by 1H NMR. Light microscopy was used to investigate the responsiveness of the microgels to osmotic stress in aqueous saline solutions by simultaneously monitoring individual microgel species in hydrodynamic traps. The permeability of the microgels to FITC-dextrans of molecular weights between 4 and 250 kDa was investigated using confocal laser scanning microscopy. The results show that the microgels were spherical with diameters between 100 and 500 µm and the responsivity tunable by changing the degree of modification and the HA concentration. Microgels were fully permeable to all investigated FITC-dextran probes. The partitioning to the microgel from an aqueous solution decreased with the increasing molecular weight of the probe, which is in qualitative agreement with theories of homogeneous gel networks.
Collapse
|
174
|
Ghifari N, Bennacer R, Chahboun A, El Abed AI. Hierarchical Self-Assembly of Dipolar ZnO Nanoparticles and Microdroplets. MICROMACHINES 2022; 13:1522. [PMID: 36144145 PMCID: PMC9502180 DOI: 10.3390/mi13091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
In this work, we investigated the orientation and the polarization of ZnO nanoparticles, which serve as building blocks of highly monodisperse microspheres, using a droplet microfluidic-assisted synthesis method. We observe, for the first time, a square lattice organization of liquid microdroplets, in a steady state, at the oil/water interface. Such square organization reveals clearly a dipolar organization of ZnO nanoparticles at the surfaces of droplets at the early stage of ZnO nanocrystal aggregation and microsphere formation. We discuss different models of organization of ZnO nanoparticles and show that the well-known tip-streaming effect in droplets in microfluidics explains the reason for the obtained dipolar droplets. The square organization is illustrated and explained.
Collapse
Affiliation(s)
- Najla Ghifari
- Laboratoire Lumière Matière et Interfaces (LUMIN), UMR 9024, Ecole Normale Supérieure Paris Saclay, CentraleSupélec, CNRS, Université Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Rachid Bennacer
- ENS Paris-Saclay, CNRS, LMPS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Adil Chahboun
- Laboratoire des Couches Minces et Nanomatériaux (CMN), FST Tanger, Université Abdelmalek Essaadi, BP 416, Tangier 90000, Morocco
| | - Abdel I. El Abed
- Laboratoire Lumière Matière et Interfaces (LUMIN), UMR 9024, Ecole Normale Supérieure Paris Saclay, CentraleSupélec, CNRS, Université Paris-Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
| |
Collapse
|
175
|
Yue X, Fang X, Sun T, Yi J, Kuang X, Guo Q, Wang Y, Gu H, Xu H. Breaking through the Poisson Distribution: A compact high-efficiency droplet microfluidic system for single-bead encapsulation and digital immunoassay detection. Biosens Bioelectron 2022; 211:114384. [DOI: 10.1016/j.bios.2022.114384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 11/02/2022]
|
176
|
García I, Martínez LA, Zanini A, Raith D, Boedecker J, Stingl MG, Lerner B, Pérez MS, Mertelsmann R. Automatic feedback control by image processing for mixing solutions in a microfluidic device. BIOMICROFLUIDICS 2022; 16:054106. [PMID: 36238725 PMCID: PMC9553288 DOI: 10.1063/5.0090543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Two approaches of an automatic control were studied through mathematical fitting obtained from color mixing saturation curves in polydimethylsiloxane microfluidic devices: The integrative control with variable integral gain and integrative control with constant integral gain. The aim of this work is to control the color percentage decrement when dye is injected. The results indicate that microfluidic systems are very sensitive to changes in flow and the control variable needs to change slowly; that is, it must be small (at least 100 times less than the theoretically calculated values). The control and stabilization of the microfluidic system were achieved for dye percentages above 60%. The controlling color percentage could provide a tool to regulate other parameters' concentration applied to cell culture and alkalinity control (pH) of solutions in microfluidic devices.
Collapse
Affiliation(s)
| | | | - A. Zanini
- Department of Chemical Engineering, Buenos Aires University—ITHES-UBA—CONICET, Buenos Aires, Argentina
| | - D. Raith
- Neurorobotics Lab, Computer Science Department—Faculty of Engineering, University of Freiburg, Georges-Koehler-Allee 80, 79110 Freiburg, Germany
| | - J. Boedecker
- Department of Medicine I, Medical Center—Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M. G. Stingl
- Department of Medicine I, Medical Center—Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - B. Lerner
- Authors to whom correspondence should be addressed: and
| | - M. S. Pérez
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
177
|
Dalsbecker P, Beck Adiels C, Goksör M. Liver-on-a-chip devices: the pros and cons of complexity. Am J Physiol Gastrointest Liver Physiol 2022; 323:G188-G204. [PMID: 35819853 DOI: 10.1152/ajpgi.00346.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Physiologically relevant and broadly applicable liver cell culture platforms are of great importance in both drug development and disease modeling. Organ-on-a-chip systems offer a promising alternative to conventional, static two-dimensional (2-D) cultures, providing much-needed cues such as perfusion, shear stress, and three-dimensional (3-D) cell-cell communication. However, such devices cover a broad range of complexity both in manufacture and in implementation. In this review, we summarize the key features of the human liver that should be reflected in a physiologically relevant liver-on-a-chip model. We also discuss different material properties of importance in producing liver-on-a-chip devices and summarize recent and current progress in the field, highlighting different types of devices at different levels of complexity.
Collapse
Affiliation(s)
| | | | - Mattias Goksör
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
178
|
Fan D, Yuan X, Wu W, Zhu R, Yang X, Liao Y, Ma Y, Xiao C, Chen C, Liu C, Wang H, Qin P. Self-shrinking soft demoulding for complex high-aspect-ratio microchannels. Nat Commun 2022; 13:5083. [PMID: 36038593 PMCID: PMC9424246 DOI: 10.1038/s41467-022-32859-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Microchannels are the essential elements in animals, plants, and various artificial devices such as soft robotics, wearable sensors, and organs-on-a-chip. However, three-dimensional (3D) microchannels with complex geometry and a high aspect ratio remain challenging to generate by conventional methods such as soft lithography, template dissolution, and matrix swollen processes, although they are widespread in nature. Here, we propose a simple and solvent-free fabrication method capable of producing monolithic microchannels with complex 3D structures, long length, and small diameter. A soft template and a peeling-dominant template removal process are introduced to the demoulding process, which is referred to as soft demoulding here. In combination with thermal drawing technology, microchannels with a small diameter (10 µm), a high aspect ratio (6000, length-to-diameter), and intricate 3D geometries are generated. We demonstrate the vast applicability and significant impact of this technology in multiple scenarios, including soft robotics, wearable sensors, soft antennas, and artificial vessels. Microchannels are the essential elements for the design of artificial devices but the fabrication of three dimensional (3D) microchannels with complex geometry and a high aspect ratio remains challenging. Here, the authors demonstrate a simple and solvent-free fabrication method capable of producing monolithic microchannels with complex 3D structures, long length, and small diameter.
Collapse
Affiliation(s)
- Dongliang Fan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, 518055, China.,Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
| | - Wenyu Wu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Renjie Zhu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxuan Liao
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yunteng Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chufan Xiao
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, 518055, China.,Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
| | - Cheng Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Changyue Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, 518055, China.,Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
| | - Hongqiang Wang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China. .,Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China.
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, 518055, China. .,Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China.
| |
Collapse
|
179
|
Hermans L, Kaynak M, Braun J, Ríos VL, Chen CL, Friedberg A, Günel S, Aymanns F, Sakar MS, Ramdya P. Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila. Nat Commun 2022; 13:5006. [PMID: 36008386 PMCID: PMC9411199 DOI: 10.1038/s41467-022-32571-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
The dynamics and connectivity of neural circuits continuously change on timescales ranging from milliseconds to an animal's lifetime. Therefore, to understand biological networks, minimally invasive methods are required to repeatedly record them in behaving animals. Here we describe a suite of devices that enable long-term optical recordings of the adult Drosophila melanogaster ventral nerve cord (VNC). These consist of transparent, numbered windows to replace thoracic exoskeleton, compliant implants to displace internal organs, a precision arm to assist implantation, and a hinged stage to repeatedly tether flies. To validate and illustrate our toolkit we (i) show minimal impact on animal behavior and survival, (ii) follow the degradation of chordotonal organ mechanosensory nerve terminals over weeks after leg amputation, and (iii) uncover waves of neural activity caffeine ingestion. Thus, our long-term imaging toolkit opens up the investigation of premotor and motor circuit adaptations in response to injury, drug ingestion, aging, learning, and disease.
Collapse
Affiliation(s)
- Laura Hermans
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Murat Kaynak
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Jonas Braun
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Victor Lobato Ríos
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Chin-Lin Chen
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Adam Friedberg
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Semih Günel
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
- Computer Vision Laboratory, EPFL, Lausanne, Switzerland
| | - Florian Aymanns
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Mahmut Selman Sakar
- Microbiorobotic Systems Laboratory, Institute of Mechanical Engineering & Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute & Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
180
|
A Flexible and Attachable Colorimetric Film Sensor for the Detection of Gaseous Ammonia. BIOSENSORS 2022; 12:bios12080664. [PMID: 36005060 PMCID: PMC9405545 DOI: 10.3390/bios12080664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
A cost-effective, simple, flexible, and disposable colorimetric film sensor was constructed for the rapid detection of gaseous ammonia. The sensor was designed to consist of three layers, namely top, middle, and bottom layers of a polymeric elastomer. The bromocresol (BCG) indicator embedded in the middle layer of the film facilitated a change in color of the sensor from yellow-orange to blue upon exposure to gaseous ammonia. The color change was visually observed by the naked eye. The sensitivity of the sensor was verified by a successful detection of gaseous ammonia at concentrations from 4 to 235 ppm within 3 min, and the corresponding visual detection of ammonia gas was at a concentration as low as 11 ppm. The sensor also achieved a selective detection of gaseous ammonia over a variety of alkaline chemicals. The color of the sensor exposed to ammonia reverted from blue to the original yellow-orange upon subsequent exposure to the fume of acetic acid or aeration for 48 h, and it showed reliable performance for the detection of gaseous ammonia even after five repeated uses. The applicability of the sensor was validated by attaching it onto a safety helmet for a simulation of an industrial ammonia gas leak. The results indicated that our colorimetric film sensor is affordable, disposable, and reproducible, and can serve as an effective alternative for simple and rapid recognition of gaseous ammonia in environmental and air quality monitoring as well as in industrial applications.
Collapse
|
181
|
Cardon ZG, Peredo EL, Enloe CM, Oakey JS, Wu SZ, Bezanilla M. Slip slidin' away: Bristle-driven gliding by Tetradesmus deserticola (Chlorophyta) in microfluidic chambers. JOURNAL OF PHYCOLOGY 2022; 58:626-630. [PMID: 35608962 DOI: 10.1111/jpy.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Microalgae within the Scenedesmaceae are often distinguished by spines, bristles, and other wall characteristics. We examined the dynamic production and chemical nature of bristles extruded from the poles of Tetradesmus deserticola previously isolated from microbiotic crust. Rapidly growing cells in a liquid growth medium were established in polydimethylsiloxane microfluidic chambers specially designed to maintain aerobic conditions over time within a chamber 6-12 μm deep. This geometry enabled in-focus imaging of single cells over long periods. Differential interference contrast (DIC) imaging revealed that after multiple fission of mother cells, the newly released, lemon-shaped daughter cells began extruding bristles from each pole. In some instances, the bristles became stuck to either the glass floor or polydimethylsiloxane (PDMS) walls of the chamber, and the force by which the new bristle was extruded was sufficient to propel the cells across the field of view at ~1.2 μm · h-1 . Confocal fluorescence and DIC imaging of cells stained with pontamine fast scarlet and calcofluor, and treated with proteinase K, suggested that bristles are proteinaceous and may also host carbohydrate modifications. The polar bristles extruded by this desert-derived T. deserticola may simply be relics of bristles produced by an aquatic ancestor for flotation or predator deterrence. But, their tendency to attach to glass (silicate) and/or PDMS surfaces suggests a potential role in tethering cells in place or binding soil particles. T. deserticola is closely related to T. obliquus, which is of interest for biofuels development; extruded bristles in T. deserticola may offer tethers for industrial use of these stress-tolerant algae.
Collapse
Affiliation(s)
- Zoe G Cardon
- Marine Biological Laboratory, Ecosystems Center, Woods Hole, Massachusetts, 02543, USA
| | - Elena L Peredo
- Marine Biological Laboratory, Ecosystems Center, Woods Hole, Massachusetts, 02543, USA
| | - Cassidy M Enloe
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - John S Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755, USA
| |
Collapse
|
182
|
Norris SCP, Kawecki NS, Davis AR, Chen KK, Rowat AC. Emulsion-templated microparticles with tunable stiffness and topology: Applications as edible microcarriers for cultured meat. Biomaterials 2022; 287:121669. [PMID: 35853359 PMCID: PMC9834440 DOI: 10.1016/j.biomaterials.2022.121669] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 01/16/2023]
Abstract
Cultured meat has potential to diversify methods for protein production, but innovations in production efficiency will be required to make cultured meat a feasible protein alternative. Microcarriers provide a strategy to culture sufficient volumes of adherent cells in a bioreactor that are required for meat products. However, cell culture on inedible microcarriers involves extra downstream processing to dissociate cells prior to consumption. Here, we present edible microcarriers that can support the expansion and differentiation of myogenic cells in a single bioreactor system. To fabricate edible microcarriers with a scalable process, we used water-in-oil emulsions as templates for gelatin microparticles. We also developed a novel embossing technique to imprint edible microcarriers with grooved topology in order to test if microcarriers with striated surface texture can promote myoblast proliferation and differentiation in suspension culture. In this proof-of-concept demonstration, we showed that edible microcarriers with both smooth and grooved surface topologies supported the proliferation and differentiation of mouse myogenic C2C12 cells in a suspension culture. The grooved edible microcarriers showed a modest increase in the proliferation and alignment of myogenic cells compared to cells cultured on smooth, spherical microcarriers. During the expansion phase, we also observed the formation of cell-microcarrier aggregates or 'microtissues' for cells cultured on both smooth and grooved microcarriers. Myogenic microtissues cultured with smooth and grooved microcarriers showed similar characteristics in terms of myotube length, myotube volume fraction, and expression of myogenic markers. To establish feasibility of edible microcarriers for cultured meat, we showed that edible microcarriers supported the production of myogenic microtissue from C2C12 or bovine satellite muscle cells, which we harvested by centrifugation into a cookable meat patty that maintained its shape and exhibited browning during cooking. These findings demonstrate the potential of edible microcarriers for the scalable production of cultured meat in a single bioreactor.
Collapse
Affiliation(s)
- Sam C P Norris
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ashton R Davis
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
183
|
Soysal U, Azevedo PN, Bureau F, Aubry A, Carvalho MS, Pessoa ACSN, Torre LGDL, Couture O, Tourin A, Fink M, Tabeling P. Freeze-Dried Microfluidic Monodisperse Microbubbles as a New Generation of Ultrasound Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1484-1495. [PMID: 35568594 DOI: 10.1016/j.ultrasmedbio.2022.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
We succeeded in freeze-drying monodisperse microbubbles without degrading their performance, that is, their monodispersity in size and echogenicity. We used microfluidic technology to generate cryoprotected highly monodisperse microbubbles (coefficient of variation [CV] <5%). By using a novel retrieval technique, we were able to freeze-dry the microbubbles and resuspend them without degradation, that is, keeping their size distribution narrow (CV <6%). Acoustic characterization performed in two geometries (a centimetric cell and a millichannel) revealed that the resuspended bubbles conserved the sharpness of the backscattered resonance peak, leading to CVs ranging between 5% and 10%, depending on the geometry. As currently observed with monodisperse bubbles, the peak amplitudes are one order of magnitude higher than those of commercial ultrasound contrast agents. Our work thus solves the question of storage and transportation of highly monodisperse bubbles. This work might open pathways toward novel clinical non-invasive measurements, such as local pressure, impossible to carry out with the existing commercial ultrasound contrast agents.
Collapse
Affiliation(s)
- Ugur Soysal
- Microfluidique, MEMS et Nanostructures, Institut Pierre Gilles de Gennes, ESPCI Paris, Université PSL, CNRS, France.
| | - Pedro N Azevedo
- Microfluidique, MEMS et Nanostructures, Institut Pierre Gilles de Gennes, ESPCI Paris, Université PSL, CNRS, France; Institut Langevin, ESPCI Paris, Université PSL, CNRS, France; Department of Mechanical Engineering, PUC-Rio, Brazil
| | - Flavien Bureau
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, France
| | | | | | | | | | - Arnaud Tourin
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, France
| | - Patrick Tabeling
- Microfluidique, MEMS et Nanostructures, Institut Pierre Gilles de Gennes, ESPCI Paris, Université PSL, CNRS, France
| |
Collapse
|
184
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
185
|
El-Sherry TM, Abd-Elhafeez HH, Sayed MAM. New insights into sperm rheotaxis, agglutination and bundle formation in Sharkasi chickens based on an in vitro study. Sci Rep 2022; 12:13003. [PMID: 35906270 PMCID: PMC9338266 DOI: 10.1038/s41598-022-17037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Fertility in birds is dependent on their ability to store adequate populations of viable sperm for extended durations in sperm storage tubules (SSTs). The exact mechanisms by which sperm enter, reside, and egress from the SSTs are still controversial. Sharkasi chicken sperm showed a high tendency to agglutinate, forming motile thread-like bundles comprising many cells. Since it is difficult to observe sperm motility and behavior inside the opaque oviduct, we employed a microfluidic device with a microchannel cross-section resembling close to that of sperm glands allowing for the study of sperm agglutination and motility behavior. This study discusses how sperm bundles are formed, how they move, and what role they may have in extending sperm residency inside the SSTs. We investigated sperm velocity and rheotaxis behavior when a fluid flow was generated inside a microfluidic channel by hydrostatic pressure (flow velocity = 33 µm/s). Spermatozoa tended to swim against the flow (positive rheotaxis) and sperm bundles had significantly lower velocity compared to lonesome sperm. Sperm bundles were observed to swim in a spiral-like motion and to grow in length and thickness as more lonesome sperm are recruited. Sperm bundles were observed approaching and adhering to the sidewalls of the microfluidic channels to avoid being swept with fluid flow velocity > 33 µm/s. Scanning and transmission electron microscopy revealed that sperm bundles were supported by a copious dense substance. The findings show the distinct motility of Sharkasi chicken sperm, as well as sperm's capacity to agglutinate and form motile bundles, which provides a better understanding of long-term sperm storage in the SSTs.
Collapse
Affiliation(s)
- Taymour M El-Sherry
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cells and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - M A M Sayed
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
186
|
Campisi M, Shelton SE, Chen M, Kamm RD, Barbie DA, Knelson EH. Engineered Microphysiological Systems for Testing Effectiveness of Cell-Based Cancer Immunotherapies. Cancers (Basel) 2022; 14:3561. [PMID: 35892819 PMCID: PMC9330888 DOI: 10.3390/cancers14153561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cell therapies, including adoptive immune cell therapies and genetically engineered chimeric antigen receptor (CAR) T or NK cells, have shown promise in treating hematologic malignancies. Yet, immune cell infiltration and expansion has proven challenging in solid tumors due to immune cell exclusion and exhaustion and the presence of vascular barriers. Testing next-generation immune therapies remains challenging in animals, motivating sophisticated ex vivo models of human tumor biology and prognostic assays to predict treatment response in real-time while comprehensively recapitulating the human tumor immune microenvironment (TIME). This review examines current strategies for testing cell-based cancer immunotherapies using ex vivo microphysiological systems and microfluidic technologies. Insights into the multicellular interactions of the TIME will identify novel therapeutic strategies to help patients whose tumors are refractory or resistant to current immunotherapies. Altogether, these microphysiological systems (MPS) have the capability to predict therapeutic vulnerabilities and biological barriers while studying immune cell infiltration and killing in a more physiologically relevant context, thereby providing important insights into fundamental biologic mechanisms to expand our understanding of and treatments for currently incurable malignancies.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Sarah E. Shelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| |
Collapse
|
187
|
Nahak BK, Mishra A, Preetam S, Tiwari A. Advances in Organ-on-a-Chip Materials and Devices. ACS APPLIED BIO MATERIALS 2022; 5:3576-3607. [PMID: 35839513 DOI: 10.1021/acsabm.2c00041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.
Collapse
Affiliation(s)
- Bishal Kumar Nahak
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| |
Collapse
|
188
|
Weirauch L, Giesler J, Baune M, Pesch G, Thöming J. Shape-selective remobilization of microparticles in a mesh-based DEP filter at high throughput. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
189
|
Lammertse E, Koditala N, Sauzade M, Li H, Li Q, Anis L, Kong J, Brouzes E. Widely accessible method for 3D microflow mapping at high spatial and temporal resolutions. MICROSYSTEMS & NANOENGINEERING 2022; 8:72. [PMID: 35782292 PMCID: PMC9246883 DOI: 10.1038/s41378-022-00404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Advances in microfluidic technologies rely on engineered 3D flow patterns to manipulate samples at the microscale. However, current methods for mapping flows only provide limited 3D and temporal resolutions or require highly specialized optical set-ups. Here, we present a simple defocusing approach based on brightfield microscopy and open-source software to map micro-flows in 3D at high spatial and temporal resolution. Our workflow is both integrated in ImageJ and modular. We track seed particles in 2D before classifying their Z-position using a reference library. We compare the performance of a traditional cross-correlation method and a deep learning model in performing the classification step. We validate our method on three highly relevant microfluidic examples: a channel step expansion and displacement structures as single-phase flow examples, and droplet microfluidics as a two-phase flow example. First, we elucidate how displacement structures efficiently shift large particles across streamlines. Second, we reveal novel recirculation structures and folding patterns in the internal flow of microfluidic droplets. Our simple and widely accessible brightfield technique generates high-resolution flow maps and it will address the increasing demand for controlling fluids at the microscale by supporting the efficient design of novel microfluidic structures.
Collapse
Affiliation(s)
- Evan Lammertse
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Nikhil Koditala
- Department of Mathematics and Statistics, Department of Computer Science, Georgia State University, Atlanta, GA 30302 USA
| | - Martin Sauzade
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Hongxiao Li
- Department of Mathematics and Statistics, Department of Computer Science, Georgia State University, Atlanta, GA 30302 USA
| | - Qiang Li
- Department of Mathematics and Statistics, Department of Computer Science, Georgia State University, Atlanta, GA 30302 USA
| | - Luc Anis
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Jun Kong
- Department of Mathematics and Statistics, Department of Computer Science, Georgia State University, Atlanta, GA 30302 USA
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794 USA
- Cancer Center, Stony Brook School of Medicine, Stony Brook, NY 11794 USA
- Institute for Engineering Driven Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
190
|
Li J, Zhang Y, Zou C, Chen Y, Li Y, Chen H. Binding properties of flowing fibrin-targeted microbubbles evaluated with a thrombus-embedded microchannel. LAB ON A CHIP 2022; 22:2292-2298. [PMID: 35616180 DOI: 10.1039/d1lc01037a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fibrin is found in both arterial and venous thrombi, which provides an important target for thrombus-targeted microbubbles (MBs) used in MB-enhanced ultrasound imaging and sonothrombolysis. A fibrin-targeted peptide, Cys-Arg-Glu-Lys-Ala (CREKA), is used to modify the commercially available SonoVue ultrasound contrast agent using a conjugation method, and the binding capacity and binding strength of the fibrin-targeted CREKA-modified SonoVue MBs are evaluated with a thrombus-embedded microchannel at a typical shear rate range of venous and arterial blood flow. The experimental results indicate that the targeted MBs bind firmly to the thrombus surface when they flow along the microchannel at a wall shear rate of up to 1000 s-1. This work not only provides an effective method for the fabrication of fibrin-targeted MBs based on commercially available SonoVue MBs but also demonstrates an approach for evaluation of the binding properties of flowing targeted MBs under well-controlled flow conditions.
Collapse
Affiliation(s)
- Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuan Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenghong Zou
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yongjian Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
191
|
Mahdieh Z, Cherne MD, Fredrikson JP, Sidar B, Sanchez HS, Chang CB, Bimczok D, Wilking JN. Granular Matrigel: restructuring a trusted extracellular matrix material for improved permeability. Biomed Mater 2022; 17:045020. [PMID: 35609584 DOI: 10.1088/1748-605x/ac7306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Matrigel is a polymeric extracellular matrix material produced by mouse cancer cells. Over the past four decades, Matrigel has been shown to support a wide variety of two- and three-dimensional cell and tissue culture applications including organoids. Despite widespread use, transport of molecules, cells, and colloidal particles through Matrigel can be limited. These limitations restrict cell growth, viability, and function and limit Matrigel applications. A strategy to improve transport through a hydrogel without modifying the chemistry or composition of the gel is to physically restructure the material into microscopic microgels and then pack them together to form a porous material. These 'granular' hydrogels have been created using a variety of synthetic hydrogels, but granular hydrogels composed of Matrigel have not yet been reported. Here we present a drop-based microfluidics approach for structuring Matrigel into a three-dimensional, mesoporous material composed of packed Matrigel microgels, which we call granular Matrigel. We show that restructuring Matrigel in this manner enhances the transport of colloidal particles and human dendritic cells (DCs) through the gel while providing sufficient mechanical support for culture of human gastric organoids (HGOs) and co-culture of human DCs with HGOs.
Collapse
Affiliation(s)
- Zahra Mahdieh
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Michelle D Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Jacob P Fredrikson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Humberto S Sanchez
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - James N Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
192
|
Chen S, Lei Y, Xu J, Yang Y, Dong Y, Li Y, Yi H, Liao Y, Chen L, Xiao Y. Simple, rapid, and visual electrochemiluminescence sensor for on-site catechol analysis. RSC Adv 2022; 12:17330-17336. [PMID: 35765423 PMCID: PMC9189704 DOI: 10.1039/d2ra03067e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Environmental pollution caused by aromatic compounds such as catechol (Cat) has become a major issue for human health. However, there is no simple, rapid, and low-cost method for on-site monitoring of Cat. Here, based on ECL quenching mechanism, we develop a simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor for on-site monitoring of Cat. The mechanism of ECL quenching is due to the interaction between Cat and Ru(bpy)32+* and the interactions between the oxidation products of Cat and DBAE. MSNs films with ordered perpendicular mesopore channels exhibit an amplification effect of ECL intensity due to the negatively charged pore channel. There is a good linear relationship between ECL intensity and Cat concentration in the range of 10 ∼ 1000 μM with the limit of detection (LOD) of 9.518 μM (R2 = 0.99). The on-site sensor is promising to offer new opportunities for pharmaceuticals analysis, on-site monitoring, and exposure risk assessment. A simple, rapid and visual mesoporous silica (MSNs)-electrochemiluminescence (ECL) sensor was developed for on-site monitoring of Cat.![]()
Collapse
Affiliation(s)
- Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital Changsha 410008 Hunan China
| | - Yuanyuan Lei
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Junrong Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yun Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yiying Dong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yanmei Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yilong Liao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Liyin Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China
| | - Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University Changsha 410013 Hunan China.,Experimental Soft Condensed Matter Group, School of Engineering and Applied Sciences, Harvard University Cambridge Massachusetts 02138 USA
| |
Collapse
|
193
|
Abstract
The blood-brain barrier (BBB) is an interface between cerebral blood and the brain parenchyma. As a gate keeper, BBB regulates passage of nutrients and exogeneous compounds. Owing to this highly selective barrier, many drugs targeting brain diseases are not likely to pass through the BBB. Thus, a large amount of time and cost have been paid for the development of BBB targeted therapeutics. However, many drugs validated in in vitro models and animal models have failed in clinical trials primarily due to the lack of an appropriate BBB model. Human BBB has a unique cellular architecture. Different physiologies between human and animal BBB hinder the prediction of drug responses. Therefore, a more physiologically relevant alternative BBB model needs to be developed. In this review, we summarize major features of human BBB and current BBB models and describe organ-on-chip models for BBB modeling and their applications in neurological complications.
Collapse
Affiliation(s)
- Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
194
|
Shape and structural relaxation of colloidal tactoids. Nat Commun 2022; 13:2778. [PMID: 35589676 PMCID: PMC9120485 DOI: 10.1038/s41467-022-30123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Facile geometric-structural response of liquid crystalline colloids to external fields enables many technological advances. However, the relaxation mechanisms for liquid crystalline colloids under mobile boundaries remain still unexplored. Here, by combining experiments, numerical simulations and theory, we describe the shape and structural relaxation of colloidal liquid crystalline micro-droplets, called tactoids, where amyloid fibrils and cellulose nanocrystals are used as model systems. We show that tactoids shape relaxation bears a universal single exponential decay signature and derive an analytic expression to predict this out of equilibrium process, which is governed by liquid crystalline anisotropic and isotropic contributions. The tactoids structural relaxation shows fundamentally different paths, with first- and second-order exponential decays, depending on the existence of splay/bend/twist orientation structures in the ground state. Our findings offer a comprehensive understanding on dynamic confinement effects in liquid crystalline colloidal systems and may set unexplored directions in the development of novel responsive materials. Tactoids, consisting of micro-confined liquid crystalline colloids with self-selected shape, bear both fundamental and technological significance. The authors show that the shape relaxation of tactoids follows an exponential decay and develop a model to predict this out-of-the-equilibrium process.
Collapse
|
195
|
Thompson JR, Crooks RM. Enriching Cations Using Electric Field Gradients Generated by Bipolar Electrodes in the Absence of Buffer. ChemElectroChem 2022. [DOI: 10.1002/celc.202200251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jonathan R. Thompson
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 United States
| |
Collapse
|
196
|
Tang PC, Eriksson O, Sjögren J, Fatsis-Kavalopoulos N, Kreuger J, Andersson DI. A Microfluidic Chip for Studies of the Dynamics of Antibiotic Resistance Selection in Bacterial Biofilms. Front Cell Infect Microbiol 2022; 12:896149. [PMID: 35619647 PMCID: PMC9128571 DOI: 10.3389/fcimb.2022.896149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Biofilms are arguably the most important mode of growth of bacteria, but how antibiotic resistance emerges and is selected in biofilms remains poorly understood. Several models to study evolution of antibiotic resistance have been developed, however, their usability varies depending on the nature of the biological question. Here, we developed and validated a microfluidic chip (Brimor) for studying the dynamics of enrichment of antibiotic-resistant bacteria in biofilms using real-time monitoring with confocal microscopy. In situ extracellular cellulose staining and physical disruption of the biomass confirmed Escherichia coli growth as biofilms in the chip. We showed that seven generations of growth occur in 16 h when biofilms were established in the growth chambers of Brimor, and that bacterial death and growth rates could be estimated under these conditions using a plasmid with a conditional replication origin. Additionally, competition experiments between antibiotic-susceptible and -resistant bacteria at sub-inhibitory concentrations demonstrated that the antibiotic ciprofloxacin selected for antibiotic resistance in bacterial biofilms at concentrations 17-fold below the minimal inhibitory concentration of susceptible planktonic bacteria. Overall, the microfluidic chip is easy to use and a relevant model for studying the dynamics of selection of antibiotic resistance in bacterial biofilms and we anticipate that the Brimor chip will facilitate basic research in this area.
Collapse
Affiliation(s)
- Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- U-Print, Uppsala University 3D-Printing Facility, Uppsala University, Uppsala, Sweden
| | | | | | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan I. Andersson, ; Johan Kreuger,
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Dan I. Andersson, ; Johan Kreuger,
| |
Collapse
|
197
|
Etezadi F, Le MNT, Shahsavarani H, Alipour A, Moazzezy N, Samani S, Amanzadeh A, Pahlavan S, Bonakdar S, Shokrgozar MA, Hasegawa K. Optimization of a PDMS-Based Cell Culture Substrate for High-Density Human-Induced Pluripotent Stem Cell Adhesion and Long-Term Differentiation into Cardiomyocytes under a Xeno-Free Condition. ACS Biomater Sci Eng 2022; 8:2040-2052. [PMID: 35468288 DOI: 10.1021/acsbiomaterials.2c00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the numerous advantages of PDMS-based substrates in various biomedical applications, they are limited by their highly hydrophobic surface that does not optimally interact with cells for attachment and growth. Hence, the lack of lengthy and straightforward procedures for high-density cell production on the PDMS-based substrate is one of the significant challenges in cell production in the cell therapy field. In this study, we found that the PDMS substrate coated with a combination of polydopamine (PDA) and laminin-511 E8 fragments (PDA + LME8-coated PDMS) can support human-induced pluripotent stem cell (hiPSC) attachment and growth for the long term and satisfy their demands of differentiation into cardiomyocytes (iCMs). Compared with prior studies, the density of hiPSCs and their adhesion time on the PDMS surface were increased during iCM production. Although the differentiated iCMs beat and produce mechanical forces, which disturb cellular attachments, the iCMs on the PDA + LME8-coated PDMS substrate showed dramatically better attachment than the control condition. Further, the substrate required less manipulation by enabling one-step seeding throughout the process in iCM formation from hiPSCs under animal-free conditions. In light of the results achieved, the PDA + LME8-coated PDMS substrate will be an up-and-coming tool for cardiomyocyte production for cell therapy and tissue engineering, microfluidics, and organ-on-chip platforms.
Collapse
Affiliation(s)
- Fatemeh Etezadi
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran.,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Hosein Shahsavarani
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran.,Department of Cell and Molecular Sciences, Faculty of Life Science and Biotechnology, Shahid Beheshti University, 1983963113 Tehran, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Neda Moazzezy
- Molecular Biology Department, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Saeed Samani
- Department of Tissue Engineering & Applied Cell Sciences, TUMS School of Advanced Technologies in Medicine, No. 88, Italia St, Tehran, 1417755469, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Development Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACERCR, Banihashem Ave, Tehran 16635-148, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
198
|
Cui B, Cho SW. Blood-brain barrier-on-a-chip for brain disease modeling and drug testing. BMB Rep 2022; 55:213-219. [PMID: 35410642 PMCID: PMC9152581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 09/17/2023] Open
Abstract
The blood-brain barrier (BBB) is an interface between cerebral blood and the brain parenchyma. As a gate keeper, BBB regulates passage of nutrients and exogeneous compounds. Owing to this highly selective barrier, many drugs targeting brain diseases are not likely to pass through the BBB. Thus, a large amount of time and cost have been paid for the development of BBB targeted therapeutics. However, many drugs validated in in vitro models and animal models have failed in clinical trials primarily due to the lack of an appropriate BBB model. Human BBB has a unique cellular architecture. Different physiologies between human and animal BBB hinder the prediction of drug responses. Therefore, a more physiologically relevant alternative BBB model needs to be developed. In this review, we summarize major features of human BBB and current BBB models and describe organ-on-chip models for BBB modeling and their applications in neurological complications. [BMB Reports 2022; 55(5): 213-219].
Collapse
Affiliation(s)
- Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
199
|
Micro-particle entrapment dynamics in microfluidic pulmonary capillary networks. J Biomech 2022; 137:111082. [PMID: 35489235 DOI: 10.1016/j.jbiomech.2022.111082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Abstract
The journey of vascular targeted carriers (VTC) in the circulatory system is highly intricate and includes navigation through different vessel structures, such as the vast pulmonary capillary network (PCN) in the lungs where particles can get entrapped and lead to blockage. Here, we leverage microfluidic PCN models to explore, for the first time, micro-particle capillary entrapment, in a well-controlled biophysical environment mimicking human physiological hemodynamics at true scale. This in vitro strategy mimics the challenges of vascular carrier transport during their journey in the smallest capillaries of the body (∼5 µm). Specifically, we explore in the PCN model entrapment dynamics of spherical micro-particles of different diameters (i.e. 3, 4 and 4.5 µm) at different concentrations, comparing their motion in cell-free buffer to that in the presence of red blood cells (RBCs). Notably, while 3 µm particles exhibit undisturbed transport in all of the examined concentrations, both in cell-free buffer and in the presence of RBCs, particles of 4 and 4.5 µm exhibit a concentration-dependent transport where the presence of RBCs leads in fact to reduced entrapment. Our experiments suggest that collisions of micro-particles with RBCs can facilitate their navigability, allowing for carrier transport that would lead otherwise to rapid entrapment in a cell-free environment. Altogether, the proposed preclinical in vitro assays offer rapid screening opportunities for design optimization of VTC transport in capillary networks.
Collapse
|
200
|
Rodrigues PM, Xavier M, Calero V, Pastrana L, Gonçalves C. Partitioning of Small Hydrophobic Molecules into Polydimethylsiloxane in Microfluidic Analytical Devices. MICROMACHINES 2022; 13:713. [PMID: 35630180 PMCID: PMC9148048 DOI: 10.3390/mi13050713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
Polydimethylsiloxane (PDMS) is ubiquitously used in microfluidics. However, PDMS is porous and hydrophobic, potentially leading to small molecule partitioning. Although many studies addressed this issue and suggested surface/bulk modifications to overcome it, most were not quantitative, did not address which variables besides hydrophobicity governed molecule absorption, and no modification has been shown to completely obviate it. We evaluated qualitatively (confocal microscopy) and quantitatively (fluorescence spectroscopy) the effects of solute/solvent pairings, concentration, and residence time on molecule partitioning into PDMS. Additionally, we tested previously reported surface/bulk modifications, aiming to determine whether reduced PDMS hydrophobicity was stable and hindered molecule partitioning. Partitioning was more significant at lower concentrations, with the relative concentration of rhodamine-B at 20 µM remaining around 90% vs. 10% at 1 µM. Solute/solvent pairings were demonstrated to be determinant by the dramatically higher partitioning of Nile-red in a PBS-based solvent as opposed to ethanol. A paraffin coating slightly decreased the partitioning of Nile-red, and a sol-gel modification hindered the rhodamine-B diffusion into the PDMS bulk. However, there was no direct correlation between reduced surface hydrophobicity and molecule partitioning. This work highlighted the need for pre-assessing the absorption of test molecules into the microfluidic substrates and considering alternative materials for fabrication.
Collapse
Affiliation(s)
- Patrícia M. Rodrigues
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (P.M.R.); (M.X.); (V.C.); (L.P.)
- University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
| | - Miguel Xavier
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (P.M.R.); (M.X.); (V.C.); (L.P.)
| | - Victor Calero
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (P.M.R.); (M.X.); (V.C.); (L.P.)
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (P.M.R.); (M.X.); (V.C.); (L.P.)
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (P.M.R.); (M.X.); (V.C.); (L.P.)
| |
Collapse
|