151
|
Hu D, Xiao S, Guo Q, Yue R, Geng D, Ji D. Luminescence method for detection of aflatoxin B1 using ATP-releasing nucleotides. RSC Adv 2021; 11:24027-24031. [PMID: 35479041 PMCID: PMC9036674 DOI: 10.1039/d1ra03870b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 02/03/2023] Open
Abstract
Determination of aflatoxin B1 (AFB1) is still a big issue in food safety. In this paper, we developed a luminescence AFB1 detection method combined with ATP-releasing nucleotides (ARNs) and AFB1 aptamer. Firstly, using a new coupling method, we synthesized two ARNs (dTP4A and dGP4A) in a yield of 67% and 58%, respectively. The newly prepared ARNs show a much lower background. Then, we developed a new isothermal polymerase amplification method. In this method, two DNA hairpins were used to substitute the circle DNA template in rolling circle amplification. Using this amplification method and combined with AFB1 aptamer, a new AFB1 detection method is developed. A detection limit as low as 0.3 pM is achieved. This method is simple and efficient, and will have a great potential to be used for food safety and public health. Schematic illustration of a luminescence short DNA sequence detection method using ATP-releasing nucleotides. Combined with AFB1 aptamer, this method is used to detect AFB1.![]()
Collapse
Affiliation(s)
- Dongyue Hu
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 PR China
| | - Shusen Xiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Qiaqia Guo
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Rongrong Yue
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Demin Geng
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 PR China
| | - Debin Ji
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| |
Collapse
|
152
|
CRISPR/Cas13-Based Approaches for Ultrasensitive and Specific Detection of microRNAs. Cells 2021; 10:cells10071655. [PMID: 34359825 PMCID: PMC8307730 DOI: 10.3390/cells10071655] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) have a prominent role in virtually every aspect of cell biology. Due to the small size of mature miRNAs, the high degree of similarity between miRNA family members, and the low abundance of miRNAs in body fluids, miRNA expression profiling is technically challenging. Biosensors based on electrochemical detection for nucleic acids are a novel category of inexpensive and very sensitive diagnostic tools. On the other hand, after recognizing the target sequence, specific CRISPR-associated proteins, including orthologues of Cas12, Cas13, and Cas14, exhibit collateral nonspecific catalytic activities that can be employed for specific and ultrasensitive nucleic acid detection from clinically relevant samples. Recently, several platforms have been developed, connecting the benefits of enzyme-assisted signal amplification and enzyme-free amplification biosensing technologies with CRISPR-based approaches for miRNA detection. Together, they provide high sensitivity, precision, and fewer limitations in diagnosis through efficient sensors at a low cost and a simple miniaturized readout. This review provides an overview of several CRISPR-based biosensing platforms that have been developed and successfully applied for ultrasensitive and specific miRNA detection.
Collapse
|
153
|
Chen B, Xiao G, He M, Hu B. Elemental Mass Spectrometry and Fluorescence Dual-Mode Strategy for Ultrasensitive Label-Free Detection of HBV DNA. Anal Chem 2021; 93:9454-9461. [PMID: 34181411 DOI: 10.1021/acs.analchem.1c01180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work reported a simple and ultrasensitive label-free method for the detection of hepatitis B virus (HBV) DNA by combining hyperbranched rolling circle amplification (HRCA) with dual-mode detection by inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence using ruthenium complex [Ru(bpy)2dppz]2+ (bpy = 2,2'-bipyridine, dppz = dipyrido [3,2-a:2',3'-c] phenazine) as a dual functional probe. An HBV DNA-initiated HRCA system was designed to realize the highly efficient amplification of HBV DNA with the generation of a mass of dsDNA. Also, the [Ru(bpy)2dppz]2+ probe was then added to intercalate into the dsDNA products, resulting in strong fluorescence recovery of the probe for fluorescence detection. Meanwhile, using a biotin-modified primer in HRCA, the dsDNA-[Ru(bpy)2dppz]2+ complexes could be captured by the avidin-coated 96-well plates, and the captured [Ru(bpy)2dppz]2+ probe was later desorbed by acid for ICP-MS detection. The linear range of the proposed method was 3.5-200 amol L-1 and the limit of detection (LOD) was 1 amol L-1 for ICP-MS detection, while the linear range was 20-500 amol L-1 and the LOD was 9.6 amol L-1 for fluorescence detection. The developed method was applied to human serum sample analysis, and the analytical results coincided very well with those obtained by the real-time polymerase chain reaction (PCR) method. The developed dual-mode label-free detection method was ultrasensitive, simple, and accurate, showing great potential for therapeutic monitoring of HBV infection.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guangyang Xiao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
154
|
Ju Y, Kim HY, Ahn JK, Park HG. Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing a nicking and extension chain reaction system. NANOSCALE 2021; 13:10785-10791. [PMID: 34076022 DOI: 10.1039/d1nr00564b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleic acid sequence-based amplification (NASBA) is a transcription-based isothermal amplification technique especially designed for the detection of RNA targets. The NASBA basically relies on the linear production of T7 RNA promoter-containing double-stranded DNA (T7DNA), and thus the final amplification efficiency is not sufficiently high enough to achieve ultrasensitive detection. We herein ingeniously integrate a nicking and extension chain reaction system into the NASBA to establish an ultrasensitive version of NASBA, termed Nicking and Extension chain reaction System-Based Amplification (NESBA). By employing a NESBA primer set designed to contain an additional nicking site at the 5' end of a NASBA primer set, the T7DNA is exponentially amplified through continuously repeated nicking and extension chain reaction by the combined activities of nicking endonuclease (NE) and reverse transcriptase (RT). As a consequence, a much larger number of RNA amplicons would be produced through the transcription of the amplified T7DNA, greatly enhancing the final fluorescence signal from the molecular beacon (MB) probe binding to the RNA amplicon. Based on this unique design principle, we successfully identified the target respiratory syncytial virus A (RSV A) genomic RNA (gRNA) down to 1 aM under isothermal conditions, which is 100-fold more sensitive than regular NASBA.
Collapse
Affiliation(s)
- Yong Ju
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jun Ki Ahn
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. and Human Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), 143 Hanggaul-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
155
|
Kim JH, Kim S, Hwang SH, Yoon TH, Park JS, Lee ES, Woo J, Park KS. Three-Way Junction-Induced Isothermal Amplification with High Signal-to-Background Ratio for Detection of Pathogenic Bacteria. SENSORS 2021; 21:s21124132. [PMID: 34208674 PMCID: PMC8235052 DOI: 10.3390/s21124132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed a simple and reproducible strategy, termed three-way junction (3WJ)-induced transcription amplification, to detect target nucleic acids by rationally combining 3WJ-induced isothermal amplification with a light-up RNA aptamer. In principle, the presence of the target nucleic acid generates a large number of light-up RNA aptamers (Spinach aptamers) through strand displacement and transcription amplification for 2 h at 37 °C. The resulting Spinach RNA aptamers specifically bind to fluorogens such as 3,5-difluoro-4-hydroxybenzylidene imidazolinone and emit a highly enhanced fluorescence signal, which is clearly distinguished from the signal emitted in the absence of the target nucleic acid. With the proposed strategy, concentrations of target nucleic acids selected from the genome of Salmonellaenterica serovar Typhi (S. Typhi) were quantitatively determined with high selectivity. In addition, the practical applicability of the method was demonstrated by performing spike-and-recovery experiments with S. Typhi in human serum.
Collapse
|
156
|
Xiong Y, Dai J, Zhang Y, Zhou C, Yuan H, Xiao D. A label-free fluorescent biosensor based on a catalyzed hairpin assembly for HIV DNA and lead detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2391-2395. [PMID: 33972958 DOI: 10.1039/d1ay00410g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a label-free fluorescent signal amplification system based on a catalyzed hairpin assembly (CHA) is reported. In this system, two hairpin probes, H1 and H2, were well-designed in which G-quadruplex sequences were integrated into H2. The CHA reaction was triggered by target/trigger DNA and G-quadruplex sequences were released, which can bind the fluorescent amyloid dye thioflavin T (ThT) to provide fluorescence signals. At the same time, target/trigger DNA was released from the product of the CHA reaction (H1-H2), which continued to initiate the next CHA cycle, and the signal was eventually amplified. This signal amplification approach has been successfully used to develop a label-free fluorescent sensing platform for sensitive detection of human immunodeficiency virus (HIV) DNA and Pb2+.
Collapse
Affiliation(s)
- Yu Xiong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | |
Collapse
|
157
|
Ye SY, Pan CG, Dai YH, Liang GX. Sensitive electrochemiluminescent detection of telomerase activity based on nicking enzyme assisted signal amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
158
|
The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Anal Biochem 2021; 631:114260. [PMID: 34023274 DOI: 10.1016/j.ab.2021.114260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
A comparative review of the most common isothermal methods is provided. In the last two decades, the challenge of using isothermal amplification systems as an alternate to the most extensive and long-standing nucleic acids-amplifying method-the polymerase chain reaction-has arisen. The main advantage of isothermal amplification is no requirement for expensive laboratory equipment for thermal cycling. Considerable efforts have been made to improve the current techniques of nucleic acid amplification and the development of new approaches based on the main drawbacks of each method. The most important and challenging goal was to achieve a low-cost, straightforward system that is rapid, specific, accurate, and sensitive.
Collapse
|
159
|
Wu X, Tay JK, Goh CK, Chan C, Lee YH, Springs SL, Wang DY, Loh KS, Lu TK, Yu H. Digital CRISPR-based method for the rapid detection and absolute quantification of nucleic acids. Biomaterials 2021; 274:120876. [PMID: 34034027 DOI: 10.1016/j.biomaterials.2021.120876] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022]
Abstract
Rapid diagnostics of adventitious agents in biopharmaceutical/cell manufacturing release testing and the fight against viral infection have become critical. Quantitative real-time PCR and CRISPR-based methods rapidly detect DNA/RNA in 1 h but suffer from inter-site variability. Absolute quantification of DNA/RNA by methods such as digital PCR reduce this variability but are currently too slow for wider application. Here, we report a RApid DIgital Crispr Approach (RADICA) for absolute quantification of nucleic acids in 40-60 min. Using SARS-CoV-2 as a proof-of-concept target, RADICA allows for absolute quantification with a linear dynamic range of 0.6-2027 copies/μL (R2 value > 0.99), high accuracy and low variability, no cross-reactivity to similar targets, and high tolerance to human background DNA. RADICA's versatility is validated against other targets such as Epstein-Barr virus (EBV) from human B cells and patients' serum. RADICA can accurately detect and absolutely quantify EBV DNA with similar dynamic range of 0.5-2100 copies/μL (R2 value > 0.98) in 1 h without thermal cycling, providing a 4-fold faster alternative to digital PCR-based detection. RADICA therefore enables rapid and sensitive absolute quantification of nucleic acids which can be widely applied across clinical, research, and biomanufacturing areas.
Collapse
Affiliation(s)
- Xiaolin Wu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Joshua K Tay
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Chuan Keng Goh
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Cheryl Chan
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Stacy L Springs
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - De Yun Wang
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Timothy K Lu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02142, USA.
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Institute of Bioengineering and Bioimaging, A*STAR, The Nanos, #04-01, 31, Biopolis Way, 138669, Singapore; Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, 117411, Singapore; Department of Physiology & the Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, 117593, Singapore.
| |
Collapse
|
160
|
Lai W, Xiao M, Yang H, Li L, Fan C, Pei H. Circularized blocker-displacement amplification for multiplex detection of rare DNA variants. Chem Commun (Camb) 2021; 56:12331-12334. [PMID: 32959033 DOI: 10.1039/d0cc05283c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A superselective isothermal amplification technique, termed circularized blocker-displacement amplification, was developed for multiplex analysis of rare DNA variants.
Collapse
Affiliation(s)
- Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Haihong Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| |
Collapse
|
161
|
Cao Y, Ma C, Zhu JJ. DNA Technology-assisted Signal Amplification Strategies in Electrochemiluminescence Bioanalysis. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
162
|
Khater A, Abdelrehim O, Mohammadi M, Mohamad A, Sanati-Nezhad A. Thermal droplet microfluidics: From biology to cooling technology. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
163
|
Egloff S, Melnychuk N, Reisch A, Martin S, Klymchenko AS. Enzyme-free amplified detection of cellular microRNA by light-harvesting fluorescent nanoparticle probes. Biosens Bioelectron 2021; 179:113084. [PMID: 33601133 DOI: 10.1016/j.bios.2021.113084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
Detection of cellular microRNA biomarkers is an emerging powerful tool in cancer diagnostics. Currently, it requires multistep tedious protocols based on molecular amplification of the RNA target, e.g. RT-qPCR. Here, we developed a one-step enzyme-free method for microRNA detection in cellular extracts based on light-harvesting nanoparticle (nanoantenna) biosensors. They amplify the fluorescence signal by effective Förster resonance energy transfer (FRET) from ultrabright dye-loaded polymeric nanoparticle to a single acceptor and thus convert recognition of one microRNA copy (through nucleic acid strand displacement) into a response of >400 dyes. The developed nanoprobes of 17-19 nm diameter for four microRNAs (miR-21, let-7f, miR-222 and miR-30a) exhibit outstanding brightness (up to 3.8 × 107 M-1cm-1) and ratiometric sequence-specific response to microRNA with the limit of detection (LOD) down to 1.3 pM (21 amol), equivalent to 24 RT-qPCR cycles. They enable quantitative detection of the four microRNAs in RNA extracts from five cancerous cell lines (human breast cancer - T47D and MCF7, head and neck cancer - CAL33 and glioblastoma - LNZ308 and U373) and two non-cancerous ones (Hek293 and MCF10A), in agreement with RT-qPCR. The results confirmed that let-7f and especially miR-21 are systematically overexpressed in all studied cancerous cell lines. These nanoparticle biosensors are compatible with low-cost portable fluorometers and small detection volumes (11 amol LOD), opening a route to rapid point-of-care cancer diagnostics.
Collapse
Affiliation(s)
- Sylvie Egloff
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France
| | - Nina Melnychuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route Du Rhin, 67401, Illkirch, France.
| |
Collapse
|
164
|
Sato Y, Suzuki Y. DNA nanotechnology provides an avenue for the construction of programmable dynamic molecular systems. Biophys Physicobiol 2021; 18:116-126. [PMID: 34123692 PMCID: PMC8164909 DOI: 10.2142/biophysico.bppb-v18.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/23/2021] [Indexed: 12/01/2022] Open
Abstract
Self-assembled supramolecular structures in living cells and their dynamics underlie various cellular events, such as endocytosis, cell migration, intracellular transport, cell metabolism, and gene expression. Spatiotemporally regulated association/dissociation and generation/degradation of assembly components is one of the remarkable features of biological systems. The significant advancement in DNA nanotechnology over the last few decades has enabled the construction of various-shaped nanostructures via programmed self-assembly of sequence-designed oligonucleotides. These nanostructures can further be assembled into micrometer-sized structures, including ordered lattices, tubular structures, macromolecular droplets, and hydrogels. In addition to being a structural material, DNA is adopted to construct artificial molecular circuits capable of activating/inactivating or producing/decomposing target DNA molecules based on strand displacement or enzymatic reactions. In this review, we provide an overview of recent studies on artificially designed DNA-based self-assembled systems that exhibit dynamic features, such as association/dis-sociation of components, phase separation, stimulus responsivity, and DNA circuit-regulated structural formation. These biomacromolecule-based, bottom-up approaches for the construction of artificial molecular systems will not only throw light on bio-inspired nano/micro engineering, but also enable us to gain insights into how autonomy and adaptability of living systems can be realized.
Collapse
Affiliation(s)
- Yusuke Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
165
|
Yoo E, Choe D, Shin J, Cho S, Cho BK. Mini review: Enzyme-based DNA synthesis and selective retrieval for data storage. Comput Struct Biotechnol J 2021; 19:2468-2476. [PMID: 34025937 PMCID: PMC8113751 DOI: 10.1016/j.csbj.2021.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
The market for using and storing digital data is growing, with DNA synthesis emerging as an efficient way to store massive amounts of data. Storing information in DNA mainly consists of two steps: data writing and reading. The writing step requires encoding data in DNA, building one nucleotide at a time as a form of single-stranded DNA (ssDNA). Once the data needs to be read, the target DNA is selectively retrieved and sequenced, which will also be in the form of an ssDNA. Recently, enzyme-based DNA synthesis is emerging as a new method to be a breakthrough on behalf of decades-old chemical synthesis. A few enzymatic methods have been presented for data memory, including the use of terminal deoxynucleotidyl transferase. Besides, enzyme-based amplification or denaturation of the target strand into ssDNA provides selective access to the desired dataset. In this review, we summarize diverse enzymatic methods for either synthesizing ssDNA or retrieving the data-containing DNA.
Collapse
Affiliation(s)
- Eojin Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongoh Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
166
|
Cassedy A, Parle-McDermott A, O’Kennedy R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front Mol Biosci 2021; 8:637559. [PMID: 33959631 PMCID: PMC8093571 DOI: 10.3389/fmolb.2021.637559] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are ubiquitous in the environment. While many impart no deleterious effects on their hosts, several are major pathogens. This risk of pathogenicity, alongside the fact that many viruses can rapidly mutate highlights the need for suitable, rapid diagnostic measures. This review provides a critical analysis of widely used methods and examines their advantages and limitations. Currently, nucleic-acid detection and immunoassay methods are among the most popular means for quickly identifying viral infection directly from source. Nucleic acid-based detection generally offers high sensitivity, but can be time-consuming, costly, and require trained staff. The use of isothermal-based amplification systems for detection could aid in the reduction of results turnaround and equipment-associated costs, making them appealing for point-of-use applications, or when high volume/fast turnaround testing is required. Alternatively, immunoassays offer robustness and reduced costs. Furthermore, some immunoassay formats, such as those using lateral-flow technology, can generate results very rapidly. However, immunoassays typically cannot achieve comparable sensitivity to nucleic acid-based detection methods. Alongside these methods, the application of next-generation sequencing can provide highly specific results. In addition, the ability to sequence large numbers of viral genomes would provide researchers with enhanced information and assist in tracing infections.
Collapse
Affiliation(s)
- A. Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - R. O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Hamad Bin Khalifa University, Doha, Qatar
- Qatar Foundation, Doha, Qatar
| |
Collapse
|
167
|
Jung Y, Song J, Park HG. Ultrasensitive nucleic acid detection based on phosphorothioated hairpin-assisted isothermal amplification. Sci Rep 2021; 11:8399. [PMID: 33863981 PMCID: PMC8052315 DOI: 10.1038/s41598-021-87948-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Herein, we describe a phosphorothioated hairpin-assisted isothermal amplification (PHAmp) method for detection of a target nucleic acid. The hairpin probe (HP) is designed to contain a 5' phosphorothioate (PS)-modified overhang, a target recognition site, and a 3' self-priming (SP) region. Upon binding to the target nucleic acid, the HP opens and the SP region is rearranged to serve as a primer. The subsequent process of strand displacement DNA synthesis recycles the bound target to open another HP and produces an extended HP (EP) with a PS-DNA/DNA duplex at the end, which would be readily denatured due to its reduced thermal stability. The trigger then binds to the denatured 3' end of the EP and is extended, producing an intermediate double-stranded (ds) DNA product (IP). The trigger also binds to the denatured 3' end of the IP, and its extension produces the final dsDNA product along with concomitant displacement and recycling of EP. By monitoring the dsDNA products, the target nucleic acid can be identified down to 0.29 fM with a wide dynamic range from 1 nM to 1 fM yielding an excellent specificity to discriminate even a single base-mismatched target. The unique design principle could provide new insights into the development of novel isothermal amplification methods for nucleic acid detection.
Collapse
Affiliation(s)
- Yujin Jung
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
168
|
Shen S, Liu SL, Jiang JH, Zhou LW. Addressing widespread misidentifications of traditional medicinal mushrooms in Sanghuangporus (Basidiomycota) through ITS barcoding and designation of reference sequences. IMA Fungus 2021; 12:10. [PMID: 33853671 PMCID: PMC8048060 DOI: 10.1186/s43008-021-00059-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/09/2021] [Indexed: 01/27/2023] Open
Abstract
"Sanghuang" refers to a group of important traditionally-used medicinal mushrooms belonging to the genus Sanghuangporus. In practice, species of Sanghuangporus referred to in medicinal studies and industry are now differentiated mainly by a BLAST search of GenBank with the ITS barcoding region as a query. However, inappropriately labeled ITS sequences of "Sanghuang" in GenBank restrict accurate species identification and, to some extent, the utilization of these species as medicinal resources. We examined all available 271 ITS sequences related to "Sanghuang" in GenBank including 31 newly submitted sequences from this study. Of these sequences, more than half were mislabeled so we have now corrected the corresponding species names. The mislabeled sequences mainly came from strains utilized by non-taxonomists. Based on the analyses of ITS sequences submitted by taxonomists as well as morphological characters, we separate the newly described Sanghuangporus subbaumii from S. baumii and treat S. toxicodendri as a later synonym of S. quercicola. Fourteen species of Sanghuangporus are accepted, with intraspecific distances up to 1.30% (except in S. vaninii, S. weirianus and S. zonatus) and interspecific distances above 1.30% (except between S. alpinus and S. lonicerinus, and S. baumii and S. subbaumii). To stabilize the concept of these 14 species of Sanghuangporus, their taxonomic information and reliable ITS reference sequences are provided. Moreover, ten potential diagnostic sequences are provided for Hyperbranched Rolling Circle Amplification to rapidly confirm three common commercial species, viz. S. baumii, S. sanghuang, and S. vaninii. Our results provide a practical method for ITS barcoding-based species identification of Sanghuangporus and will promote medicinal studies and commercial development from taxonomically correct material.
Collapse
Affiliation(s)
- Shan Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
169
|
Spring SA, Goggins S, Frost CG. Ratiometric Electrochemistry: Improving the Robustness, Reproducibility and Reliability of Biosensors. Molecules 2021; 26:2130. [PMID: 33917231 PMCID: PMC8068091 DOI: 10.3390/molecules26082130] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022] Open
Abstract
Electrochemical biosensors are an increasingly attractive option for the development of a novel analyte detection method, especially when integration within a point-of-use device is the overall objective. In this context, accuracy and sensitivity are not compromised when working with opaque samples as the electrical readout signal can be directly read by a device without the need for any signal transduction. However, electrochemical detection can be susceptible to substantial signal drift and increased signal error. This is most apparent when analysing complex mixtures and when using small, single-use, screen-printed electrodes. Over recent years, analytical scientists have taken inspiration from self-referencing ratiometric fluorescence methods to counteract these problems and have begun to develop ratiometric electrochemical protocols to improve sensor accuracy and reliability. This review will provide coverage of key developments in ratiometric electrochemical (bio)sensors, highlighting innovative assay design, and the experiments performed that challenge assay robustness and reliability.
Collapse
Affiliation(s)
- Sam A. Spring
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Sean Goggins
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol BS11 9QD, UK;
| | | |
Collapse
|
170
|
Milton AAP, Momin KM, Priya GB, Ghatak S, Das S, Gandhale PN, Angappan M, Sen A. Development of novel visual detection methodology for Salmonella in meat using saltatory rolling circle amplification. J Appl Microbiol 2021; 131:2361-2371. [PMID: 33811443 DOI: 10.1111/jam.15099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/06/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
AIM The aim of this study was to develop a saltatory rolling circle amplification (SRCA) assay for rapid, simple and visual detection of Salmonella in meat. METHODS AND RESULTS Saltatory rolling circle amplification assay was established using simple PCR primers targeting the invA gene of Salmonella enterica. The specificity of the SRCA assay was determined using 28 Salmonella and 15 non-Salmonella strains. The analytical sensitivity of the developed SRCA, conventional and real-time PCR assays were 70 fg, 7 pg and 700 fg S. enterica DNA per tube, respectively. The limit of detection (LoD) of the SRCA assay was 40 CFU per gram of meat without enrichment and 4 CFU per gram after including 6 h brief enrichment step. The detection limits of 40 CFU per gram and 4 CFU per gram of meat were achieved within 165 min and 9 h, respectively (including DNA extraction). To assess the real-world relevance of the SRCA assay, it was used to screen Salmonella from the field pork samples (n = 82). The same samples were also tested with culture (ISO 6579: 2002) method, conventional and real-time PCR assays. Using the developed assay with 6-h enrichment step, it could give accurate results as that of the culture method. CONCLUSIONS The results of this study showed that the SRCA assay is a rapid, simple, sophisticated equipment-free and user-friendly method for accurate detection of Salmonella in meat foods. To our information, this is the first study to deploy SRCA assay for screening foods for Salmonella. SIGNIFICANCE AND IMPACT OF THE STUDY The developed SRCA assay is cost-effective, easy-to-perform and equipment-free; therefore, it has the potential to replace other molecular detection methods for regular screening of Salmonella in foods in field laboratories.
Collapse
Affiliation(s)
- A A P Milton
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - K M Momin
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - G B Priya
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.,College of Agriculture, Central Agricultural University (Imphal), Kyrdemkulai, Meghalaya, India
| | - S Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - S Das
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - P N Gandhale
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - M Angappan
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - A Sen
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| |
Collapse
|
171
|
Liu M, Qiu JG, Ma F, Zhang CY. Advances in single-molecule fluorescent nanosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1716. [PMID: 33779063 DOI: 10.1002/wnan.1716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Single-molecule detection represents the ultimate sensitivity in measurement science with the characteristics of simplicity, rapidity, low sample consumption, and high signal-to-noise ratio and has attracted considerable attentions in biosensor development. In recent years, a variety of functional nanomaterials with unique chemical, optical, mechanical, and electronic features have been synthesized. The integration of single-molecule detection with functional nanomaterials enables the construction of novel single-molecule fluorescent nanosensors with excellent performance. Herein, we review the advance in single-molecule fluorescent nanosensors constructed by novel nanomaterials including quantum dots, gold nanoparticles, upconversion nanoparticles, fluorescent conjugated polymer nanoparticles, nanosheets, and magnetic nanoparticles in the past decade (2011-2020), and discuss the strategies, features, and applications of single-molecule fluorescent nanosensors in the detection of microRNAs, DNAs, enzymes, proteins, viruses, and live cells. Moreover, we highlight the future direction and challenges in this area. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
172
|
Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol 2021; 39:1160-1172. [PMID: 33715868 DOI: 10.1016/j.tibtech.2021.02.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle replication (RCR), including rolling circle amplification (RCA) and rolling circle transcription (RCT), is an isothermal enzymatic reaction. Because of its high amplification efficiency, RCR is a powerful biosensing tool for detecting biomolecules. In recent years, RCR has also been extended to the field of bioimaging to better understand biological pathways. Furthermore, RCR provides a simple technique to design and generate DNA/RNA structures with unique advantages in delivering drugs and enhanced targeting ability. In this review, we introduce the fundamentals of RCR and describe the most recent advances in RCR-based detection methods and delivery vehicles for biosensing, bioimaging, and biomedicine. Finally, some challenges and further opportunities of RCR-based biotechnology are discussed.
Collapse
|
173
|
Feng W, Newbigging AM, Tao J, Cao Y, Peng H, Le C, Wu J, Pang B, Li J, Tyrrell DL, Zhang H, Le XC. CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, proteins, and small molecules. Chem Sci 2021; 12:4683-4698. [PMID: 34163728 PMCID: PMC8179559 DOI: 10.1039/d0sc06973f] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) protein systems have transformed the field of genome editing and transcriptional modulation. Progress in CRISPR-Cas technology has also advanced molecular detection of diverse targets, ranging from nucleic acids to proteins. Incorporating CRISPR-Cas systems with various nucleic acid amplification strategies enables the generation of amplified detection signals, enrichment of low-abundance molecular targets, improvements in analytical specificity and sensitivity, and development of point-of-care (POC) diagnostic techniques. These systems take advantage of various Cas proteins for their particular features, including RNA-guided endonuclease activity, sequence-specific recognition, multiple turnover trans-cleavage activity of Cas12 and Cas13, and unwinding and nicking ability of Cas9. Integrating a CRISPR-Cas system after nucleic acid amplification improves detection specificity due to RNA-guided recognition of specific sequences of amplicons. Incorporating CRISPR-Cas before nucleic acid amplification enables enrichment of rare and low-abundance nucleic acid targets and depletion of unwanted abundant nucleic acids. Unwinding of dsDNA to ssDNA using CRISPR-Cas9 at a moderate temperature facilitates techniques for achieving isothermal exponential amplification of nucleic acids. A combination of CRISPR-Cas systems with functional nucleic acids (FNAs) and molecular translators enables the detection of non-nucleic acid targets, such as proteins, metal ions, and small molecules. Successful integrations of CRISPR technology with nucleic acid amplification techniques result in highly sensitive and rapid detection of SARS-CoV-2, the virus that causes the COVID-19 pandemic.
Collapse
Affiliation(s)
- Wei Feng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
| | - Ashley M Newbigging
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
| | - Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
| | - Yiren Cao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
| | - Connie Le
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Jinjun Wu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
| | - Bo Pang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
- School of Public Health, Jilin University 1163 Xinmin Street Changchun Jilin 130021 China
| | - Juan Li
- School of Public Health, Jilin University 1163 Xinmin Street Changchun Jilin 130021 China
| | - D Lorne Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2E1 Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta T6G 2G3 Canada +1-780-492-7800 +1-780-492-6416
| |
Collapse
|
174
|
Kumar Y. Isothermal amplification-based methods for assessment of microbiological safety and authenticity of meat and meat products. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
175
|
Sfragano PS, Pillozzi S, Palchetti I. Electrochemical and PEC platforms for miRNA and other epigenetic markers of cancer diseases: Recent updates. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106929] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
176
|
Li H, Tang Y, Song D, Lu B, Guo L, Li B. Establishment of Dual Hairpin Ligation-Induced Isothermal Amplification for Universal, Accurate, and Flexible Nucleic Acid Detection. Anal Chem 2021; 93:3315-3323. [PMID: 33538577 DOI: 10.1021/acs.analchem.1c00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isothermal amplifications have found their potentials in applications of portable nucleic acid diagnostics. However, there are still several certain deficiencies existing in the current amplification methods, including high false-positive signals, limited range of targets, difficult primer design, and so forth. Here, we report an effective solution via the development of dual hairpin ligation-induced isothermal amplification (DHLA) consisting of (1) the formation of a dual hairpin probe (DHP) based on sequence specific hybridization and ligation and (2) exponential isothermal amplification of DHP in the presence of polymerase and primers. Taking both microRNA and virus RNA as model targets, DHLA is proven to be accurate, flexible, and applicable to most deoxyribonucleic acid and ribonucleic acid targets ranging from ∼20 to hundreds of nt. The detection limit is down to the ∼aM level without a false-positive signal. More importantly, the whole detection can be directly applied to a new target via a slight change in the DHP sequence, without redesigning the primer set. This unique property not only simplifies the process for new reaction development but also enables flexible multiprobe strategies to achieve antidegradation analysis.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yidan Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Defeng Song
- Department of General Surgery, China-Japan Union Hospital of JiLin University, Changchun, Jilin 130021, P. R. China
| | - Baiyang Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Lulu Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
177
|
Kolluri N, Kamath S, Lally P, Zanna M, Galagan J, Gitaka J, Kamita M, Cabodi M, Lolabattu SR, Klapperich CM. Development and Clinical Validation of Iso-IMRS: A Novel Diagnostic Assay for P. falciparum Malaria. Anal Chem 2021; 93:2097-2105. [PMID: 33464825 PMCID: PMC7859932 DOI: 10.1021/acs.analchem.0c03847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
In many countries
targeting malaria elimination, persistent malaria
infections can have parasite loads significantly below the lower limit
of detection (LLOD) of standard diagnostic techniques, making them
difficult to identify and treat. The most sensitive diagnostic methods
involve amplification and detection of Plasmodium DNA by polymerase chain reaction (PCR), which requires expensive
thermal cycling equipment and is difficult to deploy in resource-limited
settings. Isothermal DNA amplification assays have been developed,
but they require
complex primer design, resulting in high nonspecific amplification,
and show a decrease in sensitivity than PCR methods. Here, we have
used a computational approach to design a novel isothermal amplification
assay with a simple primer design to amplify P. falciparum DNA with analytical sensitivity comparable to PCR. We have identified
short DNA sequences repeated throughout the parasite genome to be
used as primers for DNA amplification and demonstrated that these
primers can be used, without modification, to isothermally amplify P. falciparum parasite DNA via strand displacement
amplification. Our novel assay shows a LLOD of ∼1 parasite/μL
within a 30 min amplification time. The assay was demonstrated with
clinical samples using patient blood and saliva. We further characterized
the assay using direct amplicon next-generation sequencing and modified
the assay to work with a visual readout. The technique developed here
achieves similar analytical sensitivity to current gold standard PCR
assays requiring a fraction of time and resources for PCR. This highly
sensitive isothermal assay can be more easily adapted to field settings,
making it a potentially useful tool for malaria elimination.
Collapse
Affiliation(s)
- Nikunja Kolluri
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - Shwetha Kamath
- Division of Research and Development, Jigsaw Bio Solutions Private Limited, No. 87, 4th Floor, Mundhra Chambers, 22nd Main, Banashankari 2nd Stage, Bangalore 560070, Karnataka, India
| | - Patrick Lally
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - Mina Zanna
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - James Galagan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, General Kago Road, P.O. Box 342, Thika 01000, Kenya
| | - Moses Kamita
- Directorate of Research and Innovation, Mount Kenya University, General Kago Road, P.O. Box 342, Thika 01000, Kenya
| | - Mario Cabodi
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| | - Srinivasa Raju Lolabattu
- Division of Research and Development, Jigsaw Bio Solutions Private Limited, No. 87, 4th Floor, Mundhra Chambers, 22nd Main, Banashankari 2nd Stage, Bangalore 560070, Karnataka, India
| | - Catherine M Klapperich
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Room 702, Boston, Massachusetts 02215, United States
| |
Collapse
|
178
|
Song J, Kim HY, Kim S, Jung Y, Park HG. Self-priming phosphorothioated hairpin-mediated isothermal amplification. Biosens Bioelectron 2021; 178:113051. [PMID: 33548651 DOI: 10.1016/j.bios.2021.113051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023]
Abstract
We herein describe a novel technology, termed self-priming phosphorothioated hairpin-mediated isothermal amplification (SP-HAMP), enabling target nucleic acid detection. Isothermal amplification strategies are a simple process that efficiently raises the amount of nucleic acid at a constant temperature, but still has lots of problems such as the requirement of multiple exogenous primers and enzymes, which trigger non-specific background signal and increase the complexity of procedures. The key component for overcoming the above-mentioned limitations is the designed hairpin probe (HP) consisting of self-priming region along the 3' stem and the 3' overhang and phosphorothioate modifications at the 5' overhang and the specific loop part. The HP was designed to open through binding to target nucleic acid. Upon opening of HP, its self-priming (SP) region is rearranged to form a smaller hairpin whose 3' end could serve as a primer. The following extension produces the extended HP and displaces the bound target nucleic acid, which is then recycled to open another HP. Due to the reduced stability caused by the specific two phosphorothioate (PS) modifications, the 3' end of EP1 is readily rearranged to form the foldback hairpin structure, which would promote the foldback extension to produce once more extended HP. Since the two PS modifications are always located at the same positions along the 5' stem within the further extended HPs, the foldback reaction followed by the extension would be continuously repeated, consequently producing a large number of the long hairpin concatamers. Based on this unique design principle, we successfully detected even a single copy of target DNA with outstanding discrimination capability under an isothermal condition by employing only a single HP without the requirement for the complicated multiple primers. In conclusion, the sophisticated design principle employed in this work would provide great insight for the development of self-operative isothermal amplifying system enabling short target nucleic acid detection such as microRNAs or any target which is less than 200 mer.
Collapse
Affiliation(s)
- Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soohyun Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yujin Jung
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
179
|
Milton AAP, Momin KM, Priya GB, Ghatak S, Gandhale PN, Angappan M, Das S, Sen A. A novel in situ methodology for visual detection of Clostridium perfringens in pork harnessing saltatory rolling circle amplification. Anaerobe 2021; 69:102324. [PMID: 33508439 DOI: 10.1016/j.anaerobe.2021.102324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Clostridium perfringens (C. perfringens), a prolific toxin-producing anaerobe is an important foodborne pathogen with a huge public health concern. Rapid and on-site detection of C. perfringens is of specific importance in developing countries. In the present study, saltatory rolling circle amplification (SRCA) assay was developed for culture-independent, rapid and visual detection of C. perfringens and evaluated in meat with pork as a model. The specificity of the SRCA assay was ascertained by using 62 C. perfringens and 18 non- C. perfringens strains. The analytical sensitivity of the developed SRCA, conventional and real-time PCR assays were 80 fg, 800 fg and 800 fg DNA per tube, respectively. The limit of detection of the SRCA assay was 80 CFU/g of pork in the absence of enrichment and 8 CFU/g after short enrichment of 6 h. The detection limits of 80 CFU/g and 8 CFU/g of pork were attained within 120 min and 8 h, respectively. Real-world or field relevancy of the developed assay was evaluated by screening 82 raw and processed pork samples. As the developed assay is simple, user-friendly, cost-effective and sophisticated-equipment free, it would be more suitable for on-site testing of C. perfringens in foods. To our information, this is the first report to apply SRCA for the detection of C. perfringens.
Collapse
Affiliation(s)
| | - Kasanchi M Momin
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Govindarajan Bhuvana Priya
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India; College of Agriculture, Central Agricultural University (Imphal), Kyrdemkulai, Meghalaya, India
| | - Sandeep Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Pradeep N Gandhale
- ICAR- National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Madesh Angappan
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Samir Das
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Arnab Sen
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| |
Collapse
|
180
|
Janik M, Hamidi SV, Koba M, Perreault J, Walsh R, Bock WJ, Smietana M. Real-time isothermal DNA amplification monitoring in picoliter volumes using an optical fiber sensor. LAB ON A CHIP 2021; 21:397-404. [PMID: 33331382 DOI: 10.1039/d0lc01069c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rolling circle amplification (RCA) of DNA can be considered as a great alternative to the gold standard polymerase chain reaction (PCR), especially during this pandemic period, where rapid, sensitive, and reliable test results for hundreds of thousands of samples are required daily. This work presents the first research to date on direct, real-time and label-free isothermal DNA amplification monitoring using a microcavity in-line Mach-Zehnder interferometer (μIMZI) fabricated in an optical fiber. The solution based on μIMZI offers a great advantage over many other sensing concepts - making possible optical analysis in just picoliter sample volumes. The selectivity of the biosensor is determined by DNA primers immobilized on the microcavity's surface that act as selective biorecognition elements and trigger initiation of the DNA amplification process. In this study, we verified the sensing concept using circular DNA designed to target the H5N1 influenza virus. The developed biosensor exhibits an ultrahigh refractive index sensitivity reaching 14 000 nm per refractive index unit and a linear detection range between 9.4 aM and 94 pM of the target DNA sequence. Within a 30 min period, the amplification of as little as 9.4 aM DNA can be effectively detected, with a calculated limit of detection of as low as 0.2 aM DNA, suggesting that this methodology holds great promise in practical disease diagnosis applications in the future.
Collapse
Affiliation(s)
- Monika Janik
- Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662, Warszawa, Poland.
| | | | | | | | | | | | | |
Collapse
|
181
|
Wang C, Liu H, Wang H, Tao J, Yang T, Chen H, An R, Wang J, Huang N, Gong X, Song Z, Komiyama M, Liang X. Robust Storage of Chinese Language in a Pool of Small Single-Stranded DNA Rings and Its Facile Reading-Out. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chenru Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongfang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaojiao Tao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Taiwei Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Jing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ning Huang
- Globt Institute for Biotechnology Research, Qingdao 266109, P. R. China
| | - Xiangyu Gong
- Globt Institute for Biotechnology Research, Qingdao 266109, P. R. China
| | - Zhihao Song
- Globt Institute for Biotechnology Research, Qingdao 266109, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| |
Collapse
|
182
|
Shang J, Li C, Li F, Wang Q, Yuan B, Wang F. Construction of an Enzyme-Free Initiator-Replicated Hybridization Chain Reaction Circuit for Amplified Methyltransferase Evaluation and Inhibitor Assay. Anal Chem 2021; 93:2403-2410. [DOI: 10.1021/acs.analchem.0c04356] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chunxiao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fengzhe Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bifeng Yuan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
183
|
Xu L, Duan J, Chen J, Ding S, Cheng W. Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal Chim Acta 2020; 1148:238187. [PMID: 33516384 DOI: 10.1016/j.aca.2020.12.062] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023]
Abstract
Rolling circle amplification (RCA) is an efficient enzymatic isothermal reaction that using circular probe as a template to generate long tandem single-stranded DNA or RNA products under the initiation of short DNA or RNA primers. As a simplified derivative of natural rolling circle replication which synthesizes copies of circular nucleic acids molecules such as plasmids, RCA amplifies the circular template rapidly without thermal cycling and finds various applications in molecular biology. Compared with other amplification strategies, RCA has many obvious advantages. Firstly, because of the strict complementarity required in ligation of a padlock probe, it endows the RCA reaction with high specificity and can even be utilized to distinguish single base mismatches. Secondly, through the introduction of multiple primers, exponential amplification can be achieved easily and leads to a good sensitivity. Thirdly, RCA products can be customized by manipulating circular templates to generate functional nucleic acids such as aptamer, DNAzymes and restriction enzyme sites. Moreover, the RCA has good biocompatibility and is especially suitable for in situ detection. Therefore, RCA has attracted considerable attention as an efficient and potential tool for highly sensitive detection of biomarkers. Herein, we comprehensively introduce the fundamental principles of RCA technology, summarize it from three aspects including initiation mode, amplification mode and signal output mode, and discuss the recent application of RCA-based biosensor in this review.
Collapse
Affiliation(s)
- Lulu Xu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaxin Duan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
184
|
Developing Diagnostic and Therapeutic Approaches to Bacterial Infections for a New Era: Implications of Globalization. Antibiotics (Basel) 2020; 9:antibiotics9120916. [PMID: 33339391 PMCID: PMC7765786 DOI: 10.3390/antibiotics9120916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
In just a few months, the current coronavirus pandemic has exposed the need for a more global approach to human health. Indeed, the quick spread of infectious diseases and their unpredictable consequences, in terms of human lives and economic losses, will require a change in our strategy, both at the clinical and the research level. Ultimately, we should be ready to fight against infectious diseases affecting a huge number of people in different parts of the world. This new scenario will require rapid, inexpensive diagnostic systems, applicable anywhere in the world and, preferably, without the need for specialized personnel. Also, treatments for these diseases must be versatile, easily scalable, cheap, and easy to apply. All this will only be possible with joint support of the governments, which will have to make the requirements for the approval of new therapies more flexible. Meanwhile, the pharmaceutical sector must commit to prioritizing products of global interest over the most profitable ones. Extreme circumstances demand a vehement response, and any profit losses may well pay dividends going forward. Here, we summarize the developing technologies destined to face the current and future health challenges derived from infectious diseases and discuss which ones have more possibilities of being implemented.
Collapse
|
185
|
Pumford EA, Lu J, Spaczai I, Prasetyo ME, Zheng EM, Zhang H, Kamei DT. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens Bioelectron 2020; 170:112674. [PMID: 33035900 PMCID: PMC7529604 DOI: 10.1016/j.bios.2020.112674] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Early disease detection through point-of-care (POC) testing is vital for quickly treating patients and preventing the spread of harmful pathogens. Disease diagnosis is generally accomplished using quantitative polymerase chain reaction (qPCR) to amplify nucleic acids in patient samples, permitting detection even at low target concentrations. However, qPCR requires expensive equipment, trained personnel, and significant time. These resources are not available in POC settings, driving researchers to instead utilize isothermal amplification, conducted at a single temperature, as an alternative. Common isothermal amplification methods include loop-mediated isothermal amplification, recombinase polymerase amplification, rolling circle amplification, nucleic acid sequence-based amplification, and helicase-dependent amplification. There has been a growing interest in combining such amplification methods with POC detection methods to enable the development of diagnostic tests that are well suited for resource-limited settings as well as developed countries performing mass screenings. Exciting developments have been made in the integration of these two research areas due to the significant impact that such approaches can have on healthcare. This review will primarily focus on advances made by North American research groups between 2015 and June 2020, and will emphasize integrated approaches that reduce user steps, reliance on expensive equipment, and the system's time-to-result.
Collapse
Affiliation(s)
- Elizabeth A Pumford
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Jiakun Lu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Iza Spaczai
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Matthew E Prasetyo
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Elaine M Zheng
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Hanxu Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
186
|
Long N, Qiao Y, Xu Z, Tu J, Lu Z. Recent advances and application in whole-genome multiple displacement amplification. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0217-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
187
|
A novel isothermal detection method for the universal element of genetically modified soybean. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
188
|
SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol 2020; 18:e3000675. [PMID: 33216742 PMCID: PMC7717588 DOI: 10.1371/journal.pbio.3000675] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 12/04/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Changes in cell identities and positions underlie tissue development and disease progression. Although single-cell mRNA sequencing (scRNA-Seq) methods rapidly generate extensive lists of cell states, spatially resolved single-cell mapping presents a challenging task. We developed SCRINSHOT (Single-Cell Resolution IN Situ Hybridization On Tissues), a sensitive, multiplex RNA mapping approach. Direct hybridization of padlock probes on mRNA is followed by circularization with SplintR ligase and rolling circle amplification (RCA) of the hybridized padlock probes. Sequential detection of RCA-products using fluorophore-labeled oligonucleotides profiles thousands of cells in tissue sections. We evaluated SCRINSHOT specificity and sensitivity on murine and human organs. SCRINSHOT quantification of marker gene expression shows high correlation with published scRNA-Seq data over a broad range of gene expression levels. We demonstrate the utility of SCRINSHOT by mapping the locations of abundant and rare cell types along the murine airways. The amenability, multiplexity, and quantitative qualities of SCRINSHOT facilitate single-cell mRNA profiling of cell-state alterations in tissues under a variety of native and experimental conditions. This study presents SCRINSHOT, an amenable, multiplex RNA-mapping method, applicable to a wide variety of tissue types and conditions. It can function quantitatively across a broad range of expression levels and detect even rare cell types, facilitating the creation of digital tissue maps with single-cell resolution.
Collapse
|
189
|
Ding X, Yin K, Li Z, Pandian V, Smyth JA, Helal Z, Liu C. Cleavable hairpin beacon-enhanced fluorescence detection of nucleic acid isothermal amplification and smartphone-based readout. Sci Rep 2020; 10:18819. [PMID: 33139727 PMCID: PMC7608614 DOI: 10.1038/s41598-020-75795-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Fluorescence detection of nucleic acid isothermal amplification utilizing energy-transfer-tagged oligonucleotide probes provides a highly sensitive and specific method for pathogen detection. However, currently available probes suffer from relatively weak fluorescence signals and are not suitable for simple, affordable smartphone-based detection at the point of care. Here, we present a cleavable hairpin beacon (CHB)-enhanced fluorescence detection for isothermal amplification assay. The CHB probe is a single fluorophore-tagged hairpin oligonucleotide with five continuous ribonucleotides which can be cleaved by the ribonuclease to specifically initiate DNA amplification and generate strong fluorescence signals. By coupling with loop-mediated isothermal amplification (LAMP), the CHB probe could detect Borrelia burgdorferi (B. burgdorferi) recA gene with a sensitivity of 100 copies within 25 min and generated stronger specific fluorescence signals which were easily read and analysed by our programmed smartphone. Also, this CHB-enhanced LAMP (CHB-LAMP) assay was successfully demonstrated to detect B. burgdorferi DNA extracted from tick species, showing comparable results to real-time PCR assay. In addition, our CHB probe was compatible with other isothermal amplifications, such as isothermal multiple-self-matching-initiated amplification (IMSA). Therefore, CHB-enhanced fluorescence detection is anticipated to facilitate the development of simple, sensitive smartphone-based point-of-care pathogen diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Xiong Ding
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Kun Yin
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Vikram Pandian
- Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Joan A Smyth
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Zeinab Helal
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
190
|
Zhang Y, Zhang P, Chen L, Kaushik A, Hu K, Wang TH. ddRFC: A scalable multiplexed droplet digital nucleic acid amplification test platform. Biosens Bioelectron 2020; 167:112499. [PMID: 32846271 PMCID: PMC7534973 DOI: 10.1016/j.bios.2020.112499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/24/2023]
Abstract
Digital nucleic acid amplification tests (digital NAATs) have emerged as a popular tool for nucleic acid detection due to their high sensitivity and specificity. Most current digital NAAT platforms, however, are limited to a "one-color-one-target" approach wherein each target is encoded with a specific fluorescently-labeled probe for single-plex fluorometric detection. This approach is difficult to multiplex due to spectral overlap between any additional fluorophores, and multiplexability of digital NAATs has therefore been limited. As a means to scale multiplexability, we have developed a multiplexed digital NAAT platform, termed Droplet Digital Ratiometric Fluorescence Coding (ddRFC), via a padlock probe-based nucleic acid detection assay which encodes each nucleic acid target with a unique combination of 2 fluorophores. We detect this encoded two-color fluorescence signature of each target by performing digital amplification in microfluidic droplets. To demonstrate the utility of our platform, we have synthesized 6 distinct padlock probes, each rendering a unique two-color fluorescence signature to a nucleic acid target representing a clinically important sexually transmitted infection (STI). We proceed to demonstrate broad-based, two-plex, four-plex, and six-plex detection of the STI targets with single-molecule resolution. Our design offers a cost-effective approach to scale up multiplexability by simply tuning the number of molecular beacon binding sites on the padlock probe without redesigning amplification primers or fluorescent molecular beacons. With further development, our platform has the potential to enable highly multiplexed detection of nucleic acid targets, with potentially unrestricted multiplexability, and serve as a diagnostic tool for many more diseases in the future.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aniruddha Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katherine Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
191
|
Zhang K, Deng R, Gao H, Teng X, Li J. Lighting up single-nucleotide variation in situ in single cells and tissues. Chem Soc Rev 2020; 49:1932-1954. [PMID: 32108196 DOI: 10.1039/c9cs00438f] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to 'see' genetic information directly in single cells can provide invaluable insights into complex biological systems. In this review, we discuss recent advances of in situ imaging technologies for visualizing the subtlest sequence alteration, single-nucleotide variation (SNV), at single-cell level. The mechanism of recently developed methods for SNV discrimination are summarized in detail. With recent developments, single-cell SNV imaging methods have opened a new door for studying the heterogenous and stochastic genetic information in individual cells. Furthermore, SNV imaging can be used on morphologically preserved tissue, which can provide information on histological context for gene expression profiling in basic research and genetic diagnosis. Moreover, the ability to visualize SNVs in situ can be further developed into in situ sequencing technology. We expect this review to inspire more research work into in situ SNV imaging technologies for investigating cellular phenotypes and gene regulation at single-nucleotide resolution, and developing new clinical and biomedical applications.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Hua Gao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China. and Department of Pathogeny Biology, Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
192
|
Rolling Circle Amplification (RCA)-Mediated Genome-Wide ihpRNAi Mutant Library Construction in Brassica napus. Int J Mol Sci 2020; 21:ijms21197243. [PMID: 33008068 PMCID: PMC7582411 DOI: 10.3390/ijms21197243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
With the successful completion of genomic sequencing for Brassica napus, identification of novel genes, determination of functions performed by genes, and exploring the molecular mechanisms underlying important agronomic traits were challenged. Mutagenesis-based functional genomics techniques including chemical, physical, and insertional mutagenesis have been used successfully in the functional characterization of genes. However, these techniques had their disadvantages and inherent limitations for allopolyploid Brassica napus, which contained a large number of homologous and redundant genes. Long intron-spliced hairpin RNA (ihpRNA) constructs which contained inverted repeats of the target gene separated by an intron, had been shown to be very effective in triggering RNAi in plants. In the present study, the genome-wide long ihpRNA library of B. napus was constructed with the rolling circle amplification (RCA)-mediated technology. Using the phytoene desaturase (PDS) gene as a target control, it was shown that the RCA-mediated long ihpRNA construct was significantly effective in triggering gene silence in B. napus. Subsequently, the resultant long ihpRNA library was transformed into B. napus to produce corresponding RNAi mutants. Among the obtained transgenic ihpRNA population of B. napus, five ihpRNA lines with observable mutant phenotypes were acquired including alterations in the floral model and the stamen development. The target genes could be quickly identified using specific primers. These results showed that the RCA-mediated ihpRNA construction method was effective for the genome-wide long ihpRNA library of B. napus, therefore providing a platform for study of functional genomics in allopolyploid B. napus.
Collapse
|
193
|
Suea-Ngam A, Bezinge L, Mateescu B, Howes PD, deMello AJ, Richards DA. Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sens 2020; 5:2701-2723. [PMID: 32838523 PMCID: PMC7485284 DOI: 10.1021/acssensors.0c01488] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Driven by complex and interconnected factors, including population growth, climate change, and geopolitics, infectious diseases represent one of the greatest healthcare challenges of the 21st century. Diagnostic technologies are the first line of defense in the fight against infectious disease, providing critical information to inform epidemiological models, track diseases, decide treatment choices, and ultimately prevent epidemics. The diagnosis of infectious disease at the genomic level using nucleic acid disease biomarkers has proven to be the most effective approach to date. Such methods rely heavily on enzymes to specifically amplify or detect nucleic acids in complex samples, and significant effort has been exerted to harness the power of enzymes for in vitro nucleic acid diagnostics. Unfortunately, significant challenges limit the potential of enzyme-assisted nucleic acid diagnostics, particularly when translating diagnostic technologies from the lab toward the point-of-use or point-of-care. Herein, we discuss the current state of the field and highlight cross-disciplinary efforts to solve the challenges associated with the successful deployment of this important class of diagnostics at or near the point-of-care.
Collapse
Affiliation(s)
- Akkapol Suea-Ngam
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Léonard Bezinge
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Bogdan Mateescu
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
- Brain Research Institute,
Medical Faculty of the University of
Zürich, Winterthurerstrasse 190, 8057
Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Andrew J. deMello
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Daniel A. Richards
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| |
Collapse
|
194
|
Björkesten J, Patil S, Fredolini C, Lönn P, Landegren U. A multiplex platform for digital measurement of circular DNA reaction products. Nucleic Acids Res 2020; 48:e73. [PMID: 32469060 PMCID: PMC7367203 DOI: 10.1093/nar/gkaa419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Digital PCR provides high sensitivity and unprecedented accuracy in DNA quantification, but current approaches require dedicated instrumentation and have limited opportunities for multiplexing. Here, we present an isothermal platform for digital enumeration of DNA reaction products in multiplex via standard fluorescence microscopy. Circular DNA strands, which may result from a wide range of molecular detection reactions, are captured on streptavidin-coated surfaces via hybridized biotinylated primers, followed by rolling circle amplification (RCA). The addition of 15% polyethylene glycol 4000 during RCA resulted in uniform, easily recorded reaction products. Immobilized DNA circles were visualized as RCA products with 100% efficiency, as determined by droplet digital PCR. We confirmed previous reports about the influence on RCA by sequence composition and size of RCA templates, and we developed an efficient one-step restaining procedure for sequential multiplexing using toehold-triggered DNA strand displacement. Finally, we exemplify applications of this digital readout platform by demonstrating more than three orders of magnitude improved sensitivity by digital measurement of prostate specific antigen (PSA) (detection threshold ∼100 pg/l), compared to a commercial enzyme-linked immunosorbent assay (ELISA) with analogue readout (detection threshold ∼500 ng/l), using the same antibody pair.
Collapse
Affiliation(s)
- Johan Björkesten
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Sourabh Patil
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Claudia Fredolini
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Peter Lönn
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Ulf Landegren
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| |
Collapse
|
195
|
Yasukawa K, Yanagihara I, Fujiwara S. Alteration of enzymes and their application to nucleic acid amplification (Review). Int J Mol Med 2020; 46:1633-1643. [PMID: 33000189 PMCID: PMC7521554 DOI: 10.3892/ijmm.2020.4726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of polymerase chain reaction (PCR) in 1985, several methods have been developed to achieve nucleic acid amplification, and are currently used in various fields including clinical diagnosis and life science research. Thus, a wealth of information has accumulated regarding nucleic acid-related enzymes. In this review, some nucleic acid-related enzymes were selected and the recent advances in their modification along with their application to nucleic acid amplification were described. The discussion also focused on optimization of the corresponding reaction conditions. Using newly developed enzymes under well-optimized reaction conditions, the sensitivity, specificity, and fidelity of nucleic acid tests can be improved successfully.
Collapse
Affiliation(s)
- Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606‑8502, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka 594‑1101, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei‑Gakuin University, Sanda, Hyogo 669‑1337, Japan
| |
Collapse
|
196
|
Jiao J, Li P, Gu Y, Du X, Wang S, Wang J. A fluorescence quenching-recovery sensor based on RCA for the specific analysis of Fusobacterium nucleatum. nucleatum. Anal Biochem 2020; 604:113808. [DOI: 10.1016/j.ab.2020.113808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
|
197
|
Huo B, Hu Y, Gao Z, Li G. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta 2020; 222:121565. [PMID: 33167261 DOI: 10.1016/j.talanta.2020.121565] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
It has seen increasing development of reliable, robust, and flexible biosensors for rapid food-safety analysis in the past few decades. Recently, functional nucleic acid-based biosensors have attracted attention because of their programmability, bottom-up characteristics, and structural switches. However, few systematic reviews devoted to categorizing the potential of DNA nanostructures and devices were found for detecting food contaminants. Hence, the applications of functional nucleic acid-based biosensors were reviewed for analyzing food contaminants, including foodborne pathogen bacteria, biotoxins, heavy metals, and et al. In addition to categorizing the various biosensors, multiple signal readout strategies, such as optical, electrochemical, and mass-based signals were also examined. Finally, the future changes and potential opportunities, as well as practical applications of functional nucleic acid-based biosensors were discussed.
Collapse
Affiliation(s)
- Bingyang Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
198
|
Santovito E, Greco D, D'Ascanio V, Sanzani SM, Avantaggiato G. Development of a DNA-based biosensor for the fast and sensitive detection of ochratoxin A in urine. Anal Chim Acta 2020; 1133:20-29. [PMID: 32993870 DOI: 10.1016/j.aca.2020.07.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
In this paper, a novel DNA-based biosensor is proposed, which is based on paramagnetic microbeads carrying an ochratoxin A (OTA) capture aptamer. A sandwich-like detection complex is linked to the capture aptamer and is able to trigger, in presence of OTA, an isothermal rolling circle amplification (RCA) reaction. This latter generated autocatalytic units with a peroxidase activity (DNAzyme) that, in presence of a proper substrate, gave a blue-coloured product visible by the naked eye. The capture aptamer, blocked onto magnetic beads, allowed the specific capture of OTA in liquid samples. The modified detection aptamer, annealed to a circularized probe, was then used to detect the toxin capture event. Indeed, in the presence of OTA and an isothermal enzyme, the circular DNA was amplified, producing a single-stranded and tandem repeated long homologous copy of its sequence. In the DNA strand, a self-catalytic structure was formed with hemin as the catalytic core, inducing the development of blue colour in the presence of ABTS and hydrogen peroxide. The results showed that the biosensor has high sensitivity and selectivity for the detection of OTA, as low as 1.09 × 10-12 ng/mL. Moreover, the proposed biosensor was successfully used for the detection of OTA in naturally contaminated rat urine. Accuracy and repeatability data obtained in recovery experiments were satisfying, being recoveries >95% with relative standard deviations in the range 3.6-15%. For the first time, an aptasensor was successfully applied to detect OTA in biological fluids. It can be used for mycotoxin biomonitoring and assessment of individual exposure.
Collapse
Affiliation(s)
- Elisa Santovito
- Istituto di Scienze Delle Produzioni Alimentari (ISPA), Consiglio Nazionale Delle Ricerche (CNR), Via Amendola 122/O, 70126, Bari, Italy.
| | - Donato Greco
- Istituto di Scienze Delle Produzioni Alimentari (ISPA), Consiglio Nazionale Delle Ricerche (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | - Vito D'Ascanio
- Istituto di Scienze Delle Produzioni Alimentari (ISPA), Consiglio Nazionale Delle Ricerche (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | | | - Giuseppina Avantaggiato
- Istituto di Scienze Delle Produzioni Alimentari (ISPA), Consiglio Nazionale Delle Ricerche (CNR), Via Amendola 122/O, 70126, Bari, Italy
| |
Collapse
|
199
|
Wang ZY, Li P, Cui L, Qiu JG, Jiang B, Zhang CY. Integration of nanomaterials with nucleic acid amplification approaches for biosensing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
200
|
Ko CN, Cheng S, Leung CH, Ma DL. A Long-Lived Phosphorescence Amplification System Integrated with Graphene Oxide and a Stable Split G-Quadruplex Protector as an Isothermal “Off–On” Biosensor for the HBV Gene. ACS APPLIED BIO MATERIALS 2020; 3:4556-4565. [DOI: 10.1021/acsabm.0c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shasha Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|