151
|
Zhao S, Gao P, Miao D, Wu L, Qian Y, Chen S, Sharma VK, Jia H. Formation and Evolution of Solvent-Extracted and Nonextractable Environmentally Persistent Free Radicals in Fly Ash of Municipal Solid Waste Incinerators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10120-10130. [PMID: 31403286 DOI: 10.1021/acs.est.9b03453] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are emerging contaminants occurring in combustion-borne particulates and atmospheric particulate matter, but information on their formation and behavior on fly ash from municipal solid waste (MSW) incinerators is scarce. Here, we have found that MSW-associated fly ash samples contain an EPFR concentration of 3-10 × 1015 spins g-1, a line width (ΔHp-p) of ∼8.6 G, and a g-factor of 2.0032-2.0038. These EPFRs are proposed to be mixtures of carbon-centered and oxygen-centered free radicals. Fractionation of the fly ash-associated EPFRs into solvent-extracted and nonextractable radicals suggests that the solvent-extracted part accounts for ∼45-73% of the total amount of EPFRs. Spin densities of solvent-extracted EPFRs correlate positively with the concentrations of Fe, Cu, Mn, Ti, and Zn, whereas similar correlations are comparatively insignificant for nonextractable EPFRs. Under natural conditions, these two types of EPFRs exhibit different stabilization that solvent-extracted EPFRs are relatively unstable, whereas the nonextractable fraction possesses a long life span. Significant correlations between concentrations of solvent-extracted EPFRs and generation of hydroxyl and superoxide radicals are found. Overall, our results suggest that the fractionated solvent-extracted and nonextractable EPFRs may experience different formation and stabilization processes and health effects.
Collapse
Affiliation(s)
- Song Zhao
- College of Natural Resources and Environment; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation , Northwest A & F University , Yangling 712100 , China
| | - Pin Gao
- College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Duo Miao
- College of Natural Resources and Environment; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation , Northwest A & F University , Yangling 712100 , China
| | - Lan Wu
- College of Natural Resources and Environment; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation , Northwest A & F University , Yangling 712100 , China
| | - Yajie Qian
- College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
| | - Shanping Chen
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd. , Shanghai 200232 , China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health , Texas A&M University , College Station , Texas 77843 , United States
| | - Hanzhong Jia
- College of Natural Resources and Environment; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation , Northwest A & F University , Yangling 712100 , China
| |
Collapse
|
152
|
Witkowski B, Al-Sharafi M, Gierczak T. Ozonolysis of β-Caryophyllonic and Limononic Acids in the Aqueous Phase: Kinetics, Product Yield, and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8823-8832. [PMID: 31296007 DOI: 10.1021/acs.est.9b02471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ozonolysis of β-caryophyllonic (BCA) and limononic (LA) acids in the aqueous-phase was investigated. The rate coefficients (kozone) measured for the BCA + ozone (O3) reaction at 295 ± 2 K were 4.8 ± 0.6 × 105 M-1 s-1 at pH = 2 and 6.0 ± 0.3 × 105 M-1 s-1 at pH = 8. The UV-vis absorption cross sections (σ, cm2 molecule-1) for BCA and LA in water were also measured. Atmospheric lifetimes of BCA and LA due to reactions with O3, hydroxyl radicals (OH), and due to photolysis were calculated. Lifetime estimates indicate that the aqueous-phase processing of both terpenoic acids studied in this work would be relevant in the atmosphere. In cloudwater, BCA is more likely to react with O3 with some possible contribution from the oxidation by OH, whereas the opposite is true for LA. Products of BCA and LA ozonolysis were quantified with LC-MS as well as with the UV-vis assays for quantification of formaldehyde and hydroperoxides. Oxygenated derivatives of BCA and LA that were produced following aqueous ozonolysis were identified as keto-BCA and keto-LA, respectively. Additionally, large quantities of intramolecular secondary ozonides and α-acyloxyhydroperoxy aldehydes were tentatively identified as products of aqueous ozonolysis of the two unsaturated terpenoic acids investigated.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| | - Mohammed Al-Sharafi
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| | - Tomasz Gierczak
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| |
Collapse
|
153
|
Wang S, Song T, Shiraiwa M, Song J, Ren H, Ren L, Wei L, Sun Y, Zhang Y, Fu P, Lai S. Occurrence of Aerosol Proteinaceous Matter in Urban Beijing: An Investigation on Composition, Sources, and Atmospheric Processes During the "APEC Blue" Period. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7380-7390. [PMID: 31117537 DOI: 10.1021/acs.est.9b00726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aerosol proteinaceous matter is comprised of a substantial fraction of bioaerosols. Its origins and interactions in the atmosphere remain poorly understood. We present observations of total proteins, combined, and free amino acids (CAAs and FAAs) in fine particulate matter (PM2.5) samples in urban Beijing before and during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. The decreases in proteins, CAAs and FAAs levels were observed after the implementation of restrictive emission controls. Significant changes were observed for the composition profiles in FAAs with the predominance of valine before the APEC and glycine during the APEC, respectively. These variations could be attributed to the influence of sources, atmospheric processes, and meteorological conditions. FAAs (especially valine and glycine) were suggested to be released by the degradation of high molecular weight proteins/polypeptides by atmospheric oxidants (i.e., ozone and free radicals) and nitrogen dioxide. Besides daytime reactions, nighttime chemistry was found to play an important role in the atmospheric formation of valine during the nights, suggesting the possible influence of NO3 radicals. Our findings provide new insights into the significant impacts of atmospheric oxidation capacity on the occurrence and transformation of aerosol proteinaceous matter which may affect its environmental, climate and health effects.
Collapse
Affiliation(s)
- Shan Wang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Tianli Song
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Junwei Song
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
- Now at Institute of Meteorology and Climate Research , Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen 76344 , Germany
| | - Hong Ren
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Lujie Ren
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| |
Collapse
|
154
|
Schade J, Passig J, Irsig R, Ehlert S, Sklorz M, Adam T, Li C, Rudich Y, Zimmermann R. Spatially Shaped Laser Pulses for the Simultaneous Detection of Polycyclic Aromatic Hydrocarbons as well as Positive and Negative Inorganic Ions in Single Particle Mass Spectrometry. Anal Chem 2019; 91:10282-10288. [DOI: 10.1021/acs.analchem.9b02477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Julian Schade
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University Rostock, 18059 Rostock, Germany
| | - Johannes Passig
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University Rostock, 18059 Rostock, Germany
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’ (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Robert Irsig
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University Rostock, 18059 Rostock, Germany
- Photonion GmbH, 19061 Schwerin, Germany
| | | | - Martin Sklorz
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’ (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Adam
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’ (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bundeswehr University Munich, 85577 Neubiberg, Germany
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University Rostock, 18059 Rostock, Germany
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’ (CMA), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
155
|
Finlayson‐Pitts BJ. Multiphase chemistry in the troposphere: It all starts … and ends … with gases. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
156
|
Wang K, Zhang Y, Huang RJ, Wang M, Ni H, Kampf CJ, Cheng Y, Bilde M, Glasius M, Hoffmann T. Molecular Characterization and Source Identification of Atmospheric Particulate Organosulfates Using Ultrahigh Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6192-6202. [PMID: 31083926 DOI: 10.1021/acs.est.9b02628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organosulfates (OSs) have been observed as substantial constituents of atmospheric organic aerosol (OA) in a wide range of environments; however, the chemical composition, sources, and formation mechanism of OSs are still not well understood. In this study, we first created an "OS precursor map" based on the elemental composition of previous OS chamber experiments. Then, according to this "OS precursor map", we estimated the possible sources and molecular structures of OSs in atmospheric PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) samples, which were collected in urban areas of Beijing (China) and Mainz (Germany) and analyzed by ultrahigh-performance liquid chromatography (UHPLC) coupled with an Orbitrap mass spectrometer. On the basis of the "OS precursor map", together with the polarity information provided by UHPLC, OSs in Mainz samples are suggested to be mainly derived from isoprene/glyoxal or other unknown small polar organic compounds, while OSs in Beijing samples were generated from both isoprene/glyoxal and anthropogenic sources (e.g., long-chain alkanes and aromatics). The nitrooxy-OSs in the clean aerosol samples were mainly derived from monoterpenes, while much fewer monoterpene-derived nitrooxy-OSs were obtained in the polluted aerosol samples, showing that nitrooxy-OS formation is affected by different precursors in clean and polluted air conditions.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, and Center for Excellence in Quaternary Science and Global Change , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
- Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Yun Zhang
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Ru-Jin Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, and Center for Excellence in Quaternary Science and Global Change , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
- Open Studio for Oceanic-Continental Climate and Environment Changes , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266061 , China
| | - Meng Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, and Center for Excellence in Quaternary Science and Global Change , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
| | - Haiyan Ni
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, and Center for Excellence in Quaternary Science and Global Change , Institute of Earth Environment, Chinese Academy of Sciences , Xi'an 710061 , China
| | - Christopher J Kampf
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner-Weg 1 , 55128 Mainz , Germany
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Yafang Cheng
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , Hahn-Meitner-Weg 1 , 55128 Mainz , Germany
| | - Merete Bilde
- Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Marianne Glasius
- Department of Chemistry , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Thorsten Hoffmann
- Institute of Inorganic and Analytical Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
157
|
Qiu J, Ishizuka S, Tonokura K, Enami S. Interfacial vs Bulk Ozonolysis of Nerolidol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5750-5757. [PMID: 31017766 DOI: 10.1021/acs.est.9b00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ozone readily reacts with olefins with the formation of more reactive Criegee intermediates (CIs). The transient CIs impact HO x cycles, and they play a role in new particle formation in the troposphere. Oxidation by O3 occurs both in the gas-phase, in the liquid phase, and at air-water and air-aerosol interfaces. In light of the importance of O3 in environmental and engineered chemical transformations, we have investigated the ozonolysis mechanisms of a triolefin C15-alcohol, nerolidol (Nero, a biogenic sesquiterpene), at the air-water interface in the presence of acetonitrile. Surface-sensitive pneumatic ionization mass spectrometric detection of α-hydroxy-hydroperoxides and functionalized carboxylates, generated by the hydration and isomerization of CIs, respectively, enables us to evaluate the relative reactivity of each C=C toward O3. In addition, we compare bulk-phase ozonolysis chemistry to similar reactions taking place at the air-water interface. Our experimental results show that O3 reacts primarily with the (CH3)2C=CH- and -(CH3)C=CH- moieties (>∼98%), while the O3 attack on the terminal -HC=CH2 site (<∼2%) is a minor pathway during both interfacial and bulk ozonolysis. The presence of functionalized-carboxylates on interfaces but not in bulk-phase reactions with O3 indicates that the isomerization of the CIs is not hindered at the air-water interface due to the lower availability of water .
Collapse
Affiliation(s)
- Junting Qiu
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa 277-8563 , Japan
| | - Shinnosuke Ishizuka
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| | - Kenichi Tonokura
- Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa 277-8563 , Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , 16-2 Onogawa , Tsukuba 305-8506 , Japan
| |
Collapse
|
158
|
Slade JH, Ault AP, Bui AT, Ditto JC, Lei Z, Bondy AL, Olson NE, Cook RD, Desrochers SJ, Harvey RM, Erickson MH, Wallace HW, Alvarez SL, Flynn JH, Boor BE, Petrucci GA, Gentner DR, Griffin RJ, Shepson PB. Bouncier Particles at Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive Diel Variations in the Aerosol Phase in a Mixed Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4977-4987. [PMID: 31002496 DOI: 10.1021/acs.est.8b07319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas-particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.
Collapse
Affiliation(s)
- Jonathan H Slade
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Andrew P Ault
- Department of Environmental Health Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Alexander T Bui
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
| | - Jenna C Ditto
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Ziying Lei
- Department of Environmental Health Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Amy L Bondy
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Nicole E Olson
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ryan D Cook
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sarah J Desrochers
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Rebecca M Harvey
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Matthew H Erickson
- Department of Earth and Atmospheric Sciences , University of Houston , Houston , Texas 77204 , United States
| | - Henry W Wallace
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
| | - Sergio L Alvarez
- Department of Earth and Atmospheric Sciences , University of Houston , Houston , Texas 77204 , United States
| | - James H Flynn
- Department of Earth and Atmospheric Sciences , University of Houston , Houston , Texas 77204 , United States
| | - Brandon E Boor
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Giuseppe A Petrucci
- Department of Chemistry , University of Vermont , Burlington , Vermont 05405 , United States
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Robert J Griffin
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Paul B Shepson
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
- Department of Earth, Atmospheric and Planetary Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
- Purdue Climate Change Research Center , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
159
|
He P, Wei S, Shao L, Lü F. Aerosolization behavior of prokaryotes and fungi during composting of vegetable waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:103-113. [PMID: 31079724 DOI: 10.1016/j.wasman.2019.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Aerobic composting is one of the most effective ways to treat biowaste. However, microorganisms, including prokaryotes (i.e. bacteria and archaea) and fungi, are inevitably released from the compost as bioaerosols during biowaste composting. The release pattern of bioaerosols was analyzed during vegetable waste composting through onsite direct sampling of bioaerosol, compost on the pile surface, and compost inside the windrows to have a systematic understanding of the aerosolization behavior of bacteria, archaea, and fungi during composting. A total of six and three dominant microbial phyla were detected in the vegetable compost and aerosol, respectively. The overall aerosolization index of archaea and bacteria was 0-79 and 0-214, respectively, while that of fungi ranged from 0 to 397. The major preferentially aerosolized microorganism phyla included Bacteroidetes (bacteria) and Basidiomycota (fungi). Furthermore, the aerosolization index of bacterial and fungal genera was 0-22,500 and 0-9000, respectively. Seven major preferentially aerosolized bacterial genera, including Brevundimonas, Massilia, Chryseobacterium, Chryseobacterium, Kurthia, Burkholderia-Paraburkholderia, and Acinetobacter were detected with aerosolization indices of 171, 491, 1478, 22,460, 5525, 4014, and 631, respectively. With regard to fungal genera, Cochliobolus, Sclerotinia, and Aspergillus were noted to get easily aerosolized, with maximum aerosolization indices of 7344, 8582, and 439, respectively. The microbial number in the aerosol from composts ranged from 400 to 4800 cell/m3. Besides, more than 90% of easily aerosolized microbial genera were Gram-negative and pathogenic. Thus, the microorganisms released from vegetable compost may have certain detrimental effect on human health.
Collapse
Affiliation(s)
- Pinjing He
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shunyan Wei
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban-Rural Development of PR China (MOHURD), China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
160
|
Liu H, Hu Z, Zhou M, Hu J, Yao X, Zhang H, Li Z, Lou L, Xi C, Qian H, Li C, Xu X, Zheng P, Hu B. The distribution variance of airborne microorganisms in urban and rural environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:898-906. [PMID: 30823344 DOI: 10.1016/j.envpol.2019.01.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/26/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Microorganisms are ubiquitous in the atmosphere, where they can disperse for a long distance. However, it remains poorly understood how these airborne microorganisms vary and which factors influence the microbial distribution in different anthropogenic activity regions. To explore the regional differences of bacteria and fungi in airborne particles, PM2.5 and PM10 samples were collected in the urban and rural areas of Hangzhou. The bacterial and fungal communities in the urban atmosphere was more similar to each other than those in the rural atmosphere. Analyses conducted by the concentration weighted trajectory model demonstrated that the local environment contributed more to the similarity of airborne bacteria and fungi compared with the atmospheric transport. The concentrations of local air pollutants (PM2.5, PM10, NO2, SO2 and CO) were positively correlated with the similarity of the bacterial and fungal communities. Additionally, the concentrations of these air pollutants in the urban site were about 1.5 times than those in the rural site. This implicated that anthropogenic activity, which is the essential cause of air pollutants, influenced the similarity of airborne bacteria and fungi in the urban area. This work ascertains the outdoor bacterial and fungal distribution in the urban and the rural atmosphere and provides a prospective model for studying the contributing factors of airborne bacteria and fungi.
Collapse
Affiliation(s)
- Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
161
|
Ma Y, Wang Z, Yang D, Diao Y, Wang W, Zhang H, Zhu W, Zheng J. On-line measurement of fluorescent aerosols near an industrial zone in the Yangtze River Delta region using a wideband integrated bioaerosol spectrometer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:447-457. [PMID: 30522027 DOI: 10.1016/j.scitotenv.2018.11.370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
In this work, we present on-line fluorescent aerosol measurements by the wideband integrated bioaerosol spectrometer (WIBS-4A) near an industrial zone in Nanjing, a megacity in the Yangtze-River-Delta (YRD) region. The fieldwork was conducted from April 1 to May 8, 2014. A TSI. 3321 aerosol-particle-sizer (APS) was simultaneously deployed to measure the total number size distribution of aerosol with diameter from 0.8-20 μm. Both WIBS-4A and APS reported similar number concentration and temporal profiles (R2 = 0.72). However, the daily average number of potential bioaerosols was only 0.5 ± 0.2% of the total particles detected by the WIBS-4A and displayed a completely different diurnal profile from that of APS. In addition, WIBS-4A can only provide integrated fluorescent signals, which strongly limited the potential to specifically identify the bioaerosols. Accordingly, hierarchical-agglomerative-cluster-analysis (HACA) was utilized to identify and speciate the potential bioaerosols from the WIBS-4A dataset. By maximizing the total distances among all potential cluster centers, a 12-cluster solution was accepted as the optimum result. These clusters were further identified according to their fluorescent signatures, size, and morphology, i.e., non-bioaerosols, bacteria, and fungal spores and/or pollen fragments. Bacteria were the dominant bioaerosol species detected in this work. The diurnal profiles of bioaerosols correlated very well with relatively humidity (RH), reaching daily maxima around 3 AM~6 AM, indicating the presence of humidity controlled bioaerosol emission mechanism, i.e., bacteria may flourish under moderate ambient temperature, RH, and the absence of UV radiation. The size- and AF-distributions of bioaerosols indicated that bioaerosols normally varied substantially in size and assumed a rather irregular shape. Although the number concentration of bioaerosols was relatively small, most bioaerosols can efficiently serve as ice nuclei by providing rough and irregular surfaces, verified by the observation results. Therefore, WIBS-4A measurements can still be informative for investigations of bioaerosols in the atmosphere, especially when HACA method was incorporated into the data processing.
Collapse
Affiliation(s)
- Yan Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhibin Wang
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongsen Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yiwei Diao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Department of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Weiwei Wang
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Department of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | | | - Wenhui Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jun Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
162
|
Faust JA, Abbatt JPD. Organic Surfactants Protect Dissolved Aerosol Components against Heterogeneous Oxidation. J Phys Chem A 2019; 123:2114-2124. [DOI: 10.1021/acs.jpca.9b00167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jennifer A. Faust
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | |
Collapse
|
163
|
Marsh A, Rovelli G, Miles REH, Reid JP. Complexity of Measuring and Representing the Hygroscopicity of Mixed Component Aerosol. J Phys Chem A 2019; 123:1648-1660. [PMID: 30707027 DOI: 10.1021/acs.jpca.8b11623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The validation of approaches to predict the hygroscopicity of complex mixtures of organic components in aerosol is important for understanding the hygroscopic response of organic aerosol in the atmosphere. We report new measurements of the hygroscopicity of mixtures of dicarboxylic acids and amino acids using a comparative kinetic electrodynamic balance (CK-EDB) approach, inferring the equilibrium water content of the aerosol from close to a saturation relative humidity (100%) down to 80%. We show that the solution densities and refractive indices of the mixtures can be estimated with an accuracy of better than ±2% using the molar refractive index mixing rule and densities and refractive indices for the individual binary organic-aqueous solutions. Further, we show that the often-used mass-, volume-, and mole-weighted mixing rules to estimate the hygroscopicity parameter κ can overestimate the hygroscopic parameter by a factor of as much as 3, highlighting the need to understand the specific nonideal interactions that may arise synergistically in mixtures and cannot be represented by simple models. Indeed, in some extreme cases the hygroscopicity of a multicomponent mixture can be very close to that for the least hygroscopic component. For mixtures of similar components for which no additional synergistic interactions need be considered, the hygroscopicity of the mixed component aerosol can be estimated with high accuracy from the hygroscopic response of the binary aqueous-organic aerosol. In conclusion, we suggest that the hygroscopicity of multicomponent organic aerosol can be highly nonadditive and that simple correlations of hygroscopicity with composition may often misrepresent the level of complexity essential to interpreting aerosol hygroscopicity.
Collapse
Affiliation(s)
- Aleksandra Marsh
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Grazia Rovelli
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Rachael E H Miles
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Jonathan P Reid
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| |
Collapse
|
164
|
Sakakibara N, Ito T, Terashima K. Plasma-Ice Interface as Thermodynamically Size-Tunable Reaction Field: Development of Plasma-Assisted Freeze Templating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3013-3019. [PMID: 30716274 DOI: 10.1021/acs.langmuir.8b04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interfaces or interfacial layers, such as gas-liquid interfaces, are critical for many physical and chemical reactions and are utilized for designing a wide range of materials. In this study, we propose a plasma-assisted freeze templating (PFT) method for materials processing. It uses a new type of interfacial reaction field, i.e., plasma-ice interface. In PFT, a micro- or nanoscale liquid layer formed on the ice body of a frozen aqueous solution is used as a reaction field in which the solutes are highly enriched and the chemical reactions are initiated by reactive species from the plasma. We demonstrated the synthesis of a self-standing gold nanoparticle (AuNP) film of porous structure by PFT in which a helium cryoplasma jet was irradiated onto a frozen solution of auric ions. This PFT method accomplished a surfactant-free and area-selective synthesis of a AuNP film and was unique in comparison with the conventional chemical synthesis of nanostructured gold materials. Furthermore, simple control of the AuNP film was demonstrated by tuning the thickness of the thin liquid layer. This was done by changing the temperature or concentration of the aqueous solution. PFT was demonstrated as a thermodynamically size-tunable scheme for material design; it exploits the plasma-ice interface and is expected to become a novel technique for a wide range of micro- and nanoengineering applications.
Collapse
Affiliation(s)
- Noritaka Sakakibara
- Department of Advanced Materials Science, Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | - Tsuyohito Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | - Kazuo Terashima
- Department of Advanced Materials Science, Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| |
Collapse
|
165
|
Zhang G, Lin Q, Peng L, Yang Y, Jiang F, Liu F, Song W, Chen D, Cai Z, Bi X, Miller M, Tang M, Huang W, Wang X, Peng P, Sheng G. Oxalate Formation Enhanced by Fe-Containing Particles and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1269-1277. [PMID: 30354091 DOI: 10.1021/acs.est.8b05280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We used a single particle mass spectrometry to online detect chemical compositions of individual particles over four seasons in Guangzhou. Number fractions (Nfs) of all the measured particles that contained oxalate were 1.9%, 5.2%, 25.1%, and 15.5%, whereas the Nfs of Fe-containing particles that were internally mixed with oxalate were 8.7%, 23.1%, 45.2%, and 31.2% from spring to winter, respectively. The results provided the first direct field measurements for the enhanced formation of oxalate associated with Fe-containing particles. Other oxidized organic compounds including formate, acetate, methylglyoxal, glyoxylate, purivate, malonate, and succinate were also detected in the Fe-containing particles. It is likely that reactive oxidant species (ROS) via Fenton reactions enhanced the formation of these organic compounds and their oxidation product oxalate. Gas-particle partitioning of oxalic acid followed by coordination with Fe might also partly contribute to the enhanced oxalate. Aerosol water content likely played an important role in the enhanced oxalate formation when the relative humidity is >60%. Interactions with Fe drove the diurnal variation of oxalate in the Fe-containing particles. The study could provide a reference for model simulation to improve understanding on the formation and fate of oxalate, and the evolution and climate impacts of particulate Fe.
Collapse
Affiliation(s)
- Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Qinhao Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Long Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Yuxiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Feng Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Fengxian Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Duohong Chen
- State Environmental Protection Key Laboratory of Regional Air Quality Monitoring , Guangdong Environmental Monitoring Center , Guangzhou 510308 , PR China
| | - Zhang Cai
- John and Willie Leone Family Department of Energy and Mineral Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Mark Miller
- Department of Environmental Sciences , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Weilin Huang
- Department of Environmental Sciences , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| |
Collapse
|
166
|
Liu F, Lakey PSJ, Berkemeier T, Tong H, Kunert AT, Meusel H, Cheng Y, Su H, Fröhlich-Nowoisky J, Lai S, Weller MG, Shiraiwa M, Pöschl U, Kampf CJ. Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide. Faraday Discuss 2019; 200:413-427. [PMID: 28574569 DOI: 10.1039/c7fd00005g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The allergenic potential of airborne proteins may be enhanced via post-translational modification induced by air pollutants like ozone (O3) and nitrogen dioxide (NO2). The molecular mechanisms and kinetics of the chemical modifications that enhance the allergenicity of proteins, however, are still not fully understood. Here, protein tyrosine nitration and oligomerization upon simultaneous exposure of O3 and NO2 were studied in coated-wall flow-tube and bulk solution experiments under varying atmospherically relevant conditions (5-200 ppb O3, 5-200 ppb NO2, 45-96% RH), using bovine serum albumin as a model protein. Generally, more tyrosine residues were found to react via the nitration pathway than via the oligomerization pathway. Depending on reaction conditions, oligomer mass fractions and nitration degrees were in the ranges of 2.5-25% and 0.5-7%, respectively. The experimental results were well reproduced by the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). The extent of nitration and oligomerization strongly depends on relative humidity (RH) due to moisture-induced phase transition of proteins, highlighting the importance of cloud processing conditions for accelerated protein chemistry. Dimeric and nitrated species were major products in the liquid phase, while protein oligomerization was observed to a greater extent for the solid and semi-solid phase states of proteins. Our results show that the rate of both processes was sensitive towards ambient ozone concentration, but rather insensitive towards different NO2 levels. An increase of tropospheric ozone concentrations in the Anthropocene may thus promote pro-allergic protein modifications and contribute to the observed increase of allergies over the past decades.
Collapse
Affiliation(s)
- Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Tong H, Lakey PSJ, Arangio AM, Socorro J, Kampf CJ, Berkemeier T, Brune WH, Pöschl U, Shiraiwa M. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene. Faraday Discuss 2019; 200:251-270. [PMID: 28574563 DOI: 10.1039/c7fd00023e] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H2O2 with Fe2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.
Collapse
Affiliation(s)
- Haijie Tong
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Xie J, Jin L, He T, Chen B, Luo X, Feng B, Huang W, Li J, Fu P, Li X. Bacteria and Antibiotic Resistance Genes (ARGs) in PM 2.5 from China: Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:963-972. [PMID: 30525504 DOI: 10.1021/acs.est.8b04630] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Airborne transmission is one of the environmental dissemination pathways of antibiotic resistance genes (ARGs), and has critical implications for human exposure through inhalation. In this study, we focused on three regions of China to reveal some unique spatiotemporal features of airborne bacteria and ARGs in fine aerosols (PM2.5): (1) greater seasonal variations in the abundance of bacteria and ARGs in temperate urban Beijing than in the subtropical urban areas of the Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions, with regional disparities in bacterial communities; (2) geographical fingerprints of ARG profiles independent of seasonal cycles and land-use gradients within each region; (3) region-independent associations between the targeted ARGs and limited bacterial genera; (4) common correlations between ARGs and mobile genetic elements (MGEs) across regions; and (5) PM2.5 at the higher end of ARG enrichment across various environmental and human media. The spatiotemporally differentiated bacterial communities and ARG abundances, and the compositions, mobility, and potential hosts of ARGs in the atmosphere have strong implications for human inhalational exposure over spatiotemporal scales. By comparing other contributing pathways for the intake of ARGs (e.g., drinking water and food ingestion) in China and the U.S.A., we identified the region-specific importance of inhalation in China as well as country-specific exposure scenarios. Our study thus highlights the significance of inhalation as an integral part of the aggregate exposure pathways of environmentally disseminated ARGs, which, in turn, may help in the formulation of adaptive strategies to mitigate the exposure risks in China and beyond.
Collapse
Affiliation(s)
- Jiawen Xie
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
| | - Ling Jin
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
| | - Tangtian He
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
| | - Baowei Chen
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology , Nanjing University of Information Science and Technology , Nanjing 210044 , China
| | - Baihuan Feng
- Department of Occupational and Environmental Health , Peking University School of Public Health, and Peking University Institute of Environmental Medicine , Beijing 100871 , China
| | - Wei Huang
- Department of Occupational and Environmental Health , Peking University School of Public Health, and Peking University Institute of Environmental Medicine , Beijing 100871 , China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen 518057 , China
| |
Collapse
|
169
|
Wang H, Dong X, Cui W, Li J, Sun Y, Zhou Y, Huang H, Zhang Y, Dong F. High-surface energy enables efficient and stable photocatalytic toluene degradationviathe suppression of intermediate byproducts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00308h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high surface energy of ZnGa2O4favors the chemical adsorption of reactants on the catalyst surface, which facilitates the activation and ring opening of toluene derivatives to maintain high stability.
Collapse
Affiliation(s)
- Hong Wang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing 400067
- China
| | - Xing'an Dong
- Chongqing Key Laboratory of Catalysis and New Environmental Materials
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing 400067
- China
| | - Wen Cui
- Research Center for Environmental Science & Technology
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 611731
- China
| | - Jieyuan Li
- Research Center for Environmental Science & Technology
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 611731
- China
| | - Yanjuan Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing 400067
- China
| | - Ying Zhou
- The Center of New Energy Materials and Technology
- School of Materials Science and Engineering
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Hongwei Huang
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
- China
| | - Yuxin Zhang
- College of Materials Science and Engineering
- Chongqing University
- Chongqing 400045
- China
| | - Fan Dong
- Chongqing Key Laboratory of Catalysis and New Environmental Materials
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing 400067
- China
| |
Collapse
|
170
|
Marsh A, Rovelli G, Song YC, Pereira KL, Willoughby RE, Bzdek BR, Hamilton JF, Orr-Ewing AJ, Topping DO, Reid JP. Accurate representations of the physicochemical properties of atmospheric aerosols: when are laboratory measurements of value? Faraday Discuss 2018; 200:639-661. [PMID: 28574570 DOI: 10.1039/c7fd00008a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Laboratory studies can provide important insights into the processes that occur at the scale of individual particles in ambient aerosol. We examine the accuracies of measurements of core physicochemical properties of aerosols that can be made in single particle studies and explore the impact of these properties on the microscopic processes that occur in ambient aerosol. Presenting new measurements, we examine here the refinements in our understanding of aerosol hygroscopicity, surface tension, viscosity and optical properties that can be gained from detailed laboratory measurements for complex mixtures through to surrogates for secondary organic atmospheric aerosols.
Collapse
|
171
|
Houle FA, Wiegel AA, Wilson KR. Predicting Aerosol Reactivity Across Scales: from the Laboratory to the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13774-13781. [PMID: 30412390 DOI: 10.1021/acs.est.8b04688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To fully utilize the results of laboratory-based studies of the chemistry of model atmospheric aerosol reactions, it is important to understand how to relate them to the conditions found in nature. In this study, we have taken a validated reaction-diffusion mechanism for oxidation of C30H62 aerosol by OH under flow tube conditions and examined its predictions for another experimental regime (continuous flow stirred tank reactor) and for the atmosphere, spanning alkane aerosol viscosities from liquid to semisolid. The results show that under OH-concentration-limited and aerosol-mixing-limited conditions, it should be possible to select laboratory experimental conditions where many aspects of the particle phase and volatile product chemistry under atmospheric conditions can be revealed. If the OH collision and organic diffusion rates are comparable, however, reactivity is highly sensitive to the details of both OH concentration and internal mixing. The characteristics of the transition between limiting conditions provide key insights into which parts of the reaction mechanism dominate in the various kinetic regimes.
Collapse
Affiliation(s)
- Frances A Houle
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Aaron A Wiegel
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Kevin R Wilson
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| |
Collapse
|
172
|
Chen Q, Wang M, Sun H, Wang X, Wang Y, Li Y, Zhang L, Mu Z. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM 2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China. ENVIRONMENT INTERNATIONAL 2018; 121:260-268. [PMID: 30223202 DOI: 10.1016/j.envint.2018.09.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/22/2018] [Accepted: 09/06/2018] [Indexed: 05/19/2023]
Abstract
Asian dust storms can increase the level of atmospheric pollution over regions downwind of dust storms and may have adverse health effects on residents along the sandstorm transmission route. This study was the first to report the concentration levels, properties and possible sources of environmentally persistent free radicals (EPFRs) and oxidative potential in atmospheric PM2.5 at the three sites of Erenhot, Zhangbei, and Jinan along the transport route of Asian dust storms during the occurrence of Asian dust storms in the spring of 2016. Under non-sandstorm weather conditions, the average EPFR concentrations at the three sites were Zhangbei>Jinan>Erenhot, while the PM-induced oxidative potential levels were Erenhot>Jinan>Zhangbei. The PM2.5 concentration increased significantly during dust storm events, and the total atmospheric concentration of EPFRs (spins/m3) and total oxidation potential (a.u./m3) of PM2.5 simultaneously increased. However, the EPFR concentration in PM2.5 (spins/g) and the unit mass of the PM oxidation potential (a.u./g) were significantly reduced. Electron paramagnetic resonance analysis combined with backward trajectory analysis and MODIS products showed that Asian dust storms can carry EPFRs over long distances. Correlation analysis showed that the atmospheric concentrations of EPFRs were positively correlated with elemental carbon (EC) for the Zhangbei and Jinan samples but were not significantly correlated with EC for the Erenhot samples, indicating that combustion may be an important source of EPFRs for the Zhangbei and Jinan samples. In contrast, the EPFRs in the Erenhot samples were more affected by dust/sand. The EPFR concentration levels showed a significant positive correlation with the oxidation potentials for the Erenhot and Zhangbei samples and showed negative correlations for the Jinan samples, suggesting that the EPFRs in the Erenhot and Zhangbei samples may provide an important contribution to the oxidative stress in PM2.5. In contrast, the oxidation potential for the Jinan samples was mainly caused by substances other than EPFRs. This study presents a basic understanding of the potential health effects of Asian dust storms, and this information can be used to assess the health risks of Asian dust storms in future studies.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Mamin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyao Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - Yanguang Li
- Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits, MLR, Xi'an 710054, China; Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
| | - Lixin Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Mu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
173
|
Vander Wall AC, Lakey PSJ, Rossich Molina E, Perraud V, Wingen LM, Xu J, Soulsby D, Gerber RB, Shiraiwa M, Finlayson-Pitts BJ. Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1593-1610. [PMID: 30382275 DOI: 10.1039/c8em00348c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding impacts of secondary organic aerosol (SOA) in air requires a molecular-level understanding of particle growth via interactions between gases and particle surfaces. The interactions of three gaseous organic nitrates with selected organic substrates were measured at 296 K using attenuated total reflection Fourier transform infrared spectroscopy. The organic substrates included a long chain alkane (triacontane, TC), a keto-acid (pinonic acid, PA), an amorphous ester oligomer (poly(ethylene adipate) di-hydroxy terminated, PEA), and laboratory-generated SOA from α-pinene ozonolysis. There was no uptake of the organic nitrates on the non-polar TC substrate, but significant uptake occurred on PEA, PA, and α-pinene SOA. Net uptake coefficients (γ) at the shortest reaction times accessible in these experiments ranged from 3 × 10-4 to 9 × 10-6 and partition coefficients (K) from 1 × 107 to 9 × 104. Trends in γ did not quantitatively follow trends in K, suggesting that the intermolecular forces involved in gas-surface interactions are not the same as those in the bulk, which is supported by theoretical calculations. Kinetic modeling showed that nitrates diffused throughout the organic films over several minutes, and that the bulk diffusion coefficients evolved as uptake/desorption occurred. A plasticizing effect occurred upon incorporation of the organic nitrates, whereas desorption caused decreases in diffusion coefficients in the upper layers, suggesting a crusting effect. Accurate predictions of particle growth in the atmosphere will require knowledge of uptake coefficients, which are likely to be several orders of magnitude less than one, and of the intermolecular interactions of gases with particle surfaces as well as with the particle bulk.
Collapse
Affiliation(s)
- A C Vander Wall
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Wingen LM, Finlayson-Pitts BJ. Probing surfaces of atmospherically relevant organic particles by easy ambient sonic-spray ionization mass spectrometry (EASI-MS). Chem Sci 2018; 10:884-897. [PMID: 30774883 PMCID: PMC6346289 DOI: 10.1039/c8sc03851a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
EASI-MS is a promising technique for probing the chemical structures of inhomogeneous airborne organic particles.
Both ambient and laboratory-generated particles can have a surface composition different from the bulk, but there are currently few analytical techniques available to probe these differences. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) was applied to solid, laboratory-generated particles with core–shell morphologies formed from a variety of dicarboxylic acids. The soft ionization facilitated parent peak detection for the two compounds, from which the depth probed could be determined from the relative signal intensities. Two different configurations of a custom-made nebulizer are reported that yield different probe depths. In the “orthogonal mode,” with the nebulizer ∼10 centimeters away from the particle stream and at a 90° angle to the MS inlet, evaporation of the nebulizer droplets forms ions before interaction with the particles. The probe depth for orthogonal mode EASI-MS is shown to be 2–4 nm in these particle systems. In the “droplet mode”, the nebulizer and particle streams are in close proximity to each other and the MS inlet so that the particles interact with charged liquid droplets. This configuration resulted in full dissolution of the particles and gives particle composition similar to that from collection on filters and extraction of the particles (bulk). These studies establish that EASI-MS is a promising technique for probing the chemical structures of inhomogeneous airborne organic particles.
Collapse
Affiliation(s)
- L M Wingen
- Department of Chemistry , University of California Irvine , Irvine , CA 92697-2025 , USA . ; Tel: +1-949-824-7670
| | - B J Finlayson-Pitts
- Department of Chemistry , University of California Irvine , Irvine , CA 92697-2025 , USA . ; Tel: +1-949-824-7670
| |
Collapse
|
175
|
An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol. Commun Chem 2018. [DOI: 10.1038/s42004-018-0074-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
176
|
Li S, Du L, Zhang Q, Wang W. Stabilizing mixed fatty acid and phthalate ester monolayer on artificial seawater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:626-633. [PMID: 30014940 DOI: 10.1016/j.envpol.2018.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Phthalate esters which are widely used as industrial chemicals have become widespread contaminants in the marine environment. However, little information is available on the interfacial behavior of phthalate esters in the seawater, where contaminants generally occur at elevated concentrations and have the potential to transfer into the atmosphere through wave breaking on sea surface. We used artificial seawater coated with fatty acids to simulate sea surface microlayer in a Langmuir trough. The interactions of saturated fatty acids (stearic acid (SA) and palmitic acid (PA)) with one of the most abundant phthalate esters (di-(2-ethylhexyl) phthalate (DEHP)), were investigated under artificial seawater and pure water conditions. Pure DEHP monolayer was not stable, while more stable mixed monolayers were formed by SA and DEHP on the artificial seawater at relatively low surface pressure. Sea salts in the subphase can lower the excess Gibbs free energy to form more stable mixed monolayer. Among the ten components in the sea salts, Ca2+ ions played the major role in condensation of mixed monolayer. The condensed characteristic of the mixed SA (or PA)/DEHP monolayers suggested that the hydrocarbon chains were ordered on artificial seawater. By means of infrared reflection-absorption spectroscopy (IRRAS), we found that multiple sea salt mixtures induced deprotonated forms of fatty acids at the air-water interface. Sea salts can improve the stability and lifetime of mixed fatty acid and phthalate ester monolayer on aqueous droplets in the atmosphere. Interfacial properties of mixed fatty acid and phthalate ester monolayers at the air-ocean interface are important to help understand their behavior and fate in the marine environment.
Collapse
Affiliation(s)
- Siyang Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| |
Collapse
|
177
|
Li H, Duan F, Ma Y, He K, Zhu L, Ma T, Ye S, Yang S, Huang T, Kimoto T. Case study of spring haze in Beijing: Characteristics, formation processes, secondary transition, and regional transportation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:544-554. [PMID: 30007265 DOI: 10.1016/j.envpol.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/28/2018] [Accepted: 07/01/2018] [Indexed: 05/13/2023]
Abstract
Continuous haze monitoring was conducted from 12:00 3 April to 12:00 8 April 2016 in Beijing, China to develop a more detailed understanding of spring haze characteristics. The PM2.5 concentration ranged from 6.30 to 165 μg m-3 with an average of 63.8 μg m-3. Nitrate was the most abundant species, accounting for 36.4% of PM2.5, followed by organic carbon (21.5%), NH4+ (19.3%), SO42- (18.8%), and elemental carbon (4.10%), indicating the key role of nitrate in this haze event. Species contribution varied based on the phase of the haze event. For example, sulfate concentration was high during the haze formation phase, nitrate was high during the haze, and secondary organic carbon (SOC) had the highest contribution during the scavenging phase. The secondary transition of sulfate was influenced by SO2, followed by relative humidity (RH) and Ox (O3+NO2). Nitrate formation occurred in two stages: through NO2 oxidation, which was vulnerable to Ox; and by the partitioning of N (+5) which was susceptible to RH and temperature. SOC tended to form when Ox and RH were balanced. According to hourly species behavior, sulfate and nitrate were enriched during haze formation when the mixed layer height decreased. However, SOC accumulated prior to the haze event and during formation, which demonstrated the strong contribution of secondary inorganic aerosols, and the limiting contribution of SOC to this haze case. Investigating backward trajectories showed that high speed northwestern air masses following a straight path corresponded to the clear periods, while southwesterly air masses which traversed heavily polluted regions brought abundant pollutants to Beijing and stimulated the occurrence of haze pollution. Results indicate that the control of NO2 needs to be addressed to reduce spring haze. Finally, the correlation between air mass trajectories and pollution conditions in Beijing reinforce the necessity of inter-regional cooperation and control.
Collapse
Affiliation(s)
- Hui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Yongliang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Lidan Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Tao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Siqi Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Shuo Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Tao Huang
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku Osaka 543-0024, Japan
| | - Takashi Kimoto
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku Osaka 543-0024, Japan
| |
Collapse
|
178
|
Tong H, Lakey PSJ, Arangio AM, Socorro J, Shen F, Lucas K, Brune WH, Pöschl U, Shiraiwa M. Reactive Oxygen Species Formed by Secondary Organic Aerosols in Water and Surrogate Lung Fluid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11642-11651. [PMID: 30234977 DOI: 10.1021/acs.est.8b03695] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Reactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear. Here, we quantify and compare the ROS yields and oxidative potential of isoprene, β-pinene, and naphthalene SOA in water and surrogate lung fluid (SLF). In pure water, isoprene and β-pinene SOA were found to produce mainly OH and organic radicals, whereas naphthalene SOA produced mainly H2O2 and O2•-. The total molar yields of ROS of isoprene and β-pinene SOA were 11.8% and 8.2% in water and decreased to 8.5% and 5.2% in SLF, which can be attributed to ROS removal by lung antioxidants. A positive correlation between the total peroxide concentration and ROS yield suggests that organic (hydro)peroxides may play an important role in ROS formation from biogenic SOA. The total molar ROS yields of naphthalene SOA was 1.7% in water and increased to 11.3% in SLF. This strong increase is likely due to redox reaction cycles involving environmentally persistent free radicals (EPFR) or semiquinones, antioxidants, and oxygen, which may promote the formation of H2O2 and the adverse health effects of anthropogenic SOA from aromatic precursors.
Collapse
Affiliation(s)
- Haijie Tong
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Pascale S J Lakey
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Andrea M Arangio
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Joanna Socorro
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Fangxia Shen
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Kurt Lucas
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - William H Brune
- Department of Meteorology , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ulrich Pöschl
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| |
Collapse
|
179
|
Münzel T, Gori T, Al-Kindi S, Deanfield J, Lelieveld J, Daiber A, Rajagopalan S. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur Heart J 2018; 39:3543-3550. [PMID: 30124840 PMCID: PMC6174028 DOI: 10.1093/eurheartj/ehy481] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022] Open
Abstract
Ambient air pollution is a leading cause of non-communicable disease globally. The largest proportion of deaths and morbidity due to air pollution is now known to be due to cardiovascular disorders. Several particulate and gaseous air pollutants can trigger acute events (e.g. myocardial infarction, stroke, heart failure). While the mechanisms by which air pollutants cause cardiovascular events is undergoing continual refinement, the preponderant evidence support rapid effects of a diversity of pollutants including all particulate pollutants (e.g. course, fine, ultrafine particles) and gaseous pollutants such as ozone, on vascular function. Indeed alterations in endothelial function seem to be critically important in transducing signals and eventually promoting cardiovascular disorders such as hypertension, diabetes, and atherosclerosis. Here, we provide an updated overview of the impact of particulate and gaseous pollutants on endothelial function from human and animal studies. The evidence for causal mechanistic pathways from both animal and human studies that support various hypothesized general pathways and their individual and collective impact on vascular function is highlighted. We also discuss current gaps in knowledge and evidence from trials evaluating the impact of personal-level strategies to reduce exposure to fine particulate matter (PM2.5) and impact on vascular function, given the current lack of definitive randomized evidence using hard endpoints. We conclude by an exhortation for formal inclusion of air pollution as a major risk factor in societal guidelines and provision of formal recommendations to prevent adverse cardiovascular effects attributable to air pollution.
Collapse
Affiliation(s)
- Thomas Münzel
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Tommaso Gori
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Sadeer Al-Kindi
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, Case Western Reserve School of Medicine, 11100 Euclid Ave, Cleveland, OH, USA
| | - John Deanfield
- UCL Institute of Cardiovascular Science, 170 Tottenham Court Road, London, UK
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Harrington Heart and Vascular Institute, Case Western Reserve School of Medicine, 11100 Euclid Ave, Cleveland, OH, USA
| |
Collapse
|
180
|
Spatial variations in the estimated production of reactive oxygen species in the epithelial lung lining fluid by iron and copper in fine particulate air pollution. Environ Epidemiol 2018; 2:e020. [PMID: 33210071 PMCID: PMC7662795 DOI: 10.1097/ee9.0000000000000020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background: Certain metals may play an important role in the adverse health effects of fine particulate air pollution (PM2.5), but few models are available to predict spatial variations in these pollutants. Methods: We conducted large-scale air monitoring campaigns during summer 2016 and winter 2017 in Toronto, Canada, to characterize spatial variations in iron (Fe) and copper (Cu) concentrations in PM2.5. Information on Fe and Cu concentrations at each site was paired with a kinetic multilayer model of surface and bulk chemistry in the lung epithelial lining fluid to estimate the possible impact of these metals on the production of reactive oxygen species (ROS) in exposed populations. Land use data around each monitoring site were used to develop predictive models for Fe, Cu, and their estimated combined impact on ROS generation. Results: Spatial variations in Fe, Cu, and ROS greatly exceeded that of PM2.5 mass concentrations. In addition, Fe, Cu, and estimated ROS concentrations were 15, 18, and 9 times higher during summer compared with winter with little difference observed for PM2.5. In leave-one-out cross-validation procedures, final multivariable models explained the majority of spatial variations in annual mean Fe (R2 = 0.68), Cu (R2 =0.79), and ROS (R2 = 0.65). Conclusions: The combined use of PM2.5 metals data with a kinetic multilayer model of surface and bulk chemistry in the human lung epithelial lining fluid may offer a novel means of estimating PM2.5 health impacts beyond simple mass concentrations.
Collapse
|
181
|
Chen Q, Sun H, Wang M, Mu Z, Wang Y, Li Y, Wang Y, Zhang L, Zhang Z. Dominant Fraction of EPFRs from Nonsolvent-Extractable Organic Matter in Fine Particulates over Xi'an, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9646-9655. [PMID: 30071162 DOI: 10.1021/acs.est.8b01980] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To understand the nature and possible sources of environmentally persistent free radicals (EPFRs) in atmospheric aerosols, the present study used a solvent extraction method to fractionate aerosol components with different polarities and solvent resistance in fine particulate matter (PM2.5) from Xi'an, China. The characteristics of EPFRs, that is., their concentration, type and lifetime, were obtained based on their electron paramagnetic resonance spectra. The results showed that the EPFRs in the PM2.5 samples were carbon-centered with a nearby heteroatom ( g = 2.0031) and had a long half-life of more than 3 years. Nearly all of the extractable EPFRs were detected in the water-insoluble organic fraction and showed characteristics indicating that may contain oxygen-centered radical ( g = 2.0038). Most of the total EPFRs in the PM2.5 were derived from solvent-resistant organic matter (88%), which likely consisted of graphene oxide analogues. The results suggest that previous studies may have missed the major proportion of EPFRs in atmospheric particulates if they only focused on solvent-extractable or metallic oxide-formed EPFRs. Our results showed that the EPFR concentration was significantly and positively correlated with the elemental carbon and NO2 concentrations, suggesting that traffic emissions may be an important source of EPFRs in PM2.5 over Xi'an.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
- Graduate School of Environmental Studies , Nagoya University , Nagoya 464-8601 , Japan
| | - Haoyao Sun
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Mamin Wang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Zhen Mu
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Yuqin Wang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
- Department of Earth and Atmospheric Sciences , Saint Louis University , St. Louis , Missouri 63108 , United States
| | - Yanguang Li
- Key Laboratory for the Study of Focused Magmatism and Giant Ore Deposits , MLR , Xi'an 710054 , China
- Xi'an Center of Geological Survey , China Geological Survey , Xi'an 710054 , China
| | - Yansong Wang
- College of Chemistry and Chemical Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Lixin Zhang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| | - Zimeng Zhang
- School of Environmental Science and Engineering , Shaanxi University of Science and Technology , Xi'an 710021 , China
| |
Collapse
|
182
|
Shaharom S, Latif MT, Khan MF, Yusof SNM, Sulong NA, Wahid NBA, Uning R, Suratman S. Surfactants in the sea surface microlayer, subsurface water and fine marine aerosols in different background coastal areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27074-27089. [PMID: 30019134 DOI: 10.1007/s11356-018-2745-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
This study aims to determine the concentrations of surfactants in the surface microlayer (SML), subsurface water (SSW) and fine mode aerosol (diameter size < 1.5 μm) at different coastal stations in Peninsular Malaysia. The concentrations of anionic and cationic surfactants were determined through colorimetric methods as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS), respectively. Water-soluble ions, for the determination of fine mode aerosol sources, were determined using ion chromatography (IC) for anions (SO42-, NO3-, Cl- and F-) and cations (Na+, K+, Ca2+ and Mg2+). Principal component analysis (PCA), combined with multiple linear regression (MLR), was used to identify the possible sources of surfactants in fine aerosol. The results showed the concentrations of surfactants as MBAS and DBAS in the SML ranged between 0.23 ± 0.03 and 0.35 ± 0.01 μmol L-1 and between 0.21 ± 0.02 and 0.29 ± 0.01 μmol L-1, respectively. The enrichment factors (Efs) ratios between MBAS and DBAS in the SML and SSW ranged between 1.04 ± 0.01 and 1.32 ± 0.04, respectively. The station that is located near to tourism and industrial activities recorded the highest concentrations of surfactants in SML and SSW. The concentrations of surfactants in fine aerosol ranged between 62.29 and 106.57 pmol m-3. The three possible sources of fine aerosol during the northeast monsoon were aged sea spray/biomass burning (which accounted for 69% of the atmospheric aerosol), nitrate/mineral dust (23%) and sulphate/fresh sea salt (8%). During the southwest monsoon, the three main sources of atmospheric aerosol were biomass burning (71%), secondary inorganic aerosol (23%) and sea spray (6%). This study suggests anthropogenic sources are main contributors to the concentrations of surfactants in SML, SSW and fine aerosols.
Collapse
Affiliation(s)
- Suhana Shaharom
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Talib Latif
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Md Firoz Khan
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Siti Norbalqis Mohd Yusof
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nor Azura Sulong
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nurul Bahiyah Abd Wahid
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia
| | - Royston Uning
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Suhaimi Suratman
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
183
|
Yuan Q, Lai S, Song J, Ding X, Zheng L, Wang X, Zhao Y, Zheng J, Yue D, Zhong L, Niu X, Zhang Y. Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:884-893. [PMID: 29793196 DOI: 10.1016/j.envpol.2018.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Thirteen secondary organic aerosol (SOA) tracers of isoprene (SOAI), monoterpenes (SOAM), sesquiterpenes (SOAS) and aromatics (SOAA) in fine particulate matter (PM2.5) were measured at a Pearl River Delta (PRD) regional site for one year. The characteristics including their seasonal cycles and the factors influencing their formation in this region were studied. The seasonal patterns of SOAI, SOAM and SOAS tracers were characterized over three enhancement periods in summer (I), autumn (II) and winter (III), while the elevations of SOAA tracer (i.e., 2,3-dihydroxy-4-oxopentanoic acid, DHOPA) were observed in Periods II and III. We found that SOA formed from different biogenic precursors could be driven by several factors during a one-year seasonal cycle. Isoprene emission controlled SOAI formation throughout the year, while monoterpene and sesquiterpene emissions facilitated SOAM and SOAS formation in summer rather than in other seasons. The influence of atmospheric oxidants (Ox) was found to be an important factor of the formation of SOAM tracers during the enhancement periods in autumn and winter. The formation of SOAS tracer was influenced by the precursor emissions in summer, atmospheric oxidation in autumn and probably also by biomass burning in both summer and winter. In this study, we could not see the strong contribution of biomass burning to DHOPA as suggested by previous studies in this region. Instead, good correlations between observed DHOPA and Ox as well as [NO2][O3] suggest the involvement of both ozone (O3) and nitrogen dioxide (NO2) in the formation of DHOPA. The results showed that regional air pollution may not only increase the emissions of aromatic precursors but also can greatly promote the formation processes.
Collapse
Affiliation(s)
- Qi Yuan
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Senchao Lai
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Junwei Song
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Lishan Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Junyu Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Liuju Zhong
- Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yingyi Zhang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China.
| |
Collapse
|
184
|
Li H, Zhong J, Vehkamäki H, Kurtén T, Wang W, Ge M, Zhang S, Li Z, Zhang X, Francisco JS, Zeng XC. Self-Catalytic Reaction of SO3 and NH3 To Produce Sulfamic Acid and Its Implication to Atmospheric Particle Formation. J Am Chem Soc 2018; 140:11020-11028. [DOI: 10.1021/jacs.8b04928] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Zhong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | | | | | - Weigang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Maofa Ge
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zesheng Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
185
|
Wei H, Vejerano EP, Leng W, Huang Q, Willner MR, Marr LC, Vikesland PJ. Aerosol microdroplets exhibit a stable pH gradient. Proc Natl Acad Sci U S A 2018; 115:7272-7277. [PMID: 29941550 PMCID: PMC6048471 DOI: 10.1073/pnas.1720488115] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Suspended aqueous aerosol droplets (<50 µm) are microreactors for many important atmospheric reactions. In droplets and other aquatic environments, pH is arguably the key parameter dictating chemical and biological processes. The nature of the droplet air/water interface has the potential to significantly alter droplet pH relative to bulk water. Historically, it has been challenging to measure the pH of individual droplets because of their inaccessibility to conventional pH probes. In this study, we scanned droplets containing 4-mercaptobenzoic acid-functionalized gold nanoparticle pH nanoprobes by 2D and 3D laser confocal Raman microscopy. Using surface-enhanced Raman scattering, we acquired the pH distribution inside approximately 20-µm-diameter phosphate-buffered aerosol droplets and found that the pH in the core of a droplet is higher than that of bulk solution by up to 3.6 pH units. This finding suggests the accumulation of protons at the air/water interface and is consistent with recent thermodynamic model results. The existence of this pH shift was corroborated by the observation that a catalytic reaction that occurs only under basic conditions (i.e., dimerization of 4-aminothiophenol to produce dimercaptoazobenzene) occurs within the high pH core of a droplet, but not in bulk solution. Our nanoparticle probe enables pH quantification through the cross-section of an aerosol droplet, revealing a spatial gradient that has implications for acid-base-catalyzed atmospheric chemistry.
Collapse
Affiliation(s)
- Haoran Wei
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061
- Sustainable Nanotechnology Center, Virginia Tech Institute of Critical Technology and Applied Science, Blacksburg, VA 24061
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708
| | - Eric P Vejerano
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061
- Sustainable Nanotechnology Center, Virginia Tech Institute of Critical Technology and Applied Science, Blacksburg, VA 24061
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208
| | - Weinan Leng
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061
- Sustainable Nanotechnology Center, Virginia Tech Institute of Critical Technology and Applied Science, Blacksburg, VA 24061
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708
| | - Qishen Huang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061
- Sustainable Nanotechnology Center, Virginia Tech Institute of Critical Technology and Applied Science, Blacksburg, VA 24061
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708
| | - Marjorie R Willner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061
- Sustainable Nanotechnology Center, Virginia Tech Institute of Critical Technology and Applied Science, Blacksburg, VA 24061
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061
- Sustainable Nanotechnology Center, Virginia Tech Institute of Critical Technology and Applied Science, Blacksburg, VA 24061
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061;
- Sustainable Nanotechnology Center, Virginia Tech Institute of Critical Technology and Applied Science, Blacksburg, VA 24061
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708
| |
Collapse
|
186
|
Gu W, Cheng P, Tang M. Compilation and evaluation of gas phase diffusion coefficients of halogenated organic compounds. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171936. [PMID: 30109048 PMCID: PMC6083652 DOI: 10.1098/rsos.171936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Organic halogens are of great environmental and climatic concern. In this work, we have compiled their gas phase diffusivities (pressure-normalized diffusion coefficients) in a variety of bath gases experimentally measured by previous studies. It is found that diffusivities estimated using Fuller's semi-empirical method agree very well with measured values for organic halogens. In addition, we find that at a given temperature and pressure, different molecules exhibit very similar mean free paths in the same bath gas, and then propose a method to estimate mean free paths in different bath gases. For example, the pressure-normalized mean free paths are estimated to be 90, 350, 90, 80, 120 nm atm in air (and N2/O2), He, argon, CO2 and CH4, respectively, with estimated errors of around ±25%. A generic method, which requires less input parameter than Fuller's method, is proposed to calculate gas phase diffusivities. We find that gas phase diffusivities in He (and air as well) calculated using our method show fairly good agreement with those measured experimentally and estimated using Fuller's method. Our method is particularly useful for the estimation of gas phase diffusivities when the trace gas contains atoms whose diffusion volumes are not known.
Collapse
Affiliation(s)
- Wenjun Gu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Peng Cheng
- Institute of Mass Spectrometer and Atmospheric Environment and Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, People's Republic of China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
187
|
Heine N, Arata C, Goldstein AH, Houle FA, Wilson KR. Multiphase Mechanism for the Production of Sulfuric Acid from SO 2 by Criegee Intermediates Formed During the Heterogeneous Reaction of Ozone with Squalene. J Phys Chem Lett 2018; 9:3504-3510. [PMID: 29883127 DOI: 10.1021/acs.jpclett.8b01171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Here we report a new multiphase reaction mechanism by which Criegee intermediates (CIs), formed by ozone reactions at an alkene surface, convert SO2 to SO3 to produce sulfuric acid, a precursor for new particle formation (NPF). During the heterogeneous ozone reaction, in the presence of 220 ppb SO2, an unsaturated aerosol (squalene) undergoes rapid chemical erosion, which is accompanied by NPF. A kinetic model predicts that the mechanism for chemical erosion and NPF originate from a common elementary step (CI + SO2) that produces both gas phase SO3 and small ketones. At low relative humidity (RH = 5%), 20% of the aerosol mass is lost, with 17% of the ozone-surface reactions producing SO3. At RH = 60%, the aerosol shrinks by 30%, and the yield of SO3 is <5%. This multiphase formation mechanism of H2SO4 by CIs is discussed in the context of indoor air quality and atmospheric chemistry.
Collapse
Affiliation(s)
- Nadja Heine
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Caleb Arata
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720 , United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720 , United States
| | - Frances A Houle
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Kevin R Wilson
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
188
|
Lyu Y, Guo H, Cheng T, Li X. Particle Size Distributions of Oxidative Potential of Lung-Deposited Particles: Assessing Contributions from Quinones and Water-Soluble Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6592-6600. [PMID: 29719143 DOI: 10.1021/acs.est.7b06686] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Redox-active species in ambient particulate matter (PM) cause adverse health effects through the production of reactive oxygen species (ROS) in the human respiratory tract. However, respiratory deposition of these species and their relative contributions to oxidative potential (OP) have not been described. Size-segregated aerosols were collected during haze and nonhaze periods using a micro-orifice uniform deposit impactor sampler at an urban site in Shanghai to address this issue. Samples were analyzed for redox-active species content and PM OP. The average dithiothreitol (DTT) activity of haze samples was approximately 2.4-fold higher than that of nonhaze samples and significantly correlated with quinone and water-soluble metal concentrations. The size-specific distribution data revealed that both water-soluble OPvDTT (volume-normalized OP quantified by DTT assay) and OPmDTT (mass-normalized OP) were unimodal, peaking at 0.56-1 and 0.1-0.32 μm, respectively, due to contributions from accumulation-mode quinones and water-soluble metals. We further estimated that transition metals (mainly copper and manganese) contributed 55 ± 13% of the DTT activity while quinones accounted for only 8 ± 3%. Multiple-path particle dosimetry calculations estimated that OP deposition in the pulmonary region was mainly from accumulation-mode transition metals despite quinones having the highest DTT activity. This behavior is primarily attributed to the efficiency of deposition of transition metals in the pulmonary region being approximately 1.2-fold greater than that of quinones. These results reveal that accumulation-mode transition metals are significant contributors to the OP of deposited water-soluble particles in the pulmonary region of the lung.
Collapse
Affiliation(s)
- Yan Lyu
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200438 , P. R. China
| | - Huibin Guo
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200438 , P. R. China
| | - Tiantao Cheng
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200438 , P. R. China
| | - Xiang Li
- Department of Environmental Science & Engineering , Fudan University , Shanghai 200438 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| |
Collapse
|
189
|
Mukherjee A, Agrawal M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:42-54. [PMID: 29407781 DOI: 10.1016/j.ecoenv.2018.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/01/2018] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
Responses of urban vegetation to air pollution stress in relation to their tolerance and sensitivity have been extensively studied, however, studies related to air pollution responses based on different leaf functional traits and tree characteristics are limited. In this paper, we have tried to assess combined and individual effects of major air pollutants PM10 (particulate matter ≤ 10 µm), TSP (total suspended particulate matter), SO2 (sulphur dioxide), NO2 (nitrogen dioxide) and O3 (ozone) on thirteen tropical tree species in relation to fifteen leaf functional traits and different tree characteristics. Stepwise linear regression a general linear modelling approach was used to quantify the pollution response of trees against air pollutants. The study was performed for six successive seasons for two years in three distinct urban areas (traffic, industrial and residential) of Varanasi city in India. At all the study sites, concentrations of air pollutants, specifically PM (particulate matter) and NO2 were above the specified standards. Distinct variations were recorded in all the fifteen leaf functional traits with pollution load. Caesalpinia sappan was identified as most tolerant species followed by Psidium guajava, Dalbergia sissoo and Albizia lebbeck. Stepwise regression analysis identified maximum response of Eucalyptus citriodora and P. guajava to air pollutants explaining overall 59% and 58% variability's in leaf functional traits, respectively. Among leaf functional traits, maximum effect of air pollutants was observed on non-enzymatic antioxidants followed by photosynthetic pigments and leaf water status. Among the pollutants, PM was identified as the major stress factor followed by O3 explaining 47% and 33% variability's in leaf functional traits. Tolerance and pollution response were regulated by different tree characteristics such as height, canopy size, leaf from, texture and nature of tree. Outcomes of this study will help in urban forest development by selection of specific pollutant tolerant tree species and leaf traits, which is suitable as air pollution mitigation measure.
Collapse
Affiliation(s)
- Arideep Mukherjee
- Laboratory of Air Pollution and Global Climate Change Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
190
|
Li Y, Zhang H, Zhao Z, Tian Y, Liu K, Jie F, Zhu L, Chen H. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds. J Environ Sci (China) 2018; 67:287-293. [PMID: 29778162 DOI: 10.1016/j.jes.2017.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 06/08/2023]
Abstract
Particulate matters (PMs) emitted by automobile exhaust contribute to a significant fraction of the global PMs. Extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed to explore the molecular dependence of PMs collected from exhaust gases produced at different vehicle engine speeds. The mass spectral fingerprints of the organic compounds embedded in differentially sized PMs (e.g., 0.22-0.45, 0.45-1.00, 1.00-2.00, 2.00-3.00, 3.00-5.00, and 5.00-10.00μm) generated at different engine speeds (e.g., 1000, 1500, 2000, 2500, and 3000r/min) were chemically profiled in the mass range of mass to charge ratio (m/z) 50-800. Organic compounds, including alcohols, aldehydes, and esters, were detected in all the PMs tested, with varied concentration levels for each individual PM sample. At relatively low engine speeds (≤1500r/min), the total amount of organic species embedded in PMs of 0.22-1.00μm was greater than in PMs of other sizes, while more organic species were found in PMs of 5.00-10.00μm at high engine speeds (≥3000r/min), indicating that the organic compounds distributed in different sizes of PMs strongly correlated with the engine speed. The experimental data showed that the EAPCI-MS technique enables molecular characterization of PMs in exhaust, revealing the chemical dependence of PMs on the engine speeds (i.e., the combustion conditions) of automobiles.
Collapse
Affiliation(s)
- Yi Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Hua Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Zongshan Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yong Tian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Kun Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Feifan Jie
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Liang Zhu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China.
| |
Collapse
|
191
|
Li S, Du L, Tsona NT, Wang W. The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer. CHEMOSPHERE 2018; 196:323-330. [PMID: 29310068 DOI: 10.1016/j.chemosphere.2017.12.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Lipid molecules and trace heavy metals are enriched in sea surface microlayer and can be transferred into the sea spray aerosol. To better understand their impact on marine aerosol generation and evolution, we investigated the interaction of trace heavy metals including Fe3+, Pb2+, Zn2+, Cu2+, Ni2+, Cr3+, Cd2+, and Co2+, with dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. Phase behavior of the DPPC monolayer on heavy metal solutions was probed with surface pressure-area (π-A) isotherms. The conformation order and orientation of DPPC alkyl chains were characterized by infrared reflection-absorption spectroscopy (IRRAS). The π-A isotherms show that Zn2+ and Fe3+ strongly interact with DPPC molecules, and induce condensation of the monolayers in a concentration-dependent manner. IRRAS spectra show that the formation of cation-DPPC complex gives rise to conformational changes and immobilization of the headgroups. The current results suggest that the enrichment of Zn2+ in sea spray aerosols is due to strong binding to the DPPC film. The interaction of Fe3+ with DPPC monolayers can significantly influence their surface organizations through the formation of lipid-coated particles. These results suggest that the sea surface microlayer is capable of accumulating much higher amounts of these metals than the subsurface water. The organic and metal pollutants may transfer into the atmosphere by this interaction.
Collapse
Affiliation(s)
- Siyang Li
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| | - Lin Du
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China.
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Shanda South Road 27, 250100 Shandong, China
| |
Collapse
|
192
|
Reid JP, Bertram AK, Topping DO, Laskin A, Martin ST, Petters MD, Pope FD, Rovelli G. The viscosity of atmospherically relevant organic particles. Nat Commun 2018; 9:956. [PMID: 29511168 PMCID: PMC5840428 DOI: 10.1038/s41467-018-03027-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
The importance of organic aerosol particles in the environment has been long established, influencing cloud formation and lifetime, absorbing and scattering sunlight, affecting atmospheric composition and impacting on human health. Conventionally, ambient organic particles were considered to exist as liquids. Recent observations in field measurements and studies in the laboratory suggest that they may instead exist as highly viscous semi-solids or amorphous glassy solids under certain conditions, with important implications for atmospheric chemistry, climate and air quality. This review explores our understanding of aerosol particle phase, particularly as identified by measurements of the viscosity of organic particles, and the atmospheric implications of phase state.
Collapse
Affiliation(s)
- Jonathan P Reid
- School of Chemistry, University of Bristol, Manchester, BS8 1TS, UK.
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - David O Topping
- School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Markus D Petters
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Grazia Rovelli
- School of Chemistry, University of Bristol, Manchester, BS8 1TS, UK
| |
Collapse
|
193
|
Spolnik G, Wach P, Rudzinski KJ, Skotak K, Danikiewicz W, Szmigielski R. Improved UHPLC-MS/MS Methods for Analysis of Isoprene-Derived Organosulfates. Anal Chem 2018; 90:3416-3423. [DOI: 10.1021/acs.analchem.7b05060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Grzegorz Spolnik
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Paulina Wach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | | | - Krzysztof Skotak
- Institute of Environmental Protection, National Research Institute, Warsaw 00-548, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Rafal Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| |
Collapse
|
194
|
Swanson BE, Huffman JA. Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. OPTICS EXPRESS 2018; 26:3646-3660. [PMID: 29401892 DOI: 10.1364/oe.26.003646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
Laser-induced fluorescence (LIF) techniques to analyze atmospheric aerosols are commonly applied for research and human exposure monitoring, but are very expensive or offer poor spectral resolution. Here, we discuss how a recently proposed instrument can acquire resolved fluorescence spectra from many individual particles in a single camera image using four excitation wavelengths matched with common biological fluorophores for particle discrimination at lower cost. We discuss emission intensity calibration and demonstrate spectral differentiation among four species of pollen. These data provide context for how the instrument could be developed for pollen and mold-spore detection or for use by citizen scientists.
Collapse
|
195
|
Sies H. On the history of oxidative stress: Concept and some aspects of current development. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
196
|
Enami S, Hoffmann MR, Colussi AJ. Extensive H-atom abstraction from benzoate by OH-radicals at the air-water interface. Phys Chem Chem Phys 2018; 18:31505-31512. [PMID: 27827491 DOI: 10.1039/c6cp06652f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Much is known about OH-radical chemistry in the gas-phase and bulk water. Important atmospheric and biological processes, however, involve little investigated OH-radical reactions at aqueous interfaces with hydrophobic media. Here, we report the online mass-specific identification of the products and intermediates generated on the surface of aqueous (H2O, D2O) benzoate-h5 and -d5 microjets by ∼8 ns ˙OH(g) pulses in air at 1 atm. Isotopic labeling lets us unambiguously identify the phenylperoxyl radicals that ensue H-abstraction from the aromatic ring and establish a lower bound (>26%) to this process as it takes place in the interfacial water nanolayers probed by our experiments. The significant extent of H-abstraction vs. its negligible contribution both in the gas-phase and bulk water underscores the unique properties of the air-water interface as a reaction medium. The enhancement of H-atom abstraction in interfacial water is ascribed, in part, to the relative destabilization of a more polar transition state for OH-radical addition vs. H-abstraction due to incomplete hydration at the low water densities prevalent therein.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Michael R Hoffmann
- Linde Center for Global Environmental Science, California Institute of Technology, California 91125, USA.
| | - Agustín J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology, California 91125, USA.
| |
Collapse
|
197
|
Ray D, Bhattacharya TS, Chatterjee A, Singha A, Ghosh SK, Raha S. Hygroscopic Coating of Sulfuric Acid Shields Oxidant Attack on the Atmospheric Pollutant Benzo(a)pyrene Bound to Model Soot Particles. Sci Rep 2018; 8:129. [PMID: 29317668 PMCID: PMC5760694 DOI: 10.1038/s41598-017-18292-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/05/2017] [Indexed: 12/02/2022] Open
Abstract
Substantial impacts on climate have been documented for soot‒sulfuric acid (H2SO4) interactions in terms of optical and hygroscopic properties of soot aerosols. However, the influence of H2SO4 on heterogeneous chemistry on soot remains unexplored. Additionally, oxidation rate coefficients for polycyclic aromatic hydrocarbons intrinsic to the atmospheric particles evaluated in laboratory experiments seem to overestimate their degradation in ambient atmosphere, possibly due to matrix effects which are hitherto not mimicked in laboratory experiments. For the first time, our kinetics study reports significant influence of H2SO4 coating on heterogeneous ozonation of benzo(a)pyrene (BaP) deposited on model soot, representative to atmospheric particles. The approximate specific surface area of model soot (5 m2g−1) was estimated as a measure of the availability of surface molecules to a typical gaseous atmospheric oxidant. Heterogeneous bimolecular reaction kinetics and Raman spectroscopy studies suggested plausible reasons for decreased BaP ozonation rate in presence of H2SO4: 1. decreased partitioning of O3 on soot surface and 2. shielding of BaP molecules to gaseous O3 by acid-BaP reaction or O3 oxidation products.
Collapse
Affiliation(s)
- Debajyoti Ray
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VII-M, Kolkata, 700054, India
| | | | - Abhijit Chatterjee
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VII-M, Kolkata, 700054, India.,Centre for Astroparticle Physics and Space Science, Block-EN, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Achintya Singha
- Department of Physics, Bose Institute, 93/1, A.P.C Road, Kolkata, 700009, India
| | - Sanjay K Ghosh
- Department of Physics, Bose Institute, 93/1, A.P.C Road, Kolkata, 700009, India.,Centre for Astroparticle Physics and Space Science, Block-EN, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Sibaji Raha
- Environmental Sciences Section, Bose Institute, P 1/12 CIT Scheme VII-M, Kolkata, 700054, India. .,Department of Physics, Bose Institute, 93/1, A.P.C Road, Kolkata, 700009, India. .,Centre for Astroparticle Physics and Space Science, Block-EN, Sector-V, Salt Lake, Kolkata, 700091, India.
| |
Collapse
|
198
|
Affiliation(s)
- Julia Laskin
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
199
|
Bertram TH, Cochran RE, Grassian VH, Stone EA. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. Chem Soc Rev 2018; 47:2374-2400. [DOI: 10.1039/c7cs00008a] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schematic representation of the reactive uptake of N2O5to a sea spray aerosol particle containing a thick organic film.
Collapse
Affiliation(s)
| | - Richard E. Cochran
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
- Departments of Nanoengineering and Scripps Institution of Oceanography University of California
| | | |
Collapse
|
200
|
Le KC, Lefumeux C, Pino T. Differential Raman backscattering cross sections of black carbon nanoparticles. Sci Rep 2017; 7:17124. [PMID: 29215038 PMCID: PMC5719417 DOI: 10.1038/s41598-017-17300-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
We report the measurements of the differential Raman backscattering cross sections for several carbonaceous ultrafine particles of environmental relevances. These were obtained by dispersing the target particles in liquid water which was used as the internal standard reference. The optical collection was performed in a configuration to ensure a detection as close as possible to the backward direction. These are the first cross sections on black carbon-type particles although Raman spectroscopy is widely used in Carbon science. The high values of the cross sections, few 10-28 cm2.sr-1.atom-1, reflect resonance effects that take advantages of the disordered polyaromatic structures. Because they were measured in conditions intended to mimic the aerosol phase, these measurements provide a crucial step to move toward quantitative Raman spectroscopy and enable development of dedicated teledetection of black carbon in the atmosphere and in combustion chambers.
Collapse
Affiliation(s)
- Kim Cuong Le
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris Sud, Université Paris-Saclay, F-91405, Orsay, France
| | - Christophe Lefumeux
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris Sud, Université Paris-Saclay, F-91405, Orsay, France
| | - Thomas Pino
- Institut des Sciences Moléculaires d'Orsay, CNRS, Univ Paris Sud, Université Paris-Saclay, F-91405, Orsay, France.
| |
Collapse
|