151
|
Do HN, Malvankar SR, Wolfe MS, Miao Y. Molecular Dynamics Activation of γ-Secretase for Cleavage of the Notch1 Substrate. ACS Chem Neurosci 2023; 14:4216-4226. [PMID: 37942767 PMCID: PMC10900880 DOI: 10.1021/acschemneuro.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
γ-Secretase is an intramembrane aspartyl protease complex that cleaves the transmembrane domain of over 150 peptide substrates, including amyloid precursor protein (APP) and the Notch family of receptors, via two conserved aspartates D257 and D385 in the presenilin-1 (PS1) catalytic subunit. However, while the activation of γ-secretase for cleavage of APP has been widely studied, the cleavage of Notch by γ-secretase remains poorly explored. Here, we combined Gaussian accelerated molecular dynamics (GaMD) simulations and mass spectrometry (MS) analysis of proteolytic products to present the first dynamic models for cleavage of Notch by γ-secretase. MS showed that γ-secretase cleaved the WT Notch at Notch residue G34, while cleavage of the L36F mutant Notch occurred at Notch residue C33. Initially, we prepared our simulation systems starting from the cryoEM structure of Notch-bound γ-secretase (PDB: 6IDF) and failed to capture the proper cleavages of WT and L36F Notch by γ-secretase. We then discovered an incorrect registry of the Notch substrate in the PS1 active site through alignment of the experimental structure of Notch-bound (PDB: 6IDF) and APP-bound γ-secretase (PDB: 6IYC). Every residue of the APP substrate was systematically mutated to the corresponding Notch residue to prepare a resolved model of Notch-bound γ-secretase complexes. GaMD simulations of the resolved model successfully captured γ-secretase activation for proper cleavages of both WT and L36F mutant Notch. Our findings presented here provided mechanistic insights into the structural dynamics and enzyme-substrate interactions required for γ-secretase activation for cleavage of Notch and other substrates.
Collapse
|
152
|
Meerovich GA, Akhlyustina EV, Romanishkin ID, Makarova EA, Tiganova IG, Zhukhovitsky VG, Kholina EG, Kovalenko IB, Romanova YM, Loschenov VB, Strakhovskaya MG. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther 2023; 44:103853. [PMID: 37863377 DOI: 10.1016/j.pdpdt.2023.103853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms. METHODS Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation. Zeta potential measurements, confocal fluorescence imaging, and coarse-grained modeling were used to evaluate the interactions of PS with bacteria. PS aggregation and photobleaching were studied using absorption and fluorescence spectroscopy. RESULTS The main approaches to ensure high efficiency of bacteria photosensitization are analyzed. CONCLUSIONS PS must maintain a delicate balance between binding to exocellular and external structures of bacterial cells and penetration through the cell wall so as not to get stuck on the way to photooxidation-sensitive structures of the bacterial cell.
Collapse
Affiliation(s)
- Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Tiganova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vladimir G Zhukhovitsky
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia; Ministry of Public Health of the Russian Federation, Russian Medical Academy of Continuing Professional Education (RMANPO), Moscow 125993, Russia
| | | | - Ilya B Kovalenko
- Lomonosov Moscow State University, Moscow 119234, Russia; Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Yulia M Romanova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | |
Collapse
|
153
|
Kuntsche J, Rajakulendran K, Sabriye HMT, Tawakal N, Khandelia H, Hakami Zanjani AA. Drastic differences between the release kinetics of two highly related porphyrins in liposomal membranes: mTHPP and pTHPP. J Colloid Interface Sci 2023; 651:750-759. [PMID: 37572612 DOI: 10.1016/j.jcis.2023.07.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
HYPOTHESIS The release of hydrophobic compounds from liposomal membranes occurs by partitioning and is thus determined by the physicochemical properties (e.g. logP and water solubility) of the drug. We postulate that even minor structural differences, e.g. the position of the phenolic OH-group of the hydrophobic porphyrins mTHPP and pTHPP (meta vs. para substitution), distinctly affect their partitioning and release behavior from liposomes. EXPERIMENTS The release and redistribution of mTHPP and pTHPP from lecithin or POPC/POPG liposomes to different acceptor particles (DSPE-mPEG micelles and liposomes) was studied by asymmetrical flow field-flow fractionation to separate donor and acceptor particles. Reversed phase HPLC was applied to detect differences in partitioning. Molecular dynamics (MD) simulations were carried out to obtain molecular insight in the different behavior of the two compounds inside a lipid bilayer. FINDINGS Despite the minor differences in chemical structure, mTHPP is more hydrophobic and redistributes much slower to both acceptor phases than pTHPP. MD simulations indicate that compared to pTHPP, mTHPP makes stronger hydrogen bonds with the lipid head groups, is oriented more parallel to the lipid tails and is embedded slightly deeper in the membrane.
Collapse
Affiliation(s)
- Judith Kuntsche
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Kirishana Rajakulendran
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Hibo Mohamed Takane Sabriye
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Navidullah Tawakal
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Ali Asghar Hakami Zanjani
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
154
|
Singer NK, González L, Monari A. Molecular Photoswitches Regulating the Activity of the Human Serotonin Transporter. J Phys Chem Lett 2023; 14:10333-10339. [PMID: 37944933 DOI: 10.1021/acs.jpclett.3c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Serotonin is an essential mediator regulating diverse neural processes, and its deregulation is related to the development of debilitating neurological diseases. In particular, the human serotonin transporter (hSERT) is fundamental in completing the synaptic neural cycle by allowing reuptake of serotonin. Its inhibition is particularly attractive, especially as a pharmacological target against depressive syndrome. Here, we analyze, by using long-range molecular dynamic simulations, the behavior of a molecular photoswitch whose cis- and trans-isomers inhibit the hSERT differently. In particular, we evidence the structural and molecular basis behind the higher inhibiting capacity of the cis-isomer, which blocks more efficiently the hSERT conformational cycle, leading to serotonin uptake.
Collapse
Affiliation(s)
- Nadja K Singer
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Vienna Austria
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
155
|
Srivastava D, Patra N. Enhanced Uptake of Anticancer C6-Pep Dimer in a Model Membrane Caused by Differential p Ka in Acidic Microenvironment. J Phys Chem B 2023; 127:9747-9758. [PMID: 37776281 DOI: 10.1021/acs.jpcb.3c04217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Acidic tumor microenvironment (TME) presents a challenge for the action of antitumor drugs by acting as an additional barrier for the passive crossing of the cell membrane by chemotherapic agents playing a critical role in the proliferation of tumor cells. Anticancer lipopeptide C6-Pep dimer containing the leucine zipper motif shows an increased uptake into the model tumor membrane in TME, and application of external heat might lead to the uncoiling of the zipper, which could result in cell lysis. This work investigated the cause of this increased uptake of C6-Pep dimer into the bilayer model in TME. Accurate protonation states of all the titratable residues of the C6-Pep dimer in TME were determined using constant pH molecular dynamics. In TME, except for two terminal Glu5 residues, all other Glu residues in the C6-Pep dimer were permanently protonated. The remaining Glu5 residues had differential pKa values, leading to the construction of four possible dimers with different fixed protonation states, and molecular dynamics was used to study their interaction with the anionic bilayer. Except for the dimer at a physiological pH, the other dimers were positively charged and could readily adsorb on the membrane surface. The free energy of insertion of these dimers in the bilayer was lower for single and double protonated Glu5-containing dimers than for the others. After the insertion of the lipopeptides into the membrane, thinning of the bilayer in the vicinity of dimers and an increase in area per lipid of the bilayer were observed for all systems, indicating destabilization of the bilayer due to this intercalation. This study shows that the anticancer lipopeptide C6-Pep utilizes the TME around a tumor cell for insertion into the membrane.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
156
|
Boulougouris GC. Accessible Molecular System Creator: Building Molecular Configurations Based on the Inaccessible Molecular Volume and Accessible Molecular Surface via Static Monte Carlo Sampling. J Phys Chem B 2023; 127:9520-9531. [PMID: 37883744 DOI: 10.1021/acs.jpcb.3c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Monte Carlo (MC) stochastic sampling is a powerful tool in classical molecular simulations that directly connects the observable macroscopic properties of matter and the underlying atomistic interactions. This connection operates within the framework of the statistical mechanics proposed by Gibbs. Most MC simulations are "dynamic," creating statistical ensembles of microstates via a Markovian chain, where each microstate in the ensemble depends only on its previous microstate. Herein, we re-examine an alternative form of MC that generates ensemble members through a "static" approach, building molecular systems stepwise. The basic theory for such an approach traces back to Rosenbluth and Rosenbluth, who proposed "static" stepwise sampling of a polymeric chain. It is almost as old as the Metropolis importance sampling approach used in dynamic MC, although the latter has been considerably more popular than the former. Herein, we address the main obstacle in static MC that has hindered the widespread adoption of Rosenbluth-based approaches in atomistic simulations. The obstacle lies in mapping the molecular accessible volume for adding a molecule in a Rosenbluth-like static sampling of atomistic configurations. We demonstrate a breakthrough by leveraging the ability to analytically map the inaccessible molecular volume and the accessible molecular surface owing to interatomically excluded volume interactions. This advance substantially enhances the ability to create molecular samples using a Rosenbluth-like static building process. The proposed approach can be used as a tool for creating initial configurations in MC or molecular dynamics simulations─a field where Rosenbluth-like static building has been applied. Additionally, this approach can be used as the first step in a perturbation scheme that accurately estimates free energy differences by estimating the chemical work related to molecule addition, removal, or reinsertion within the context of free energy perturbation schemes employed in molecular simulations.
Collapse
Affiliation(s)
- Georgios C Boulougouris
- Laboratory of Computational Physical Chemistry, Department of Molecular Biology and Genetics, University of Thrace, GR 681 00 Alexandroupoulis, Greece
| |
Collapse
|
157
|
Silale A, Zhu Y, Witwinowski J, Smith RE, Newman KE, Bhamidimarri SP, Baslé A, Khalid S, Beloin C, Gribaldo S, van den Berg B. Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes. Nat Commun 2023; 14:7152. [PMID: 37932269 PMCID: PMC10628300 DOI: 10.1038/s41467-023-42601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
The outer membrane (OM) in diderm, or Gram-negative, bacteria must be tethered to peptidoglycan for mechanical stability and to maintain cell morphology. Most diderm phyla from the Terrabacteria group have recently been shown to lack well-characterised OM attachment systems, but instead have OmpM, which could represent an ancestral tethering system in bacteria. Here, we have determined the structure of the most abundant OmpM protein from Veillonella parvula (diderm Firmicutes) by single particle cryogenic electron microscopy. We also characterised the channel properties of the transmembrane β-barrel of OmpM and investigated the structure and PG-binding properties of its periplasmic stalk region. Our results show that OM tethering and nutrient acquisition are genetically linked in V. parvula, and probably other diderm Terrabacteria. This dual function of OmpM may have played a role in the loss of the OM in ancestral bacteria and the emergence of monoderm bacterial lineages.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Yiling Zhu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Jerzy Witwinowski
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Robert E Smith
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Kahlan E Newman
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Satya P Bhamidimarri
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, Genetics of Biofilms Laboratory, Paris, France.
| | - Simonetta Gribaldo
- Institut Pasteur, Université de Paris Cité, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| | - Bert van den Berg
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH, Newcastle upon Tyne, UK.
| |
Collapse
|
158
|
Braconi L, Dei S, Contino M, Riganti C, Bartolucci G, Manetti D, Romanelli MN, Perrone MG, Colabufo NA, Guglielmo S, Teodori E. Tetrazole and oxadiazole derivatives as bioisosteres of tariquidar and elacridar: New potent P-gp modulators acting as MDR reversers. Eur J Med Chem 2023; 259:115716. [PMID: 37573829 DOI: 10.1016/j.ejmech.2023.115716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
New 2,5- and 1,5-disubstituted tetrazoles, and 2,5-disubstituted-1,3,4-oxadiazoles were synthesized as tariquidar and elacridar derivatives and studied as multidrug resistance (MDR) reversers. Their behaviour on the three ABC transporters P-gp, MRP1 and BCRP was investigated. All compounds inhibited the P-gp transport activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values even in the low nanomolar range (compounds 15, 22). Oxadiazole derivatives were able to increase the antiproliferative effect of doxorubicin in MDCK-MDR1 and in HT29/DX cells confirming their nature of P-gp modulators, with derivative 15 being the most potent in these assays. Compound 15 also displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP. A computational study suggested a common interaction pattern on P-gp for most of the potent compounds. The bioisosteric substitution of the amide group of lead compounds allowed identifying a new set of potent oxadiazole derivatives that modulate MDR through inhibition of the P-gp efflux activity. If compared to previous amide derivatives, the introduction of the heterocycle rings greatly enhances the activity on P-gp, introduces in two compounds a moderate inhibitory activity on MRP1 and maintains in some cases the effect on BCRP, leading to the unveiling of dual inhibitor 15.
Collapse
Affiliation(s)
- Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy.
| | - Marialessandra Contino
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126, Torino, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", via Orabona 4, 70125, Bari, Italy
| | - Stefano Guglielmo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Torino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
159
|
Xie H, Zhao Y, Zhao W, Chen Y, Liu M, Yang J. Solid-state NMR structure determination of a membrane protein in E. coli cellular inner membrane. SCIENCE ADVANCES 2023; 9:eadh4168. [PMID: 37910616 PMCID: PMC10619923 DOI: 10.1126/sciadv.adh4168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Structure determination of membrane proteins in native cellular membranes is critical to precisely reveal their structures in physiological conditions. However, it remains challenging for solid-state nuclear magnetic resonance (ssNMR) due to the low sensitivity and high complexity of ssNMR spectra of cellular membranes. Here, we present the structure determination of aquaporin Z (AqpZ) by ssNMR in Escherichia coli inner membranes. To enhance the signal sensitivity of AqpZ, we optimized protein overexpression and removed outer membrane components. To suppress the interference of background proteins, we used a "dual-media" expression approach and antibiotic treatment. Using 1017 distance restraints obtained from two-dimensional 13C-13C spectra based on the complete chemical shift assignments, the 1.7-Å ssNMR structure of AqpZ is determined in E. coli inner membranes. This cellular ssNMR structure determination paves the way for analyzing the atomic structural details for membrane proteins in native cellular membranes.
Collapse
Affiliation(s)
- Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
160
|
Pradhan AJ, Chitkara S, Ramirez RX, Monje-Galvan V, Sancak Y, Ekin Atilla-Gokcumen G. Acylation of MLKL impacts its function in necroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553906. [PMID: 37645912 PMCID: PMC10462141 DOI: 10.1101/2023.08.19.553906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mixed lineage kinase domain-like (MLKL) is a key signaling protein of necroptosis. Upon activation by phosphorylation, MLKL translocates to the plasma membrane and induces membrane permeabilization which contributes to the necroptosis-associated inflammation. Membrane binding of MLKL is initially initiated by the electrostatic interactions between the protein and membrane phospholipids. We previously showed that MLKL and its phosphorylated form (pMLKL) are S-acylated during necroptosis. Here, we characterize acylation sites of MLKL and identify multiple cysteines that can undergo acylation with an interesting promiscuity at play. Our results show that MLKL and pMLKL undergo acylation at a single cysteine, C184, C269 and C286 are the possible acylation sites. Using all atom molecular dynamic simulations, we identify differences that the acylation of MLKL causes at the protein and membrane level. Through systematic investigations of the S-palmitoyltransferases that might acylate MLKL in necroptosis, we showed that zDHHC21 activity has the strongest effect on pMLKL acylation, inactivation of which profoundly reduced the pMLKL levels in cells and improved membrane integrity. These results suggest that blocking the acylation of pMLKL destabilizes the protein at the membrane interface and causes its degradation, ameliorating necroptotic activity. At a broader level, our findings shed light on the effect of S-acylation on MLKL functioning in necroptosis and MLKL-membrane interactions mediated by its acylation.
Collapse
Affiliation(s)
- Apoorva J. Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Ricardo X. Ramirez
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
161
|
Khalid S, Brandner AF, Juraschko N, Newman KE, Pedebos C, Prakaash D, Smith IPS, Waller C, Weerakoon D. Computational microbiology of bacteria: Advancements in molecular dynamics simulations. Structure 2023; 31:1320-1327. [PMID: 37875115 DOI: 10.1016/j.str.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
Microbiology is traditionally considered within the context of wet laboratory methodologies. Computational techniques have a great potential to contribute to microbiology. Here, we describe our loose definition of "computational microbiology" and provide a short survey focused on molecular dynamics simulations of bacterial systems that fall within this definition. It is our contention that increased compositional complexity and realistic levels of molecular crowding within simulated systems are key for bridging the divide between experimental and computational microbiology.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK.
| | - Astrid F Brandner
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Nikolai Juraschko
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Artificial Intelligence and Informatics, The Rosalind Franklin Institute, Didcot, UK
| | - Kahlan E Newman
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, UK
| | - Iain P S Smith
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | - Callum Waller
- School of Chemistry, University of Southampton, SO17 1BJ Southampton, UK
| | | |
Collapse
|
162
|
Araya MK, Gorfe AA. Conformational ensemble-dependent lipid recognition and segregation by prenylated intrinsically disordered regions in small GTPases. Commun Biol 2023; 6:1111. [PMID: 37919400 PMCID: PMC10622456 DOI: 10.1038/s42003-023-05487-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. Here we show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we find that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.
Collapse
Affiliation(s)
- Mussie K Araya
- McGovern Medical School, University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX, 77030, USA
| | - Alemayehu A Gorfe
- McGovern Medical School, University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX, 77030, USA.
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, UTHealth MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, 6431 Fannin St., TX, 77030, USA.
| |
Collapse
|
163
|
Zhang J, Kriebel CN, Wan Z, Shi M, Glaubitz C, He X. Automated Fragmentation Quantum Mechanical Calculation of 15N and 13C Chemical Shifts in a Membrane Protein. J Chem Theory Comput 2023; 19:7405-7422. [PMID: 37788419 DOI: 10.1021/acs.jctc.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this work, we developed an accurate and cost-effective automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method to calculate the chemical shifts of 15N and 13C of membrane proteins. The convergence of the AF-QM/MM method was tested using Krokinobacter eikastus rhodopsin 2 as a test case. When the distance threshold of the QM region is equal to or larger than 4.0 Å, the results of the AF-QM/MM calculations are close to convergence. In addition, the effects of selected density functionals, basis sets, and local chemical environment of target atoms on the chemical shift calculations were systematically investigated. Our results demonstrate that the predicted chemical shifts are more accurate when important environmental factors including cross-protomer interactions, lipid molecules, and solvent molecules are taken into consideration, especially for the 15N chemical shift prediction. Furthermore, with the presence of sodium ions in the environment, the chemical shift of residues, retinal, and retinal Schiff base are affected, which is consistent with the results of the solid-state nuclear magnetic resonance (NMR) experiment. Upon comparing the performance of various density functionals (namely, B3LYP, B3PW91, M06-2X, M06-L, mPW1PW91, OB95, and OPBE), the results show that mPW1PW91 is a suitable functional for the 15N and 13C chemical shift prediction of the membrane proteins. Meanwhile, we find that the improved accuracy of the 13Cβ chemical shift calculations can be achieved by the employment of the triple-ζ basis set. However, the employment of the triple-ζ basis set does not improve the accuracy of the 15N and 13Cα chemical shift calculations nor does the addition of a diffuse function improve the overall prediction accuracy of the chemical shifts. Our study also underscores that the AF-QM/MM method has significant advantages in predicting the chemical shifts of key ligands and nonstandard residues in membrane proteins than most widely used empirical models; therefore, it could be an accurate computational tool for chemical shift calculations on various types of biological systems.
Collapse
Affiliation(s)
- Jinhuan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Clara Nassrin Kriebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zheng Wan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Man Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
164
|
Lyukmanova EN, Zaigraev MM, Kulbatskii DS, Isaev AB, Kukushkin ID, Bychkov ML, Shulepko MA, Chugunov AO, Kirpichnikov MP. Molecular Basis for Mambalgin-2 Interaction with Heterotrimeric α-ENaC/ASIC1a/γ-ENaC Channels in Cancer Cells. Toxins (Basel) 2023; 15:612. [PMID: 37888643 PMCID: PMC10610865 DOI: 10.3390/toxins15100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer progression is characterized by microenvironmental acidification. Tumor cells adapt to low environmental pH by activating acid-sensing trimeric ion channels of the DEG/ENaC family. The α-ENaC/ASIC1a/γ-ENaC heterotrimeric channel is a tumor-specific acid-sensing channel, and its targeting can be considered a new strategy for cancer therapy. Mambalgin-2 from the Dendroaspis polylepis venom inhibits the α-ENaC/ASIC1a/γ-ENaC heterotrimer more effectively than the homotrimeric ASIC1a channel, initially proposed as the target of mambalgin-2. Although the molecular basis of such mambalgin selectivity remained unclear. Here, we built the models of the complexes of mambalgin-2 with the α-ENaC/ASIC1a/γ-ENaC and ASIC1a channels, performed MD and predicted the difference in the binding modes. The importance of the 'head' loop region of mambalgin-2 for the interaction with the hetero-, but not with the homotrimeric channel was confirmed by site-directed mutagenesis and electrophysiology. A new mode of allosteric regulation of the ENaC channels by linking the thumb domain of the ASIC1a subunit with the palm domain of the γ-ENaC subunit was proposed. The data obtained provide new insights into the regulation of various types of acid-sensing ion channels and the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| | - Maxim M. Zaigraev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | - Aizek B. Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Ilya D. Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | | | - Anton O. Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| |
Collapse
|
165
|
Fehér B, Voets I, Nagy G. The impact of physiologically relevant temperatures on physical properties of thylakoid membranes: a molecular dynamics study. PHOTOSYNTHETICA 2023; 61:441-450. [PMID: 39649482 PMCID: PMC11586842 DOI: 10.32615/ps.2023.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 12/10/2024]
Abstract
Thylakoid membranes are energy-converting membranes with a unique lipid composition. Though the membranes are primarily composed of proteins, their photosynthetic function is strongly influenced by the lipid constituents. Here we characterize, with molecular dynamics (MD) simulations, lipid bilayers with compositions representative of plant thylakoid membranes. We determine, in a wide range of temperatures, the physical parameters of the model membranes which are relevant for the photosynthetic function. We found a marked impact of temperature on membrane permeability due to a combination of increased compressibility and curvature of the membrane at elevated temperatures. With increasing temperatures, we observed increasingly smeared transmembrane density profiles of the membrane forming lipid headgroups predicting increased membrane flexibility. The diffusion coefficient of the lipids increased with temperature without apparent specificity for lipid species. Instead of a comprehensive experimental dataset in the relevant temperature range, we quantitatively compared and validated our MD results with MD simulations on a dipalmitoylphosphatidylcholine model system.
Collapse
Affiliation(s)
- B. Fehér
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - I.K. Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - G. Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
166
|
Dragan P, Joshi K, Atzei A, Latek D. Keras/TensorFlow in Drug Design for Immunity Disorders. Int J Mol Sci 2023; 24:15009. [PMID: 37834457 PMCID: PMC10573944 DOI: 10.3390/ijms241915009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Homeostasis of the host immune system is regulated by white blood cells with a variety of cell surface receptors for cytokines. Chemotactic cytokines (chemokines) activate their receptors to evoke the chemotaxis of immune cells in homeostatic migrations or inflammatory conditions towards inflamed tissue or pathogens. Dysregulation of the immune system leading to disorders such as allergies, autoimmune diseases, or cancer requires efficient, fast-acting drugs to minimize the long-term effects of chronic inflammation. Here, we performed structure-based virtual screening (SBVS) assisted by the Keras/TensorFlow neural network (NN) to find novel compound scaffolds acting on three chemokine receptors: CCR2, CCR3, and one CXC receptor, CXCR3. Keras/TensorFlow NN was used here not as a typically used binary classifier but as an efficient multi-class classifier that can discard not only inactive compounds but also low- or medium-activity compounds. Several compounds proposed by SBVS and NN were tested in 100 ns all-atom molecular dynamics simulations to confirm their binding affinity. To improve the basic binding affinity of the compounds, new chemical modifications were proposed. The modified compounds were compared with known antagonists of these three chemokine receptors. Known CXCR3 compounds were among the top predicted compounds; thus, the benefits of using Keras/TensorFlow in drug discovery have been shown in addition to structure-based approaches. Furthermore, we showed that Keras/TensorFlow NN can accurately predict the receptor subtype selectivity of compounds, for which SBVS often fails. We cross-tested chemokine receptor datasets retrieved from ChEMBL and curated datasets for cannabinoid receptors. The NN model trained on the cannabinoid receptor datasets retrieved from ChEMBL was the most accurate in the receptor subtype selectivity prediction. Among NN models trained on the chemokine receptor datasets, the CXCR3 model showed the highest accuracy in differentiating the receptor subtype for a given compound dataset.
Collapse
Affiliation(s)
- Paulina Dragan
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-903 Warsaw, Poland; (P.D.); (A.A.)
| | - Kavita Joshi
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-903 Warsaw, Poland; (P.D.); (A.A.)
| | - Alessandro Atzei
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-903 Warsaw, Poland; (P.D.); (A.A.)
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, SS 554, 09042 Cagliari, Italy
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-903 Warsaw, Poland; (P.D.); (A.A.)
| |
Collapse
|
167
|
Tuo Y, Tang Y, Yang R, Zhao X, Luo M, Zhou X, Wang Y. Virtual screening and biological activity evaluation of novel efflux pump inhibitors targeting AdeB. Int J Biol Macromol 2023; 250:126109. [PMID: 37544561 DOI: 10.1016/j.ijbiomac.2023.126109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The AdeABC efflux pump is an important mechanism causing multidrug resistance in Acinetobacter baumannii, and its main component AdeB can recognize carbapenems, aminoglycosides, and other multi-class antibiotics and efflux them intracellularly, which is an ideal target for the development of anti-multidrug resistant bacteria drugs. Here, we combined multiple computer-aided drug design methods to target AdeB to identify promising novel structural inhibitors. Virtual screening was performed by molecular docking and molecular dynamics simulation (MD) and 12 potential compounds were identified from the databases. Meanwhile, their biological activities were validated by in vitro activity assays, and ChemDiv L676-2179 (γ-IFN), ChemDiv L676-1461, and Chembridge 53717615 were confirmed to suppress efflux effects and restore antibiotic susceptibility of resistant bacteria, which are expected to be developed as adjuvant drugs for the treatment of multi-drug resistant Acinetobacter baumannii clinical infections.
Collapse
Affiliation(s)
- Yan Tuo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yuelu Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ran Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - XueMin Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Minghe Luo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China; Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
168
|
Chakraborty G, Nath I V A, Sharma M, Sheth J, Kori M, Tiwari A, Patra N. In silico structural and mechanical insights into bedaquiline resistance associated with high-grade non-synonymous mutations in atpE, mmpR5, and pepQ. J Biomol Struct Dyn 2023; 42:10937-10949. [PMID: 37728541 DOI: 10.1080/07391102.2023.2259486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Clinical resistance against bedaquiline (BDQ) remains intractable to anti-tuberculosis therapies since its introduction to the market over a decade ago. Herein, we investigated the structural and mechanical aspects of BDQ resistance in AtpE, MmpR5, and PepQ. The known target-specific resistant single non-synonymous mutations were refined to high-grade candidates. Thus, 7 (AtpE), 5 (MmpR5), and 1 (PepQ) single nucleotide polymorphisms (SNPs) and one insertion frameshift mutation in MmpR5 were recreated at the molecular level, and these phenotypic models were then directed to stringent dynamics to define time-scaled changes. The AtpE variants destabilized the structure; mainly, L59V, E61D, and I66M were detrimental to the complex fitness, while L74V and L114P boosted the BDQ binding to MmpR5. The first three and last two alterations gave rise to loss- and gain-of-function to AtpE and MmpR5, respectively. Hence, these five mutants are functionally relevant and therapeutically targetable hotspots of BDQ resistance. There were no noticeable changes in PepQ data analysis. The present study revealed that MmpR5 mutations confer BDQ resistance, whereas AtpE and PepQ SNPs display low susceptibility. These results were tallied with the published findings, which testified to the pursued method's reliability and accuracy. We hope these data and inferences could be helpful for the futuristic design of novel TB drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mukta Sharma
- AarogyaAI Innovations Private Limited, Bengaluru, India
| | - Jigar Sheth
- AarogyaAI Innovations Private Limited, Bengaluru, India
| | - Mahima Kori
- AarogyaAI Innovations Private Limited, Bengaluru, India
| | | | - Niladri Patra
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
169
|
Youngworth R, Roux B. Simulating the Voltage-Dependent Fluorescence of Di-8-ANEPPS in a Lipid Membrane. J Phys Chem Lett 2023; 14:8268-8276. [PMID: 37676243 PMCID: PMC10510438 DOI: 10.1021/acs.jpclett.3c01257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Voltage-sensitive fluorescent dyes such as di-8-ANEPPS (di-8-aminonaphthylethylenepyridinium propylsulfonate) are powerful tools to study biological membranes. Its fluorescence is affected by changes in the membrane potential and other factors, requiring extensive calibration to extract meaningful quantitative results. The amphiphilic di-8-ANEPPS molecule is expected to bind at the membrane-solution interface. However, atomic-level information is sparse about its position and orientation in the membrane, especially in regards to how the latter dynamically fluctuates to affect the observed fluorescence. In the present work, molecular dynamics simulations of the ground and excited states of di-8-ANEPPS embedded in a DPPC membrane as represented by classical force fields were used to investigate how the fluorescence is affected by externally applied potential. The calculations reproduce the shifts in the wavelength of emission as a function of voltage that are observed experimentally, indicating that the approach can help better understand the various factors that can affect the fluorescence of membrane-bound dyes.
Collapse
Affiliation(s)
- Rachael Youngworth
- Department
of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, 929 E. 57th Street W225, Chicago, Illinois 60637, United States
| |
Collapse
|
170
|
Campbell O, Monje-Galvan V. Lipid composition modulates interactions of p7 viroporin during membrane insertion. J Struct Biol 2023; 215:108013. [PMID: 37586469 DOI: 10.1016/j.jsb.2023.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/05/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Viral proteins interact with lipid membranes during various stages in the viral life cycle to propagate infection. p7 is an ion channel forming protein of Hepatitis C virus (HCV) that participates in viral assembly. Studies show that it has close ties to lipid metabolism in the cell and anionic phosphatidylserine (PS) lipids are suggested to be key for its permeabilizing function, but the mechanism of its interaction with the lipid environment is largely unknown. To begin unraveling the molecular processes of the protein, we evaluated the impact of lipid environment on the binding and insertion mechanism of p7 prior to channel formation and viral assembly using molecular dynamics simulations. It is seen that p7 is sensitive to its lipid environment and results in different remodeling patterns in membranes. Helix 1 (H1) is especially important for peptide insertion, with deeper entry taking place when the membrane contains phosphatidylserine (PS). Helix 2 (H2) and the adjacent loop connecting to Helix 3 (H3) prompts recruitment of phosphatidylethanolamine (PE) lipids to the protein binding site in membrane models with lower surface charge. This work provides perspectives on the interplay between protein-lipid dynamics and membrane composition, and insights on membrane reorganization in mechanisms of disease.
Collapse
Affiliation(s)
- Oluwatoyin Campbell
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, USA
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
171
|
Kern NR, Lee J, Choi YK, Im W. CHARMM-GUI Multicomponent Assembler for Modeling and Simulation of Complex Multicomponent Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555590. [PMID: 37693396 PMCID: PMC10491218 DOI: 10.1101/2023.08.30.555590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Atomic-scale molecular modeling and simulation are powerful tools for computational biology. However, constructing models with large, densely packed molecules, non-water solvents, or with combinations of multiple biomembranes, polymers, and nanomaterials remains challenging and requires significant time and expertise. Furthermore, existing tools do not support such assemblies under the periodic boundary conditions (PBC) necessary for molecular simulation. Here, we describe Multicomponent Assembler in CHARMM-GUI that automates complex molecular assembly and simulation input preparation under the PBC. We demonstrate its versatility by preparing 6 challenging systems with varying density of large components: (1) solvated proteins, (2) solvated proteins with a pre-equilibrated membrane, (3) solvated proteins with a sheet-like nanomaterial, (4) solvated proteins with a sheet-like polymer, (5) a mixed membrane-nanomaterial system, and (6) a sheet-like polymer with gaseous solvent. Multicomponent Assembler is expected to be a unique cyberinfrastructure to facilitate innovative studies of complex interactions between small (organic and inorganic) molecules, biomacromolecules, polymers, and nanomaterials.
Collapse
Affiliation(s)
- Nathan R. Kern
- Department of Computer Science & Engineering, Lehigh University, Bethlehem, PA, USA
| | - Jumin Lee
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Yeol Kyo Choi
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science & Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
172
|
Criveanu D, Bergqvist CA, Larhammar D, Walczewska-Szewc K. Identification of a new Kir6 potassium channel and comparison of properties of Kir6 subtypes by structural modelling and molecular dynamics. Int J Biol Macromol 2023; 247:125771. [PMID: 37433419 DOI: 10.1016/j.ijbiomac.2023.125771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
ATP-sensitive potassium ion channels (KATP) are transmembrane proteins that modulate insulin release and muscle contraction. KATP channels are composed of two types of subunit, Kir6 and SUR, which exist in two and three isoforms respectively with different tissue distribution. In this work, we identify a previously undescribed ancestral vertebrate gene encoding a Kir6-related protein that we have named Kir6.3, which may not have a SUR binding partner, unlike the other two Kir6 proteins. Whereas Kir6.3 was lost in amniotes including mammals, it is still present in several early-diverging vertebrate lineages such as frogs, coelacanth, and rayfinned fishes. Molecular dynamics (MD) simulations using homology models of Kir6.1, Kir6.2, and Kir6.3 from the coelacanth Latimeria chalumnae showed that the three proteins exhibit subtle differences in their dynamics. Steered MD simulations of Kir6-SUR pairs suggest that Kir6.3 has a lower binding affinity for the SUR proteins than either Kir6.1 or Kir6.2. As we found no additional SUR gene in the genomes of the species that have Kir6.3, it most likely forms a lone tetramer. These findings invite studies of the tissue distribution of Kir6.3 in relation to the other Kir6 as well as SUR proteins to determine the functional roles of Kir6.3.
Collapse
Affiliation(s)
- Dan Criveanu
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Christina A Bergqvist
- Department of Medical Cell Biology, Science for Life Laboratory, Biomedical Center Box 571, Uppsala University, SE-75123 Uppsala, Sweden
| | - Dan Larhammar
- Department of Medical Cell Biology, Science for Life Laboratory, Biomedical Center Box 571, Uppsala University, SE-75123 Uppsala, Sweden
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
173
|
Stachowicz-Kuśnierz A, Korchowiec B, Korchowiec J. Nucleoside Analog Reverse-Transcriptase Inhibitors in Membrane Environment: Molecular Dynamics Simulations. Molecules 2023; 28:6273. [PMID: 37687102 PMCID: PMC10488468 DOI: 10.3390/molecules28176273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The behavior of four drugs from the family of nucleoside analog reverse-transcriptase inhibitors (zalcitabine, stavudine, didanosine, and apricitabine) in a membrane environment was traced using molecular dynamics simulations. The simulation models included bilayers and monolayers composed of POPC and POPG phospholipids. It was demonstrated that the drugs have a higher affinity towards POPG membranes than POPC membranes due to attractive long-range electrostatic interactions. The results obtained for monolayers were consistent with those obtained for bilayers. The drugs accumulated in the phospholipid polar headgroup region. Two adsorption modes were distinguished. They differed in the degree of penetration of the hydrophilic headgroup region. Hydrogen bonds between drug molecules and phospholipid heads were responsible for adsorption. It was shown that apricitabine penetrated the hydrophilic part of the POPC and POPG membranes more effectively than the other drugs. Van der Waals interactions between S atoms and lipids were responsible for this.
Collapse
Affiliation(s)
| | | | - Jacek Korchowiec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.S.-K.); (B.K.)
| |
Collapse
|
174
|
Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MSP. The energetics and ion coupling of cholesterol transport through Patched1. SCIENCE ADVANCES 2023; 9:eadh1609. [PMID: 37611095 PMCID: PMC10446486 DOI: 10.1126/sciadv.adh1609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Patched1 (PTCH1) is a tumor suppressor protein of the mammalian Hedgehog (HH) signaling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating ciliary cholesterol accessibility. Using extensive molecular dynamics simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15 to 20 kilojoule per mole for cholesterol export. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between cation binding sites, transmembrane motions, and PTCH1 activity. Using complementary simulations of Dispatched1, we find that transition between "inward-open" and solvent "occluded" states is accompanied by Na+-induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion coupling stoichiometries of PTCH1 transport mechanisms, whereby one to three Na+ or two to three K+ couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
Collapse
Affiliation(s)
- T Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, Bristol University, Bristol BS8 1TD, UK
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
175
|
Hock MT, Teitgen AE, McCabe KJ, Hirakis SP, Huber GA, Regnier M, Amaro RE, McCammon JA, McCulloch AD. Multiscale computational modeling of the effects of 2'-deoxy-ATP on cardiac muscle calcium handling. JOURNAL OF APPLIED PHYSICS 2023; 134:074905. [PMID: 37601331 PMCID: PMC10435275 DOI: 10.1063/5.0157935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
2'-Deoxy-ATP (dATP), a naturally occurring near analog of ATP, is a well-documented myosin activator that has been shown to increase contractile force, improve pump function, and enhance lusitropy in the heart. Calcium transients in cardiomyocytes with elevated levels of dATP show faster calcium decay compared with cardiomyocytes with basal levels of dATP, but the mechanisms behind this are unknown. Here, we design and utilize a multiscale computational modeling framework to test the hypothesis that dATP acts on the sarcoendoplasmic reticulum calcium-ATPase (SERCA) pump to accelerate calcium re-uptake into the sarcoplasmic reticulum during cardiac relaxation. Gaussian accelerated molecular dynamics simulations of human cardiac SERCA2A in the E1 apo, ATP-bound and dATP-bound states showed that dATP forms more stable contacts in the nucleotide binding pocket of SERCA and leads to increased closure of cytosolic domains. These structural changes ultimately lead to changes in calcium binding, which we assessed using Brownian dynamics simulations. We found that dATP increases calcium association rate constants to SERCA and that dATP binds to apo SERCA more rapidly than ATP. Using a compartmental ordinary differential equation model of human cardiomyocyte excitation-contraction coupling, we found that these increased association rate constants contributed to the accelerated rates of calcium transient decay observed experimentally. This study provides clear mechanistic evidence of enhancements in cardiac SERCA2A pump function due to interactions with dATP.
Collapse
Affiliation(s)
- Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Resesarch Laboratory, Oslo 0164, Norway
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98109, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
176
|
Zhang X, Guseinov AA, Jenkins L, Li K, Tikhonova IG, Milligan G, Zhang C. Structural basis for the ligand recognition and signaling of free fatty acid receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.553924. [PMID: 37662198 PMCID: PMC10473637 DOI: 10.1101/2023.08.20.553924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Free fatty acid receptors 1-4 (FFA1-4) are class A G protein-coupled receptors (GPCRs). FFA1-3 share substantial sequence similarity whereas FFA4 is unrelated. Despite this FFA1 and FFA4 are activated by the same range of long chain fatty acids (LCFAs) whilst FFA2 and FFA3 are instead activated by short chain fatty acids (SCFAs) generated by the intestinal microbiota. Each of FFA1, 2 and 4 are promising targets for novel drug development in metabolic and inflammatory conditions. To gain insights into the basis of ligand interactions with, and molecular mechanisms underlying activation of, FFAs by LCFAs and SCFAs, we determined the active structures of FFA1 and FFA4 bound to the polyunsaturated LCFA docosahexaenoic acid (DHA), FFA4 bound to the synthetic agonist TUG-891, as well as SCFA butyrate-bound FFA2, each complexed with an engineered heterotrimeric Gq protein (miniGq), by cryo-electron microscopy. Together with computational simulations and mutagenesis studies, we elucidated the similarities and differences in the binding modes of fatty acid ligands with varying chain lengths to their respective GPCRs. Our findings unveil distinct mechanisms of receptor activation and G protein coupling. We anticipate that these outcomes will facilitate structure-based drug development and underpin future research to understand allosteric modulation and biased signaling of this group of GPCRs.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| | - Abdul-Akim Guseinov
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Laura Jenkins
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Kunpeng Li
- Cryo-EM core facility, Case Western Reserve University, OH44106, USA
| | - Irina G. Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261, USA
| |
Collapse
|
177
|
Ugarte La Torre D, Takada S, Sugita Y. Extension of the iSoLF implicit-solvent coarse-grained model for multicomponent lipid bilayers. J Chem Phys 2023; 159:075101. [PMID: 37581417 DOI: 10.1063/5.0160417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
iSoLF is a coarse-grained (CG) model for lipid molecules with the implicit-solvent approximation used in molecular dynamics (MD) simulations of biological membranes. Using the original iSoLF (iSoLFv1), MD simulations of lipid bilayers consisting of either POPC or DPPC and these bilayers, including membrane proteins, can be performed. Here, we improve the original model, explicitly treating the electrostatic interactions between different lipid molecules and adding CG particle types. As a result, the available lipid types increase to 30. To parameterize the potential functions of the new model, we performed all-atom MD simulations of each lipid at three different temperatures using the CHARMM36 force field and the modified TIP3P model. Then, we parameterized both the bonded and non-bonded interactions to fit the area per lipid and the membrane thickness of each lipid bilayer by using the multistate Boltzmann Inversion method. The final model reproduces the area per lipid and the membrane thickness of each lipid bilayer at the three temperatures. We also examined the applicability of the new model, iSoLFv2, to simulate the phase behaviors of mixtures of DOPC and DPPC at different concentrations. The simulation results with iSoLFv2 are consistent with those using Dry Martini and Martini 3, although iSoLFv2 requires much fewer computations. iSoLFv2 has been implemented in the GENESIS MD software and is publicly available.
Collapse
Affiliation(s)
- Diego Ugarte La Torre
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| |
Collapse
|
178
|
Araya MK, Gorfe AA. Conformational ensemble dependent lipid recognition and segregation by prenylated intrinsically disordered regions in small GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553039. [PMID: 37609330 PMCID: PMC10441427 DOI: 10.1101/2023.08.11.553039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
We studied diverse prenylated intrinsically disordered regions (PIDRs) of Ras and Rho family small GTPases using long timescale atomistic molecular dynamics simulations in an asymmetric model membrane of phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. We show that conformational plasticity is a key determinant of lipid sorting by polybasic PIDRs and provide evidence for lipid sorting based on both headgroup and acyl chain structures. We further show that conformational ensemble-based lipid recognition is generalizable to all polybasic PIDRs, and that the sequence outside the polybasic domain (PBD) modulates the conformational plasticity, bilayer adsorption, and interactions of PIDRs with membrane lipids. Specifically, we found that palmitoylation, the ratio of basic to acidic residues, and the hydrophobic content of the sequence outside the PBD significantly impact the diversity of conformational substates and hence the extent of conformation-dependent lipid interactions. We thus propose that the PBD is required but not sufficient for the full realization of lipid sorting by prenylated PBD-containing membrane anchors, and that the membrane anchor is not only responsible for high affinity membrane binding but also directs the protein to the right target membrane where it participates in lipid sorting.
Collapse
|
179
|
Frolikova M, Sur VP, Novotny I, Blazikova M, Vondrakova J, Simonik O, Ded L, Valaskova E, Koptasikova L, Benda A, Postlerova P, Horvath O, Komrskova K. Juno and CD9 protein network organization in oolemma of mouse oocyte. Front Cell Dev Biol 2023; 11:1110681. [PMID: 37635875 PMCID: PMC10450504 DOI: 10.3389/fcell.2023.1110681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Juno and CD9 protein, expressed in oolemma, are known to be essential for sperm-oocyte binding and fusion. Although evidence exists that these two proteins cooperate, their interaction has not yet been demonstrated. Here in, we present Juno and CD9 mutual localization over the surface of mouse metaphase II oocytes captured using the 3D STED super-resolution technique. The precise localization of examined proteins was identified in different compartments of oolemma such as the microvillar membrane, planar membrane between individual microvilli, and the membrane of microvilli-free region. Observed variance in localization of Juno and CD9 was confirmed by analysis of transmission and scanning electron microscopy images, which showed a significant difference in the presence of proteins between selected membrane compartments. Colocalization analysis of super-resolution images based on Pearson's correlation coefficient supported evidence of Juno and CD9 mutual position in the oolemma, which was identified by proximity ligation assay. Importantly, the interaction between Juno and CD9 was detected by co-immunoprecipitation and mass spectrometry in HEK293T/17 transfected cell line. For better understanding of experimental data, mouse Juno and CD9 3D structure were prepared by comparative homology modelling and several protein-protein flexible sidechain dockings were performed using the ClusPro server. The dynamic state of the proteins was studied in real-time at atomic level by molecular dynamics (MD) simulation. Docking and MD simulation predicted Juno-CD9 interactions and stability also suggesting an interactive mechanism. Using the multiscale approach, we detected close proximity of Juno and CD9 within microvillar oolemma however, not in the planar membrane or microvilli-free region. Our findings show yet unidentified Juno and CD9 interaction within the mouse oolemma protein network prior to sperm attachment. These results suggest that a Juno and CD9 interactive network could assist in primary Juno binding to sperm Izumo1 as a prerequisite to subsequent gamete membrane fusion.
Collapse
Affiliation(s)
- Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Vishma Pratap Sur
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Ivan Novotny
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Vondrakova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Lenka Koptasikova
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czechia
| | - Ales Benda
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czechia
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Prague, Czechia
| | - Ondrej Horvath
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
180
|
Rollins ZA, Faller R, George SC. A dynamic biomimetic model of the membrane-bound CD4-CD3-TCR complex during pMHC disengagement. Biophys J 2023; 122:3133-3145. [PMID: 37381600 PMCID: PMC10432225 DOI: 10.1016/j.bpj.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
The coordinated (dis)engagement of the membrane-bound T cell receptor (TCR)-CD3-CD4 complex from the peptide-major histocompatibility complex (pMHC) is fundamental to TCR signal transduction and T cell effector function. As such, an atomic-scale understanding would not only enhance our basic understanding of the adaptive immune response but would also accelerate the rational design of TCRs for immunotherapy. In this study, we explore the impact of the CD4 coreceptor on the TCR-pMHC (dis)engagement by constructing a molecular-level biomimetic model of the CD3-TCR-pMHC and CD4-CD3-TCR-pMHC complexes within a lipid bilayer. After allowing the system complexes to equilibrate (engage), we use steered molecular dynamics to dissociate (disengage) the pMHC. We find that 1) the CD4 confines the pMHC closer to the T cell by 1.8 nm at equilibrium; 2) CD4 confinement shifts the TCR along the MHC binding groove engaging a different set of amino acids and enhancing the TCR-pMHC bond lifetime; 3) the CD4 translocates under load increasing the interaction strength between the CD4-pMHC, CD4-TCR, and CD4-CD3; and 4) upon dissociation, the CD3-TCR complex undergoes structural oscillation and increased energetic fluctuation between the CD3-TCR and CD3-lipids. These atomic-level simulations provide mechanistic insight on how the CD4 coreceptor impacts TCR-pMHC (dis)engagement. More specifically, our results provide further support (enhanced bond lifetime) for a force-dependent kinetic proofreading model and identify an alternate set of amino acids in the TCR that dominate the TCR-pMHC interaction and could thus impact the design of TCRs for immunotherapy.
Collapse
Affiliation(s)
- Zachary A Rollins
- Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
181
|
Buigues P, Gehrke S, Badaoui M, Dudas B, Mandana G, Qi T, Bottegoni G, Rosta E. Investigating the Unbinding of Muscarinic Antagonists from the Muscarinic 3 Receptor. J Chem Theory Comput 2023; 19:5260-5272. [PMID: 37458730 PMCID: PMC10413856 DOI: 10.1021/acs.jctc.3c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 08/09/2023]
Abstract
Patient symptom relief is often heavily influenced by the residence time of the inhibitor-target complex. For the human muscarinic receptor 3 (hMR3), tiotropium is a long-acting bronchodilator used in conditions such as asthma or chronic obstructive pulmonary disease (COPD). The mechanistic insights into this inhibitor remain unclear; specifically, the elucidation of the main factors determining the unbinding rates could help develop the next generation of antimuscarinic agents. Using our novel unbinding algorithm, we were able to investigate ligand dissociation from hMR3. The unbinding paths of tiotropium and two of its analogues, N-methylscopolamin and homatropine methylbromide, show a consistent qualitative mechanism and allow us to identify the structural bottleneck of the process. Furthermore, our machine learning-based analysis identified key roles of the ECL2/TM5 junction involved in the transition state. Additionally, our results point to relevant changes at the intracellular end of the TM6 helix leading to the ICL3 kinase domain, highlighting the closest residue L482. This residue is located right between two main protein binding sites involved in signal transduction for hMR3's activation and regulation. We also highlight key pharmacophores of tiotropium that play determining roles in the unbinding kinetics and could aid toward drug design and lead optimization.
Collapse
Affiliation(s)
- Pedro
J. Buigues
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Sascha Gehrke
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Magd Badaoui
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Balint Dudas
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Gaurav Mandana
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Tianyun Qi
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Giovanni Bottegoni
- Dipartimento
di Scienze Biomolecolari (DISB), University
of Urbino, Urbino Piazza Rinascimento, 6, Urbino 61029, Italy
- Institute
of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| |
Collapse
|
182
|
Meesaragandla B, Blessing DO, Karanth S, Rong A, Geist N, Delcea M. Interaction of Polystyrene Nanoparticles with Supported Lipid Bilayers: Impact of Nanoparticle Size and Protein Corona. Macromol Biosci 2023; 23:e2200464. [PMID: 36707930 DOI: 10.1002/mabi.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Indexed: 01/29/2023]
Abstract
Polystyrene is one of the most widely used plastics. This article reports on the interaction of 50 and 210 nm polystyrene nanoparticles (PSNPs) with human serum albumin (HSA) and transferrin (Tf), as well as their effect on supported lipid bilayers (SLBs), using experimental and theoretical approaches. Dynamic light scattering (DLS) and atomic force microscopy (AFM) measurements show that the increase in diameter for the PSNP-protein bioconjugates depends on nanoparticle size and type of proteins. The circular dichroism (CD) spectroscopy results demonstrate that the proteins preserve their structures when they interact with PSNPs at physiological temperatures. The quartz crystal microbalance (QCM) technique reveals that PSNPs and their bioconjugates show no strong interactions with SLBs. On the contrary, the molecular dynamics simulations (MDS) show that both proteins bind strongly to the lipid bilayer (SLBs) when compared to their binding to a polystyrene surface model. The interaction is strongly dependent on the protein and lipid bilayer composition. Both the PSNPs and their bioconjugates show no toxicity in human umbilical vein endothelial (HUVEC) cells; however, bare 210 nm PSNPs and 50 nm PSNP-Tf bioconjugates show an increase in reactive oxygen species production. This study may be relevant for assessing the impact of plastics on health.
Collapse
Affiliation(s)
- Brahmaiah Meesaragandla
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
- ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen,", Fleischmannstraße 42, 17489, Greifswald, Germany
| | - Dennis Oliver Blessing
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
- ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen,", Fleischmannstraße 42, 17489, Greifswald, Germany
| | - Sanjai Karanth
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
- ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen,", Fleischmannstraße 42, 17489, Greifswald, Germany
| | - Alena Rong
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
| | - Norman Geist
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry, Institute of Biochemistry, Felix-Hausdorff-Straße 4, University of Greifswald, 17489, Greifswald, Germany
- ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen,", Fleischmannstraße 42, 17489, Greifswald, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), partner site Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
183
|
Hakami Zanjani AA, Mularski A, Busk Heitmann AS, Dias C, Møller ME, Maeda K, Nylandsted J, Simonsen AC, Khandelia H. Engineering a membrane-binding protein to trimerize and induce high membrane curvature. Biophys J 2023; 122:3008-3017. [PMID: 37029488 PMCID: PMC10398344 DOI: 10.1016/j.bpj.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The annexins are a family of Ca2+-dependent peripheral membrane proteins. Several annexins are implicated in plasma membrane repair and are overexpressed in cancer cells. Annexin A4 (ANXA4) and annexin A5 (ANXA5) form trimers that induce high curvature on a membrane surface, a phenomenon deemed to accelerate membrane repair. Despite being highly homologous to ANXA4, annexin A3 (ANXA3) does not form trimers on the membrane surface. Using molecular dynamics simulations, we have reverse engineered an ANXA3-mutant to trimerize on the surface of the membrane and induce high curvature reminiscent of ANXA4. In addition, atomic force microscopy images show that, like ANXA4, the engineered protein forms crystalline arrays on a supported lipid membrane. Despite the trimer-forming and curvature-inducing properties of the engineered ANXA3, it does not accumulate near a membrane lesion in laser-punctured cells and is unable to repair the lesion. Our investigation provides insights into the factors that drive annexin-mediated membrane repair and shows that the membrane-repairing property of trimer-forming annexins also necessitates high membrane binding affinity, other than trimer formation and induction of negative membrane curvature.
Collapse
Affiliation(s)
- Ali Asghar Hakami Zanjani
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna Mularski
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Catarina Dias
- Danish Cancer Society, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Michelle Ege Møller
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Kenji Maeda
- Danish Cancer Society, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jesper Nylandsted
- Danish Cancer Society, Danish Cancer Society Research Center, Copenhagen, Denmark; University of Southern Denmark, Department of Molecular Medicine, Odense, Denmark
| | - Adam Cohen Simonsen
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Himanshu Khandelia
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
184
|
Nguyen ATP, Weigle AT, Shukla D. Functional Regulation of Aquaporin Dynamics by Lipid Bilayer Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549977. [PMID: 37502896 PMCID: PMC10370204 DOI: 10.1101/2023.07.20.549977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
With the diversity of lipid-protein interactions, any observed membrane protein dynamics or functions directly depend on the lipid bilayer selection. However, the implications of lipid bilayer choice are seldom considered unless characteristic lipid-protein interactions have been previously reported. Using molecular dynamics simulation, we characterize the effects of membrane embedding on plant aquaporin SoPIP2;1, which has no reported high-affinity lipid interactions. The regulatory impacts of a realistic lipid bilayer, and nine different homogeneous bilayers, on varying SoPIP2;1 dynamics were examined. We demonstrate that SoPIP2;1s structure, thermodynamics, kinetics, and water transport are altered as a function of each membrane construct's ensemble properties. Notably, the realistic bilayer provides stabilization of non-functional SoPIP2;1 metastable states. Hydrophobic mismatch and lipid order parameter calculations further explain how lipid ensemble properties manipulate SoPIP2;1 behavior. Our results illustrate the importance of careful bilayer selection when studying membrane proteins. To this end, we advise cautionary measures when performing membrane protein molecular dynamics simulations.
Collapse
Affiliation(s)
- Anh T P Nguyen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL 61801
| | - Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, IL 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, IL 61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, IL 61801
| |
Collapse
|
185
|
Park SJ, Kern N, Brown T, Lee J, Im W. CHARMM-GUI PDB Manipulator: Various PDB Structural Modifications for Biomolecular Modeling and Simulation. J Mol Biol 2023; 435:167995. [PMID: 37356910 PMCID: PMC10291205 DOI: 10.1016/j.jmb.2023.167995] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Molecular modeling and simulation play important roles in biomedical research as they provide molecular-level insight into the underlying mechanisms of biological functions that are difficult to elucidate only with experiments. CHARMM-GUI (https://charmm-gui.org) is a web-based cyberinfrastructure that is widely used to generate various molecular simulation system and input files and thus facilitates and standardizes the usage of common and advanced simulation techniques. In particular, PDB Manipulator provides various chemical modification options as the starting point for most input generation modules in CHARMM-GUI. Here, we discuss recent additions to PDB Manipulator, such as non-standard amino acids/RNA substitutions, ubiquitylation and SUMOylation, Lys/Arg post-translational modifications, lipidation, peptide stapling, and improved parameterization options of small molecules. These additional features are expected to make complex PDB modifications easy for biomolecular modeling and simulation.
Collapse
Affiliation(s)
- Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Nathan Kern
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Turner Brown
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Jumin Lee
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
186
|
Olson KM, Devereaux AL, Chatterjee P, Saldaña-Shumaker SL, Shafer A, Plotkin A, Kandasamy R, MacKerell AD, Traynor JR, Cunningham CW. Nitro-benzylideneoxymorphone, a bifunctional mu and delta opioid receptor ligand with high mu opioid receptor efficacy. Front Pharmacol 2023; 14:1230053. [PMID: 37469877 PMCID: PMC10352325 DOI: 10.3389/fphar.2023.1230053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: There is a major societal need for analgesics with less tolerance, dependence, and abuse liability. Preclinical rodent studies suggest that bifunctional ligands with both mu (MOPr) and delta (DOPr) opioid peptide receptor activity may produce analgesia with reduced tolerance and other side effects. This study explores the structure-activity relationships (SAR) of our previously reported MOPr/DOPr lead, benzylideneoxymorphone (BOM) with C7-methylene-substituted analogs. Methods: Analogs were synthesized and tested in vitro for opioid receptor binding and efficacy. One compound, nitro-BOM (NBOM, 12) was evaluated for antinociceptive effects in the warm water tail withdrawal assay in C57BL/6 mice. Acute and chronic antinociception was determined, as was toxicologic effects on chronic administration. Molecular modeling experiments were performed using the Site Identification by Ligand Competitive Saturation (SILCS) method. Results: NBOM was found to be a potent MOPr agonist/DOPr partial agonist that produces high-efficacy antinociception. Antinociceptive tolerance was observed, as was weight loss; this toxicity was only observed with NBOM and not with BOM. Modeling supports the hypothesis that the increased MOPr efficacy of NBOM is due to the substituted benzylidene ring occupying a nonpolar region within the MOPr agonist state. Discussion: Though antinociceptive tolerance and non-specific toxicity was observed on repeated administration, NBOM provides an important new tool for understanding MOPr/DOPr pharmacology.
Collapse
Affiliation(s)
- Keith M. Olson
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea L. Devereaux
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Payal Chatterjee
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Savanah L. Saldaña-Shumaker
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Amanda Shafer
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Adam Plotkin
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Ram Kandasamy
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Psychology, California State University, East Bay, Hayward, CA, United States
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - John R. Traynor
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Christopher W. Cunningham
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| |
Collapse
|
187
|
Xu D, Jiang W, Wu L, Gaudet RG, Park ES, Su M, Cheppali SK, Cheemarla NR, Kumar P, Uchil PD, Grover JR, Foxman EF, Brown CM, Stansfeld PJ, Bewersdorf J, Mothes W, Karatekin E, Wilen CB, MacMicking JD. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023; 619:819-827. [PMID: 37438530 PMCID: PMC10371867 DOI: 10.1038/s41586-023-06322-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal β-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.
Collapse
Affiliation(s)
- Dijin Xu
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Weiqian Jiang
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lizhen Wu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan G Gaudet
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Eui-Soon Park
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Sudheer Kumar Cheppali
- Yale Nanobiology Institute, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nagarjuna R Cheemarla
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pradeep Kumar
- Howard Hughes Medical Institute, New Haven, CT, USA
- Yale Systems Biology Institute, West Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Ellen F Foxman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Chelsea M Brown
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Erdem Karatekin
- Yale Nanobiology Institute, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Saints-Pères Paris Institute for the Neurosciences, Université de Paris, Centre National de la Recherche Scientifique UMR 8003, Paris, France
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, New Haven, CT, USA.
- Yale Systems Biology Institute, West Haven, CT, USA.
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
188
|
Suo Y, Wright NJ, Guterres H, Fedor JG, Butay KJ, Borgnia MJ, Im W, Lee SY. Molecular basis of polyspecific drug and xenobiotic recognition by OCT1 and OCT2. Nat Struct Mol Biol 2023; 30:1001-1011. [PMID: 37291422 PMCID: PMC10895701 DOI: 10.1038/s41594-023-01017-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
A wide range of endogenous and xenobiotic organic ions require facilitated transport systems to cross the plasma membrane for their disposition. In mammals, organic cation transporter (OCT) subtypes 1 and 2 (OCT1 and OCT2, also known as SLC22A1 and SLC22A2, respectively) are polyspecific transporters responsible for the uptake and clearance of structurally diverse cationic compounds in the liver and kidneys, respectively. Notably, it is well established that human OCT1 and OCT2 play central roles in the pharmacokinetics and drug-drug interactions of many prescription medications, including metformin. Despite their importance, the basis of polyspecific cationic drug recognition and the alternating access mechanism for OCTs have remained a mystery. Here we present four cryo-electron microscopy structures of apo, substrate-bound and drug-bound OCT1 and OCT2 consensus variants, in outward-facing and outward-occluded states. Together with functional experiments, in silico docking and molecular dynamics simulations, these structures uncover general principles of organic cation recognition by OCTs and provide insights into extracellular gate occlusion. Our findings set the stage for a comprehensive structure-based understanding of OCT-mediated drug-drug interactions, which will prove critical in the preclinical evaluation of emerging therapeutics.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas J Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hugo Guterres
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
189
|
Voisin TB, Couves EC, Tate EW, Bubeck D. Dynamics and Molecular Interactions of GPI-Anchored CD59. Toxins (Basel) 2023; 15:430. [PMID: 37505699 PMCID: PMC10467114 DOI: 10.3390/toxins15070430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
CD59 is a GPI-anchored cell surface receptor that serves as a gatekeeper to controlling pore formation. It is the only membrane-bound inhibitor of the complement membrane attack complex (MAC), an immune pore that can damage human cells. While CD59 blocks MAC pores, the receptor is co-opted by bacterial pore-forming proteins to target human cells. Recent structures of CD59 in complexes with binding partners showed dramatic differences in the orientation of its ectodomain relative to the membrane. Here, we show how GPI-anchored CD59 can satisfy this diversity in binding modes. We present a PyLipID analysis of coarse-grain molecular dynamics simulations of a CD59-inhibited MAC to reveal residues of complement proteins (C6:Y285, C6:R407 C6:K412, C7:F224, C8β:F202, C8β:K326) that likely interact with lipids. Using modules of the MDAnalysis package to investigate atomistic simulations of GPI-anchored CD59, we discover properties of CD59 that encode the flexibility necessary to bind both complement proteins and bacterial virulence factors.
Collapse
Affiliation(s)
- Tomas B. Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - Emma C. Couves
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
190
|
Chaisson EH, Heberle FA, Doktorova M. Building Asymmetric Lipid Bilayers for Molecular Dynamics Simulations: What Methods Exist and How to Choose One? MEMBRANES 2023; 13:629. [PMID: 37504995 PMCID: PMC10384462 DOI: 10.3390/membranes13070629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The compositional asymmetry of biological membranes has attracted significant attention over the last decade. Harboring more differences from symmetric membranes than previously appreciated, asymmetric bilayers have proven quite challenging to study with familiar concepts and techniques, leaving many unanswered questions about the reach of the asymmetry effects. One particular area of active research is the computational investigation of composition- and number-asymmetric lipid bilayers with molecular dynamics (MD) simulations. Offering a high level of detail into the organization and properties of the simulated systems, MD has emerged as an indispensable tool in the study of membrane asymmetry. However, the realization that results depend heavily on the protocol used for constructing the asymmetric bilayer models has sparked an ongoing debate about how to choose the most appropriate approach. Here we discuss the underlying source of the discrepant results and review the existing methods for creating asymmetric bilayers for MD simulations. Considering the available data, we argue that each method is well suited for specific applications and hence there is no single best approach. Instead, the choice of a construction protocol-and consequently, its perceived accuracy-must be based primarily on the scientific question that the simulations are designed to address.
Collapse
Affiliation(s)
- Emily H. Chaisson
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
191
|
Dommer A, Wauer NA, Angle KJ, Davasam A, Rubio P, Luo M, Morris CK, Prather KA, Grassian VH, Amaro RE. Revealing the Impacts of Chemical Complexity on Submicrometer Sea Spray Aerosol Morphology. ACS CENTRAL SCIENCE 2023; 9:1088-1103. [PMID: 37396863 PMCID: PMC10311664 DOI: 10.1021/acscentsci.3c00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 07/04/2023]
Abstract
Sea spray aerosol (SSA) ejected through bursting bubbles at the ocean surface is a complex mixture of salts and organic species. Submicrometer SSA particles have long atmospheric lifetimes and play a critical role in the climate system. Composition impacts their ability to form marine clouds, yet their cloud-forming potential is difficult to study due to their small size. Here, we use large-scale molecular dynamics (MD) simulations as a "computational microscope" to provide never-before-seen views of 40 nm model aerosol particles and their molecular morphologies. We investigate how increasing chemical complexity impacts the distribution of organic material throughout individual particles for a range of organic constituents with varying chemical properties. Our simulations show that common organic marine surfactants readily partition between both the surface and interior of the aerosol, indicating that nascent SSA may be more heterogeneous than traditional morphological models suggest. We support our computational observations of SSA surface heterogeneity with Brewster angle microscopy on model interfaces. These observations indicate that increased chemical complexity in submicrometer SSA leads to a reduced surface coverage by marine organics, which may facilitate water uptake in the atmosphere. Our work thus establishes large-scale MD simulations as a novel technique for interrogating aerosols at the single-particle level.
Collapse
|
192
|
Buckner J, Liu X, Chakravorty A, Wu Y, Cervantes LF, Lai TT, Brooks CL. pyCHARMM: Embedding CHARMM Functionality in a Python Framework. J Chem Theory Comput 2023; 19:3752-3762. [PMID: 37267404 PMCID: PMC10504603 DOI: 10.1021/acs.jctc.3c00364] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CHARMM is rich in methodology and functionality as one of the first programs addressing problems of molecular dynamics and modeling of biological macromolecules and their partners, e.g., small molecule ligands. When combined with the highly developed CHARMM parameters for proteins, nucleic acids, small molecules, lipids, sugars, and other biologically relevant building blocks, and the versatile CHARMM scripting language, CHARMM has been a trendsetting platform for modeling studies of biological macromolecules. To further enhance the utility of accessing and using CHARMM functionality in increasingly complex workflows associated with modeling biological systems, we introduce pyCHARMM, Python bindings, functions, and modules to complement and extend the extensive set of modeling tools and methods already available in CHARMM. These include access to CHARMM function-generated variables associated with the system (psf), coordinates, velocities and forces, atom selection variables, and force field related parameters. The ability to augment CHARMM forces and energies with energy terms or methods derived from machine learning or other sources, written in Python, CUDA, or OpenCL and expressed as Python callable routines is introduced together with analogous functions callable during dynamics calculations. Integration of Python-based graphical engines for visualization of simulation models and results is also accessible. Loosely coupled parallelism is available for workflows such as free energy calculations, using MBAR/TI approaches or high-throughput multisite λ-dynamics (MSλD) free energy methods, string path optimization calculations, replica exchange, and molecular docking with a new Python-based CDOCKER module. CHARMM accelerated platform kernels through the CHARMM/OpenMM API, CHARMM/DOMDEC, and CHARMM/BLaDE API are also readily integrated into this Python framework. We anticipate that pyCHARMM will be a robust platform for the development of comprehensive and complex workflows utilizing Python and its extensive functionality as well as an optimal platform for users to learn molecular modeling methods and practices within a Python-friendly environment such as Jupyter Notebooks.
Collapse
Affiliation(s)
- Joshua Buckner
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Xiaorong Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | | | - Yujin Wu
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Luis F. Cervantes
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | - Thanh T. Lai
- Biophysics Program, University of Michigan, Ann Arbor, MI
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI
- Biophysics Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
193
|
Xu B, Zhou Y, Huang M, Cui P, Wu T, Zhou D, Liu C, Wang Y. Modeling the Interaction and Uptake of Cd-As(V) Mixture to Wheat Roots Affected by Humic Acids, in Terms of root cell Membrane Surface Potential (ψ 0). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:10. [PMID: 37365371 DOI: 10.1007/s00128-023-03765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
The joint toxicological effects of Cd2+ and As(V) mixture on wheat root as affected by environmental factors, such as pH, coexisting cations, and humic acids etc., were investigated using hydroponic experiments. The interaction and toxicological mechanisms of co-existing Cd2+ and As(V) at the interface of solution and roots in presence of humic acid were further explored by incorporating root cell membrane surface potential ψ0 into a mechanistic model of combined biotic ligand model (BLM)-based Gouy-Chapman-Stern (GCS) model and NICA-DONNAN model. Besides, molecular dynamics (MD) simulations of lipid bilayer equilibrated with solution containing Cd2+ and H2AsO4- further revealed the molecular distribution of heavy metal(loid) ions under different membrane surface potentials. H2AsO4- and Cd2+ can be adsorbed on the surface of the membrane alone or as complexes, which consolidate the limitation of the macroscopic physical models.
Collapse
Affiliation(s)
- Bing Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Academy of Environmental Planning and Design, Co., Ltd., Nanjing University, Nanjing, China
| | - Yiyi Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
194
|
Bergaglio T, Bhattacharya S, Thompson D, Nirmalraj PN. Label-Free Digital Holotomography Reveals Ibuprofen-Induced Morphological Changes to Red Blood Cells. ACS NANOSCIENCE AU 2023; 3:241-255. [PMID: 37360843 PMCID: PMC10288613 DOI: 10.1021/acsnanoscienceau.3c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/28/2023]
Abstract
Understanding the dose-dependent effect of over-the-counter drugs on red blood cells (RBCs) is crucial for hematology and digital pathology. Yet, it is challenging to continuously record the real-time, drug-induced shape changes of RBCs in a label-free manner. Here, we demonstrate digital holotomography (DHTM)-enabled real-time, label-free concentration-dependent and time-dependent monitoring of ibuprofen on RBCs from a healthy donor. The RBCs are segmented based on three-dimensional (3D) and four-dimensional (4D) refractive index tomograms, and their morphological and chemical parameters are retrieved with their shapes classified using machine learning. We directly observed the formation and motion of spicules on the RBC membrane when aqueous solutions of ibuprofen were drop-cast on wet blood, creating rough-membraned echinocyte forms. At low concentrations of 0.25-0.50 mM, the ibuprofen-induced morphological change was transient, but at high concentrations (1-3 mM) the spiculated RBC remained over a period of up to 1.5 h. Molecular simulations confirmed that aggregates of ibuprofen molecules at high concentrations significantly disrupted the RBC membrane structural integrity and lipid order but produced negligible effect at low ibuprofen concentrations. Control experiments on the effect of urea, hydrogen peroxide, and aqueous solutions on RBCs showed zero spicule formation. Our work clarifies the dose-dependent chemical effects on RBCs using label-free microscopes that can be deployed for the rapid detection of overdosage of over-the-counter and prescribed drugs.
Collapse
Affiliation(s)
- Talia Bergaglio
- Transport
at Nanoscale Interfaces Laboratory, Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland
| | - Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Peter Niraj Nirmalraj
- Transport
at Nanoscale Interfaces Laboratory, Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| |
Collapse
|
195
|
Poet M, Vigier N, Bouret Y, Jarretou G, Gautier R, Bendahhou S, Balter V, Montanes M, Thibon F, Counillon L. Biological fractionation of lithium isotopes by cellular Na +/H + exchangers unravels fundamental transport mechanisms. iScience 2023; 26:106887. [PMID: 37324528 PMCID: PMC10265516 DOI: 10.1016/j.isci.2023.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Lithium (Li) has a wide range of uses in science, medicine, and industry, but its isotopy is underexplored, except in nuclear science and in geoscience. 6Li and 7Li isotopic ratio exhibits the second largest variation on earth's surface and constitutes a widely used tool for reconstructing past oceans and climates. As large variations have been measured in mammalian organs, plants or marine species, and as 6Li elicits stronger effects than natural Li (∼95% 7Li), a central issue is the identification and quantification of biological influence of Li isotopes distribution. We show that membrane ion channels and Na+-Li+/H+ exchangers (NHEs) fractionate Li isotopes. This systematic 6Li enrichment is driven by membrane potential for channels, and by intracellular pH for NHEs, where it displays cooperativity, a hallmark of dimeric transport. Evidencing that transport proteins discriminate between isotopes differing by one neutron opens new avenues for transport mechanisms, Li physiology, and paleoenvironments.
Collapse
Affiliation(s)
- Mallorie Poet
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Nathalie Vigier
- Oceanography Laboratory of Villefranche (LOV, IMEV), CNRS, Sorbonne University, Villefranche-sur-Mer, France
| | - Yann Bouret
- Université Côte d’Azur, CNRS, Institut de Physique de Nice (INPHYNI), Nice, France
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Géologie de Lyon, Lyon, France
| | - Gisèle Jarretou
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Romain Gautier
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Saïd Bendahhou
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Vincent Balter
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Géologie de Lyon, Lyon, France
| | - Maryline Montanes
- Oceanography Laboratory of Villefranche (LOV, IMEV), CNRS, Sorbonne University, Villefranche-sur-Mer, France
| | - Fanny Thibon
- Oceanography Laboratory of Villefranche (LOV, IMEV), CNRS, Sorbonne University, Villefranche-sur-Mer, France
| | - Laurent Counillon
- Université Côte d’Azur, CNRS, Laboratoire de Physiomédecine Moléculaire (LP2M), Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
196
|
Sharma G, Jafari M, Merz KM. Getting zinc into and out of cells. Methods Enzymol 2023; 687:263-278. [PMID: 37666635 DOI: 10.1016/bs.mie.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Ion channels are specialized proteins located on the plasma membrane and control the movement of ions across the membrane. Zn ion plays an indispensable role as a structural constituent of various proteins, moreover, it plays an important dynamic role in cell signaling. In this chapter, we discuss computational insights into zinc efflux and influx mechanism through YiiP (from Escherichia coli and Shewanella oneidensis) and BbZIP (Bordetella bronchiseptica) transporters, respectively. Gaining knowledge about the mechanism of zinc transport at the molecular level can aid in developing treatments for conditions such as diabetes and cancer by manipulating extracellular and intracellular levels of zinc ions.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Majid Jafari
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
197
|
Orzeł U, Pasznik P, Miszta P, Lorkowski M, Niewieczerzał S, Jakowiecki J, Filipek S. GS-SMD server for steered molecular dynamics of peptide substrates in the active site of the γ-secretase complex. Nucleic Acids Res 2023:7173862. [PMID: 37207343 DOI: 10.1093/nar/gkad409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Despite recent advances in research, the mechanism of Alzheimer's disease is not fully understood yet. Understanding the process of cleavage and then trimming of peptide substrates, can help selectively block γ-secretase (GS) to stop overproduction of the amyloidogenic products. Our GS-SMD server (https://gs-smd.biomodellab.eu/) allows cleaving and unfolding of all currently known GS substrates (more than 170 peptide substrates). The substrate structure is obtained by threading of the substrate sequence into the known structure of GS complex. The simulations are performed in an implicit water-membrane environment so they are performed rather quickly, 2-6 h per job, depending on the mode of calculations (part of GS complex or the whole structure). It is also possible to introduce mutations to the substrate and GS and pull any part of the substrate in any direction using the steered molecular dynamics (SMD) simulations with constant velocity. The obtained trajectories are visualized and analyzed in the interactive way. One can also compare multiple simulations using the interaction frequency analysis. GS-SMD server can be useful for revealing mechanisms of substrate unfolding and role of mutations in this process.
Collapse
Affiliation(s)
- Urszula Orzeł
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Paweł Pasznik
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Marcin Lorkowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Szymon Niewieczerzał
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
198
|
Kenworthy AK. The building blocks of caveolae revealed: caveolins finally take center stage. Biochem Soc Trans 2023; 51:855-869. [PMID: 37082988 PMCID: PMC10212548 DOI: 10.1042/bst20221298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The ability of cells to divide, migrate, relay signals, sense mechanical stimuli, and respond to stress all rely on nanoscale invaginations of the plasma membrane known as caveolae. The caveolins, a family of monotopic membrane proteins, form the inner layer of the caveolar coat. Caveolins have long been implicated in the generation of membrane curvature, in addition to serving as scaffolds for signaling proteins. Until recently, however, the molecular architecture of caveolins was unknown, making it impossible to understand how they operate at a mechanistic level. Over the past year, two independent lines of evidence - experimental and computational - have now converged to provide the first-ever glimpse into the structure of the oligomeric caveolin complexes that function as the building blocks of caveolae. Here, we summarize how these discoveries are transforming our understanding of this long-enigmatic protein family and their role in caveolae assembly and function. We present new models inspired by the structure for how caveolins oligomerize, remodel membranes, interact with their binding partners, and reorganize when mutated. Finally, we discuss emerging insights into structural differences among caveolin family members that enable them to support the proper functions of diverse tissues and organisms.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, U.S.A
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, U.S.A
| |
Collapse
|
199
|
Feng S, Park S, Choi YK, Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J Chem Theory Comput 2023; 19:2161-2185. [PMID: 37014931 PMCID: PMC10174225 DOI: 10.1021/acs.jctc.2c01246] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/06/2023]
Abstract
Molecular dynamics simulations of membranes and membrane proteins serve as computational microscopes, revealing coordinated events at the membrane interface. As G protein-coupled receptors, ion channels, transporters, and membrane-bound enzymes are important drug targets, understanding their drug binding and action mechanisms in a realistic membrane becomes critical. Advances in materials science and physical chemistry further demand an atomistic understanding of lipid domains and interactions between materials and membranes. Despite a wide range of membrane simulation studies, generating a complex membrane assembly remains challenging. Here, we review the capability of CHARMM-GUI Membrane Builder in the context of emerging research demands, as well as the application examples from the CHARMM-GUI user community, including membrane biophysics, membrane protein drug-binding and dynamics, protein-lipid interactions, and nano-bio interface. We also provide our perspective on future Membrane Builder development.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Soohyung Park
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yeol Kyo Choi
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological
Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
200
|
Rathod AK, Chavda D, Manna M. Phase Transition and Phase Separation in Realistic Thylakoid Lipid Membrane of Marine Algae in All-Atom Simulations. J Chem Inf Model 2023. [PMID: 37075469 DOI: 10.1021/acs.jcim.2c01614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Thylakoid membranes are specialized membranes predominantly composed of uncommon galacto- and sulfolipids, having distinct roles in photosynthesis. Large acyl chain variety and richness in polyunsaturated fatty acid (PUFA) content of thylakoid lipids further add to the compositional complexity. The function of these membrane systems is intimately dependent on the fluidity of its lipid matrix, which is strongly modulated by the lipid composition and temperature. The present work, employing extensive atomistic simulations, provides the first atomistic view of the phase transition and domain coexistence in a model membrane composed of thylakoid lipids of a commercially important red alga Gracilaria corticata between 10 and 40 °C. The growth and photosynthetic activity of marine algae are greatly influenced by the seawater temperature. So far, little is known about the molecular organization of lipids in thylakoid membranes, in particular their adaptive arrangements under temperature stress. Our simulations show that the algal thylakoid membrane undergoes a transition from a gel-like phase at a low temperature, 10-15 °C, to a homogeneous liquid-crystalline phase at a high temperature, 40 °C. Clear evidence of spontaneous phase separation into coexisting nanoscale domains is detected at intermediate temperatures nearing the optimal growth temperature range. Particularly, at 25-30 °C, we identified the formation of a stable ripple phase, where the gel-like domains rich in saturated and nearly hexagonally packed lipids were separated from fluid-like domains enriched in lipids containing PUFA chains. The phase separation is driven by the spontaneous and preferential segregation of lipids into differentially ordered domains, mainly depending on the acyl chain types. Cholesterol impairs the phase transition and the emergence of domains and induces a fairly uniform liquid-ordered phase in the membrane over the temperatures studied. This work improves the understanding of the properties and reorganization of lipids in the thylakoid membrane in response to temperature variation.
Collapse
Affiliation(s)
- Arun K Rathod
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt & Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|