151
|
Application of CRISPR Tools for Variant Interpretation and Disease Modeling in Inherited Retinal Dystrophies. Genes (Basel) 2020; 11:genes11050473. [PMID: 32349249 PMCID: PMC7290804 DOI: 10.3390/genes11050473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Inherited retinal dystrophies are an assorted group of rare diseases that collectively account for the major cause of visual impairment of genetic origin worldwide. Besides clinically, these vision loss disorders present a high genetic and allelic heterogeneity. To date, over 250 genes have been associated to retinal dystrophies with reported causative variants of every nature (nonsense, missense, frameshift, splice-site, large rearrangements, and so forth). Except for a fistful of mutations, most of them are private and affect one or few families, making it a challenge to ratify the newly identified candidate genes or the pathogenicity of dubious variants in disease-associated loci. A recurrent option involves altering the gene in in vitro or in vivo systems to contrast the resulting phenotype and molecular imprint. To validate specific mutations, the process must rely on simulating the precise genetic change, which, until recently, proved to be a difficult endeavor. The rise of the CRISPR/Cas9 technology and its adaptation for genetic engineering now offers a resourceful suite of tools to alleviate the process of functional studies. Here we review the implementation of these RNA-programmable Cas9 nucleases in culture-based and animal models to elucidate the role of novel genes and variants in retinal dystrophies.
Collapse
|
152
|
Adams LG, Gordon MS, Buth DG, Hutchings EM. A Comparison of Isogenic Homozygous Clone and Wildtype Zebrafish ( Danio rerio): Survival and Developmental Responses to Low pH Conditions. Zebrafish 2020; 17:196-210. [PMID: 32315581 DOI: 10.1089/zeb.2019.1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The value of bioassays as analytical methods for assessing the potency of particular stressors on live animal models depends on the precision of their results, which are greatly influenced by the choice of test subjects. The genetic makeup of experimental subjects varies, and, as such, so will their responses to the test environment. Genetic diversity of test populations may contribute to statistical variability; therefore, the use of genetically similar subjects may enhance the utility of bioassays. This study addresses the efficacy of using isogenic homozygous zebrafish (Danio rerio) as subjects for bioassays. Stress responses (acidic conditions) were compared during early development for gynogenetically produced isogenic homozygous line of zebrafish (C32) and wildtype (WT) zebrafish. Experiments evaluated early life stage milestones after exposure to low pH in water of a different electrolyte composition. Because the isogenic homozygous clonal (IHC) fish possessed far less genetic variability than the WT fish tested, it was predicted that the IHC fish would exhibit less variability in their response to stress. Although we found no significant differences in the variability between the responses of the IHC and WT fish, pH and water hardness level had a differential effect on the two groups. Simple strain differences may be the probable cause of the response differences to environmental stress. Factors that may affect stress response, such as heterogeneity, co-adapted gene complexes, and domestication, are discussed. Our findings and review of recent zebrafish literature stress the need for researchers to carefully consider breeding histories and trait characteristics for each potential test subject to maximize the sensitivity of the assay.
Collapse
Affiliation(s)
- Lisa G Adams
- Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Malcolm S Gordon
- Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Donald G Buth
- Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Erica M Hutchings
- Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, Georgia, USA
| |
Collapse
|
153
|
Abstract
PURPOSE OF REVIEW The availability of organs for transplant fails to meet the demand and this shortage is growing worse every year. As the cost of not getting a suitable donor organ can mean death for patients, new tools and approaches that allows us to make advances in transplantation faster and provide a different vantage point are required. To address this need, we introduce the concept of using the zebrafish (Danio rerio) as a new model system in organ transplantation. The zebrafish community offers decades of research experience in disease modeling and a rich toolbox of approaches for interrogating complex pathological states. We provide examples of how already existing zebrafish assays/tools from cancer, regenerative medicine, immunology, and others, could be leveraged to fuel new discoveries in pursuit of solving the organ shortage. RECENT FINDINGS Important innovations have enabled several types of transplants to be successfully performed in zebrafish, including stem cells, tumors, parenchymal cells, and even a partial heart transplant. These innovations have been performed against a backdrop of an expansive and impressive list of tools designed to uncover the biology of complex systems that include a wide array of fluorescent transgenic fish that label specific cell types and mutant lines that are transparent, immune-deficient. Allogeneic transplants can also be accomplished using immune suppressed and syngeneic fish. Each of these innovations within the zebrafish community would provide several helpful tools that could be applied to transplant research. SUMMARY We highlight some examples of existing tools and assays developed in the zebrafish community that could be leveraged to overcome barriers in organ transplantation, including ischemia-reperfusion, short preservation durations, regeneration of marginal grafts, and acute and chronic rejection.
Collapse
|
154
|
Huang W, Chen F, Ma Q, Xin J, Li J, Chen J, Zhou B, Chen M, Li J, Peng J. Ribosome biogenesis gene DEF/UTP25 is essential for liver homeostasis and regeneration. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1651-1664. [PMID: 32303961 DOI: 10.1007/s11427-019-1635-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Hepatocytes are responsible for diverse metabolic activities in a liver. Proper ribosome biogenesis is essential to sustain the function of hepatocytes. There are approximately 200 factors involved in ribosome biogenesis; however, few studies have focused on the role of these factors in maintaining liver homeostasis. The digestive organ expansion factor (def) gene encodes a nucleolar protein Def that participates in ribosome biogenesis. In addition, Def forms a complex with cysteine protease Calpain3 (Capn3) and recruits Capn3 to the nucleolus to cleave protein targets. However, the function of Def has not been characterized in the mammalian digestive organs. In this report, we show that conditional knockout of the mouse def gene in hepatocytes causes cell morphology abnormality and constant infiltration of inflammatory cells in the liver. As age increases, the def conditional knockout liver displays multiple tissue damage foci and biliary hyperplasia. Moreover, partial hepatectomy leads to sudden acute death to the def conditional knockout mice and this phenotype is rescued by intragastric injection of the anti-inflammation drug dexamethasone one day before hepatectomy. Our results demonstrate that Def is essential for maintaining the liver homeostasis and liver regeneration capacity in mammals.
Collapse
Affiliation(s)
- Weidong Huang
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Chen
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Quanxin Ma
- Academy of Chinese Medicine/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Minli Chen
- Academy of Chinese Medicine/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Jinrong Peng
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
155
|
Haindl R, Deloria AJ, Sturtzel C, Sattmann H, Rohringer W, Fischer B, Andreana M, Unterhuber A, Schwerte T, Distel M, Drexler W, Leitgeb R, Liu M. Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae. BIOMEDICAL OPTICS EXPRESS 2020; 11:2137-2151. [PMID: 32341872 PMCID: PMC7173920 DOI: 10.1364/boe.390410] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 05/06/2023]
Abstract
We present a dual modality functional optical coherence tomography and photoacoustic microscopy (OCT-PAM) system. The photoacoustic modality employs an akinetic optical sensor with a large imaging window. This imaging window enables direct reflection mode operation, and a seamless integration of optical coherence tomography (OCT) as a second imaging modality. Functional extensions to the OCT-PAM system include Doppler OCT (DOCT) and spectroscopic PAM (sPAM). This functional and non-invasive imaging system is applied to image zebrafish larvae, demonstrating its capability to extract both morphological and hemodynamic parameters in vivo in small animals, which are essential and critical in preclinical imaging for physiological, pathophysiological and drug response studies.
Collapse
Affiliation(s)
- Richard Haindl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Abigail J. Deloria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Caterina Sturtzel
- Innovative Cancer Models, St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Harald Sattmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | | | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Martin Distel
- Innovative Cancer Models, St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
156
|
Baratti G, Potrich D, Sovrano VA. The Environmental Geometry in Spatial Learning by Zebrafish ( Danio rerio). Zebrafish 2020; 17:131-138. [PMID: 32182193 DOI: 10.1089/zeb.2019.1845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During navigation, disoriented animals learn to use the spatial geometry of rectangular environments to gain rewards. The length of macroscopic surfaces (metric: short/long) and their spatial arrangement (sense: left/right) are powerful cues that animals prove to encode for reorientation. The aim of this study was to investigate if zebrafish (Danio rerio) could take advantage of such geometric properties in a rewarded exit task, by applying a reference memory procedure. The experiment was performed in a rectangular arena having four white walls, where fish were required to choose the two geometrically equivalent exit corners lying on the reinforced diagonal. Results showed that zebrafish encoded the geometry of the arena during reorientation, solving the spatial task within the first 5 days of training. With the aim to avoid the possible influence of extravisual cues on the zebrafish success, we performed a geometric test in extinction of response after the learning day. At test, fish persisted in choosing the two correct corners, thus confirming that the navigation strategy used at training was based on geometric cues. This study adds evidence about the role of geometric frameworks in fish species, and it further validates an effective spatial learning paradigm for zebrafish.
Collapse
Affiliation(s)
- Greta Baratti
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Davide Potrich
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| |
Collapse
|
157
|
Venta PJ, Nguyen AK, Senut MC, Poulos WG, Prukudom S, Cibelli JB. A 13-plex of tetra- and penta-STRs to identify zebrafish. Sci Rep 2020; 10:3851. [PMID: 32123258 PMCID: PMC7052278 DOI: 10.1038/s41598-020-60842-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
The zebrafish species Danio rerio has become one of the major vertebrate model organisms used in biomedical research. However, there are aspects of the model that need to be improved. One of these is the ability to identify individual fish and fish lines by DNA profiling. Although many dinucleotide short tandem repeat (diSTR) markers are available for this and similar purposes, they have certain disadvantages such as an excessive polymerase slippage ("stutter") that causes difficulties in automated genotyping and cross-laboratory comparisons. Here we report on the development of a 13-plex of tetranucleotide and pentanucleotide STRs (tetraSTRs and pentaSTRs, respectively) that have low stutter. The system uses an inexpensive universal primer labelling system, which can easily be converted to a direct labeling system if desired. This 13-plex was examined in three zebrafish lines (NHGRI-1, kca33Tg, and kca66Tg, originally obtained from ZIRC). The average observed heterozygosity (Ho) and expected heterozygosity (He) in these highly inbred lines were 0.291 and 0.359, respectively, which is very similar to what has been found with diSTRs. The probability of identity (PI) for all fish tested was 2.1 × 10-5 and the PI for siblings (PIsib) was 6.4 × 10-3, as calculated by the Genalex package. Ninety percent of the fish tested were correctly identified with their respective strains. It is also demonstrated that this panel can be used to confirm doubled-haploid cell lines. This multiplex should find multiple uses for improving the accuracy and reproducibility of studies using the zebrafish model.
Collapse
Affiliation(s)
- Patrick J Venta
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA. .,Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48823, USA.
| | - Anthony K Nguyen
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA
| | - Marie-Claude Senut
- Biomilab LLC, Lansing, MI, 48910, USA.,Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA
| | - William G Poulos
- Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA
| | - Sukumal Prukudom
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Jose B Cibelli
- Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA. .,Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
158
|
Widrick JJ, Kawahara G, Alexander MS, Beggs AH, Kunkel LM. Discovery of Novel Therapeutics for Muscular Dystrophies using Zebrafish Phenotypic Screens. J Neuromuscul Dis 2020; 6:271-287. [PMID: 31282429 PMCID: PMC6961982 DOI: 10.3233/jnd-190389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent availability and development of mutant and transgenic zebrafish strains that model human muscular dystrophies has created new research opportunities for therapeutic development. Not only do these models mimic many pathological aspects of human dystrophies, but their small size, large clutch sizes, rapid ex utero development, body transparency, and genetic tractability enable research approaches that would be inconceivable with mammalian model systems. Here we discuss the use of zebrafish models of muscular dystrophy to rapidly screen hundreds to thousands of bioactive compounds in order to identify novel therapeutic candidates that modulate pathologic phenotypes. We review the justification and rationale behind this unbiased approach, including how zebrafish screens have identified FDA-approved drugs that are candidates for treating Duchenne and limb girdle muscular dystrophies. Not only can these drugs be re-purposed for treating dystrophies in a fraction of the time and cost of new drug development, but their identification has revealed novel, unexpected directions for future therapy development. Phenotype-driven zebrafish drug screens are an important compliment to the more established mammalian, target-based approaches for rapidly developing and validating therapeutics for muscular dystrophies.
Collapse
Affiliation(s)
- Jeffrey J Widrick
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama; University of Alabama at Birmingham Center for Exercise Medicine; University of Alabama at Birmingham Civitan International Research Center; University of Alabama at Birmingham Department of Genetics; Birmingham, Alabama, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
159
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
160
|
Jackman WR, Gibert Y. Retinoic Acid Signaling and the Zebrafish Dentition During Development and Evolution. Subcell Biochem 2020; 95:175-196. [PMID: 32297300 DOI: 10.1007/978-3-030-42282-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Explaining how the extensive diversity in form of vertebrate teeth arose in evolution and the mechanisms by which teeth are made during embryogenesis are intertwined questions that can merit from a better understanding of the roles of retinoic acid (RA) in tooth development. Pioneering studies in rodents showed that dietary vitamin A (VA), and eventually RA (one of the major active metabolites of VA), are required for proper tooth formation and that dentin-forming odontoblast cells seem to be especially sensitive to changes in RA levels. Later, rodent studies further indicated that RA signaling interactions with other cell-signaling pathways are an important part of RA's actions in odontogenesis. Recent investigations employing zebrafish and other teleost fish continued this work in an evolutionary context, and specifically demonstrated that RA is required for the initiation of tooth development. RA is also sufficient in certain circumstances to induce de novo tooth formation. Both effects appear to involve cranial-neural crest cells, again suggesting that RA signaling has a particular influence on odontoblast development. These teleost studies have also highlighted both evolutionary conservation and change in how RA is employed during odontogenesis in different vertebrate lineages, and thus raises the possibility that developmental changes to RA signaling has led to some of the diversity of form seen across vertebrate dentitions. Future progress in this area will come at least in part from expanding the species examined to get a better picture of how often RA signaling has changed in evolution and how this relates to the evolution of dental form.
Collapse
Affiliation(s)
| | - Yann Gibert
- University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
161
|
FUNATO H. Forward genetic approach for behavioral neuroscience using animal models. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:10-31. [PMID: 31932526 PMCID: PMC6974404 DOI: 10.2183/pjab.96.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Forward genetics is a powerful approach to understand the molecular basis of animal behaviors. Fruit flies were the first animal to which this genetic approach was applied systematically and have provided major discoveries on behaviors including sexual, learning, circadian, and sleep-like behaviors. The development of different classes of model organism such as nematodes, zebrafish, and mice has enabled genetic research to be conducted using more-suitable organisms. The unprecedented success of forward genetic approaches was the identification of the transcription-translation negative feedback loop composed of clock genes as a fundamental and conserved mechanism of circadian rhythm. This approach has now expanded to sleep/wakefulness in mice. A conventional strategy such as dominant and recessive screenings can be modified with advances in DNA sequencing and genome editing technologies.
Collapse
Affiliation(s)
- Hiromasa FUNATO
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
162
|
Ünal İ, Çalışkan-Ak E, Üstündağ ÜV, Ateş PS, Alturfan AA, Altinoz MA, Elmaci I, Emekli-Alturfan E. Neuroprotective effects of mitoquinone and oleandrin on Parkinson's disease model in zebrafish. Int J Neurosci 2019; 130:574-582. [PMID: 31771386 DOI: 10.1080/00207454.2019.1698567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aim: The aim of this study is to investigate the possible protective effects of mitoquinone and oleandrin on rotenone induced Parkinson's disease in zebrafish. Materials and methods: Adult zebrafish were exposed to rotenone and mitoquinone for 30 days. Biochemical parameters were determined by spectrophotometric method and Parkinson's disease-related gene expressions were determined by reverse transcription polymerase chain reaction method. Measurement of neurotransmitters was performed by liquid chromatography tandem-mass spectrometry instrument. The accumulation of synuclein was demonstrated by immunohistochemical staining. In vitro thiazolyl blue tetrazolium bromide method was applied to determine the mitochondrial function of synaptosomal brain fractions using rotenone as a neurotoxic agent and mitoquinone and oleandrin as neuroprotective agents. Results: Mitoquinone improved the oxidant-antioxidant balance and neurotransmitter levels that were disrupted by rotenone. Mitoquinone also ameliorated the expressions of Parkinson's disease-related gene expressions that were disrupted by rotenone. According to thiazolyl blue tetrazolium bromide assay results, mitoquinone and oleandrin increased mitochondrial function which was decreased due to rotenone exposure. Conclusion: Based on the results of our study, positive effects of mitoquinone were observed in Parkinson's disease model induced by rotenone in zebrafish.
Collapse
Affiliation(s)
- İsmail Ünal
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Esin Çalışkan-Ak
- Department of Histology and Embryology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ünsal V Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - Perihan S Ateş
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ahmet A Alturfan
- Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - Ilhan Elmaci
- Department of Neurosurgery, Acibadem University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
163
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
164
|
Meunier R. Project knowledge and its resituation in the design of research projects: Seymour Benzer's behavioral genetics, 1965-1974. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2019; 77:39-53. [PMID: 31701880 DOI: 10.1016/j.shpsa.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/04/2018] [Accepted: 04/03/2018] [Indexed: 06/10/2023]
Abstract
The article introduces a framework for analyzing the knowledge that researchers draw upon when designing a research project by distinguishing four types of "project knowledge": goal knowledge, which concerns possible outcomes, and three forms of implementation knowledge that concern the realization of the project: 1) methodological knowledge that specifies possible experimental and non-experimental strategies to achieve the chosen goal; 2) representational knowledge that suggests ways to represent data, hypotheses, or outcomes; and 3) organizational knowledge that helps to build or navigate the material and social structures that enable a project. In the design of research projects such knowledge will be transferred from other successful projects and these processes will be analyzed in terms of modes of resituating knowledge. The account is developed by analyzing a case from the history of biology. In a reciprocal manner, it enables a better understanding of the historical episode in question: around 1970, several researchers who had made successful careers in the emerging field of molecular biology, working with bacterial model systems, attempted to create a molecular biology of the physiological processes in multicellular organisms. One of them was Seymour Benzer, who designed a research project addressing the physiological processes underlying behavior in Drosophila.
Collapse
Affiliation(s)
- Robert Meunier
- Institut für Philosophie, Universität Kassel, Henschelstr. 2, 34127 Kassel, Germany.
| |
Collapse
|
165
|
Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development 2019; 146:146/18/dev167692. [DOI: 10.1242/dev.167692] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Ines J. Marques
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Eleonora Lupi
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Acquifer, Ditabis, Digital Biomedical Imaging Systems, Pforzheim, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 2029, Spain
| |
Collapse
|
166
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
167
|
Kwon RY, Watson CJ, Karasik D. Using zebrafish to study skeletal genomics. Bone 2019; 126:37-50. [PMID: 30763636 PMCID: PMC6626559 DOI: 10.1016/j.bone.2019.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/20/2019] [Accepted: 02/09/2019] [Indexed: 12/26/2022]
Abstract
While genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of skeletal diseases, animal models are required to identify causal mechanisms and to translate underlying biology into new therapies. Despite large-scale knockout mouse phenotyping efforts, the skeletal functions of most genes residing at GWAS-identified loci remain unknown, highlighting a need for complementary model systems to accelerate gene discovery. Over the past several decades, zebrafish (Danio rerio) has emerged as a powerful system for modeling the genetics of human diseases. In this review, our goal is to outline evidence supporting the utility of zebrafish for accelerating our understanding of human skeletal genomics, as well as gaps in knowledge that need to be filled for this purpose. We do this by providing a basic foundation of the zebrafish skeletal morphophysiology and phenotypes, and surveying evidence of skeletal gene homology and the use of zebrafish for post-GWAS analysis in other tissues and organs. We also outline challenges in translating zebrafish mutant phenotypes. Finally, we conclude with recommendations of future directions and how to leverage the large body of tools and knowledge of skeletal genetics in zebrafish for the needs of human skeletal genomic exploration. Due to their amenability to rapid genetic approaches, as well as the large number of conserved genetic and phenotypic features, there is a strong rationale supporting the use of zebrafish for human skeletal genomic studies.
Collapse
Affiliation(s)
- Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| | - Claire J Watson
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA.
| |
Collapse
|
168
|
Nguyen T, Payan B, Zambrano A, Du Y, Bondesson M, Mohan C. Epigallocatechin-3-gallate suppresses neutrophil migration speed in a transgenic zebrafish model accompanied by reduced inflammatory mediators. J Inflamm Res 2019; 12:231-239. [PMID: 31695470 PMCID: PMC6718250 DOI: 10.2147/jir.s224834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Polyphenol catechins from green tea, particularly (-)-epigallocatechin-3-gallate (EGCG), exhibits numerous beneficial health effects, although the mechanisms remain unclear. METHODS In this study, the mechanism of EGCG-mediated healing in an experimentally injured zebrafish model was examined at the cellular and molecular level using confocal microscopy and gene expression analysis. RESULTS The mechanisms of action of EGCG were shown to involve: (1) reducing neutrophil response (accumulation, travel speed, and distance) and (2) downregulating the expression of IL-1β, TNFα, and related signaling pathways. As determined by dynamic time-lapse tracking studies, the local accumulation of neutrophils with high migration speeds after wounding (n=33 cells, v=0.020 μm/s, d=37.8 μm), underwent significant reduction following treatment with EGCG doses of 300 μM (n=22 cells, v=0.013 μm/s, d=39.5 μm) and 600 μM (n=18 cells, v=0.008 μm/s, d=9.53 μm). Reverse transcription polymerase chain reaction studies revealed that several signature genes in the IL-1β, TNFα, and related signaling pathways were downregulated after EGCG treatment. CONCLUSION The convenience, transparency, and simplicity of the zebrafish model facilitate tracking of fluorescent neutrophils in real time, in order to monitor inflammation, and assess the impact of therapeutic agents.
Collapse
Affiliation(s)
- Thao Nguyen
- Biomedical Engineering Department, University of Houston, Houston, TX77204, USA
| | - Brittany Payan
- Biomedical Engineering Department, University of Houston, Houston, TX77204, USA
| | - Amarayca Zambrano
- Biomedical Engineering Department, University of Houston, Houston, TX77204, USA
| | - Yong Du
- Biomedical Engineering Department, University of Houston, Houston, TX77204, USA
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN47405, USA
| | - Chandra Mohan
- Biomedical Engineering Department, University of Houston, Houston, TX77204, USA
| |
Collapse
|
169
|
Mehta AS, Luz-Madrigal A, Li JL, Tsonis PA, Singh A. Comparative transcriptomic analysis and structure prediction of novel Newt proteins. PLoS One 2019; 14:e0220416. [PMID: 31419228 PMCID: PMC6697330 DOI: 10.1371/journal.pone.0220416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus viridescens. The presence of a putative signal peptide suggests that all these proteins are secretory in nature. Here we employed iterative threading assembly refinement (I-TASSER) server to generate three-dimensional structure of these novel Newt proteins and predicted their function. Our data suggests that these proteins could act as ion transporters, and be involved in redox reaction(s). Due to absence of transgenic approaches in N. viridescens, and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress these genes. Expression of 2775 transcripts were compared between these five newly identified Newt genes. We found that genes involved in the developmental process, cell cycle, apoptosis, and immune response are among those that are highly enriched. To validate the RNA Seq. data, expression of six highly regulated genes were verified using real time Quantitative Polymerase Chain Reaction (RT-qPCR). These graded gene expression patterns provide insight into the function of novel protein family identified in Newt, and layout a map for future studies in the field.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Agustin Luz-Madrigal
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, United States of America
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, United States of America
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
170
|
Kugler EC, van Lessen M, Daetwyler S, Chhabria K, Savage AM, Silva V, Plant K, MacDonald RB, Huisken J, Wilkinson RN, Schulte‐Merker S, Armitage P, Chico TJA. Cerebrovascular endothelial cells form transient Notch-dependent cystic structures in zebrafish. EMBO Rep 2019; 20:e47047. [PMID: 31379129 PMCID: PMC6680135 DOI: 10.15252/embr.201847047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
Abstract
We identify a novel endothelial membrane behaviour in transgenic zebrafish. Cerebral blood vessels extrude large transient spherical structures that persist for an average of 23 min before regressing into the parent vessel. We term these structures "kugeln", after the German for sphere. Kugeln are only observed arising from the cerebral vessels and are present as late as 28 days post fertilization. Kugeln do not communicate with the vessel lumen and can form in the absence of blood flow. They contain little or no cytoplasm, but the majority are highly positive for nitric oxide reactivity. Kugeln do not interact with brain lymphatic endothelial cells (BLECs) and can form in their absence, nor do they perform a scavenging role or interact with macrophages. Inhibition of actin polymerization, Myosin II, or Notch signalling reduces kugel formation, while inhibition of VEGF or Wnt dysregulation (either inhibition or activation) increases kugel formation. Kugeln represent a novel Notch-dependent NO-containing endothelial organelle restricted to the cerebral vessels, of currently unknown function.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
- The Bateson CentreFirth CourtUniversity of SheffieldSheffieldUK
| | - Max van Lessen
- WWU MünsterFaculty of MedicineInstitute for Cardiovascular Organogenesis and RegenerationMünsterGermany
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Department of Cell BiologyThe University of Texas SouthwesternTexasTXUSA
| | - Karishma Chhabria
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
- The Bateson CentreFirth CourtUniversity of SheffieldSheffieldUK
| | - Aaron M Savage
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
- The Bateson CentreFirth CourtUniversity of SheffieldSheffieldUK
| | - Vishmi Silva
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
- The Bateson CentreFirth CourtUniversity of SheffieldSheffieldUK
| | - Karen Plant
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
- The Bateson CentreFirth CourtUniversity of SheffieldSheffieldUK
| | - Ryan B MacDonald
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
- The Bateson CentreFirth CourtUniversity of SheffieldSheffieldUK
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Morgridge Institute for ResearchMadisonWIUSA
| | - Robert N Wilkinson
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
- The Bateson CentreFirth CourtUniversity of SheffieldSheffieldUK
| | - Stefan Schulte‐Merker
- WWU MünsterFaculty of MedicineInstitute for Cardiovascular Organogenesis and RegenerationMünsterGermany
| | - Paul Armitage
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
| | - Timothy JA Chico
- Department of Infection, Immunity and Cardiovascular DiseaseMedical SchoolUniversity of SheffieldSheffieldUK
- The Bateson CentreFirth CourtUniversity of SheffieldSheffieldUK
| |
Collapse
|
171
|
García-Moreno D, Tyrkalska SD, Valera-Pérez A, Gómez-Abenza E, Pérez-Oliva AB, Mulero V. The zebrafish: A research model to understand the evolution of vertebrate immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 90:215-222. [PMID: 31039438 DOI: 10.1016/j.fsi.2019.04.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The zebrafish has unique advantages for understanding the evolution of vertebrate immunity and to model human diseases. In this review, we will firstly give an overview of the current knowledge on vertebrate innate immune receptors with special emphasis on the inflammasome and then summarize the main contribution of the zebrafish model to this field, including to the identification of novel inflammasome components and to the mechanisms involved in its activation, assembly and clearance of intracellular bacteria.
Collapse
Affiliation(s)
- Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Ana Valera-Pérez
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Elena Gómez-Abenza
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| |
Collapse
|
172
|
Chevalier RL. Evolution, kidney development, and chronic kidney disease. Semin Cell Dev Biol 2019; 91:119-131. [PMID: 29857053 PMCID: PMC6281795 DOI: 10.1016/j.semcdb.2018.05.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/29/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
Abstract
There is a global epidemic of chronic kidney disease (CKD) characterized by a progressive loss of nephrons, ascribed in large part to a rising incidence of hypertension, metabolic syndrome, and type 2 diabetes mellitus. There is a ten-fold variation in nephron number at birth in the general population, and a 50% overall decrease in nephron number in the last decades of life. The vicious cycle of nephron loss stimulating hypertrophy by remaining nephrons and resulting in glomerulosclerosis has been regarded as maladaptive, and only partially responsive to angiotensin inhibition. Advances over the past century in kidney physiology, genetics, and development have elucidated many aspects of nephron formation, structure and function. Parallel advances have been achieved in evolutionary biology, with the emergence of evolutionary medicine, a discipline that promises to provide new insight into the treatment of chronic disease. This review provides a framework for understanding the origins of contemporary developmental nephrology, and recent progress in evolutionary biology. The establishment of evolutionary developmental biology (evo-devo), ecological developmental biology (eco-devo), and developmental origins of health and disease (DOHaD) followed the discovery of the hox gene family, the recognition of the contribution of cumulative environmental stressors to the changing phenotype over the life cycle, and mechanisms of epigenetic regulation. The maturation of evolutionary medicine has contributed to new investigative approaches to cardiovascular disease, cancer, and infectious disease, and promises the same for CKD. By incorporating these principles, developmental nephrology is ideally positioned to answer important questions regarding the fate of nephrons from embryo through senescence.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, P.O. Box 800386, Charlottesville, VA, United States.
| |
Collapse
|
173
|
Candelier R, Bois A, Tronche S, Mahieu J, Mannioui A. A Semi-Automatic Dispenser for Solid and Liquid Food in Aquatic Facilities. Zebrafish 2019; 16:401-407. [PMID: 31237527 PMCID: PMC6685217 DOI: 10.1089/zeb.2019.1733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a novel, low-footprint and low-cost semi-automatic system for delivering solid and liquid food to zebrafish, and more generally to aquatic animals raised in racks of tanks. It is composed of a portable main module equipped with a contactless reader that adjusts the quantity to deliver for each tank, and either a solid food module or a liquid food module. Solid food comprises virtually any kind of dry powder or grains below 2 mm in diameter, and, for liquid-mediated food, brine shrimps (Artemia salina) and rotifers (Rotifera) have been successfully tested. Real-world testing, feedback, and validation have been performed in a zebrafish facility for several months. In comparison with manual feeding this system mitigates the appearance of musculoskeletal disorders among regularly-feeding staff, and let operators observe the animals' behavior instead of being focused on quantities to deliver. We also tested the accuracy of both humans and our dispenser and found that the semi-automatic system is much more reliable, with respectively 7-fold and 84-fold drops in standard deviation for solid and liquid food.
Collapse
Affiliation(s)
- Raphaël Candelier
- 1Laboratoire Jean Perrin, LJP, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Alex Bois
- 2Institut de Biologie Paris-Seine (IBPS), Aquatic Facility, Sorbonne Université, Paris, France
| | - Stéphane Tronche
- 2Institut de Biologie Paris-Seine (IBPS), Aquatic Facility, Sorbonne Université, Paris, France
| | - Jéremy Mahieu
- 2Institut de Biologie Paris-Seine (IBPS), Aquatic Facility, Sorbonne Université, Paris, France
| | - Abdelkrim Mannioui
- 2Institut de Biologie Paris-Seine (IBPS), Aquatic Facility, Sorbonne Université, Paris, France
| |
Collapse
|
174
|
Sun DA, Patel NH. The amphipod crustacean Parhyale hawaiensis: An emerging comparative model of arthropod development, evolution, and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e355. [PMID: 31183976 PMCID: PMC6772994 DOI: 10.1002/wdev.355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Recent advances in genetic manipulation and genome sequencing have paved the way for a new generation of research organisms. The amphipod crustacean Parhyale hawaiensis is one such system. Parhyale are easy to rear and offer large broods of embryos amenable to injection, dissection, and live imaging. Foundational work has described Parhyale embryonic development, while advancements in genetic manipulation using CRISPR-Cas9 and other techniques, combined with genome and transcriptome sequencing, have enabled its use in studies of arthropod development, evolution, and regeneration. This study introduces Parhyale development and life history, a catalog of techniques and resources for Parhyale research, and two case studies illustrating its power as a comparative research system. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Dennis A Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Nipam H Patel
- Marine Biological Laboratory, University of Chicago, Chicago, Illinois
| |
Collapse
|
175
|
|
176
|
Haraoka Y, Akieda Y, Ishitani T. [Live-imaging Analyses Using Small Fish Models Reveal New Mechanisms That Regulate Primary Tumorigenesis]. YAKUGAKU ZASSHI 2019; 139:733-741. [PMID: 31061343 DOI: 10.1248/yakushi.18-00185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the 1980s, zebrafish (Danio rerio) have been used as a valuable model system to investigate developmental processes because they: 1) grow outside their mothers; 2) are transparent during the embryonic stage; and 3) have organs similar to those in humans. Recently, zebrafish have emerged as a powerful model animal for studying not only developmental biology but also human diseases, especially cancer. Owing to the significant advantages of zebrafish, such as low-cost breeding, high efficiency of transgenesis, and ease of in vivo imaging and oncogenic/tumor cell induction, zebrafish offer a unique opportunity to unveil novel mechanisms of cancer progression, invasion, and metastasis. In addition, the small size of zebrafish larvae enables high-throughput chemical screening, and this advantage contributes to generating useful platforms for antitumor drug discovery. Owing to these various merits, which other model animals (such as fly, mouse, and rat) do not possess, zebrafish could achieve a unique status in cancer research. In this review, we discuss the availability of zebrafish for studying cancer and introduce recent cancer studies that have used zebrafish.
Collapse
Affiliation(s)
- Yukinari Haraoka
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University.,Medical Institute of Bioregulation, Kyushu University
| | - Yuki Akieda
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University
| | - Tohru Ishitani
- Laboratory of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University.,Medical Institute of Bioregulation, Kyushu University
| |
Collapse
|
177
|
Zhang X, Wang G, Sun Z, Hou J, Wang Y. microRNA-mRNA analysis in pituitary and hypothalamus of sterile Japanese flounder. Mol Reprod Dev 2019; 86:727-737. [PMID: 31012201 DOI: 10.1002/mrd.23150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/28/2019] [Accepted: 03/30/2019] [Indexed: 12/16/2022]
Abstract
Double haploidy is an advantageous situation for genetic mapping and genome sequencing studies. In the present study, the hypothalamus and pituitary gland from sterile and fertile double-haploid (DH) Japanese flounders (aged 5 years) were used as experimental materials for studying the expression of genes in individuals with reproductive disorders, using high-throughput sequencing technology. The results revealed abnormal levels of some hormones in sterile DHs during the breeding season. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the significantly different microRNAs and messenger RNAs were related to metabolism, signal transduction, and melanogenesis; those related to steroid hormone synthesis and secretion related pathways were not detected. Our results suggest that the key to sterility in DHs was the arrested ovary development. However, the reason for arrested ovary development was mainly related to the lower levels of expression of genes involved in steroid biosynthesis in gonads, and was not related to the pituitary. For maintaining homeostasis, the hypothalamus and pituitary would have large differences in several processes, including signal transduction, metabolism, and immune response. The present study provides primary data for further studies on sterility in fish, and even in other animals.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing, China.,Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Guixing Wang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Zhaohui Sun
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| | - Yufen Wang
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
| |
Collapse
|
178
|
Abstract
The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.
Collapse
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
179
|
DeSmidt AA, Zou B, Grati M, Yan D, Mittal R, Yao Q, Richmond MT, Denyer S, Liu XZ, Lu Z. Zebrafish Model for Nonsyndromic X-Linked Sensorineural Deafness, DFNX1. Anat Rec (Hoboken) 2019; 303:544-555. [PMID: 30874365 DOI: 10.1002/ar.24115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 11/08/2022]
Abstract
Hereditary deafness is often a neurosensory disorder and affects the quality of life of humans. Only three X-linked genes (POU class 3 homeobox 4 (POU3F4), phosphoribosyl pyrophosphate synthetase 1 (PRPS1), and small muscle protein X-linked (SMPX)) are known to be involved in nonsyndromic hearing loss. Four PRPS1 missense mutations have been found to associate with X-linked nonsyndromic sensorineural deafness (DFNX1/DFN2) in humans. However, a causative relationship between PRPS1 mutations and hearing loss in humans has not been well studied in any animal model. Phosphoribosyl pyrophosphate synthetase 1 (PRS-I) is highly conserved in vertebrate taxa. In this study, we used the zebrafish as a model to investigate the auditory role of zebrafish orthologs (prps1a and prps1b) of the human PRPS1 gene with whole mount in situ hybridization, reverse transcription polymerase chain reaction, phenotypic screening, confocal imaging, and electrophysiological methods. We found that both prps1a and prps1b genes were expressed in the inner ear of zebrafish. Splice-blocking antisense morpholino oligonucleotides (MO1 and MO2) caused exon-2 skip and intron-2 retention of prps1a and exon-2 skip and intron-1 retention of prps1b to knock down functions of the genes, respectively. MO1 and MO2 morphants had smaller otic vesicles and otoliths, fewer inner ear hair cells, and lower microphonic response amplitude and sensitivity than control zebrafish. Therefore, knockdown of either prps1a or prps1b resulted in significant sensorineural hearing loss in zebrafish. We conclude that the prps1 genes are essential for hearing in zebrafish, which has the potential to help us understand the biology of human deafness DFNX1/DFN2. Anat Rec, 303:544-555, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
| | - Bing Zou
- Department of Biology, University of Miami, Coral Gables, Florida.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Qi Yao
- Department of Biology, University of Miami, Coral Gables, Florida.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Steven Denyer
- Department of Biology, University of Miami, Coral Gables, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhongmin Lu
- Department of Biology, University of Miami, Coral Gables, Florida.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida.,Neuroscience Program, University of Miami, Miami, Florida.,International Center for Marine Studies, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
180
|
Whitlock KE, Postlethwait J, Ewer J. Neuroendocrinology of reproduction: Is gonadotropin-releasing hormone (GnRH) dispensable? Front Neuroendocrinol 2019; 53:100738. [PMID: 30797802 PMCID: PMC7216701 DOI: 10.1016/j.yfrne.2019.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a highly conserved neuroendocrine decapeptide that is essential for the onset of puberty and the maintenance of the reproductive state. First identified in mammals, the GnRH signaling pathway is found in all classes of vertebrates; homologues of GnRH have also been identified in invertebrates. In addition to its role as a hypothalamic releasing hormone, GnRH has multiple functions including modulating neural activity within specific regions of the brain. These various functions are mediated by multiple isoforms, which are expressed at diverse locations within the central nervous system. Here we discuss the GnRH signaling pathways in light of new reports that reveal that some vertebrate genomes lack GnRH1. Not only do other isoforms of GnRH not compensate for this gene loss, but elements upstream of GnRH1, including kisspeptins, appear to also be dispensable. We discuss routes that may compensate for the loss of the GnRH1 pathway.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile.
| | - John Postlethwait
- Institute of Neuroscience, 324 Huestis Hall, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile
| |
Collapse
|
181
|
Kossack ME, Draper BW. Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). Curr Top Dev Biol 2019; 134:119-149. [PMID: 30999973 DOI: 10.1016/bs.ctdb.2019.02.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Over the last several decades zebrafish (Danio rerio) has become a major model organism for the study of vertebrate development and physiology. Given this, it may be surprising how little is known about the mechanism that zebrafish use to determine sex. While zebrafish are a gonochoristic species (having two sexes) that do not switch sex as adults, it was appreciated early on that sex ratios obtained from breeding lab domesticated lines were not typically a 1:1 ratio of male and female, suggesting that sex was not determined by a strict chromosomal mechanism. Here we will review the recent progress toward defining the genetic mechanism for sex determination in both wild and domesticated zebrafish.
Collapse
Affiliation(s)
- Michelle E Kossack
- Molecular and Cellular Biology, University of California, Davis, CA, United States
| | - Bruce W Draper
- Molecular and Cellular Biology, University of California, Davis, CA, United States.
| |
Collapse
|
182
|
Diao X, Huestis MA. New Synthetic Cannabinoids Metabolism and Strategies to Best Identify Optimal Marker Metabolites. Front Chem 2019; 7:109. [PMID: 30886845 PMCID: PMC6409358 DOI: 10.3389/fchem.2019.00109] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/11/2019] [Indexed: 11/21/2022] Open
Abstract
Synthetic cannabinoids (SCs) were initially developed as pharmacological tools to probe the endocannabinoid system and as novel pharmacotherapies, but are now highly abused. This is a serious public health and social problem throughout the world and it is highly challenging to identify which SC was consumed by the drug abusers, a necessary step to tie adverse health effects to the new drug's toxicity. Two intrinsic properties complicate SC identification, their often rapid and extensive metabolism, and their generally high potency relative to the natural psychoactive Δ9-tetrahydrocannabinol in cannabis. Additional challenges are the lack of reference standards for the major urinary metabolites needed for forensic verification, and the sometimes differing illicit and licit status and, in some cases, identical metabolites produced by closely related SC pairs, i.e., JWH-018/AM-2201, THJ-018/THJ-2201, and BB-22/MDMB-CHMICA/ADB-CHMICA. We review current SC prevalence, establish the necessity for SC metabolism investigation and contrast the advantages and disadvantages of multiple metabolic approaches. The human hepatocyte incubation model for determining a new SC's metabolism is highly recommended after comparison to human liver microsomes incubation, in silico prediction, rat in vivo, zebrafish, and fungus Cunninghamella elegans models. We evaluate SC metabolic patterns, and devise a practical strategy to select optimal urinary marker metabolites for SCs. New SCs are incubated first with human hepatocytes and major metabolites are then identified by high-resolution mass spectrometry. Although initially difficult to obtain, authentic human urine samples following the specified SC exposure are hydrolyzed and analyzed by high-resolution mass spectrometry to verify identified major metabolites. Since some SCs produce the same major urinary metabolites, documentation of the specific SC consumed may require identification of the SC parent itself in either blood or oral fluid. An encouraging trend is the recent reduction in the number of new SC introduced per year. With global collaboration and communication, we can improve education of the public about the toxicity of new SC and our response to their introduction.
Collapse
Affiliation(s)
- Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Marilyn A. Huestis
- The Lambert Center for the Study of Medicinal Cannabis and Hemp, Institute for Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
183
|
Krishnan J, Rohner N. Sweet fish: Fish models for the study of hyperglycemia and diabetes. J Diabetes 2019; 11:193-203. [PMID: 30264455 DOI: 10.1111/1753-0407.12860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/01/2018] [Accepted: 09/09/2018] [Indexed: 01/15/2023] Open
Abstract
Fish are good for your health in more ways than you may expect. For one, eating fish is a common dietary recommendation for a healthy diet. However, fish have much more to provide than omega-3 fatty acids to your circulatory system. Some fish species now serve as important and innovative model systems for diabetes research, providing novel and unique advantages compared with classical research models. Not surprisingly, the largest share of diabetes research in fish occurs in the laboratory workhorse among fish, the zebrafish (Danio rerio). Established as a genetic model system to study development, these small cyprinid fish have eventually conquered almost every scientific discipline and, over the past decade, have emerged as an important model system for metabolic diseases, including diabetes mellitus. In this review we highlight the practicability of using zebrafish to study diabetes and hyperglycemia, and summarize some of the recent research and breakthroughs made using this model. Equally exciting is the appearance of another emerging discipline, one that is taking advantage of evolution by studying cases of naturally occurring insulin resistance in fish species. We briefly discuss two such models in this review, namely the rainbow trout (Oncorhynchus mykiss) and the cavefish (Astyanax mexicanus).
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
184
|
Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans 2019; 47:305-315. [PMID: 30700500 DOI: 10.1042/bst20180335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Zebrafish (Danio rerio) are becoming an increasingly powerful model organism to study the role of metabolism in disease. Since its inception, the zebrafish model has relied on unique attributes such as the transparency of embryos, high fecundity and conservation with higher vertebrates, to perform phenotype-driven chemical and genetic screens. In this review, we describe how zebrafish have been used to reveal novel mechanisms by which metabolism regulates embryonic development, obesity, fatty liver disease and cancer. In addition, we will highlight how new approaches in advanced microscopy, transcriptomics and metabolomics using zebrafish as a model system have yielded fundamental insights into the mechanistic underpinnings of disease.
Collapse
|
185
|
Bisht S, Feldmann G. Animal models for modeling pancreatic cancer and novel drug discovery. Expert Opin Drug Discov 2019; 14:127-142. [DOI: 10.1080/17460441.2019.1566319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Savita Bisht
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
186
|
Ünal İ, Emekli-Alturfan E. Fishing for Parkinson's Disease: A review of the literature. J Clin Neurosci 2019; 62:1-6. [PMID: 30660479 DOI: 10.1016/j.jocn.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder in the world, is due to the damage or death of cells that produce dopamine in the region called the substantia nigra (SN). Model organisms are important tools in PD research. Zebrafish (Danio rerio), a small tropical freshwater fish, entered the scientific world through developmental biology studies and today has become a popular model organism for human diseases. This review will provide information on the current knowledge about the use of zebrafish in PD research.
Collapse
Affiliation(s)
- İsmail Ünal
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey.
| |
Collapse
|
187
|
Mokalled MH, Poss KD. A Regeneration Toolkit. Dev Cell 2019; 47:267-280. [PMID: 30399333 DOI: 10.1016/j.devcel.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
The ability of animals to replace injured body parts has been a subject of fascination for centuries. The emerging importance of regenerative medicine has reinvigorated investigations of innate tissue regeneration, and the development of powerful genetic tools has fueled discoveries into how tissue regeneration occurs. Here, we present an overview of the armamentarium employed to probe regeneration in vertebrates, highlighting areas where further methodology advancement will deepen mechanistic findings.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
188
|
Experimental Manipulation of Ploidy in Zebrafish Embryos and Its Application in Genetic Screens. Methods Mol Biol 2019; 1920:111-128. [PMID: 30737689 DOI: 10.1007/978-1-4939-9009-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metazoan animals are typically diploid, possessing two sets of a chromosome in the somatic cells of an organism. In naturally diploid species, alteration from the endogenous diploid state is usually embryonic lethal. However, the ability to experimentally manipulate ploidy of animal embryos has fundamental as well as applied biology advantages. In this chapter we describe experimental procedures to convert normally diploid zebrafish embryos into haploid or tetraploid states. We also describe methodologies to verify the ploidy of embryos and the utility of ploidy manipulation in expediting the isolation of mutations using both forward and reverse genetic strategies in zebrafish.
Collapse
|
189
|
Khan N, Mahajan NK, Sinha P, Jayandharan GR. An efficient method to generate xenograft tumor models of acute myeloid leukemia and hepatocellular carcinoma in adult zebrafish. Blood Cells Mol Dis 2018; 75:48-55. [PMID: 30616104 DOI: 10.1016/j.bcmd.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
Zebrafish is emerging as a promising model for the study of human cancers. Several xenograft models of zebrafish have been developed, particularly in larval stages (<48 h post fertilization) when the immune system of fish is not developed. However, xenografting in adult zebrafish requires laborious and transient methods of immune suppression (γ- irradiation or dexamethasone) that limits engraftment and survival of the tumor or fail to recapitulate specific characteristics of malignancies. Thus, the availability of a simple protocol to successfully engraft adult zebrafish, remains a challenge. The current study addresses this limitation and describes a robust method of xenografting in adult zebrafish. We describe a protocol that involves pre-conditioning of Casper, a pigmentation mutant of zebrafish with busulfan that led to a higher rate of engraftment of hepatocellular carcinoma and acute myeloid leukemia cells. To further ascertain the homing characteristics of the injected cancer cells, we transplanted adult zebrafish by two routes of administration and then studied their compartmentalization. This model presents a valuable alternative to rodents to study the biology of these cancers and also a cost-effective platform for evaluation of potential anti-cancer agents.
Collapse
Affiliation(s)
- Nusrat Khan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Nilesh Kumar Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Pradip Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India.
| |
Collapse
|
190
|
Delomas TA, Dabrowski K. Effects of homozygosity on sex determination in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2018; 93:1178-1187. [PMID: 30318612 DOI: 10.1111/jfb.13836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Gynogenetic zebrafish Danio rerio were obtained by activating D. rerio oocytes with UV irradiated common carp Cyprinus carpio sperm and then applying one of four different shocks [two (early) meiotic and two (late) mitotic shocks]. Gynogens produced by three of the shocks survived to maturity. All adult gynogens (n = 52) except one were found to be male. There was no difference in growth rate between the biparental controls and gynogens produced through the most effective shock, thereby eliminating growth rate as a possible cause of the skewed sex ratio. Gynogen males had reduced fertility compared to biparental controls, with about half of gynogens being unable to reproduce through natural spawning (all controls reproduced successfully). Gynogen males that did reproduce gave lower fertilization rates compared with controls. This demonstrates the negative effects of increased homozygosity on male reproductive function. Families sired by meiotic gynogen males were more likely to be female biased (33% of families) compared with families sired by biparental control males (11%). In addition to confirming the polygenic nature of sex determination in D. rerio, these observations suggest that recessive or over-dominant male-determining alleles are present in domesticated D. rerio populations.
Collapse
Affiliation(s)
- Thomas A Delomas
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio
| | - Konrad Dabrowski
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio
| |
Collapse
|
191
|
Menon T, Nair S. Transient window of resilience during early development minimizes teratogenic effects of heat in zebrafish embryos. Dev Dyn 2018; 247:992-1004. [PMID: 29806169 PMCID: PMC6099245 DOI: 10.1002/dvdy.24640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/13/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Transient heat shock during early development is an established experimental paradigm for doubling the genome of the zebrafish zygote, which has practical applications in expedited identification of recessive mutations in genetic screens. Despite the simplicity of the strategy and the genetic tractability of zebrafish, heat shock has not been used for genome doubling since the proof‐of‐principle experiments done in the 1980s. This is because of poor survival of embryos that ensue from transient heat shocks and gross developmental abnormalities in the few survivors, which is incompatible with phenotype driven screens. Results: We show that heat shocks during early zebrafish development uncouple the second cycle of DNA and centrosome duplication. Interestingly, the developmental time of the heat shock that triggers the dissociation between DNA and centrosome duplication cycles significantly affect the potential of embryos to survive and attain normal morphology. The potential to develop normally after a heat shock alters in a developmental time span of 2 min in zebrafish embryos, a phenomenon that has not been reported in any species. Conclusions: The existence of heat resilient developmental windows and reduced heat teratogenicity during these windows could be an effective step forward in practical application of transient heat for experimental manipulation of ploidy in zebrafish. More broadly, heat resilience before zygotic genome activation suggests that metazoan embryos may possess innate protective features against heat beyond the canonical heat shock response. Developmental Dynamics 247:992–1004, 2018. © 2018 Wiley Periodicals, Inc. Zebrafish embryos at the end of pronuclear fusion and before initiation of zygotic mitosis are resistant to teratogenic effects of heat. The teratogenic heat resilient window exists transiently during the maternally controlled phase of development. Heat shock during the teratogenic heat resilient window enables generation of morphologically normal zebrafish tetraploids. Diploidization of haploids by transient heat shocks during the teratogenic heat resilient windows aids in effective generation of gynogenic diploids.
Collapse
Affiliation(s)
- Triveni Menon
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Sreelaja Nair
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| |
Collapse
|
192
|
Ravens U. Ionic basis of cardiac electrophysiology in zebrafish compared to human hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:38-44. [DOI: 10.1016/j.pbiomolbio.2018.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
|
193
|
de Souza Anselmo C, Sardela VF, de Sousa VP, Pereira HMG. Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans? Comp Biochem Physiol C Toxicol Pharmacol 2018; 212:34-46. [PMID: 29969680 DOI: 10.1016/j.cbpc.2018.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.
Collapse
Affiliation(s)
- Carina de Souza Anselmo
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy, LabCQ, Av Carlos Chagas Filho, 373, 21941-902, Bss36, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Vinicius Figueiredo Sardela
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil; Federal University of Rio de Janeiro, Institute of Chemistry, LPDI-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Valeria Pereira de Sousa
- Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy, LabCQ, Av Carlos Chagas Filho, 373, 21941-902, Bss36, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD-LADETEC, Av Horácio Macedo, 1281, 21941-598, Polo de Química, bloco C, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
194
|
Abstract
Birth defects are a common occurrence in the United States and worldwide. Currently, evaluation of potential developmental toxicants (i.e., teratogens) relies heavily on animal-based models which do not always adequately mimic human development. In order to address this, researchers are developing in vitro human-based models which utilize human pluripotent stem cells (hPSCs) to assess the teratogenic potential of chemical substances. The field of human developmental toxicity assays includes a variety of platforms including monolayer, micropattern, embryoid body, and 3D organoid cultures. In this review, we will overview the field of human teratogenic assays, detail the most recent advances, and discuss current limitations and future perspectives.
Collapse
Affiliation(s)
- Kathryn E Worley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8th Street, Troy, NY 12180, USA.
| | | | | | | |
Collapse
|
195
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
196
|
Wu RS, Lam II, Clay H, Duong DN, Deo RC, Coughlin SR. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Dev Cell 2018; 46:112-125.e4. [PMID: 29974860 DOI: 10.1016/j.devcel.2018.06.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Zebrafish is a powerful model for forward genetics. Reverse genetic approaches are limited by the time required to generate stable mutant lines. We describe a system for gene knockout that consistently produces null phenotypes in G0 zebrafish. Yolk injection of sets of four CRISPR/Cas9 ribonucleoprotein complexes redundantly targeting a single gene recapitulated germline-transmitted knockout phenotypes in >90% of G0 embryos for each of 8 test genes. Early embryonic (6 hpf) and stable adult phenotypes were produced. Simultaneous multi-gene knockout was feasible but associated with toxicity in some cases. To facilitate use, we generated a lookup table of four-guide sets for 21,386 zebrafish genes and validated several. Using this resource, we targeted 50 cardiomyocyte transcriptional regulators and uncovered a role of zbtb16a in cardiac development. This system provides a platform for rapid screening of genes of interest in development, physiology, and disease models in zebrafish.
Collapse
Affiliation(s)
- Roland S Wu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ian I Lam
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hilary Clay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel N Duong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rahul C Deo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
197
|
Delomas TA, Dabrowski K. Why are triploid zebrafish all male? Mol Reprod Dev 2018; 85:612-621. [DOI: 10.1002/mrd.22998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Thomas A. Delomas
- School of Environment and Natural Resources, The Ohio State University; Columbus Ohio
| | - Konrad Dabrowski
- School of Environment and Natural Resources, The Ohio State University; Columbus Ohio
| |
Collapse
|
198
|
Cornet C, Di Donato V, Terriente J. Combining Zebrafish and CRISPR/Cas9: Toward a More Efficient Drug Discovery Pipeline. Front Pharmacol 2018; 9:703. [PMID: 30018554 PMCID: PMC6037853 DOI: 10.3389/fphar.2018.00703] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
The use of zebrafish larvae in basic and applied research has grown exponentially during the last 20 years. The reasons for this success lay in its specific experimental advantages: on the one hand, the small size, the large number of progeny and the fast life cycle greatly facilitate large-scale approaches while maintaining 3Rs amenability; on the other hand, high genetic and physiological homology with humans and ease of genetic manipulation make zebrafish larvae a highly robust model for understanding human disease. Together, these advantages allow using zebrafish larvae for performing high-throughput research, both in terms of chemical and genetic phenotypic screenings. Therefore, the zebrafish larva as an animal model is placed between more reductionist in vitro high-throughput screenings and informative but low-throughput preclinical assays using mammals. However, despite its biological advantages and growing translational validation, zebrafish remains scarcely used in current drug discovery pipelines. In a context in which the pharmaceutical industry is facing a productivity crisis in bringing new drugs to the market, the combined advantages of zebrafish and the CRISPR/Cas9 system, the most powerful technology for genomic editing to date, has the potential to become a valuable tool for streamlining the generation of models mimicking human disease, the validation of novel drug targets and the discovery of new therapeutics. This review will focus on the most recent advances on CRISPR/Cas9 implementation in zebrafish and all their potential uses in biomedical research and drug discovery.
Collapse
Affiliation(s)
- Carles Cornet
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| | - Vincenzo Di Donato
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| |
Collapse
|
199
|
Abstract
Three-dimensional (3D) cell culture systems have gained increasing interest not only for 3D migration studies but also for their use in drug screening, tissue engineering, and ex vivo modeling of metastatic behavior in the field of cancer biology and morphogenesis in the field of developmental biology. The goal of studying cells in a 3D context is to attempt to more faithfully recapitulate the physiological microenvironment of tissues, including mechanical and structural parameters that we envision will reveal more predictive data for development programs and disease states. In this review, we discuss the pros and cons of several well-characterized 3D cell culture systems for performing 3D migration studies. We discuss the intracellular and extracellular signaling mechanisms that govern cell migration. We also describe the mathematical models and relevant assumptions that can be used to describe 3D cell movement.
Collapse
Affiliation(s)
- Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
| | - Daniele M. Gilkes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
200
|
Feng S, Wang S, Wang Y, Yang Q, Wang D, Li H. Identification and expression of carbonic anhydrase 2, myosin regulatory light chain 2 and selenium-binding protein 1 in zebrafish Danio rerio: Implication for age-related biomarkers. Gene Expr Patterns 2018; 29:47-58. [PMID: 29738878 DOI: 10.1016/j.gep.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/26/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
Abstract
Proteomic study has determined age-related changes in synthesis of carbonic anhydrase 2, myosin regulatory light chain 2 and selenium-binding protein 1 in muscle of post-menopausal women. However, little information is available regarding the expression and role of these proteins in early development and life span. In this study we showed that zebrafish ca2, myl2a, myl2b and selenbp1 were highly identical to their mammalian counterparts in primary and tertiary structures as well as genomic organization and syntenic map. They displayed distinct spatiotemporal expression patterns in embryos and larvae of zebrafish. Moreover, their transcription levels in the respective tissues were obviously remodeled in an age-dependent fashion, i.e. some mRNA levels were increased, while others remained unchanged or even decreased, suggesting that CA2, MYL2a, MYL2b and SELENBP1 can be used as aging biomarkers. Our study also lays a foundation for further illumination of the functions of these genes in early development and aging processes.
Collapse
Affiliation(s)
- Shuoqi Feng
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Su Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Yashuo Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Qingyun Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Dejing Wang
- No. 2 High School of Qingdao, Shandong Province, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|