151
|
Jensen MP, Barker RA. Disease-Modification in Huntington's Disease: Moving Away from a Single-Target Approach. J Huntingtons Dis 2019; 8:9-22. [PMID: 30636742 DOI: 10.3233/jhd-180320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To date, no candidate intervention has demonstrated a disease-modifying effect in Huntington's disease, despite promising results in preclinical studies. In this commentary we discuss disease-modifying therapies that have been trialled in Huntington's disease and speculate that these failures may be attributed, in part, to the assumption that a single drug selectively targeting one aspect of disease pathology will be universally effective, regardless of disease stage or "subtype". We therefore propose an alternative approach for effective disease-modification that uses 1) a combination approach rather than monotherapy, and 2) targets the disease process early on - before it is clinically manifest. Finally, we will consider whether this change in approach that we propose will be relevant in the future given the recent shift to targeting more proximal disease processes-e.g., huntingtin gene expression; a timely question given Roche's recent decision to take on the clinical development of a promising new drug candidate in Huntington's disease, IONIS-HTTRx.
Collapse
Affiliation(s)
- Melanie P Jensen
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Cambridge Stem Cell Institute, Cambridge, UK
| |
Collapse
|
152
|
Ivanova MM, Changsila E, Iaonou C, Goker-Alpan O. Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases. PLoS One 2019; 14:e0210617. [PMID: 30633777 PMCID: PMC6329517 DOI: 10.1371/journal.pone.0210617] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022] Open
Abstract
The major cellular clearance pathway for organelle and unwanted proteins is the autophagy-lysosome pathway (ALP). Lysosomes not only house proteolytic enzymes, but also traffic organelles, sense nutrients, and repair mitochondria. Mitophagy is initiated by damaged mitochondria, which is ultimately degraded by the ALP to compensate for ATP loss. While both systems are dynamic and respond to continuous cellular stressors, most studies are derived from animal models or cell based systems, which do not provide complete real time data about cellular processes involved in the progression of lysosomal storage diseases in patients. Gaucher and Fabry diseases are rare sphingolipid disorders due to the deficiency of the lysosomal enzymes; glucocerebrosidase and α-galactosidase A with resultant lysosomal dysfunction. Little is known about ALP pathology and mitochondrial function in patients with Gaucher and Fabry diseases, and the effects of enzyme replacement therapy (ERT). Studying blood mononuclear cells (PBMCs) from patients, we provide in vivo evidence, that regulation of ALP is defective. In PBMCs derived from Gaucher patients, we report a decreased number of autophagic vacuoles with increased cytoplasmic localization of LC3A/B, accompanied by lysosome accumulation. For both Gaucher and Fabry diseases, the level of the autophagy marker, Beclin1, was elevated and ubiquitin binding protein, SQSTM1/p62, was decreased. mTOR inhibition did not activate autophagy and led to ATP inhibition in PBMCs. Lysosomal abnormalities, independent of the type of the accumulated substrate suppress not only autophagy, but also mitochondrial function and mTOR signaling pathways. ERT partially restored ALP function, LC3-II accumulation and decreased LC3-I/LC3-II ratios. Levels of lysosomal (LAMP1), autophagy (LC3), and mitochondrial markers, (Tfam), normalized after ERT infusion. In conclusion, there is mTOR pathway dysfunction in sphingolipidoses, as observed in both PBMCs derived from patients with Gaucher and Fabry diseases, which leads to impaired autophagy and mitochondrial stress. ERT partially improves ALP function.
Collapse
Affiliation(s)
- Margarita M. Ivanova
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
- * E-mail: (MMI); (OGA)
| | - Erk Changsila
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Chidima Iaonou
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, United States of America
- * E-mail: (MMI); (OGA)
| |
Collapse
|
153
|
Zhuang Y, Xu H, Richard SA, Cao J, Li H, Shen H, Yu Z, Zhang J, Wang Z, Li X, Chen G. Inhibition of EPAC2 Attenuates Intracerebral Hemorrhage-Induced Secondary Brain Injury via the p38/BIM/Caspase-3 Pathway. J Mol Neurosci 2019; 67:353-363. [PMID: 30607901 DOI: 10.1007/s12031-018-1215-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/11/2018] [Indexed: 12/14/2022]
Abstract
Exchange proteins directly activated by cAMP (EPACs) are critical cAMP-dependent signaling pathway intermediaries that have been implicated in the pathogenesis of several human diseases, particularly neurological disorders. However, their pathogenic role in secondary brain injury (SBI) induced by intracranial hemorrhage (ICH) is unknown. The aim of this study was to examine the effects of EPAC2 on ICH-induced SBI and its underlying mechanisms. An in vivo ICH model was established in Sprague-Dawley rats by autologous blood injection. In addition, rat primary cortical neuronal cultures were exposed to oxyhemoglobin to simulate ICH in vitro. The function of EPAC2 in SBI induced by ICH was studied using the EPAC2-specific inhibitor ESI-05. In this study, we found that EPAC2 protein expression was significantly increased in the ICH models in vitro and in vivo. Furthermore, EPAC2 activation was inhibited by ESI-05 under ICH conditions. Inhibition of EPAC2 decreased the apoptosis rate of nerve cells in the cortex accompanied by a corresponding decrease in the protein expression of phosphorylated p38, Bcl-2-like protein 11 (BIM), and caspase-3. In summary, this study showed that inhibition of EPAC2 activation by ESI-05 suppressed SBI induced by ICH via the p38/BIM/caspase-3 signaling pathway.
Collapse
Affiliation(s)
- Yan Zhuang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Department of Neurosurgery, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu Province, China
| | - Hui Xu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Department of Neurosurgery, The Sixth People's Hospital of Nantong, No. 500 Yonghe Road, Nantong, 226011, Jiangsu Province, China
| | - Seidu A Richard
- Department of Immunology, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jie Cao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jian Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Xiang Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
154
|
Paulson B, Kim IH, Namgoong JM, Kim YG, Lee S, Moon Y, Shin DM, Choo MS, Kim JK. Longitudinal micro-endoscopic monitoring of high-success intramucosal xenografts for mouse models of colorectal cancer. Int J Med Sci 2019; 16:1453-1460. [PMID: 31673236 PMCID: PMC6818213 DOI: 10.7150/ijms.35666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently lethal forms of cancer. Intramucosal injection allows development of better mouse models of CRC, as orthotopic xenografts allow development of adenocarcinoma in the submucosa of the mouse colon wall. In this paper, a method of orthotopic injection is monitored longitudinally using cellular-resolution real-time in vivo fluorescence microendoscopy, following the injection of three different cell lines: 3T3-GFP to confirm immunosuppression and HCT116-RFP cells to model CRC. Adenoma formation is first observable after 7 to 10 days, and by use of 33 G needles a tumor induction rate of greater than 85% is documented. An additional experiment on the injection of rapamycin reveals drug efficacy and localization between 24 and 48 hours, and suggests the promise of real-time cellular-resolution fluorescence micro-endoscopy for developing longitudinal therapy regimes in mural models of CRC.
Collapse
Affiliation(s)
- Bjorn Paulson
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea
| | - Ick Hee Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA
| | - Jung-Man Namgoong
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea
| | - Young Gyu Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea
| | - Youngjin Moon
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea.,Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea
| | - Myung-Soo Choo
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05055, Republic of Korea
| |
Collapse
|
155
|
Dang M, Zeng X, Chen B, Wang H, Li H, Liu Y, Zhang X, Cao X, Du F, Guo C. Soluble receptor for advance glycation end-products inhibits ischemia/reperfusion-induced myocardial autophagy via the STAT3 pathway. Free Radic Biol Med 2019; 130:107-119. [PMID: 30367996 DOI: 10.1016/j.freeradbiomed.2018.10.437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 11/24/2022]
Abstract
The pathogenesis of myocardial ischemia/reperfusion (I/R) is poorly understood, but recent evidence suggests that autophagy plays crucial roles in I/R injuries. Soluble receptor for advanced glycation end-products (sRAGE) exerts protective effects during I/R by decreasing cardiac apoptosis, which is mediated via increasing the ubiquitin proteasome system (UPS) and signal transducer and activator of transcription 3 (STAT3). The present study examined the effects and mechanisms of sRAGE on I/R-triggered cardiac autophagy. I/R was performed in mice or primary neonatal cardiomyocytes with or without sRAGE administration or overexpression. Cardiac function and infarct size were detected in mouse hearts. Apoptosis, autophagy and autophagy-related signaling pathways were detected in mouse hearts and cardiomyocytes. The results demonstrated that sRAGE significantly improved cardiac function and reduced infarct size during I/R in mice. sRAGE inhibited I/R-induced apoptosis, which correlated with a reduction in autophagy-associated proteins, including ATG7, Beclin-1 and microtubule-associated protein 1 light chain 3 (LC3). sRAGE reduced autophagosome formation during I/R in vivo and in vitro. sRAGE significantly activated STAT3, but not mammalian target of rapamycin (mTOR), during I/R in vivo and in vitro, and suppression of STAT3 abolished the sRAGE inhibition of autophagy during I/R in vitro. Activation of autophagy using ATG7 overexpression with an adenovirus significantly abolished the sRAGE-induced reduction of cardiac apoptosis during I/R. These results suggest that sRAGE inhibits I/R injuries in the heart via a decrease in autophagy, a process that is dependent on STAT3 activation.
Collapse
Affiliation(s)
- Mengqiu Dang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Buxing Chen
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Huihua Li
- Department of Cardiology, Institute of cardiovascular Disease, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Xiuling Zhang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Xianxian Cao
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Fenghe Du
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China; Department of Geriatrics, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Caixia Guo
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
156
|
Li Y, Wang X, Yan J, Liu Y, Yang R, Pan D, Wang L, Xu Y, Li X, Yang M. Nanoparticle ferritin-bound erastin and rapamycin: a nanodrug combining autophagy and ferroptosis for anticancer therapy. Biomater Sci 2019; 7:3779-3787. [DOI: 10.1039/c9bm00653b] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intracellular autophagy-mediated ferroptosis-induction process by the NFER nanodrug assembled by ferritin, erastin, and rapamycin.
Collapse
|
157
|
Seranova E, Ward C, Chipara M, Rosenstock TR, Sarkar S. In Vitro Screening Platforms for Identifying Autophagy Modulators in Mammalian Cells. Methods Mol Biol 2019; 1880:389-428. [PMID: 30610712 DOI: 10.1007/978-1-4939-8873-0_26] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Autophagy is a vital homeostatic pathway essential for cellular survival and human health. It primarily functions as an intracellular degradation process for the turnover of aggregation-prone proteins and unwanted organelles. Dysregulation of autophagy underlying diverse human diseases reduces cell viability, whereas stimulation of autophagy is cytoprotective in a number of transgenic disease models including neurodegenerative disorders. Thus, therapeutic exploitation of autophagy is considered a potential treatment strategy in certain human diseases, and therefore, chemical inducers of autophagy have tremendous biomedical relevance. In this review, we describe the in vitro screening platforms to identify autophagy modulators in mammalian cells using various methodologies including fluorescence and high-content imaging, flow cytometry, fluorescence and luminescence detection by microplate reader, immunoblotting, and immunofluorescence. The commonly used autophagy reporters in these screening platforms are either based on autophagy marker like LC3 or autophagy substrate such as aggregation-prone proteins or p62/SQSTM1. The reporters and assays for monitoring autophagy are evolving over time to become more sensitive in measuring autophagic flux with the capability of high-throughput applications for drug discovery. Here we highlight these developments and also describe the stringent secondary autophagy assays for characterizing the autophagy modulators arising from the primary screen. Since autophagy is implicated in myriad human physiological and pathological conditions, these technologies will enable identifying novel chemical modulators or genetic regulators of autophagy that will be of biomedical and fundamental importance to human health.
Collapse
Affiliation(s)
- Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carl Ward
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Miruna Chipara
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tatiana R Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
158
|
Hong H, Koon AC, Chen ZS, Wei Y, An Y, Li W, Lau MHY, Lau KF, Ngo JCK, Wong CH, Au-Yeung HY, Zimmerman SC, Chan HYE. AQAMAN, a bisamidine-based inhibitor of toxic protein inclusions in neurons, ameliorates cytotoxicity in polyglutamine disease models. J Biol Chem 2018; 294:2757-2770. [PMID: 30593503 DOI: 10.1074/jbc.ra118.006307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2018] [Indexed: 01/30/2023] Open
Abstract
Polyglutamine (polyQ) diseases are a group of dominantly inherited neurodegenerative disorders caused by the expansion of an unstable CAG repeat in the coding region of the affected genes. Hallmarks of polyQ diseases include the accumulation of misfolded protein aggregates, leading to neuronal degeneration and cell death. PolyQ diseases are currently incurable, highlighting the urgent need for approaches that inhibit the formation of disaggregate cytotoxic polyQ protein inclusions. Here, we screened for bisamidine-based inhibitors that can inhibit neuronal polyQ protein inclusions. We demonstrated that one inhibitor, AQAMAN, prevents polyQ protein aggregation and promotes de-aggregation of self-assembled polyQ proteins in several models of polyQ diseases. Using immunocytochemistry, we found that AQAMAN significantly reduces polyQ protein aggregation and specifically suppresses polyQ protein-induced cell death. Using a recombinant and purified polyQ protein (thioredoxin-Huntingtin-Q46), we further demonstrated that AQAMAN interferes with polyQ self-assembly, preventing polyQ aggregation, and dissociates preformed polyQ aggregates in a cell-free system. Remarkably, AQAMAN feeding of Drosophila expressing expanded polyQ disease protein suppresses polyQ-induced neurodegeneration in vivo In addition, using inhibitors and activators of the autophagy pathway, we demonstrated that AQAMAN's cytoprotective effect against polyQ toxicity is autophagy-dependent. In summary, we have identified AQAMAN as a potential therapeutic for combating polyQ protein toxicity in polyQ diseases. Our findings further highlight the importance of the autophagy pathway in clearing harmful polyQ proteins.
Collapse
Affiliation(s)
- Huiling Hong
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Alex Chun Koon
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Zhefan Stephen Chen
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Yuming Wei
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Ying An
- From the Laboratory of Drosophila Research.,School of Life Sciences, Faculty of Science
| | - Wen Li
- School of Life Sciences, Faculty of Science
| | - Matthew Ho Yan Lau
- the Department of Chemistry, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, and
| | | | | | | | - Ho Yu Au-Yeung
- the Department of Chemistry, University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, and
| | - Steven C Zimmerman
- the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ho Yin Edwin Chan
- From the Laboratory of Drosophila Research, .,School of Life Sciences, Faculty of Science.,Gerald Choa Neuroscience Centre, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
159
|
Atg5 Supports Rickettsia australis Infection in Macrophages In Vitro and In Vivo. Infect Immun 2018; 87:IAI.00651-18. [PMID: 30297526 PMCID: PMC6300621 DOI: 10.1128/iai.00651-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 01/26/2023] Open
Abstract
Rickettsiae can cause life-threatening infections in humans. Macrophages are one of the initial targets for rickettsiae after inoculation by ticks. However, it remains poorly understood how rickettsiae remain free in macrophages prior to establishing their infection in microvascular endothelial cells. Here, we demonstrated that the concentration of Rickettsia australis was significantly greater in infected tissues of Atg5flox/flox mice than in the counterparts of Atg5flox/flox Lyz-Cre mice, in association with a reduced level of interleukin-1β (IL-1β) in serum. The greater concentration of R. australis in Atg5flox/flox bone marrow-derived macrophages (BMMs) than in Atg5flox/flox Lyz-Cre BMMs in vitro was abolished by exogenous treatment with recombinant IL-1β. Rickettsia australis induced significantly increased levels of light chain 3 (LC3) form II (LC3-II) and LC3 puncta in Atg5-competent BMMs but not in Atg5-deficient BMMs, while no p62 turnover was observed. Further analysis found the colocalization of LC3 with a small portion of R. australis and Rickettsia-containing double-membrane-bound vacuoles in the BMMs of B6 mice. Moreover, treatment with rapamycin significantly increased the concentrations of R. australis in B6 BMMs compared to those in the untreated B6 BMM controls. Taken together, our results demonstrate that Atg5 favors R. australis infection in mouse macrophages in association with a suppressed level of IL-1β production but not active autophagy flux. These data highlight the contribution of Atg5 in macrophages to the pathogenesis of rickettsial diseases.
Collapse
|
160
|
Fan P, Xie XH, Chen CH, Peng X, Zhang P, Yang C, Wang YT. Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy. DNA Cell Biol 2018; 38:10-22. [PMID: 30556744 DOI: 10.1089/dna.2018.4348] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The generation of reactive oxygen species (ROS) in response to oxidative stress has important effects on cell development, normal function, and survival. It may cause oxidative damage to intracellular macromolecular substances and mitochondria through several signaling pathways. However, the damaged mitochondria promote further ROS generation, creating a vicious cycle that can cause cellular injury. In addition, excessive ROS produced by damaged mitochondria can trigger mitophagy, a process that can scavenge impaired mitochondria and reduce ROS level to maintain stable mitochondrial function in cells. Therefore, mitophagy heaps maintain cellular homeostasis under oxidative stress. In this article, we review recent advances in cellular damage caused by excessive ROS, the mechanism of mitophagy, and the close relationship between ROS and mitophagy. This review provides a new perspective on therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Pan Fan
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Xing-Hui Xie
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chang-Hong Chen
- 2 Department of Orthopaedic Surgery, Jiangyin Hospital of Traditional Chinese Medicine , Wuxi, Jiangsu, China
| | - Xin Peng
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Po Zhang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Cheng Yang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Yun-Tao Wang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
161
|
Proteomic analysis of protein homeostasis and aggregation. J Proteomics 2018; 198:98-112. [PMID: 30529741 DOI: 10.1016/j.jprot.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) refers to the ability of cells to preserve the correct balance between protein synthesis, folding and degradation. Proteostasis is essential for optimal cell growth and survival under stressful conditions. Various extracellular and intracellular stresses including heat shock, oxidative stress, proteasome malfunction, mutations and aging-related modifications can result in disturbed proteostasis manifested by enhanced misfolding and aggregation of proteins. To limit protein misfolding and aggregation cells have evolved various strategies including molecular chaperones, proteasome system and autophagy. Molecular chaperones assist folding of proteins, protect them from denaturation and facilitate renaturation of the misfolded polypeptides, whereas proteasomes and autophagosomes remove the irreversibly damaged proteins. The impairment of proteostasis results in protein aggregation that is a major pathological hallmark of numerous age-related disorders, such as cataract, Alzheimer's, Parkinson's, Huntington's, and prion diseases. To discover protein markers and speed up diagnosis of neurodegenerative diseases accompanied by protein aggregation, proteomic tools have increasingly been used in recent years. Systematic and exhaustive analysis of the changes that occur in the proteomes of affected tissues and biofluids in humans or in model organisms is one of the most promising approaches to reveal mechanisms underlying protein aggregation diseases, improve their diagnosis and develop therapeutic strategies. Significance: In this review we outline the elements responsible for maintaining cellular proteostasis and present the overview of proteomic studies focused on protein-aggregation diseases. These studies provide insights into the mechanisms responsible for age-related disorders and reveal new potential biomarkers for Alzheimer's, Parkinson's, Huntigton's and prion diseases.
Collapse
|
162
|
Wang S, Zheng S, Zhang Q, Yang Z, Yin K, Xu S. Atrazine hinders PMA-induced neutrophil extracellular traps in carp via the promotion of apoptosis and inhibition of ROS burst, autophagy and glycolysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:282-291. [PMID: 30193222 DOI: 10.1016/j.envpol.2018.08.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/29/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Atrazine (ATR), a selective herbicide, is consistently used worldwide and has been confirmed to be harmful to the health of aquatic organisms. The release of neutrophil extracellular traps (NETs) is one of the newly discovered antimicrobial mechanisms. Although several immune functions have been analyzed under ATR exposure, the effect of ATR on NETs remains mainly unexplored. In the present study, we treated carp neutrophils using 5 μg/ml ATR and 5 μg/ml ATR combined with 100 nM rapamycin to elucidate the underlying mechanisms and to clarify the effect of ATR on phorbol myristate acetate (PMA)-induced NETs. The results of the morphological observation and quantitative analysis of extracellular DNA and myeloperoxidase (MPO) showed that NETs formation were significantly inhibited by ATR exposure. Moreover, we found that in the NETs process, ATR downregulated the expression of the anti-apoptosis gene B-cell lymphoma-2 (Bcl-2), increased the expression of the pro-apoptosis factors Bcl-2-Associated X (BAX), cysteinyl aspartate specific proteinases (Caspase3, 9), and anti-autophagy factor mammalian target of rapamycin (mTOR), decreased the expression of autophagy-related protein light chain 3B (LC3B) and glucose transport proteins (GLUT1, 4), disturbed the activities of phosphofructokinase (PFK), pyruvate kinase (PKM), and hexokinase (HK) and limited reactive oxygen species (ROS) levels, indicating that the reduced NETs release was a consequence of increased apoptosis and diminished ROS burst, autophagy and down-regulated glycolysis under ATR treatment. Meanwhile, rapamycin restored the inhibited autophagy and glycolysis and thus resisted the ATR-suppressed NETs. The present study perfects the mechanism theory of ATR immunotoxicity to fish and has a certain value for human health risk assessment.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
163
|
Weber JJ, Kloock SJ, Nagel M, Ortiz-Rios MM, Hofmann J, Riess O, Nguyen HP. Calpastatin ablation aggravates the molecular phenotype in cell and animal models of Huntington disease. Neuropharmacology 2018; 133:94-106. [PMID: 29355642 DOI: 10.1016/j.neuropharm.2018.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Deciphering the molecular pathology of Huntington disease is of particular importance, not only for a better understanding of this neurodegenerative disease, but also to identify potential therapeutic targets. The polyglutamine-expanded disease protein huntingtin was shown to undergo proteolysis, which results in the accumulation of toxic and aggregation-prone fragments. Amongst several classes of proteolytic enzymes responsible for huntingtin processing, the group of calcium-activated calpains has been found to be a significant mediator of the disease protein toxicity. To confirm the impact of calpain-mediated huntingtin cleavage in Huntington disease, we analysed the effect of depleting or overexpressing the endogenous calpain inhibitor calpastatin in HEK293T cells transfected with wild-type or polyglutamine-expanded huntingtin. Moreover, we crossbred huntingtin knock-in mice with calpastatin knockout animals to assess its effect not only on huntingtin cleavage and aggregation but also additional molecular markers. We demonstrated that a reduced or ablated expression of calpastatin triggers calpain overactivation and a consequently increased mutant huntingtin cleavage in cells and in vivo. These alterations were accompanied by an elevated formation of predominantly cytoplasmic huntingtin aggregates. On the other hand, overexpression of calpastatin in cells attenuated huntingtin fragmentation and aggregation. In addition, we observed an enhanced cleavage of DARPP-32, p35 and synapsin-1 in neuronal tissue upon calpain overactivation. Our results corroborate the important role of calpains in the molecular pathogenesis of Huntington disease and endorse targeting these proteolytic enzymes as a therapeutic approach.
Collapse
Affiliation(s)
- Jonasz Jeremiasz Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Simon Johannes Kloock
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Maike Nagel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Midea Malena Ortiz-Rios
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Julian Hofmann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, Calwerstraße 7, 72076, Tübingen, Germany.
| |
Collapse
|
164
|
Ruetenik A, Barrientos A. Exploiting Post-mitotic Yeast Cultures to Model Neurodegeneration. Front Mol Neurosci 2018; 11:400. [PMID: 30450036 PMCID: PMC6224518 DOI: 10.3389/fnmol.2018.00400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Over the last few decades, the budding yeast Saccharomyces cerevisiae has been extensively used as a valuable organism to explore mechanisms of aging and human age-associated neurodegenerative disorders. Yeast models can be used to study loss of function of disease-related conserved genes and to investigate gain of function activities, frequently proteotoxicity, exerted by non-conserved human mutant proteins responsible for neurodegeneration. Most published models of proteotoxicity have used rapidly dividing cells and suffer from a high level of protein expression resulting in acute growth arrest or cell death. This contrasts with the slow development of neurodegenerative proteotoxicity during aging and the characteristic post-mitotic state of the affected cell type, the neuron. Here, we will review the efforts to create and characterize yeast models of neurodegeneration using the chronological life span model of aging, and the specific information they can provide regarding the chronology of physiological events leading to neurotoxic proteotoxicity-induced cell death and the identification of new pathways involved.
Collapse
Affiliation(s)
- Andrea Ruetenik
- Department of Neurology, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Neuroscience Graduate Program, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonio Barrientos
- Department of Neurology, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Neuroscience Graduate Program, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Biochemistry, School of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
165
|
Heard DS, Tuttle CSL, Lautenschlager NT, Maier AB. Repurposing Proteostasis-Modifying Drugs to Prevent or Treat Age-Related Dementia: A Systematic Review. Front Physiol 2018; 9:1520. [PMID: 30425653 PMCID: PMC6218672 DOI: 10.3389/fphys.2018.01520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Dementia has a significant impact on quality of life of older individuals. Impaired proteostasis has been implicated as a potential cause of dementia, that can be therapeutically targeted to improve patient outcomes. This review aimed to collate all current evidence of the potential for targeting proteostasis with repurposed drugs as an intervention for age-related dementia and cognitive decline. Methods: PubMed, Web of Science and Embase databases were searched from inception until 4th July 2017 for studies published in English. Interventional studies of repurposed proteostasis-modifying drugs in Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body disease, vascular dementia, and cognitive aging, in either animal models or humans with change in cognition as the outcome were included. The SYRCLE and Cochrane tools were used to assess risk of bias for included studies. Results: Overall 47 trials, 38 animal and 9 human, were isolated for inclusion in this review. Drugs tested in animals and humans included lithium, rapamycin, rifampicin, and tyrosine kinase inhibitors. Drugs tested only in animals included Macrophage and Granulocyte-Macrophage Colony Stimulating Factors, methylene blue, dantrolene, geranylgeranylacetone, minocycline and phenylbutyric acid. Lithium (n = 10 animal, n = 6 human) and rapamycin (n = 12 animal, n = 1 human) were the most studied proteostasis modifying drugs influencing cognition. Nine of ten animal studies of lithium showed a statistically significant benefit in Alzheimer's models. Rapamycin demonstrated a significant benefit in models of vascular dementia, aging, and Alzheimer's, but may not be effective in treating established Alzheimer's pathology. Lithium and nilotinib had positive outcomes in human studies including Alzheimer's and Parkinson's patients respectively, while a human study of rifampicin in Alzheimer's failed to demonstrate benefit. Microdose lithium showed a strongly significant benefit in both animals and humans. While the risk of bias was relatively low in human studies, the risk of bias in animal studies was largely unclear. Conclusion: Overall, the collective findings support the hypothesis that targeting proteostasis for treatment of dementia may be beneficial, and therefore future studies in humans with repurposed proteostasis modifying drugs are warranted. Larger human clinical trials focusing on safety, efficacy, tolerability, and reproducibility are required to translate these therapeutics into clinical practice.
Collapse
Affiliation(s)
- Daniel S Heard
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia
| | - Camilla S L Tuttle
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola T Lautenschlager
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia.,Academic Unit for Psychiatry of Old Age, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea B Maier
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia.,@AgeAmsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
166
|
Massenzio F, Peña-Altamira E, Petralla S, Virgili M, Zuccheri G, Miti A, Polazzi E, Mengoni I, Piffaretti D, Monti B. Microglial overexpression of fALS-linked mutant SOD1 induces SOD1 processing impairment, activation and neurotoxicity and is counteracted by the autophagy inducer trehalose. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3771-3785. [PMID: 30315929 DOI: 10.1016/j.bbadis.2018.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.
Collapse
Affiliation(s)
- Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Interdepartmental Center for Industrial Research on Life and Health Sciences at the University of Bologna, Italy; S3 Center of the Institute of Nanoscience of the National Research Council (C.N.R.), Italy
| | - Andrea Miti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elisabetta Polazzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ilaria Mengoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Deborah Piffaretti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
167
|
Shintani T, Kosuge Y, Ashida H. Glucosamine Extends the Lifespan of Caenorhabditis elegans via Autophagy Induction. J Appl Glycosci (1999) 2018; 65:37-43. [PMID: 34354511 PMCID: PMC8056925 DOI: 10.5458/jag.jag.jag-2018_002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode Caenorhabditis elegans by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (p<0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes daf-16 and sir-2.1 but dependent on the autophagy-essential gene atg-18. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.
Collapse
Affiliation(s)
- Tomoya Shintani
- 1 Graduate School of Biostudies, Kyoto University.,2 United Graduate School of Agriculture, Ehime University
| | - Yuhei Kosuge
- 1 Graduate School of Biostudies, Kyoto University
| | - Hisashi Ashida
- 3 Faculty of Biology-Oriented Science and Technology, Kindai University
| |
Collapse
|
168
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
169
|
Autophagy inhibits high glucose induced cardiac microvascular endothelial cells apoptosis by mTOR signal pathway. Apoptosis 2018; 22:1510-1523. [PMID: 28825154 DOI: 10.1007/s10495-017-1398-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac microvascular endothelial cells (CMECs) dysfunction is an important pathophysiological event in the cardiovascular complications induced by diabetes. However, the underlying mechanism is not fully clarified. Autophagy is involved in programmed cell death. Here we investigated the potential role of autophagy on the CMECs injury induced by high glucose. CMECs were cultured in normal or high glucose medium for 6, 12 and 24 h respectively. The autophagy of CMECs was measured by green fluorescence protein (GFP)-LC3 plasmid transfection. Moreover, the apoptosis of CMEC was determined by flow cytometry. Furthermore, 3-Methyladenine (3MA), ATG7 siRNA and rapamycin were administrated to regulate the autophagy state. Moreover, Western blotting assay was performed to measure the expressions of Akt, mTOR, LC3 and p62. High glucose stress decreased the autophagy, whereas increased the apoptosis in CMECs time dependently. Meanwhile, high glucose stress activated the Akt/mTOR signal pathway. Furthermore, autophagy inhibitor, 3-MA and ATG7 siRNA impaired the autophagy and increased the apoptosis in CMECs induced by high glucose stress. Conversely, rapamycin up-regulated the autophagy and decreased the apoptosis in CMECs under high glucose condition. Our data provide evidence that high glucose directly inhibits autophagy, as a beneficial adaptive response to protect CMECs against apoptosis. Furthermore, the autophagy was mediated, at least in part, by mTOR signaling.
Collapse
|
170
|
MTOR Pathway-Based Discovery of Genetic Susceptibility to L-DOPA-Induced Dyskinesia in Parkinson's Disease Patients. Mol Neurobiol 2018; 56:2092-2100. [PMID: 29992529 DOI: 10.1007/s12035-018-1219-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
Dyskinesia induced by L-DOPA administration (LID) is one of the most invalidating adverse effects of the gold standard treatment restoring dopamine transmission in Parkinson's disease (PD). However, LID manifestation in parkinsonian patients is variable and heterogeneous. Here, we performed a candidate genetic pathway analysis of the mTOR signaling cascade to elucidate a potential genetic contribution to LID susceptibility, since mTOR inhibition ameliorates LID in PD animal models. We screened 64 single nucleotide polymorphisms (SNPs) mapping to 57 genes of the mTOR pathway in a retrospective cohort of 401 PD cases treated with L-DOPA (70 PD with moderate/severe LID and 331 with no/mild LID). We performed classic allelic, genotypic, and epistatic analyses to evaluate the association of individual or combinations of SNPs with LID onset and with LID severity after initiation of L-DOPA treatment. As for the time to LID onset, we found significant associations with SNP rs1043098 in the EIF4EBP2 gene and also with an epistatic interaction involving EIF4EBP2 rs1043098, RICTOR rs2043112, and PRKCA rs4790904. For LID severity, we found significant association with HRAS rs12628 and PRKN rs1801582 and also with a four-loci epistatic combination involving RPS6KB1 rs1292034, HRAS rs12628, RPS6KA2 rs6456121, and FCHSD1 rs456998. These findings indicate that the mTOR pathway contributes genetically to LID susceptibility. Our study could help to identify the most susceptible PD patients to L-DOPA in order to prevent the appearance of early and/or severe LID in a future. This information could also be used to stratify PD patients in clinical trials in a more accurate way.
Collapse
|
171
|
Phadwal K, Kurian D, Salamat MKF, MacRae VE, Diack AB, Manson JC. Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci Rep 2018; 8:10004. [PMID: 29968775 PMCID: PMC6030104 DOI: 10.1038/s41598-018-28296-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022] Open
Abstract
Autolysosomal dysfunction and unstable microtubules are hallmarks of chronic neurodegenerative diseases associated with misfolded proteins. Investigation of impaired protein quality control and clearance systems could therefore provide an important avenue for intervention. To investigate this we have used a highly controlled model for protein aggregation, an in vitro prion system. Here we report that prion aggregates traffic via autolysosomes in the cytoplasm. Treatment with the natural polyamine spermine clears aggregates by enhancing autolysosomal flux. We demonstrated this by blocking the formation of mature autophagosomes resulting in accumulation of prion aggregates in the cytoplasm. Further we investigated the mechanism of spermine’s mode of action and we demonstrate that spermine increases the acetylation of microtubules, which is known to facilitate retrograde transport of autophagosomes from the cellular periphery to lysosomes located near the nucleus. We further report that spermine facilitates selective autophagic degradation of prion aggregates by binding to microtubule protein Tubb6. This is the first report in which spermine and the pathways regulated by it are applied as a novel approach towards clearance of misfolded prion protein and we suggest that this may have important implication for the broader family of protein misfolding diseases.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Dominic Kurian
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Vicky E MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Abigail B Diack
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jean C Manson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK. .,Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK. .,Edinburgh Neuroscience, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
172
|
de Mattos Barbosa MG, de Andrade Silva BJ, Assis TQ, da Silva Prata RB, Ferreira H, Andrade PR, da Paixão de Oliveira JA, Sperandio da Silva GM, da Costa Nery JA, Sarno EN, Pinheiro RO. Autophagy Impairment Is Associated With Increased Inflammasome Activation and Reversal Reaction Development in Multibacillary Leprosy. Front Immunol 2018; 9:1223. [PMID: 29915584 PMCID: PMC5994478 DOI: 10.3389/fimmu.2018.01223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Leprosy reactions are responsible for incapacities in leprosy and represent the major cause of permanent neuropathy. The identification of biomarkers able to identify patients more prone to develop reaction could contribute to adequate clinical management and the prevention of disability. Reversal reaction may occur in unstable borderline patients and also in lepromatous patients. To identify biomarker signature profiles related with the reversal reaction onset, multibacillary patients were recruited and classified accordingly the occurrence or not of reversal reaction during or after multidrugtherapy. Analysis of skin lesion cells at diagnosis of multibacillary leprosy demonstrated that in the group that developed reaction (T1R) in the future there was a downregulation of autophagy associated with the overexpression of TLR2 and MLST8. The autophagy impairment in T1R group was associated with increased expression of NLRP3, caspase-1 (p10) and IL-1β production. In addition, analysis of IL-1β production in serum from multibacillary patients demonstrated that patients who developed reversal reaction have significantly increased concentrations of IL-1β at diagnosis, suggesting that the pattern of innate immune responses could predict the reactional episode outcome. In vitro analysis demonstrated that the blockade of autophagy with 3-methyladenine (3-MA) in Mycobacterium leprae-stimulated human primary monocytes increased the assembly of NLRP3 specks assembly, and it was associated with an increase of IL-1β and IL-6 production. Together, our data suggest an important role for autophagy in multibacillary leprosy patients to avoid exacerbated inflammasome activation and the onset of reversal reaction.
Collapse
Affiliation(s)
| | | | - Tayná Quintella Assis
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
173
|
Ye Z, Zhang X, Zhu Y, Song T, Chen X, Lei X, Wang C. Chemoproteomic Profiling Reveals Ethacrynic Acid Targets Adenine Nucleotide Translocases to Impair Mitochondrial Function. Mol Pharm 2018; 15:2413-2422. [PMID: 29763317 DOI: 10.1021/acs.molpharmaceut.8b00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ethacrynic acid (EA) is a diuretic drug that is widely used to treat high-blood pressure and swelling caused by congestive heart failure or kidney failure. It acts through noncovalent inhibition of the Na+-K+-2Cl- cotransporter in the thick ascending limb of Henle's loop. Chemically, EA contains a Michael acceptor group that can react covalently with nucleophilic residues in proteins; however, the proteome reactivity of EA remains unexplored. Herein, we took a quantitative chemoproteomic approach to globally profile EA's targets in cancer cells. We discovered that EA induces impaired mitochondrial function accompanied by increased ROS production. Our profiling revealed that EA targets functional proteins on mitochondrial membranes, including adenine nucleotide translocases (ANTs). Site-specific mapping identified that EA covalently modifies a functional cysteine in ANTs, a mutation of which resulted in the rescuing effect on EA-induced mitochondrial dysfunction. The newly discovered modes of action offer valuable information to repurpose EA for cancer treatment.
Collapse
Affiliation(s)
- Zi Ye
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Xiaoyun Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yuangang Zhu
- Institute of Molecular Medicine , Peking University , Beijing 100871 , China
| | - Tong Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaowei Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China.,Institute of Molecular Medicine , Peking University , Beijing 100871 , China
| | - Xiaoguang Lei
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies , Peking University , Beijing 100871 , China
| |
Collapse
|
174
|
Metaxakis A, Ploumi C, Tavernarakis N. Autophagy in Age-Associated Neurodegeneration. Cells 2018; 7:cells7050037. [PMID: 29734735 PMCID: PMC5981261 DOI: 10.3390/cells7050037] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The elimination of abnormal and dysfunctional cellular constituents is an essential prerequisite for nerve cells to maintain their homeostasis and proper function. This is mainly achieved through autophagy, a process that eliminates abnormal and dysfunctional cellular components, including misfolded proteins and damaged organelles. Several studies suggest that age-related decline of autophagy impedes neuronal homeostasis and, subsequently, leads to the progression of neurodegenerative disorders due to the accumulation of toxic protein aggregates in neurons. Here, we discuss the involvement of autophagy perturbation in neurodegeneration and present evidence indicating that upregulation of autophagy holds potential for the development of therapeutic interventions towards confronting neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
175
|
Pawlowska E, Szczepanska J, Wisniewski K, Tokarz P, Jaskólski DJ, Blasiak J. NF-κB-Mediated Inflammation in the Pathogenesis of Intracranial Aneurysm and Subarachnoid Hemorrhage. Does Autophagy Play a Role? Int J Mol Sci 2018; 19:E1245. [PMID: 29671828 PMCID: PMC5979412 DOI: 10.3390/ijms19041245] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The rupture of saccular intracranial aneurysms (IA) is the commonest cause of non-traumatic subarachnoid hemorrhage (SAH)—the most serious form of stroke with a high mortality rate. Aneurysm walls are usually characterized by an active inflammatory response, and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) has been identified as the main transcription factor regulating the induction of inflammation-related genes in IA lesions. This transcription factor has also been related to IA rupture and resulting SAH. We and others have shown that autophagy interacts with inflammation in many diseases, but there is no information of such interplay in IA. Moreover, NF-κB, which is a pivotal factor controlling inflammation, is regulated by autophagy-related proteins, and autophagy is regulated by NF-κB signaling. It was also shown that autophagy mediates the normal functioning of vessels, so its disturbance can be associated with vessel-related disorders. Early brain injury, delayed brain injury, and associated cerebral vasospasm are among the most serious consequences of IA rupture and are associated with impaired function of the autophagy⁻lysosomal system. Further studies on the role of the interplay between autophagy and NF-κB-mediated inflammation in IA can help to better understand IA pathogenesis and to identify IA patients with an increased SAH risk.
Collapse
Affiliation(s)
- Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Karol Wisniewski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego 22, 90-153 Lodz, Poland.
| | - Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| | - Dariusz J Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego 22, 90-153 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
176
|
Ejlerskov P, Ashkenazi A, Rubinsztein DC. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases. Neurobiol Dis 2018; 122:3-8. [PMID: 29625255 DOI: 10.1016/j.nbd.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/22/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrick Ejlerskov
- University of Cambridge, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK; University of Copenhagen, Biotech Research and Innovation Centre, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Avraham Ashkenazi
- University of Cambridge, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - David C Rubinsztein
- University of Cambridge, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge Biomedical Campus, Hills Road, Cambridge, UK.
| |
Collapse
|
177
|
Abstract
Inhibitors of mTOR, including clinically available rapalogs such as rapamycin (Sirolimus) and Everolimus, are gerosuppressants, which suppress cellular senescence. Rapamycin slows aging and extends life span in a variety of species from worm to mammals. Rapalogs can prevent age-related diseases, including cancer, atherosclerosis, obesity, neurodegeneration and retinopathy and potentially rejuvenate stem cells, immunity and metabolism. Here, I further suggest how rapamycin can be combined with metformin, inhibitors of angiotensin II signaling (Losartan, Lisinopril), statins (simvastatin, atorvastatin), propranolol, aspirin and a PDE5 inhibitor. Rational combinations of these drugs with physical exercise and an anti-aging diet (Koschei formula) can maximize their anti-aging effects and decrease side effects.
Collapse
|
178
|
Selective autophagy: The new player in the fight against neurodegenerative diseases? Brain Res Bull 2018; 137:79-90. [DOI: 10.1016/j.brainresbull.2017.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
|
179
|
Thellung S, Scoti B, Corsaro A, Villa V, Nizzari M, Gagliani MC, Porcile C, Russo C, Pagano A, Tacchetti C, Cortese K, Florio T. Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death. Cell Death Dis 2018; 9:166. [PMID: 29416016 PMCID: PMC5833808 DOI: 10.1038/s41419-017-0252-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
According to the “gain-of-toxicity mechanism”, neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response in A1 neurons, although incomplete and insufficient to grant survival; the pharmacological enhancement of this process exerts neuroprotection favoring the clearing of the internalized peptide and could represents a promising neuroprotective tool for neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Beatrice Scoti
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Alessandro Corsaro
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Valentina Villa
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Mario Nizzari
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Maria Cristina Gagliani
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy
| | - Carola Porcile
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Health Sciences, University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy.,Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Carlo Tacchetti
- Centro Imaging Sperimentale, IRCCS Istituto Scientifico San Raffaele, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Katia Cortese
- Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.
| |
Collapse
|
180
|
Sun P, Zhang S, Qin X, Chang X, Cui X, Li H, Zhang S, Gao H, Wang P, Zhang Z, Luo J, Li Z. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy 2018; 14:336-346. [PMID: 29166823 PMCID: PMC5902195 DOI: 10.1080/15548627.2017.1405187] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) can result in economical destruction of cloven-hoofed animals. FMDV infection has been reported to induce macroautophagy/autophagy; however, the precise molecular mechanisms of autophagy induction and effect of FMDV capsid protein on autophagy remain unknown. In the present study, we report that FMDV infection induced a complete autophagy process in the natural host cells of FMDV, and inhibition of autophagy significantly decreased FMDV production, suggesting that FMDV-induced autophagy facilitates viral replication. We found that the EIF2S1-ATF4 pathway was activated and the AKT-MTOR signaling pathway was inhibited by FMDV infection. We also observed that ultraviolet (UV)-inactivated FMDV can induce autophagy. Importantly, our work provides the first piece of evidence that expression of FMDV capsid protein VP2 can induce autophagy through the EIF2S1-ATF4-AKT-MTOR cascade, and we found that VP2 interacted with HSPB1 (heat shock protein family B [small] member 1) and activated the EIF2S1-ATF4 pathway, resulting in autophagy and enhanced FMDV replication. In addition, we show that VP2 induced autophagy in a variety of mammalian cell lines and decreased aggregates of a model mutant HTT (huntingtin) polyglutamine expansion protein (HTT103Q). Overall, our results demonstrate that FMDV capsid protein VP2 induces autophagy through interaction with HSPB1 and activation of the EIF2S1-ATF4 pathway.
Collapse
Affiliation(s)
- Peng Sun
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China.,b Department of Cell Biology, School of Life Sciences , Lanzhou University , Lanzhou , Gansu , China
| | - Shumin Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Xiaodong Qin
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Xingni Chang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Xiaorui Cui
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Haitao Li
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Shuaijun Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Huanhuan Gao
- b Department of Cell Biology, School of Life Sciences , Lanzhou University , Lanzhou , Gansu , China
| | - Penghua Wang
- c Department of Microbiology and Immunology , New York Medical College, Valhalla , New York , USA
| | - Zhidong Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Jianxun Luo
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| | - Zhiyong Li
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , Gansu , China
| |
Collapse
|
181
|
Azadiradione Restores Protein Quality Control and Ameliorates the Disease Pathogenesis in a Mouse Model of Huntington’s Disease. Mol Neurobiol 2018; 55:6337-6346. [DOI: 10.1007/s12035-017-0853-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022]
|
182
|
Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 2018; 28:3-13. [PMID: 28703923 PMCID: PMC5739982 DOI: 10.1111/bpa.12545] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Abstract
The most prevalent pathological features of many neurodegenerative diseases are the aggregation of misfolded proteins and the loss of certain neuronal populations. Autophagy, as major intracellular machinery for degrading aggregated proteins and damaged organelles, has been reported to be involved in the occurrence of pathological changes in many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. In this review, we summarize most recent research progress in this topic and provide a new perspective regarding autophagy regulation on the pathogenesis of neurodegenerative diseases. Finally, we discuss the signaling molecules in autophagy-related pathways as therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Fang Guo
- The Key Laboratory of Stem Cell Biology and Neurogenomic LaboratoryInstitute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xinyao Liu
- Clinical Research Center on Neurological Diseasesthe First Affiliated Hospital, Dalian Medical UniversityDalian116011China
| | - Huaibin Cai
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMD
| | - Weidong Le
- The Key Laboratory of Stem Cell Biology and Neurogenomic LaboratoryInstitute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of MedicineShanghai200025China
- Clinical Research Center on Neurological Diseasesthe First Affiliated Hospital, Dalian Medical UniversityDalian116011China
- Collaborative Innovation Center for Brain Sciencethe First Affiliated Hospital, Dalian Medical UniversityDalian116011China
| |
Collapse
|
183
|
Al-Ramahi I, Giridharan SSP, Chen YC, Patnaik S, Safren N, Hasegawa J, de Haro M, Wagner Gee AK, Titus SA, Jeong H, Clarke J, Krainc D, Zheng W, Irvine RF, Barmada S, Ferrer M, Southall N, Weisman LS, Botas J, Marugan JJ. Inhibition of PIP4Kγ ameliorates the pathological effects of mutant huntingtin protein. eLife 2017; 6:29123. [PMID: 29256861 PMCID: PMC5743427 DOI: 10.7554/elife.29123] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
The discovery of the causative gene for Huntington’s disease (HD) has promoted numerous efforts to uncover cellular pathways that lower levels of mutant huntingtin protein (mHtt) and potentially forestall the appearance of HD-related neurological defects. Using a cell-based model of pathogenic huntingtin expression, we identified a class of compounds that protect cells through selective inhibition of a lipid kinase, PIP4Kγ. Pharmacological inhibition or knock-down of PIP4Kγ modulates the equilibrium between phosphatidylinositide (PI) species within the cell and increases basal autophagy, reducing the total amount of mHtt protein in human patient fibroblasts and aggregates in neurons. In two Drosophila models of Huntington’s disease, genetic knockdown of PIP4K ameliorated neuronal dysfunction and degeneration as assessed using motor performance and retinal degeneration assays respectively. Together, these results suggest that PIP4Kγ is a druggable target whose inhibition enhances productive autophagy and mHtt proteolysis, revealing a useful pharmacological point of intervention for the treatment of Huntington’s disease, and potentially for other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | | | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Samarjit Patnaik
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Nathaniel Safren
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Junya Hasegawa
- Department of Cell and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Maria de Haro
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | - Amanda K Wagner Gee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Steven A Titus
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Hyunkyung Jeong
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Jonathan Clarke
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Dimitri Krainc
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Robin F Irvine
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Sami Barmada
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Noel Southall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| | - Lois S Weisman
- Department of Cell and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Baylor College of Medicine, Texas Medical Center, Houston, United States
| | - Juan Jose Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, United States
| |
Collapse
|
184
|
Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem 2017; 61:733-749. [PMID: 29233882 PMCID: PMC5869865 DOI: 10.1042/ebc20170055] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus for signalling pathways responsive to a variety of factors, such as growth, nutrient availability, energetic status and cellular stressors. Lysosomes are also the terminal degradative organelles for autophagy through which macromolecules and damaged cellular components and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is essential for organismal physiology. Decline in autophagy during ageing or in many diseases, including late-onset forms of neurodegeneration is considered a major contributing factor to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class of rare, inherited disorders whose histopathological hallmark is the accumulation of undegraded materials in the lysosomes due to abnormal lysosomal function. Inefficient degradative capability of the lysosomes has negative impact on the flux through the autophagic pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but current therapies are limited or absent; recognizing common autophagy defects in the LSDs raises new possibilities for therapy. In this review, we describe the mechanisms by which LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data supporting the development of novel therapeutic approaches related to the modulation of autophagy.
Collapse
|
185
|
Wang Y, Wu Y, Wang B, Cao X, Fu A, Li Y, Li W. Effects of probiotic Bacillus as a substitute for antibiotics on antioxidant capacity and intestinal autophagy of piglets. AMB Express 2017; 7:52. [PMID: 28244029 PMCID: PMC5328899 DOI: 10.1186/s13568-017-0353-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
The objective of this study was to evaluate effects of probiotic Bacillus amyloliquefaciens (Ba) as a substitute for antibiotics on growth performance, antioxidant ability and intestinal autophagy of piglets. Ninety piglets were divided into three groups: G1 (containing 150 mg/Kg aureomycin in the diet); G2 (containing 75 mg/Kg aureomycin and 1 × 108 cfu/Kg Ba in the diet); G3 (containing 2 × 108 cfu/Kg Ba in the diet without any antibiotics). Each treatment had three replications of ten pigs per pen. Results showed that Ba replacement significantly increased the daily weight gain of piglets. Moreover, improved antioxidant status in serum and jejunum was noted in Ba-fed groups as compared with aureomycin group. Increased gene expression of antioxidant enzymes and elevated nuclear factor erythroid 2 related factor 2 (Nrf2) in jejunum was also observed in Ba-fed groups. Besides, Ba replacement significantly decreased jejunal c-Jun N-terminal kinase (JNK) phosphorylation compared with antibiotic group. Western blotting results also revealed that replacing all antibiotics with Ba initiated autophagy in the jejunum as evidenced by increased microtubule-associated protein 1 light chain 3 II (LC3-II) abundance. Taken together, these results indicate that replacing aureomycin with Ba can improve growth performance and antioxidant status of piglets via increasing antioxidant capacity and intestinal autophagy, suggesting a good potential for Ba as an alternative to antibiotics in feed.
Collapse
|
186
|
Kinarivala N, Patel R, Boustany RM, Al-Ahmad A, Trippier PC. Discovery of Aromatic Carbamates that Confer Neuroprotective Activity by Enhancing Autophagy and Inducing the Anti-Apoptotic Protein B-Cell Lymphoma 2 (Bcl-2). J Med Chem 2017; 60:9739-9756. [PMID: 29110485 DOI: 10.1021/acs.jmedchem.7b01199] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases share certain pathophysiological hallmarks that represent common targets for drug discovery. In particular, dysfunction of proteostasis and the resultant apoptotic death of neurons represent common pathways for pharmacological intervention. A library of aromatic carbamate derivatives based on the clinically available drug flupirtine was synthesized to determine a structure-activity relationship for neuroprotective activity. Several derivatives were identified that possess greater protective effect in human induced pluripotent stem cell-derived neurons, protecting up to 80% of neurons against etoposide-induced apoptosis at concentrations as low as 100 nM. The developed aromatic carbamates possess physicochemical properties desirable for CNS therapeutics. The primary known mechanisms of action of the parent scaffold are not responsible for the observed neuroprotective activity. Herein, we demonstrate that neuroprotective aromatic carbamates function to increase the Bcl-2/Bax ratio to an antiapoptotic state and activate autophagy through induction of beclin 1.
Collapse
Affiliation(s)
- Nihar Kinarivala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas 79106, United States
| | - Ronak Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas 79106, United States
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center , Beirut 1107 2020, Lebanon
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas 79106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas 79106, United States.,Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
187
|
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2017; 217:51-63. [PMID: 29127110 PMCID: PMC5748993 DOI: 10.1083/jcb.201709072] [Citation(s) in RCA: 533] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
188
|
Gao F, Yang J, Wang D, Li C, Fu Y, Wang H, He W, Zhang J. Mitophagy in Parkinson's Disease: Pathogenic and Therapeutic Implications. Front Neurol 2017; 8:527. [PMID: 29046661 PMCID: PMC5632845 DOI: 10.3389/fneur.2017.00527] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons affected in Parkinson’s disease (PD) experience mitochondrial dysfunction and bioenergetic deficits that occur early and promote the disease-related α-synucleinopathy. Emerging findings suggest that the autophagy-lysosome pathway, which removes damaged mitochondria (mitophagy), is also compromised in PD and results in the accumulation of dysfunctional mitochondria. Studies using genetic-modulated or toxin-induced animal and cellular models as well as postmortem human tissue indicate that impaired mitophagy might be a critical factor in the pathogenesis of synaptic dysfunction and the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis. Interventions that stimulate mitophagy to maintain mitochondrial health might, therefore, be used as an approach to delay the neurodegenerative processes in PD.
Collapse
Affiliation(s)
- Fei Gao
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jia Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
189
|
Dodson M, Wani WY, Redmann M, Benavides GA, Johnson MS, Ouyang X, Cofield SS, Mitra K, Darley-Usmar V, Zhang J. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy 2017; 13:1828-1840. [PMID: 28837411 DOI: 10.1080/15548627.2017.1356948] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The production of reactive species contributes to the age-dependent accumulation of dysfunctional mitochondria and protein aggregates, all of which are associated with neurodegeneration. A putative mediator of these effects is the lipid peroxidation product 4-hydroxynonenal (4-HNE), which has been shown to inhibit mitochondrial function, and accumulate in the postmortem brains of patients with neurodegenerative diseases. This deterioration in mitochondrial quality could be due to direct effects on mitochondrial proteins, or through perturbation of the macroautophagy/autophagy pathway, which plays an essential role in removing damaged mitochondria. Here, we use a click chemistry-based approach to demonstrate that alkyne-4-HNE can adduct to specific mitochondrial and autophagy-related proteins. Furthermore, we found that at lower concentrations (5-10 μM), 4-HNE activates autophagy, whereas at higher concentrations (15 μM), autophagic flux is inhibited, correlating with the modification of key autophagy proteins at higher concentrations of alkyne-4-HNE. Increasing concentrations of 4-HNE also cause mitochondrial dysfunction by targeting complex V (the ATP synthase) in the electron transport chain, and induce significant changes in mitochondrial fission and fusion protein levels, which results in alterations to mitochondrial network length. Finally, inhibition of autophagy initiation using 3-methyladenine (3MA) also results in a significant decrease in mitochondrial function and network length. These data show that both the mitochondria and autophagy are critical targets of 4-HNE, and that the proteins targeted by 4-HNE may change based on its concentration, persistently driving cellular dysfunction.
Collapse
Affiliation(s)
- Matthew Dodson
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Willayat Y Wani
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Matthew Redmann
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Gloria A Benavides
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Michelle S Johnson
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Xiaosen Ouyang
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA.,e Department of Veterans Affairs , Birmingham VA Medical Center , Birmingham , AL , USA
| | - Stacey S Cofield
- c Department of Biostatistics , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Kasturi Mitra
- d Department of Genetics , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Victor Darley-Usmar
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Jianhua Zhang
- a Center for Free Radical Biology , University of Alabama at Birmingham , Birmingham , AL , USA.,b Department of Pathology , University of Alabama at Birmingham , Birmingham , AL , USA.,e Department of Veterans Affairs , Birmingham VA Medical Center , Birmingham , AL , USA
| |
Collapse
|
190
|
Zhu P, Sieben CJ, Xu X, Harris PC, Lin X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum Mol Genet 2017; 26:158-172. [PMID: 28007903 DOI: 10.1093/hmg/ddw376] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. It is one of the most common heritable human diseases with eventual development of renal failure; however, effective treatment is lacking. While inhibition of mechanistic target of rapamycin (mTOR) effectively slows cyst expansions in animal models, results from clinical studies are controversial, prompting further mechanistic studies of mTOR-based therapy. Here, we aim to establish autophagy, a downstream pathway of mTOR, as a new therapeutic target for PKD. We generated zebrafish mutants for pkd1 and noted cystic kidney and mTOR activation in pkd1a mutants, suggesting a conserved ADPKD model. Further assessment of the mutants revealed impaired autophagic flux, which was conserved in kidney epithelial cells derived from both Pkd1-null mice and ADPKD patients. We found that inhibition of autophagy by knocking down the core autophagy protein Atg5 promotes cystogenesis, while activation of autophagy using a specific inducer Beclin-1 peptide ameliorates cysts in the pkd1a model. Treatment with compound autophagy activators, including mTOR-dependent rapamycin as well as mTOR-independent carbamazepine and minoxidil, markedly attenuated cyst formation and restored kidney function. Finally, we showed that combination treatment with low doses of rapamycin and carbamazepine was able to attenuate cyst formation as effectively as a single treatment with a high dose of rapamycin alone. In summary, our results suggested a modifying effect of autophagy on ADPKD, established autophagy activation as a novel therapy for ADPKD, and presented zebrafish as an efficient vertebrate model for developing PKD therapeutic strategies.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Cynthia J Sieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
191
|
Di J, Tang J, Qian H, Franklin DA, Deisenroth C, Itahana Y, Zheng J, Zhang Y. p53 upregulates PLCε-IP3-Ca 2+ pathway and inhibits autophagy through its target gene Rap2B. Oncotarget 2017; 8:64657-64669. [PMID: 29029384 PMCID: PMC5630284 DOI: 10.18632/oncotarget.18112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/08/2017] [Indexed: 01/04/2023] Open
Abstract
The tumor suppressor p53 plays a pivotal role in numerous cellular responses as it regulates cell proliferation, metabolism, cellular growth, and autophagy. In order to identify novel p53 target genes, we utilized an unbiased microarray approach and identified Rap2B as a robust candidate, which belongs to the Ras-related GTP-binding protein superfamily and exhibits increased expression in various human cancers. We demonstrated that p53 increases the intracellular IP3 and Ca2+ levels and decreases the LC3 protein levels through its target gene Rap2B, suggesting that p53 can inhibit the autophagic response triggered by starvation via upregulation of the Rap2B-PLCε-IP3-Ca2+ pathway. As a confirmed target gene of p53, we believe that further investigating potential functions of Rap2B in autophagy and tumorigenesis will provide a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juanjuan Tang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Heya Qian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Derek A. Franklin
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chad Deisenroth
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, NC, USA
| | - Yoko Itahana
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cancer & Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Center of Clinical Oncology and Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yanping Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
192
|
Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, Haupt Y, Denoyer D, Adlard PA, Bush AI, Cater MA. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol 2017; 14:100-115. [PMID: 28888202 PMCID: PMC5596264 DOI: 10.1016/j.redox.2017.08.015] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence is characterised by the irreversible arrest of proliferation, a pro-inflammatory secretory phenotype and evasion of programmed cell death mechanisms. We report that senescence alters cellular iron acquisition and storage and also impedes iron-mediated cell death pathways. Senescent cells, regardless of stimuli (irradiation, replicative or oncogenic), accumulate vast amounts of intracellular iron (up to 30-fold) with concomitant changes in the levels of iron homeostasis proteins. For instance, ferritin (iron storage) levels provided a robust biomarker of cellular senescence, for associated iron accumulation and for resistance to iron-induced toxicity. Cellular senescence preceded iron accumulation and was not perturbed by sustained iron chelation (deferiprone). Iron accumulation in senescent cells was driven by impaired ferritinophagy, a lysosomal process that promotes ferritin degradation and ferroptosis. Lysosomal dysfunction in senescent cells was confirmed through several markers, including the build-up of microtubule-associated protein light chain 3 (LC3-II) in autophagosomes. Impaired ferritin degradation explains the iron accumulation phenotype of senescent cells, whereby iron is effectively trapped in ferritin creating a perceived cellular deficiency. Accordingly, senescent cells were highly resistant to ferroptosis. Promoting ferritin degradation by using the autophagy activator rapamycin averted the iron accumulation phenotype of senescent cells, preventing the increase of TfR1, ferritin and intracellular iron, but failed to re-sensitize these cells to ferroptosis. Finally, the enrichment of senescent cells in mouse ageing hepatic tissue was found to accompany iron accumulation, an elevation in ferritin and mirrored our observations using cultured senescent cells. Altered iron homeostasis in senescent cells is driven by impaired ferritinophagy. Impaired ferritinophagy causes functional cellular iron deficiency. senescent cells are resistant to iron mediated cell death including ferroptosis.
Collapse
Affiliation(s)
- Shashank Masaldan
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Sharnel A S Clatworthy
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Cristina Gamell
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Peter M Meggyesy
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Antonia-Tonia Rigopoulos
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Sue Haupt
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ygal Haupt
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Delphine Denoyer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Michael A Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
193
|
Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP. Cypermethrin Activates Autophagosome Formation Albeit Inhibits Autophagy Owing to Poor Lysosome Quality: Relevance to Parkinson's Disease. Neurotox Res 2017; 33:377-387. [PMID: 28840510 DOI: 10.1007/s12640-017-9800-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is the second most familiar, progressive and movement-related neurodegenerative disorder after Alzheimer disease. This study aimed to decipher the role of autophagy in cypermethrin-induced Parkinsonism, an animal model of PD. Indicators of autophagy [expression of beclin 1, autophagy-related protein 12 (Atg 12), unc-51 like autophagy activating kinase 1 (Ulk 1), p62 and lysosome-associated membrane protein 2 (LAMP 2) and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3) I to II], signalling cascade [phosphorylated (p) 5' adenosine monophosphate-activated protein kinase (p-AMPK), sirtuin 1 (Sirt 1), phosphorylated-mammalian target of rapamycin (p-mTOR), tuberous sclerosis complex 2 (TSC 2), p317Ulk 1 and p757Ulk 1 levels] and lysosome morphology were assessed in control and cypermethrin-treated rat model of PD. Autophagy markers were also measured in cypermethrin-treated neuroblastoma cells in the presence of 3-methyl adenine, a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) class III inhibitor; vinblastine, an autophagosome elongation inhibitor; bafilomycin A1, an autophagolysosome and lysosome fusion/abnormal acidification inhibitor or torin 1, a mechanistic target of rapamycin inhibitor. Cypermethrin reduced LAMP 2 and increased p-AMPK and Sirt 1 without causing any change in other signalling proteins. 3-Methyl adenine did not change LC3 conversion; vinblastine and bafilomycin A1 decreased LAMP 2 expression in controls. While cypermethrin increased LC3 conversion in the presence of 3-methyl adenine, LAMP 2 reduction was more pronounced in vinblastine and bafilomycin A1-treated cells. Torin 1 normalized the expression of LAMP 2 without any change in other autophagy markers. Results demonstrate that albeit cypermethrin activates autophagosome formation, it reduces LAMP 2 expression and lysosome quality leading to autophagy inhibition.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Saumya Mishra
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Charul Rajput
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India.,Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-IITR, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
194
|
Assessment of Autophagy in Neurons and Brain Tissue. Cells 2017; 6:cells6030025. [PMID: 28832529 PMCID: PMC5617971 DOI: 10.3390/cells6030025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases. Indeed, in adult tissues, where the capacity for regeneration or cell division is low or absent (e.g., in the mammalian brain), the accumulation of proteins/peptides that would otherwise be recycled or destroyed may have pathological implications. Indeed, such changes are hallmarks of pathologies, like Alzheimer’s, Prion or Parkinson’s disease, known as proteinopathies. However, it is still unclear whether such dysfunction is a cause or an effect in these conditions. One advantage when analysing autophagy in the mammalian brain is that almost all the markers described in different cell lineages and systems appear to be present in the brain, and even in neurons. By contrast, the mixture of cell types present in the brain and the differentiation stage of such neurons, when compared with neurons in culture, make translating basic research to the clinic less straightforward. Thus, the purpose of this review is to describe and discuss the methods available to monitor autophagy in neurons and in the mammalian brain, a process that is not yet fully understood, focusing primarily on mammalian macroautophagy. We will describe some general features of neuronal autophagy that point to our focus on neuropathologies in which macroautophagy may be altered. Indeed, we centre this review around the hypothesis that enhanced autophagy may be able to provide therapeutic benefits in some brain pathologies, like Alzheimer’s disease, considering this pathology as one of the most prevalent proteinopathies.
Collapse
|
195
|
Kim KY, Park JH, Kim DH, Tsauo J, Kim MT, Son WC, Kang SG, Kim DH, Song HY. Sirolimus-eluting Biodegradable Poly-l-Lactic Acid Stent to Suppress Granulation Tissue Formation in the Rat Urethra. Radiology 2017; 286:140-148. [PMID: 28787263 DOI: 10.1148/radiol.2017170414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the use of sirolimus-eluting biodegradable stents (SEBSs) to suppress granulation tissue formation after stent placement in a rat urethral model. Materials and Methods All experiments were approved by the animal research committee. A total of 36 male Sprague-Dawley rats were randomized into three equal groups after biodegradable stent placement. Group A received control biodegradable stents. Groups B and C received stents coated with 90 µg/cm2 and 450 µg/cm2 sirolimus, respectively. Six rats in each group were sacrificed after 4 weeks; the remaining rats were sacrificed after 12 weeks. The therapeutic effectiveness of SEBSs was assessed by comparing the results of retrograde urethrography and histologic examination. Analysis of variance with post hoc comparisons was used to evaluate statistical differences. Results SEBS placement was technically successful in all rats. Urethrographic and histologic examinations revealed significantly less granulation tissue formation at both time points in the rats receiving SEBSs (groups B and C) compared with those that received control stents (group A) (P < .05 for all). There were no significant differences in urethrographic and histologic findings between groups B and C (P > .05 for all). However, the mean number of epithelial layers in group B was higher than that in group C at 4 weeks after stent placement (P < .001). Apoptosis increased in group C compared with groups A and B (P < .05 for all). Conclusion The use of SEBSs suppressed granulation tissue formation secondary to stent placement in a rat urethral model; local therapy with SEBSs may be used to decrease stent-related granulation tissue formation. © RSNA, 2017.
Collapse
Affiliation(s)
- Kun Yung Kim
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Jung-Hoon Park
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Do Hoon Kim
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Jiaywei Tsauo
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Min Tae Kim
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Woo-Chan Son
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Sung-Gwon Kang
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Dong-Hyun Kim
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| | - Ho-Young Song
- From the Department of Radiology and Research Institute of Radiology (K.Y.K., J.H.P., J.T., M.T.K., S.G.K., H.Y.S.), Biomedical Engineering Research Center (J.H.P.), Department of Gastroenterology (Do Hoon Kim), and Department of Pathology (W.C.S.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea; and Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (J.H.P., Dong-Hyun Kim)
| |
Collapse
|
196
|
Phosphatidylinositol 3 kinase (PI3K) modulates manganese homeostasis and manganese-induced cell signaling in a murine striatal cell line. Neurotoxicology 2017; 64:185-194. [PMID: 28780388 DOI: 10.1016/j.neuro.2017.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022]
Abstract
In a recent study, we found that blocking the protein kinase ataxia telangiectasia mutated (ATM) with the small molecule inhibitor (SMI) KU-55933 can completely abrogate Mn-induced phosphorylation of p53 at serine 15 (p-p53) in human induced pluripotent stem cell (hiPSC)-differentiated striatal neuroprogenitors. However, in the immortalized mouse striatal progenitor cell line STHdhQ7/Q7, a concentration of KU55933 far exceeding its IC50 for ATM was required to inhibit Mn-induced p-p53. This suggested an alternative signaling system redundant with ATM kinase for activating p53 in this cell line- one that was altered by KU55933 at these higher concentrations (i.e. mTORC1, DNApk, PI3K). To test the hypothesis that one or more of these signaling pathways contributed to Mn-induced p-p53, we utilized a set of SMIs (e.g. NU7441 and LY294002) known to block DNApk, PI3K, and mTORC1 at distinct concentrations. We found that the SMIs inhibit Mn-induced p-p53 expression near the expected IC50s for PI3K, versus other known targets. We hypothesized that inhibiting PI3K reduces intracellular Mn and thereby decreases activation of p53 by Mn. Using the cellular fura-2 manganese extraction assay (CFMEA), we determined that KU55933/60019, NU7441, and LY294002 (at concentrations near their IC50s for PI3K) all decrease intracellular Mn (∼50%) after a dual, 24-h Mn and SMI exposure. Many pathways are activated by Mn aside from p-p53, including AKT and mTOR pathways. Thus, we explored the activation of these pathways by Mn in STHdh cells as well as the effects of other pathway inhibitors. p-AKT and p-S6 activation by Mn is almost completely blocked upon addition of NU7441(5μM) or LY294002(7μM), supporting PI3K's upstream role in the AKT/mTOR pathway. We also investigated whether PI3K inhibition blocks Mn uptake in other cell lines. LY294002 exposure did not reduce Mn uptake in ST14A, Neuro2A, HEK293, MEF, or hiPSC-derived neuroprogenitors. Next, we sought to determine whether inhibition of PI3K blocked p53 phosphorylation by directly blocking an unknown PI3K/p53 interaction or indirectly reducing intracellular Mn, decreasing p-p53 expression. In-Cell Western and CFMEA experiments using multiple concentrations of Mn exposures demonstrated that intracellular Mn levels directly correlated with p-p53 expression with or without addition of LY294002. Finally, we examined whether PI3K inhibition was able to block Mn-induced p-p53 activity in hiPSC-derived striatal neuroprogenitors. As expected, LY294002 does not block Mn-induced p-p53 as PI3K inhibition is unable to reduce Mn net uptake in this cell line, suggesting the effect of LY294002 on Mn uptake is relatively specific to the STHdh mouse striatal cell line.
Collapse
|
197
|
Valenzuela-Leon P, Dobrinski I. Exposure to phthalate esters induces an autophagic response in male germ cells. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx010. [PMID: 29492312 PMCID: PMC5804550 DOI: 10.1093/eep/dvx010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Accepted: 06/12/2017] [Indexed: 05/22/2023]
Abstract
Phthalate esters are plasticizers that impart flexibility to polvinylchloride plastics. As they are not covalently bound, they can leach from a wide range of products, including food containers, medical devices, clothing, and toys, leading to widespread environmental exposure. Phthalate toxicity has been linked to male infertility by disrupting testosterone production and testis development. Phthalates also impair proliferation and viability of spermatogonial stem cells (SSC), the role of which is to support lifelong spermatogenesis. To elucidate cellular mechanisms in spermatogonia affected by long-term phthalate exposure, we grafted primate testis tissue into mice. Grafts treated with di-n-butyl phthalate showed an increase in autophagy compared to controls. Short term in vitro exposure of porcine germ cells to mono(2-ethylhexyl) phthalate, also resulted in an increase in autophagy. Viability was lower in cells exposed to phthalates, but treatment with rapamycin to induce autophagy significantly increased viability. The data suggests autophagy is triggered in spermatogonia as a response to a toxic insult, which may constitute a survival mechanism in spermatogonia.
Collapse
Affiliation(s)
- Paula Valenzuela-Leon
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence address. Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, 404 HMRB, Calgary, AB T2N 4N1, Canada. Tel: 403 210 6523; E-mail
| |
Collapse
|
198
|
Hydrogen Sulfide Inhibits Autophagic Neuronal Cell Death by Reducing Oxidative Stress in Spinal Cord Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8640284. [PMID: 28685010 PMCID: PMC5480044 DOI: 10.1155/2017/8640284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/01/2017] [Accepted: 04/23/2017] [Indexed: 11/25/2022]
Abstract
Autophagy is upregulated in spinal cord ischemia reperfusion (SCIR) injury; however, its expression mechanism is largely unknown; moreover, whether autophagy plays a neuroprotective or neurodegenerative role in SCIR injury remains controversial. To explore these issues, we created an SCIR injury rat model via aortic arch occlusion. Compared with normal controls, autophagic cell death was upregulated in neurons after SCIR injury. We found that autophagy promoted neuronal cell death during SCIR, shown by a significant number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling- (TUNEL-) positive cells colabeled with the autophagy marker microtubule-associated protein 1 light chain 3, while the autophagy inhibitor 3-methyladenine reduced the number of TUNEL-positive cells and restored neurological and motor function. Additionally, we showed that oxidative stress was the main trigger of autophagic neuronal cell death after SCIR injury and N-acetylcysteine inhibited autophagic cell death and restored neurological and motor function in SCIR injury. Finally, we found that hydrogen sulfide (H2S) inhibited autophagic cell death significantly by reducing oxidative stress in SCIR injury via the AKT-the mammalian target of rapamycin (mTOR) pathway. These findings reveal that oxidative stress induces autophagic cell death and that H2S plays a neuroprotective role by reducing oxidative stress in SCIR.
Collapse
|
199
|
Caccamo A, Ferreira E, Branca C, Oddo S. p62 improves AD-like pathology by increasing autophagy. Mol Psychiatry 2017; 22:865-873. [PMID: 27573878 PMCID: PMC5479312 DOI: 10.1038/mp.2016.139] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/09/2016] [Accepted: 07/04/2016] [Indexed: 12/25/2022]
Abstract
The multifunctional protein p62 is associated with neuropathological inclusions in several neurodegenerative disorders, including frontotemporal lobar degeneration, amyotrophic lateral sclerosis and Alzheimer's disease (AD). Strong evidence shows that in AD, p62 immunoreactivity is associated with neurofibrillary tangles and is involved in tau degradation. However, it remains to be determined whether p62 also plays a role in regulating amyloid-β (Aβ) aggregation and degradation. Using a gene therapy approach, here we show that increasing brain p62 expression rescues cognitive deficits in APP/PS1 mice, a widely used animal model of AD. The cognitive improvement was associated with a decrease in Aβ levels and plaque load. Using complementary genetic and pharmacologic approaches, we found that the p62-mediated changes in Aβ were due to an increase in autophagy. To this end, we showed that removing the LC3-interacting region of p62, which facilitates p62-mediated selective autophagy, or blocking autophagy with a pharmacological inhibitor, was sufficient to prevent the decrease in Aβ. Overall, we believe these data provide the first direct in vivo evidence showing that p62 regulates Aβ turnover.
Collapse
Affiliation(s)
| | - Eric Ferreira
- The Biodesign Neurodegenerative Disease Research Center
| | | | - Salvatore Oddo
- The Biodesign Neurodegenerative Disease Research Center,School of Life Sciences, Arizona State University, Tempe, Arizona, 85281,To whom correspondence should be addressed: SALVATORE ODDO, Ph.D., The Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, 480-727-3490,
| |
Collapse
|
200
|
Mittal S, Sharma PK, Tiwari R, Rayavarapu RG, Shankar J, Chauhan LKS, Pandey AK. Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment. Part Fibre Toxicol 2017; 14:15. [PMID: 28454554 PMCID: PMC5408471 DOI: 10.1186/s12989-017-0194-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Background Graphite carbon nanofibers (GCNF) have emerged as a potential alternative of carbon nanotubes (CNT) for various biomedical applications due to their superior physico-chemical properties. Therefore in-depth understanding of the GCNF induced toxic effects and underlying mechanisms in biological systems is of great interest. Currently, autophagy activation by nanomaterials is recognized as an emerging toxicity mechanism. However, the association of GCNF induced toxicity with this form of cell death is largely unknown. In this study, we have assessed the possible mechanism; especially the role of autophagy, underlying the GCNF induced toxicity. Methods Human lung adenocarcinoma (A549) cells were exposed to a range of GCNF concentrations and various cellular parameters were analyzed (up to 48 h). Transmission electron microscopy, immunofluorescent staining, western blot and quantitative real time PCR were performed to detect apoptosis, autophagy induction, lysosomal destabilization and cytoskeleton disruption in GCNF exposed cells. DCFDA assay was used to evaluate the reactive oxygen species (ROS) production. Experiments with N-acetyl-L-cysteine (NAC), 3-methyladenine (3-MA) and LC3 siRNA was carried out to confirm the involvement of oxidative stress and autophagy in GCNF induced cell death. Comet assay and micronucleus (MN) assay was performed to assess the genotoxicity potential. Results In the present study, GCNF was found to induce nanotoxicity in human lung cells through autophagosomes accumulation followed by apoptosis via intracellular ROS generation. Mechanistically, impaired lysosomal function and cytoskeleton disruption mediated autophagic flux blockade was found to be the major cause of accumulation rather than autophagy induction which further activates apoptosis. The whole process was in line with the increased ROS level and their pharmacological inhibition leads to mitigation of GCNF induced cell death. Moreover the inhibition of autophagy attenuates apoptosis indicating the role of autophagy as cell death process. GCNF was also found to induce genomic instability. Conclusion Our present study demonstrates that GCNF perturbs various interrelated signaling pathway and unveils the potential nanotoxicity mechanism of GCNF through targeting ROS-autophagy-apoptosis axis. The current study is significant to evaluate the safety and risk assessment of fibrous carbon nanomaterials prior to their potential use and suggests caution on their utilization for biomedical research. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0194-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandeep Mittal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ratnakar Tiwari
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Raja Gopal Rayavarapu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Jai Shankar
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Lalit Kumar Singh Chauhan
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alok Kumar Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India. .,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|