151
|
Li X, Cao Y, Yu X, Jin F, Li Y. A novel autophagy-related genes prognostic risk model and validation of autophagy-related oncogene VPS35 in breast cancer. Cancer Cell Int 2021; 21:265. [PMID: 34001111 PMCID: PMC8130280 DOI: 10.1186/s12935-021-01970-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Accumulating evidence implies that autophagy plays a critical role in breast cancer development and progression. It is crucial to screen out autophagy-related encoding genes (ARGs) with prognostic value in breast cancer and reveal their biological properties in the aggressiveness of breast cancer. METHODS Univariate and multivariate Cox proportional hazards analyses were used to identify a prognostic risk model of ARGs from The Cancer Genome Atlas (TCGA). Kaplan-Meier analysis, univariate and multivariate Cox regression analyses and receiver operating characteristic (ROC) curve analysis were performed to validate the risk model. Western blot and immunohistochemistry (IHC) were conducted to assess the expression of VPS35 (one of ARGs in risk model). CCK8, Colony formation assay, Transwell migration/invasion assays and autophagy flux assay were used to confirm biological function of VPS35 in breast cancer. RESULTS In this study, the prognostic risk model consisting of six ARGs (VPS35, TRIM21, PRKAB2, RUFY4, MAP1LC3A and LARP1) in breast cancer were identified. The risk model was further verified as a novel independent prognostic factor for breast cancer patients. We also clarified that vacuolar protein sorting-associated protein 35 (VPS35), one of ARGs in the risk model, was upregulated in breast cancer samples and cell lines. VPS35 overexpression was correlated with more aggressive phenotype of breast cancer and indicated worse prognosis in both progression-free survival and overall survival analyses. Meanwhile, VPS35 knockdown inhibited breast cancer cell proliferation, migration and invasion, suggesting that VPS35 promoted the progression of breast cancer. VPS35 silence also influenced autophagy process, indicating that VPS35 was essential for autophagy completion. CONCLUSION Taken together, the six ARGs risk model has a remarkably prognostic value for breast cancer. Among them, VPS35 might exert as a significant oncogenic and prognostic factor for breast cancer and could be a promising autophagy-related therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, Shenyang, 110001, China.,Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yu Cao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, Shenyang, 110001, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, Shenyang, 110001, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, 155 Nanjing Road, Shenyang, 110001, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
152
|
Lv S, Wang Z, Wang J, Wang H. Exogenous Hydrogen Sulfide Plays an Important Role Through Regulating Autophagy in Ischemia/Reperfusion Injury. Front Mol Biosci 2021; 8:681676. [PMID: 34055892 PMCID: PMC8155623 DOI: 10.3389/fmolb.2021.681676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is characterized by limiting blood supply to organs, then restoring blood flow and reoxygenation. It leads to many diseases, including acute kidney injury, myocardial infarction, circulatory arrest, ischemic stroke, trauma, and sickle cell disease. Autophagy is an important and conserved cellular pathway, in which cells transfer the cytoplasmic contents to lysosomes for degradation. It plays an important role in maintaining the balance of cell synthesis, decomposition and reuse, and participates in a variety of physiological and pathological processes. Hydrogen sulfide (H2S), along with carbon monoxide (CO) and nitric oxide (NO), is an important gas signal molecule and regulates various physiological and pathological processes. In recent years, there are many studies on the improvement of I/R injury by H2S through regulating autophagy, but the related mechanisms are not completely clear. Therefore, we summarize the related research in the above aspects to provide theoretical reference for future in-depth research.
Collapse
Affiliation(s)
- Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhu Wang
- Henan Technician College of Medicine and Health, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
153
|
Genipin Attenuates Tau Phosphorylation and Aβ Levels in Cellular Models of Alzheimer's Disease. Mol Neurobiol 2021; 58:4134-4144. [PMID: 33948899 DOI: 10.1007/s12035-021-02389-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is a devastating brain disorder characterized by neurofibrillary tangles and amyloid plaques. Inhibiting Tau protein and amyloid-beta (Aβ) production or removing these molecules is considered potential therapeutic strategies for AD. Genipin is an aglycone and is isolated from the extract of Gardenia jasminoides Ellis fruit. In this study, the effect and molecular mechanisms of genipin on the inhibition of Tau aggregation and Aβ generation were investigated. The results showed that genipin bound to Tau and protected against heparin-induced Tau fibril formation. Moreover, genipin suppressed Tau phosphorylation probably by downregulating the expression of CDK5 and GSK-3β, and activated mTOR-dependent autophagy via the SIRT1/LKB1/AMPK signaling pathway in Tau-overexpressing cells. In addition, genipin decreased Aβ production by inhibiting BACE1 expression through the PERK/eIF2α signaling pathway in N2a/SweAPP cells. These data indicated that genipin could effectively lead to a significant reduction of phosphorylated Tau level and Aβ generation in vitro, suggesting that genipin might be developed into an effective therapeutic complement or a potential nutraceutical for preventing AD.
Collapse
|
154
|
Yang Y, Gao H, Liu W, Liu X, Jiang X, Li X, Wu Q, Xu Z, Zhao Q. Arctium lappa L. roots ameliorates cerebral ischemia through inhibiting neuronal apoptosis and suppressing AMPK/mTOR-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153526. [PMID: 33691269 DOI: 10.1016/j.phymed.2021.153526] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Arctium lappa L. roots are very popular cultivated vegetables, which possesses various pharmacological activities. Our previous studies have demonstrated that Arctium lappa L. roots exerted protective effects against H2O2, glutamate and N-methyl-D-aspartic acid (NMDA)-induced neuronal injury in vitro. However, whether Arctium lappa L. roots could prevent against cerebral ischemia and the underlying mechanism remain unclear. PURPOSE The objective of the present study was to investigate the neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) and the active ingredient 4,5-O-dicaffeoyl-1-O-[4-malic acid methyl ester]-quinic acid (DCMQA) in EAL against cerebral ischemia and explore the underlying mechanism. STUDY DESIGN The neuroprotective effects of EAL and DCMQA were investigated in rats with permanent middle cerebral artery occlusion (MCAO) and in oxygen glucose deprivation/reoxygenation (OGD/R)-stimulated SH-SY5Y cells, respectively. METHODS The infarct volume, brain edema and neurological deficits were measured following MCAO. TUNEL and Nissl staining were performed to detect neuronal loss and apoptosis of neurons in rat brains. Cell survival was measured by MTT and LDH assay. In addition, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) levels were determined by DCFH-DA and JC-1 fluorescent probe, respectively. Hoechst 33342 staining and Annexin V-FITC/PI double staining were performed to evaluate neuronal apoptosis. The expression levels of proteins were evaluated by western blot. RESULTS EAL reduced brain infarct volume, ameliorated brain edema and improved neurological deficits in MCAO rats. In addition, EAL inhibited oxidative stress and inflammatory responses following MCAO. Besides, active compound DCMQA alleviated cytotoxicity as well as inhibited over-production of intracellular ROS and loss of MMP induced by OGD/R in SH-SY5Y cells. Moreover, EAL and DCMQA inhibited apoptosis by decreasing the expressions of pro-apoptotic proteins including bax, cytochrome c and cleaved caspase-3 while promoting the bcl-2 expression in MCAO rats and OGD/R-stimulated neurons, respectively. In addition, DCMQA suppressed the production of autophagosomes and down-regulated expression of Beclin 1 and LC3. Furthermore, inhibiting AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway contributed to DCMQA-mediated suppression of autophagy induced by OGD/R. CONCLUSION Our findings demonstrate that Arctium lappa L. roots protect against cerebral ischemia through inhibiting apoptosis and AMPK/mTOR-mediated autophagy in vitro and in vivo, providing a theoretical basis for the development of CQAs in Arctium lappa L. roots as neuroprotective drugs for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Huan Gao
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Wenwu Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xin Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaowen Jiang
- Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Zihua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China; School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
155
|
Prins MMC, Giugliano FP, van Roest M, van de Graaf SFJ, Koelink PJ, Wildenberg ME. Thiopurines correct the effects of autophagy impairment on intestinal healing - a potential role for ARHGAP18/RhoA. Dis Model Mech 2021; 14:258489. [PMID: 33973626 PMCID: PMC8084572 DOI: 10.1242/dmm.047233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
The ATG16L1 T300A single-nucleotide polymorphism (SNP) is associated with Crohn's disease and causes an autophagy impairment. We have previously shown that this SNP is involved in the migration and hyperactivation of Rac1 in dendritic cells. Mucosal healing, currently the main target for inflammatory bowel disease treatment, depends on restoration of the epithelial barrier and requires appropriate migration of epithelial cells towards and over mucosal lesions. Therefore, we here further investigated the impact of autophagy on epithelial migration. ATG16L1 knockdown was established in the HT29 human colonic epithelial cell line using lentiviral transduction. Migratory capacity was evaluated using scratch assays and RhoAGTP was measured using G-LISA. Immunofluorescent ARHGAP18 and sequestome 1 (SQSTM1; also known as p62) staining was performed on HT29 cells and primary colonic tissue of Crohn's disease patients. We observed that ATG16L1 knockdown cells exhibited decreased autophagy and decreased migration capacity. Furthermore, activity of RhoA was decreased. These characteristics were phenocopied using ATG5 knockdown and pharmacological inhibition of autophagy. The migration defect was dependent on accumulation of SQSTM1 and was alleviated upon SQSTM1 knockdown. Strikingly, thiopurines also mitigated the effects of impaired autophagy. RhoA dysregulation appeared mediated through accumulation of the upstream regulator ARHGAP18, which was observed in cell lines, human foetal organoids and primary colonic tissue. Our results indicate that the ATG16L1 T300A Crohn's disease-associated SNP causes a decrease in migration capacity in epithelial cells, mediated by an increase in SQSTM1 and ARHGAP18 protein and subsequent reduced RhoA activation.
Collapse
Affiliation(s)
- Marileen M C Prins
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Francesca P Giugliano
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Manon van Roest
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers (UMC), location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
156
|
Niture S, Lin M, Rios-Colon L, Qi Q, Moore JT, Kumar D. Emerging Roles of Impaired Autophagy in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Hepatol 2021; 2021:6675762. [PMID: 33976943 PMCID: PMC8083829 DOI: 10.1155/2021/6675762] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved catabolic process that eliminates dysfunctional cytosolic biomolecules through vacuole-mediated sequestration and lysosomal degradation. Although the molecular mechanisms that regulate autophagy are not fully understood, recent work indicates that dysfunctional/impaired autophagic functions are associated with the development and progression of nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), and hepatocellular carcinoma (HCC). Autophagy prevents NAFLD and AFLD progression through enhanced lipid catabolism and decreasing hepatic steatosis, which is characterized by the accumulation of triglycerides and increased inflammation. However, as both diseases progress, autophagy can become impaired leading to exacerbation of both pathological conditions and progression into HCC. Due to the significance of impaired autophagy in these diseases, there is increased interest in studying pathways and targets involved in maintaining efficient autophagic functions as potential therapeutic targets. In this review, we summarize how impaired autophagy affects liver function and contributes to NAFLD, AFLD, and HCC progression. We will also explore how recent discoveries could provide novel therapeutic opportunities to effectively treat these diseases.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Minghui Lin
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China 750021
| | - Leslimar Rios-Colon
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - John T. Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| |
Collapse
|
157
|
Pereira GJDS, Leão AHFF, Erustes AG, Morais IBDM, Vrechi TADM, Zamarioli LDS, Pereira CAS, Marchioro LDO, Sperandio LP, Lins ÍVF, Piacentini M, Fimia GM, Reckziegel P, Smaili SS, Bincoletto C. Pharmacological Modulators of Autophagy as a Potential Strategy for the Treatment of COVID-19. Int J Mol Sci 2021; 22:4067. [PMID: 33920748 PMCID: PMC8071111 DOI: 10.3390/ijms22084067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
The family of coronaviruses (CoVs) uses the autophagy machinery of host cells to promote their growth and replication; thus, this process stands out as a potential target to combat COVID-19. Considering the different roles of autophagy during viral infection, including SARS-CoV-2 infection, in this review, we discuss several clinically used drugs that have effects at different stages of autophagy. Among them, we mention (1) lysosomotropic agents, which can prevent CoVs infection by alkalinizing the acid pH in the endolysosomal system, such as chloroquine and hydroxychloroquine, azithromycin, artemisinins, two-pore channel modulators and imatinib; (2) protease inhibitors that can inhibit the proteolytic cleavage of the spike CoVs protein, which is necessary for viral entry into host cells, such as camostat mesylate, lopinavir, umifenovir and teicoplanin and (3) modulators of PI3K/AKT/mTOR signaling pathways, such as rapamycin, heparin, glucocorticoids, angiotensin-converting enzyme inhibitors (IECAs) and cannabidiol. Thus, this review aims to highlight and discuss autophagy-related drugs for COVID-19, from in vitro to in vivo studies. We identified specific compounds that may modulate autophagy and exhibit antiviral properties. We hope that research initiatives and efforts will identify novel or "off-label" drugs that can be used to effectively treat patients infected with SARS-CoV-2, reducing the risk of mortality.
Collapse
Affiliation(s)
- Gustavo José da Silva Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Anderson Henrique França Figueredo Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Ingrid Beatriz de Melo Morais
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Talita Aparecida de Moraes Vrechi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Lucas dos Santos Zamarioli
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Cássia Arruda Souza Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Laís de Oliveira Marchioro
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Letícia Paulino Sperandio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Ísis Valeska Freire Lins
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Mauro Piacentini
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘La Zaro Spallanzani’, 00149 Rome, Italy;
| | - Gian Maria Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS ‘La Zaro Spallanzani’, 00149 Rome, Italy;
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Patrícia Reckziegel
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, Brazil; (A.H.F.F.L.); (A.G.E.); (I.B.d.M.M.); (T.A.d.M.V.); (L.d.S.Z.); (C.A.S.P.); (L.d.O.M.); (L.P.S.); (Í.V.F.L.); (P.R.); (S.S.S.); (C.B.)
| |
Collapse
|
158
|
Lescat L, Véron V, Mourot B, Péron S, Chenais N, Dias K, Riera-Heredia N, Beaumatin F, Pinel K, Priault M, Panserat S, Salin B, Guiguen Y, Bobe J, Herpin A, Seiliez I. Chaperone-Mediated Autophagy in the Light of Evolution: Insight from Fish. Mol Biol Evol 2021; 37:2887-2899. [PMID: 32437540 DOI: 10.1093/molbev/msaa127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.
Collapse
Affiliation(s)
- Laury Lescat
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Brigitte Mourot
- INRAE, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Sandrine Péron
- INRAE, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Nathalie Chenais
- INRAE, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Karine Dias
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Natàlia Riera-Heredia
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Florian Beaumatin
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Karine Pinel
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Muriel Priault
- CNRS, IBGC, UMR5095, Bordeaux, France.,IBGC, UMR5095, Université de Bordeaux, Bordeaux, France
| | - Stéphane Panserat
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Bénédicte Salin
- CNRS, IBGC, UMR5095, Bordeaux, France.,IBGC, UMR5095, Université de Bordeaux, Bordeaux, France.,Service Commun de Microscopie, Université de Bordeaux, Bordeaux, France
| | - Yann Guiguen
- INRAE, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Julien Bobe
- INRAE, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Amaury Herpin
- INRAE, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P.R. China
| | - Iban Seiliez
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
159
|
Moon JH, Hong JM, Park SY. The antidiabetic drug troglitazone protects against PrP (106‑126)‑induced neurotoxicity via the PPARγ‑autophagy pathway in neuronal cells. Mol Med Rep 2021; 23:430. [PMID: 33846779 PMCID: PMC8047904 DOI: 10.3892/mmr.2021.12069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Prion diseases, which involve the alteration of cellular prion protein into a misfolded isoform, disrupt the central nervous systems of humans and animals alike. Prior research has suggested that peroxisome proliferator-activator receptor (PPAR)γ and autophagy provide some protection against neurodegeneration. PPARs are critical to lipid metabolism regulation and autophagy is one of the main cellular mechanisms by which cell function and homeostasis is maintained. The present study examined the effect of troglitazone, a PPARγ agonist, on autophagy flux in a prion peptide (PrP) (106–126)-mediated neurodegeneration model. Western blot analysis confirmed that treatment with troglitazone increased LC3-II and p62 protein expression, whereas an excessive increase in autophagosomes was verified by transmission electron microscopy. Troglitazone weakened PrP (106–126)-mediated neurotoxicity via PPARγ activation and autophagy flux inhibition. A PPARγ antagonist blocked PPARγ activation as well as the neuroprotective effects induced by troglitazone treatment, indicating that PPARγ deactivation impaired troglitazone-mediated protective effects. In conclusion, the present study demonstrated that troglitazone protected primary neuronal cells against PrP (106–126)-induced neuronal cell death by inhibiting autophagic flux and activating PPARγ signals. These results suggested that troglitazone may be a useful therapeutic agent for the treatment of neurodegenerative disorders and prion diseases.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
160
|
Frisardi V, Matrone C, Street ME. Metabolic Syndrome and Autophagy: Focus on HMGB1 Protein. Front Cell Dev Biol 2021; 9:654913. [PMID: 33912566 PMCID: PMC8072385 DOI: 10.3389/fcell.2021.654913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) affects the population worldwide and results from several factors such as genetic background, environment and lifestyle. In recent years, an interplay among autophagy, metabolism, and metabolic disorders has become apparent. Defects in the autophagy machinery are associated with the dysfunction of many tissues/organs regulating metabolism. Metabolic hormones and nutrients regulate, in turn, the autophagy mechanism. Autophagy is a housekeeping stress-induced degradation process that ensures cellular homeostasis. High mobility group box 1 (HMGB1) is a highly conserved nuclear protein with a nuclear and extracellular role that functions as an extracellular signaling molecule under specific conditions. Several studies have shown that HMGB1 is a critical regulator of autophagy. This mini-review focuses on the involvement of HMGB1 protein in the interplay between autophagy and MetS, emphasizing its potential role as a promising biomarker candidate for the early stage of MetS or disease's therapeutic target.
Collapse
Affiliation(s)
- Vincenza Frisardi
- Clinical and Nutritional Laboratory, Department of Geriatric and NeuroRehabilitation, Arcispedale Santa Maria Nuova (AUSL-IRCCS), Reggio Emilia, Italy
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology, Paediatrics, Department of Mother and Child, Arcispedale Santa Maria Nuova (AUSL-IRCCS), Reggio Emilia, Italy
| |
Collapse
|
161
|
Stefanovska B, André F, Fromigué O. Tribbles Pseudokinase 3 Regulation and Contribution to Cancer. Cancers (Basel) 2021; 13:cancers13081822. [PMID: 33920424 PMCID: PMC8070086 DOI: 10.3390/cancers13081822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Accumulating evidence supports a key function for Tribbles proteins in oncogenesis, both in leukemia and solid tumors. However, the exact role of these proteins is hard to define since in a context-dependent manner they can function as both oncogenes and tumor suppressors. Their complex role arises from the capacity to interact with a wide range of target molecules thereby acting as molecular scaffolds and signaling regulators of multiple pathways. This review focuses on one particular Tribbles family member, namely, TRIB3, addressing its gene and protein expression, as well as its role in cancer development and progression. Abstract The first Tribbles protein was identified as critical for the coordination of morphogenesis in Drosophila melanogaster. Three mammalian homologs were subsequently identified, with a structure similar to classic serine/threonine kinases, but lacking crucial amino acids for the catalytic activity. Thereby, the very weak ATP affinity classifies TRIB proteins as pseudokinases. In this review, we provide an overview of the regulation of TRIB3 gene expression at both transcriptional and post-translational levels. Despite the absence of kinase activity, TRIB3 interferes with a broad range of cellular processes through protein–protein interactions. In fact, TRIB3 acts as an adaptor/scaffold protein for many other proteins such as kinase-dependent proteins, transcription factors, ubiquitin ligases, or even components of the spliceosome machinery. We then state the contribution of TRIB3 to cancer development, progression, and metastasis. TRIB3 dysregulation can be associated with good or bad prognosis. Indeed, as TRIB3 interacts with and regulates the activity of many key signaling components, it can act as a tumor-suppressor or oncogene in a context-dependent manner.
Collapse
Affiliation(s)
- Bojana Stefanovska
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
| | - Fabrice André
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
- Department of Medical Oncology, Gustave Roussy, F-94805 Villejuif, France
| | - Olivia Fromigué
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
- Correspondence: ; Tel.: +33-142114211
| |
Collapse
|
162
|
Li C, Li Y, Zhuang M, Zhu B, Zhang W, Yan H, Zhang P, Li D, Yang J, Sun Y, Cui Q, Chen H, Jin P, Xia Z, Sun Y. Long noncoding RNA H19 act as a competing endogenous RNA of Let-7g to facilitate IEC-6 cell migration and proliferation via regulating EGF. J Cell Physiol 2021; 236:2881-2892. [PMID: 33230843 DOI: 10.1002/jcp.30061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Intestinal mucosal injury is one of the most significant complications of burns. In our previous study, it was found that autophagy could alleviate burn-induced intestinal injury, but the underlying mechanisms are still unclear. Irregular expression of long noncoding RNAs (lncRNAs) is present in many diseases, including burns. However, the relationship between lncRNAs and intestinal mucosal injury requires further elucidation. In this study, we established a burn mice model and detected the expression level of autophagy-related proteins. Then, H19 content after autophagy intervention was tested in vitro and in vivo. The interaction of H19 with Let-7g and that of Let-7g with epidermal growth factor (EGF) were verified by dual-luciferase reporter assays. We found that the expression of the autophagy-associated proteins LC3-II and Beclin-1 was raised in the intestinal tract of the burn mice model. Similarly, the transfection of H19 raised autophagy levels. H19 was elevated after autophagy intervention in vitro and in vivo. H19 overexpression was able to promote IEC-6 cell migration and proliferation. Let-7g was suppressed by the overexpression of H19 and the combination of Let-7g mimic was able to abolish the physiological effect of H19. Moreover, the suppression of Let-7g increased the expression of EGF protein, which heightened IEC-6 cell migration and proliferation. Besides this, dual-luciferase assays revealed that Let-7g was a direct target of H19 as well as the EGF gene. Taken together, autophagy-mediated H19 increases in mouse intestinal tract after severe burn and functions as a sponge to Let-7g to regulate EGF, which suggests that H19 serves as a potential therapeutic target and biomarker for intestinal mucosal injury after burns.
Collapse
Affiliation(s)
- Cuijie Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Ye Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Bo Zhu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Wenwen Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Hao Yan
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Pan Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Dan Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Juan Yang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Yuan Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Qingwei Cui
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Haijun Chen
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| |
Collapse
|
163
|
Fontana CM, Locatello L, Sabatelli P, Facchinello N, Lidron E, Maradonna F, Carnevali O, Rasotto MB, Dalla Valle L. epg5 knockout leads to the impairment of reproductive success and courtship behaviour in a zebrafish model of autophagy-related diseases. Biomed J 2021; 45:377-386. [PMID: 35562284 PMCID: PMC9250093 DOI: 10.1016/j.bj.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
Background Dysregulation of the autophagic flux is linked to a wide array of human diseases, and recent findings highlighted the central role of autophagy in reproduction, as well as an association between impairment of autophagy and behavioural disorders. Here we deepened on the possible multilevel link between impairment of the autophagic processes and reproduction at both the physiological and the behavioural level in a zebrafish mutant model. Methods Using a KO epg5 zebrafish line we analysed male breeding success, fertility rate, offspring survival, ejaculate quality, sperm and testes morphology, and courtship behaviour. To this aim physiological, histological, ultrastructural and behavioural analyses on epg5+/+ and mutant epg5−/− males coupled to WT females were applied. Results We observed an impairment of male reproductive performance in mutant epg5−/− males that showed a lower breeding success with a reduced mean number of eggs spawned by their WT female partners. The spermatogenesis and the ability to produce fertilising ejaculates were not drastically impaired in our mutant males, whereas we observed a reduction of their courtship behaviour that might contribute to explain their lower overall reproductive success. Conclusion Collectively our findings corroborate the hypothesis of a multilevel link between the autophagic process and reproduction. Moreover, by giving a first glimpse on behavioural disorders associated to epg5 KO in model zebrafish, our results open the way to more extensive behavioural analyses, also beyond the reproductive events, that might serve as new tools for the molecular screening of autophagy-related multisystemic and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Lisa Locatello
- Department of Biology, University of Padova, Padova, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn-Fano Marine Centre, Fano, Italy.
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Elisa Lidron
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | |
Collapse
|
164
|
Pei J, Wang G, Feng L, Zhang J, Jiang T, Sun Q, Ouyang L. Targeting Lysosomal Degradation Pathways: New Strategies and Techniques for Drug Discovery. J Med Chem 2021; 64:3493-3507. [PMID: 33764774 DOI: 10.1021/acs.jmedchem.0c01689] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of tools for targeted protein degradation are inspiring scientists to develop new drugs with advantages over traditional small-molecule drugs. Among these tools, proteolysis-targeting chimeras (PROTACs) are most representative of the technology based on proteasomes. However, the proteasome has little degradation effect on certain macromolecular proteins or aggregates, extracellular proteins, and organelles, which limits the application of PROTACs. Additionally, lysosomes play an important role in protein degradation. Therefore, lysosome-induced protein degradation drugs can directly regulate protein levels in vivo, achieve the goal of treating diseases, and provide new strategies for drug discovery. Lysosome-based degradation technology has the potential for clinical translation. In this review, strategies targeting lysosomal pathways and lysosome-based degradation techniques are summarized. In addition, lysosome-based degrading drugs are described, and the advantages and challenges are listed. Our efforts will certainly promote the design, discovery, and clinical application of drugs associated with this technology.
Collapse
Affiliation(s)
- Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Tingting Jiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
165
|
Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Microorganisms 2021; 9:638. [PMID: 33808578 PMCID: PMC8003559 DOI: 10.3390/microorganisms9030638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000 Prague, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| |
Collapse
|
166
|
Liu X, Yang J, Fu J, Xu PL, Xie TG, Bai LP, Jiang ZH, Zhu GY. Monoterpene-flavonoid conjugates from Sarcandra glabra and their autophagy modulating activities. Bioorg Chem 2021; 112:104830. [PMID: 33819736 DOI: 10.1016/j.bioorg.2021.104830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/24/2022]
Abstract
Fourteen new monoterpene-flavonoid conjugates including four monoterpene-conjugated chalcones (glabratins A-D, 1-4), seven monoterpene-conjugated dihydrochalcones (glabratins E-K, 5-11), and three monoterpene-conjugated flavanones (glabratins L-N, 12-14), together with four known analogues (15-18) were isolated from the aerial parts of Sarcandra glabra. The structures and the absolute configurations of these compounds were elucidated by the spectroscopic data, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compounds 1, 4-6, 9-14, and 18 showed obvious cell autophagy-inducing activities at 25 μM in HEK293 cells. Furthermore, the bioassay results also showed that 18 induced cell autophagy in a dose dependent manner. Our findings revealed a rare class of monoterpene-flavonoid conjugates in nature and firstly reported their autophagy-inducing activities.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, People's Republic of China
| | - Ji Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jing Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Pei-Lin Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Tang-Gui Xie
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| |
Collapse
|
167
|
Functional Genetic Variants in ATG10 Are Associated with Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061344. [PMID: 33809750 PMCID: PMC8002222 DOI: 10.3390/cancers13061344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a hematological neoplasm with a very poor survival rate. To date, diagnostic tools to monitor individuals at higher risk of developing AML are scarce. Single nucleotide polymorphisms (SNPs) have emerged as good candidates for disease prevention. AML is characterized by altered autophagy, a vital mechanism to remove and recycle unnecessary or dysfunctional cellular components. ATG10 is one of the autophagy core genes involved in the autophagosome formation. We hypothesize that SNPs located in regulatory regions of the ATG10 gene could predispose individuals to AML development. We therefore genotyped three SNPs within the ATG10 locus. We identified the ATG10rs3734114 as a potential risk factor for developing AML, whereas the ATG10rs1864182 was associated with decreased risk. These findings highlight ATG10 as a key regulator of susceptibility to AML. Furthermore, we believe that ATG10 SNPs could be exploited in the clinical setting as an AML prevention strategy. Abstract Acute myeloid leukemia (AML) is the most common acute leukemia, characterized by a heterogeneous genetic landscape contributing, among others, to the occurrence of metabolic reprogramming. Autophagy, a key player on metabolism, plays an essential role in AML. Here, we examined the association of three potentially functional genetic polymorphisms in the ATG10 gene, central for the autophagosome formation. We screened a multicenter cohort involving 309 AML patients and 356 healthy subjects for three ATG10 SNPs: rs1864182T>G, rs1864183C>T and rs3734114T>C. The functional consequences of the ATG10 SNPs in its canonical function were investigated in vitro using peripheral blood mononuclear cells from a cohort of 46 healthy individuals. Logistic regression analysis adjusted for age and gender revealed that patients carrying the ATG10rs1864182G allele showed a significantly decreased risk of developing AML (OR [odds ratio] = 0.58, p = 0.001), whereas patients carrying the homozygous ATG10rs3734114C allele had a significantly increased risk of developing AML (OR = 2.70, p = 0.004). Functional analysis showed that individuals carrying the ATG10rs1864182G allele had decreased autophagy when compared to homozygous major allele carriers. Our results uncover the potential of screening for ATG10 genetic variants in AML prevention strategies, in particular for subjects carrying other AML risk factors such as elderly individuals with clonal hematopoiesis of indeterminate potential.
Collapse
|
168
|
Huang S, Li S, Feng H, Chen Y. Iron Metabolism Disorders for Cognitive Dysfunction After Mild Traumatic Brain Injury. Front Neurosci 2021; 15:587197. [PMID: 33796002 PMCID: PMC8007909 DOI: 10.3389/fnins.2021.587197] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/10/2021] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most harmful forms of acute brain injury and predicted to be one of the three major neurological diseases that cause neurological disabilities by 2030. A series of secondary injury cascades often cause cognitive dysfunction of TBI patients leading to poor prognosis. However, there are still no effective intervention measures, which drive us to explore new therapeutic targets. In this process, the most part of mild traumatic brain injury (mTBI) is ignored because its initial symptoms seemed not serious. Unfortunately, the ignored mTBI accounts for 80% of the total TBI, and a large part of the patients have long-term cognitive dysfunction. Iron deposition has been observed in mTBI patients and accompanies the whole pathological process. Iron accumulation may affect long-term cognitive dysfunction from three pathways: local injury, iron deposition induces tau phosphorylation, the formation of neurofibrillary tangles; neural cells death; and neural network damage, iron deposition leads to axonal injury by utilizing the iron sensibility of oligodendrocytes. Thus, iron overload and metabolism dysfunction was thought to play a pivotal role in mTBI pathophysiology. Cerebrospinal fluid-contacting neurons (CSF-cNs) located in the ependyma have bidirectional communication function between cerebral-spinal fluid and brain parenchyma, and may participate in the pathway of iron-induced cognitive dysfunction through projected nerve fibers and transmitted factor, such as 5-hydroxytryptamine, etc. The present review provides an overview of the metabolism and function of iron in mTBI, and to seek a potential new treatment target for mTBI with a novel perspective through combined iron and CSF-cNs.
Collapse
Affiliation(s)
- Suna Huang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Su Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| |
Collapse
|
169
|
Choi HJ, Park JH, Kim OH, Kim KH, Hong HE, Seo H, Kim SJ. Combining Everolimus and Ku0063794 Promotes Apoptosis of Hepatocellular Carcinoma Cells via Reduced Autophagy Resulting from Diminished Expression of miR-4790-3p. Int J Mol Sci 2021; 22:ijms22062859. [PMID: 33799789 PMCID: PMC7998287 DOI: 10.3390/ijms22062859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
It is challenging to overcome the low response rate of everolimus in the treatment of patients with hepatocellular carcinoma (HCC). To overcome this challenge, we combined everolimus with Ku0063794, the inhibitor of mTORC1 and mTORC2, to achieve higher anticancer effects. However, the precise mechanism for the synergistic effects is not clearly understood yet. To achieve this aim, the miRNAs were selected that showed the most significant variation in expression according to the mono- and combination therapy of everolimus and Ku0063794. Subsequently, the roles of specific miRNAs were determined in the processes of the treatment modalities. Compared to individual monotherapies, the combination therapy significantly reduced viability, increased apoptosis, and reduced autophagy in HepG2 cells. The combination therapy led to significantly lower expression of miR-4790-3p and higher expression of zinc finger protein225 (ZNF225)—the predicted target of miR-4790-3p. The functional study of miR-4790-3p and ZNF225 revealed that regarding autophagy, miR-4790-3p promoted it, while ZNF225 inhibited it. In addition, regarding apoptosis, miR-4790-3p inhibited it, while ZNF225 promoted it. It was also found that HCC tissues were characterized by higher expression of miR-4790-3p and lower expression of ZNF225; HCC tissues were also characterized by higher autophagic flux. We, thus, conclude that the potentiated anticancer effect of the everolimus and Ku0063794 combination therapy is strongly associated with reduced autophagy resulting from diminished expression of miR-4790-3p, as well as higher expression of ZNF225.
Collapse
Affiliation(s)
- Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Correspondence:
| | - Jung Hyun Park
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Korea;
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Kee-Hwan Kim
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Korea
| | - Ha Eun Hong
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Haeyeon Seo
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (H.E.H.); (H.S.); (S.-J.K.)
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| |
Collapse
|
170
|
Ahmad B, Gamallat Y, Khan MF, Din SR, Israr M, Ahmad M, Tahir N, Azam N, Rahman KU, Xin W, Zexu W, Linjie P, Su P, Liang W. Natural Polyphyllins (I, II, D, VI, VII) Reverses Cancer Through Apoptosis, Autophagy, Mitophagy, Inflammation, and Necroptosis. Onco Targets Ther 2021; 14:1821-1841. [PMID: 33732000 PMCID: PMC7956893 DOI: 10.2147/ott.s287354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yaser Gamallat
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | | | - Syed Riaz Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Muhammad Israr
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,Biochemistry and Molecular Biology, College of Life Science, Hebei Normal University, Hebei, People's Republic of China
| | - Manzoor Ahmad
- Department of Chemistry, Malakand University, Chakdara, KPK, I. R. Pakistan
| | - Naeem Tahir
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Nasir Azam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Khalil Ur Rahman
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Peng Linjie
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Pengyu Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Liang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical, Dalian City, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|
171
|
Luo Y, Fu Y, Huang Z, Li M. Transition metals and metal complexes in autophagy and diseases. J Cell Physiol 2021; 236:7144-7158. [PMID: 33694161 DOI: 10.1002/jcp.30359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Transition metals refer to the elements in the d and ds blocks of the periodic table. Since the success of cisplatin and auranofin, transition metal-based compounds have become a prospective source for drug development, particularly in cancer treatment. In recent years, extensive studies have shown that numerous transition metal-based compounds could modulate autophagy, promising a new therapeutic strategy for metal-related diseases and the design of metal-based agents. Copper, zinc, and manganese, which are common components in physiological pathways, play important roles in the progression of cancer, neurodegenerative diseases, and cardiovascular diseases. Furthermore, enrichment of copper, zinc, or manganese can regulate autophagy. Thus, we summarized the current advances in elucidating the mechanisms of some metals/metal-based compounds and their functions in autophagy regulation, which is conducive to explore the intricate roles of autophagy and exploit novel therapeutic drugs for human diseases.
Collapse
Affiliation(s)
- Yuping Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiying Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
172
|
Beckers J, Tharkeshwar AK, Van Damme P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 2021; 17:3306-3322. [PMID: 33632058 PMCID: PMC8632097 DOI: 10.1080/15548627.2021.1872189] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two clinically distinct classes of neurodegenerative disorders. Yet, they share a range of genetic, cellular, and molecular features. Hexanucleotide repeat expansions (HREs) in the C9orf72 gene and the accumulation of toxic protein aggregates in the nervous systems of the affected individuals are among such common features. Though the mechanisms by which HREs cause toxicity is not clear, the toxic gain of function due to transcribed HRE RNA or dipeptide repeat proteins (DPRs) produced by repeat-associated non-AUG translation together with a reduction in C9orf72 expression are proposed as the contributing factors for disease pathogenesis in ALS and FTD. In addition, several recent studies point toward alterations in protein homeostasis as one of the root causes of the disease pathogenesis. In this review, we discuss the effects of the C9orf72 HRE in the autophagy-lysosome pathway based on various recent findings. We suggest that dysfunction of the autophagy-lysosome pathway synergizes with toxicity from C9orf72 repeat RNA and DPRs to drive disease pathogenesis. Abbreviation: ALP: autophagy-lysosome pathway; ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related; ASO: antisense oligonucleotide; C9orf72: C9orf72-SMCR8 complex subunit; DENN: differentially expressed in normal and neoplastic cells; DPR: dipeptide repeat protein; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; ER: endoplasmic reticulum; FTD: frontotemporal dementia; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; HRE: hexanucleotide repeat expansion; iPSC: induced pluripotent stem cell; ISR: integrated stress response; M6PR: mannose-6-phosphate receptor, cation dependent; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: neurodegenerative disorder; RAN: repeat-associated non-ATG; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SLC66A1/PQLC2: solute carrier family 66 member 1; SMCR8: SMCR8-C9orf72 complex subunit; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system; WDR41: WD repeat domain 41.
Collapse
Affiliation(s)
- Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| |
Collapse
|
173
|
Shi W, Lu D, Wu C, Li M, Ding Z, Li Y, Chen B, Lin X, Su W, Shao X, Xia Z, Fang L, Liu K, Li H. Coibamide A kills cancer cells through inhibiting autophagy. Biochem Biophys Res Commun 2021; 547:52-58. [PMID: 33592379 DOI: 10.1016/j.bbrc.2021.01.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Natural products are useful tools for biological mechanism research and drug discovery. Due to the excellent tumor cell growth inhibitory profile and sub-nanomolar potency, Coibamide A (CA), an N-methyl-stabilized depsipeptide isolated from marine cyanobacterium, has been considered as a promising lead compound for cancer treatment. However, the molecular anti-cancer mechanism of the action of CA remains unclear. Here, we showed that CA treatment induced caspase-independent cell death in breast cancer cells. CA treatment also led to severe lysosome defects, which was ascribed to the impaired glycosylation of lysosome membrane protein LAMP1 and LAMP2. As a consequence, the autophagosome-lysosome fusion was blocked upon CA treatment. In addition, we presented evidence that this autophagy defect partially contributed to the CA treatment-induced tumor cell death. Together, our work uncovers a novel mechanism underlying the anti-cancer action of CA, which will promote its further application for cancer therapy.
Collapse
Affiliation(s)
- Wenli Shi
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Danyi Lu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunlei Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiqing Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Ding
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanyan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binghua Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wu Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ximing Shao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihui Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lijing Fang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ke Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongchang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
174
|
Shi H, Zhong F, Yi X, Shi Z, Ou F, Xu Z, Zuo Y. Application of an Autophagy-Related Gene Prognostic Risk Model Based on TCGA Database in Cervical Cancer. Front Genet 2021; 11:616998. [PMID: 33633773 PMCID: PMC7900625 DOI: 10.3389/fgene.2020.616998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Autophagy plays an important role in the development of cancer. However, the prognostic value of autophagy-related genes (ARGs) in cervical cancer (CC) is unclear. The purpose of this study is to construct a survival model for predicting the prognosis of CC patients based on ARG signature. Methods: ARGs were obtained from the Human Autophagy Database and Molecular Signatures Database. The expression profiles of ARGs and clinical data were downloaded from the TCGA database. Differential expression analysis of CC tissues and normal tissues was performed using R software to screen out ARGs with an aberrant expression. Univariate Cox, Lasso, and multivariate Cox regression analyses were used to construct a prognostic model which was validated by using the test set and the entire set. We also performed an independent prognostic analysis of risk score and some clinicopathological factors of CC. Finally, a clinical practical nomogram was established to predict individual survival probability. Results: Compared with normal tissues, there were 63 ARGs with an aberrant expression in CC tissues. A risk model based on 3 ARGs was finally obtained by Lasso and Cox regression analysis. Patients with high risk had significantly shorter overall survival (OS) than low-risk patients in both train set and validation set. The ROC curve validated its good performance in survival prediction, suggesting that this model has a certain extent sensitivity and specificity. Multivariate Cox analysis showed that the risk score was an independent prognostic factor. Finally, we mapped a nomogram to predict 1-, 3-, and 5-year survival for CC patients. The calibration curves indicated that the model was reliable. Conclusion: A risk prediction model based on CHMP4C, FOXO1, and RRAGB was successfully constructed, which could effectively predict the prognosis of CC patients. This model can provide a reference for CC patients to make precise treatment strategy.
Collapse
Affiliation(s)
- Huadi Shi
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fulan Zhong
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqiong Yi
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhenyi Shi
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feiyan Ou
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zumin Xu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yufang Zuo
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
175
|
Fan X, Xie M, Zhao F, Li J, Fan C, Zheng H, Wei Z, Ci X, Zhang S. Daphnetin triggers ROS-induced cell death and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway in ovarian cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153465. [PMID: 33486268 DOI: 10.1016/j.phymed.2021.153465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ovarian cancer is one of the most common gynecological malignancies in the world. Daphnetin (Daph) was previously reported to possess antitumor potential, but its potential and molecular mechanisms in ovarian cancer remain poorly understood. PURPOSE In the current study, we aimed to explore the antitumor effect and detailed mechanisms of Daph in ovarian cancer cells. METHODS The cytotoxic effect of Daph on ovarian cells was determined in vitro and in vivo. Cell growth, proliferation, apoptosis and ROS generation were measured by CCK8 assays, colony formation assays and flow cytometry. Western blotting was used to evaluate the related signal proteins. Immunofluorescence and transmission electron microscopy were used to evaluate markers of autophagy and autophagic flux. The antitumor effects were observed in the A2780 xenograft model. Moreover, Daph-induced autophagy was observed by enhanced LC3-II accumulation and endogenous LC3 puncta, and an autophagy inhibitor further enhanced the antitumor efficacy of Daph, which indicated that the cytoprotective role of autophagy in ovarian cancer. RESULTS We found that Daph exhibited antitumor effects by inducing ROS-dependent apoptosis in ovarian cancer, which could be reversed by N-acetyl cysteine (NAC). The AMPK/Akt/mTOR pathway was involved in Daph-mediated cytoprotective autophagy, and when Daph-mediated the expression level of AMPK and autophagy were blocked, there was robust inhibition of cell proliferation and induction of apoptosis. In addition, in the A2780 xenograft model, combined treatment with Daph and an autophagy inhibitor showed obvious synergetic effects on the inhibition of cell viability and promotion of apoptosis, without any side effects. CONCLUSION Our results suggest that Daph triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Moreover, the combination of Daph and autophagy inhibitor may be a potential therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Xiaoye Fan
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China; Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Min Xie
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Feijie Zhao
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Jiajia Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Changqing Fan
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhentong Wei
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
176
|
Abstract
The current COVID-19 pandemic caused by SARS-CoV-2 has prompted investigators worldwide to search for an effective anti-viral treatment. A number of anti-viral drugs such as ribavirin, remdesivir, lopinavir/ritonavir, antibiotics such as azithromycin and doxycycline, and anti-parasite such as ivermectin have been recommended for COVID-19 treatment. In addition, sufficient pre-clinical rationale and evidence have been presented to use chloroquine for the treatment of COVID-19. Furthermore, Zn has the ability to enhance innate and adaptive immunity in the course of a viral infection. Besides, Zn supplement can favour COVID-19 treatment using those suggested and/or recommended drugs. Again, the effectiveness of Zn can be enhanced by using chloroquine as an ionophore while Zn inside the infected cell can stop SARS-CoV-2 replication. Given those benefits, this perspective paper describes how and why Zn could be given due consideration as a complement to the prescribed treatment of COVID-19.
Collapse
Affiliation(s)
| | - Syed Zahir Idid
- Faculty of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Malaysia
| |
Collapse
|
177
|
Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells 2021; 10:cells10020262. [PMID: 33572709 PMCID: PMC7911291 DOI: 10.3390/cells10020262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are spreading worldwide and are one of the greatest threats to public health. There is currently no adequate therapy for these disorders, and therefore there is an urgent need to accelerate the discovery and development of effective treatments. Although neurodegenerative disorders are broad ranging and highly complex, they may share overlapping mechanisms, and thus potentially manifest common targets for therapeutic interventions. Glycogen synthase kinase-3 (GSK-3) is now acknowledged to be a central player in regulating mood behavior, cognitive functions, and neuron viability. Indeed, many targets controlled by GSK-3 are critically involved in progressing neuron deterioration and disease pathogenesis. In this review, we focus on three pathways that represent prominent mechanisms linking GSK-3 with neurodegenerative disorders: cytoskeleton organization, the mammalian target of rapamycin (mTOR)/autophagy axis, and mitochondria. We also consider the challenges and opportunities in the development of GSK-3 inhibitors for treating neurodegeneration.
Collapse
|
178
|
Serum Mitochondrial Quality Control Related Biomarker Levels are Associated with Organ Dysfunction in Septic Patients. Shock 2021; 56:412-418. [PMID: 33534397 DOI: 10.1097/shk.0000000000001737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND To investigate the feasibility and the value of using mitochondrial quality control (MQC)-related proteins as biomarkers in septic patients. METHODS The enrolled subjects were divided into four groups: healthy control group (n = 30), intensive care unit (ICU) control group (n = 62), septic nonshock group (n = 40), and septic shock group (n = 94). Serum levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), fission protein 1 (Fis1), mitofusin2 (Mfn2), and Parkin were measured by enzyme-linked immunosorbent assay at the time of enrollment for all groups. Clinical parameters and laboratory test results were also collected. RESULTS The levels of MQC-related biomarkers between any two of the four groups were significantly different (P < 0.001 for all). The serum levels of PGC-1α, Mfn2, and Parkin were lowest in healthy individuals; the levels were dramatically higher in the ICU control group compared with the others, and they decreased progressively from the septic nonshock group to the septic shock group. However, the pattern for Fis1 was inverse; the more severe the condition was, the higher the level of Fis1. Moreover, there was moderate correlation between MQC-related biomarkers and the SOFA score (PGC-1α, r = -0.662; Fis1, r = 0.609; Mfn2, r = -0.677; Parkin, r = 0.-0.674, P < 0.001 for all). CONCLUSIONS The serum levels of PGC-1α, Fis1, Mfn2, and Parkin were significantly correlated with organ dysfunction and reflected the disease progression and severity. The dynamic surveillance of these four biomarkers could be beneficial to predict outcome and guide treatment.
Collapse
|
179
|
Targeted inhibition of ATP5B gene prevents bone erosion in collagen-induced arthritis by inhibiting osteoclastogenesis. Pharmacol Res 2021; 165:105458. [PMID: 33515708 DOI: 10.1016/j.phrs.2021.105458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/01/2023]
Abstract
Bone resorption by osteoclasts is an energy consuming activity, which depends on mitochondrial ATP. ATP5B, a mitochondrial ATP synthase beta subunit, is a catalytic core involved in producing ATP. Here, we investigated the contribution of ATP5B in osteoclast differentiation and joint destruction. ATP5B (LV-ATP5B) targeting or non-targeting (LV-NC) siRNA containing lentivirus particles were transduced into bone marrow macrophage derived osteoclasts or locally administered to arthritic mouse joints. Inhibition of ATP5B reduced the expression of osteoclast related genes and proteins, suppressed bone resorption by significantly impairing F-actin formation and decreased the levels of adhesion-associated proteins. In addition, ATP5B deficiency caused osteoclast mitochondrial dysfunction and, impaired the secretion of vacuole protons and MMP9. Importantly, inhibition of ATP5B expression, protected arthritis mice from joint destructions although serum levels of inflammatory mediators (TNF-α, IL-1β) and IgG2α antibodies were unaffected. These results demonstrate an essential function of ATP5B in osteoclast differentiation and bone resorption, and suggest it as a potential therapeutic target for protecting bones in RA.
Collapse
|
180
|
[A STUDY OF MULTIPARAMETER ANALYSIS OF SERUM URIC ACID LEVELS -A STUDY IN APPARENTLY HEALTHY JAPANESE MEN AND WOMEN]. Nihon Hinyokika Gakkai Zasshi 2021; 111:22-29. [PMID: 33473091 DOI: 10.5980/jpnjurol.111.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
(Background) Hyperuricemia is associated with hypertension, vascular disease, cardiovascular events, and renal dysfunction. Several studies have reported the relationship between serum uric acid (UA) level and clinical outcome in the general population. However, most such studies have not quantitatively evaluated the association between UA and age, body mass index (BMI), and estimated glomerular filtration rate (eGFR). (Method) From April 2015 to March 2016, a total 10,133 healthy individuals underwent multiphasic screening at our medical checkup center. Among all participants, eGFR was evaluated in 1,684 men and 1,195 women. The data of this cohort were reviewed and analyzed. (Results) The median age of men and women was 51.0 and 50.0 years, respectively. Median serum UA was 6.1 mg/dL in men and 4.5 mg/dL in women. The prevalence of hyperuricemia was 23.9% in men and 8.5% in women. In all 10-year age groups, men had significantly higher serum UAs than women. In men, no significant differences of serum UA were observed among 10-year age groups. Menopause-associated increases in serum UA among women were observed. Men in their 20s to 50s and women in their 30s to 60s showed significant differences in serum UA between each BMI category in the same age decade. Both men and women in their 40s to 60s showed significant differences in serum UA between each eGFR category in the same age decade. We used the results of multiple regression analysis to derive equations to predict the associations among these variables, as follows: men, UA (mg/dL) = 5.637+0.065 × (BMI) - 0.014 × (eGFR) (R2 = 0.059, P < 0.0001); women < 50 years old, UA (mg/dL) = 4.068+0.065 × (BMI) - 0.014 × (eGFR) (R2 = 0.091, P < 0.0001) and women > 50 years old, UA (mg/dL) = 4.311+0.075 × (BMI) - 0.017 × (eGFR) (R2 = 0.116, P < 0.0001). (Conclusions) We present epidemiological evidence indicating that the levels of serum UA vary with BMI and eGFR in both sexes. In women, it should be recognized that menopause is independently associated with higher levels of UA.
Collapse
|
181
|
Wang YY, Yan Q, Huang ZT, Zou Q, Li J, Yuan MH, Wu LQ, Cai ZY. Ameliorating Ribosylation-Induced Amyloid-β Pathology by Berberine via Inhibiting mTOR/p70S6K Signaling. J Alzheimers Dis 2021; 79:833-844. [PMID: 33361598 DOI: 10.3233/jad-200995] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Berberine (BBR) plays a neuroprotective role in the pathogenesis of Alzheimer's disease (AD), inhibiting amyloid-β (Aβ) production and promoting Aβ clearance. Advanced glycation end products (AGEs) promote Aβ aggregation and tau hyperphosphorylation. The activation of mTOR signaling occurring at the early stage of AD has a prominent impact on the Aβ production. This work focused on whether BBR regulates the production and clearance of ribosylation-induced Aβ pathology via inhibiting mTOR signaling. OBJECTIVE To explore whether BBR ameliorates ribosylation-induced Aβ pathology in APP/PS1 mice. METHODS Western blot and immunofluorescence staining were used to detect the related proteins of the mammalian target of Rapamycin (mTOR) signaling pathway and autophagy, as well as the related kinases of Aβ generation and clearance. Tissue sections and Immunofluorescence staining were used to observe Aβ42 in APP/PS1 mice hippocampal. Morris water maze test was used to measure the spatial learning and memory of APP/PS1 mice. RESULTS BBR improves spatial learning and memory of APP/PS1 mice. BBR limits the activation of mTOR/p70S6K signaling pathway and enhances autophagy process. BBR reduces the activity of BACE1 and γ-secretase induced by D-ribose, and enhances Aβ-degrading enzymes and Neprilysin, and inhibits the expression of Aβ in APP/PS1 mice. CONCLUSION BBR ameliorates ribosylation-induced Aβ pathology via inhibiting mTOR/p70S6K signaling and improves spatial learning and memory of the APP/PS1 mice.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Zhen-Ting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jing Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Ming-Hao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Liang-Qi Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-You Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
182
|
Kono Y, Colley T, To M, Papaioannou AI, Mercado N, Baker JR, To Y, Abe S, Haruki K, Ito K, Barnes PJ. Cigarette smoke-induced impairment of autophagy in macrophages increases galectin-8 and inflammation. Sci Rep 2021; 11:335. [PMID: 33432024 PMCID: PMC7801483 DOI: 10.1038/s41598-020-79848-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cigarette smoke impairs autophagy, an intracellular protein degradation system, but the consequences of this defect have not been fully elucidated, especially in macrophages. Dysfunctional alveolar macrophages play an important role in chronic obstructive pulmonary disease (COPD). Here we show that galectin-8, a danger receptor that identifies damaged intracellular host vesicles and initiates autophagosome engulfment, is elevated due to activation of autophagy by cigarette smoke extract (CSE) in macrophages. CSE impaired autophagic flux in PMA-differentiated U937 macrophage-like cells, resulting in intracellular accumulation of galectin-8 and the autophagic adaptor protein NDP52. COPD patients showed elevated levels of galectin-8 and NDP52 in the lung homogenates with significant increase in the serum galectin-8 levels in patients with frequent acute exacerbations. Soluble galectin-8 induced interleukin (IL)-6 release in bronchial epithelial cells via PI3Kα signalling. Thus, increased galectin-8 due to CSE-induced impaired autophagy may be involved in the pathogenesis of COPD and may be a biomarker of this disease.
Collapse
Affiliation(s)
- Yuta Kono
- National Heart and Lung Institute, Imperial College London, London, UK.
- Deparment of Allergy and Respiratory Medicine, The Fraternity Memorial Hospital, Tokyo, Japan.
| | - Thomas Colley
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Masako To
- Dapartment of Laboratory Medicine, Dokkyo Medical University Saitama Medical Centre, Saitama, Japan
| | | | - Nicolas Mercado
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jonathan R Baker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yasuo To
- Deparment of Allergy and Respiratory Medicine, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, Japan
| | - Kosuke Haruki
- Dapartment of Laboratory Medicine, Dokkyo Medical University Saitama Medical Centre, Saitama, Japan
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
183
|
Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol 2021; 22:733-750. [PMID: 34302147 PMCID: PMC8300085 DOI: 10.1038/s41580-021-00392-4] [Citation(s) in RCA: 334] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.
Collapse
Affiliation(s)
- Yan G. Zhao
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Patrice Codogno
- grid.508487.60000 0004 7885 7602Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Hong Zhang
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
184
|
Ni Y, Zhao Y, Ma L, Wang Z, Ni L, Hu L, Fu Z. Pharmacological activation of REV-ERBα improves nonalcoholic steatohepatitis by regulating intestinal permeability. Metabolism 2021; 114:154409. [PMID: 33096076 DOI: 10.1016/j.metabol.2020.154409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES The gut-liver axis plays an important role in the pathogenesis of nonalcoholic steatohepatitis (NASH), and increased intestinal permeability causes transfer of endotoxin to the liver, which activates the immune response, ultimately leading to hepatic inflammation. Nuclear receptor Rev-erbα is a critical regulator of circadian rhythm, cellular metabolism, and inflammatory responses. However, the role and mechanism of Rev-erbα in gut barrier function and NASH remain unclear. In the present study, we investigated the involvement of Rev-erbα in the regulation of intestinal permeability and the treatment of NASH. METHODS AND RESULTS The expression of tight junction-related genes and Rev-erbs decreased in the jejunum, ileum and colon of mice with high cholesterol, high fat diet (CL)-induced NASH. Chromatin immunoprecipitation analysis indicated that REV-ERBα directly bound to the promoters of tight junction genes to regulate intestinal permeability. Pharmacological activation of REV-ERBα by SR9009 protected against lipopolysaccharide-induced increased intestinal permeability both in vitro and in vivo, and these effects were associated with the activation of autophagy and decreased apoptotic signaling of epithelial cells. In addition, the chronopharmacological effects of SR9009 were more potent at Zeitgeber time 0 (ZT0) than at ZT12, which was contrary to the rhythm of Rev-erbs in the gastrointestinal tract. The administration of SR9009 attenuated hepatic lipid accumulation, insulin resistance, inflammation, and fibrosis in mice with CL diet-induced NASH, which might be partly attributed to the enhancement of intestinal barrier function. CONCLUSION Chronopharmacological activation of REV-ERBα might be a potential strategy to treat intestinal barrier dysfunction-related disorders and NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhe Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
185
|
Zhang CL, Long TY, Bi SS, Sheikh SA, Li F. CircPAN3 ameliorates myocardial ischaemia/reperfusion injury by targeting miR-421/Pink1 axis-mediated autophagy suppression. J Transl Med 2021; 101:89-103. [PMID: 32929177 DOI: 10.1038/s41374-020-00483-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular diseases are considered the leading cause of death worldwide. Myocardial ischaemia/reperfusion (I/R) injury is recognized as a critical risk factor for cardiovascular diseases. Although increasing advances have been made recently in understanding the mechanisms of I/R injury, they remain largely unknown. In this study, we found that the expression of circPAN3 (circular RNA PAN3) was decreased in a mouse model of myocardial I/R. Overexpression of circPAN3 significantly inhibited autophagy and alleviated cell apoptosis of cardiomyocytes, which was further verified in vivo by decreased autophagic vacuoles and reduced myocardial infarct sizes. Moreover, miR-421 (microRNA-421) was identified as a downstream target involved in circPAN3-mediated myocardial I/R injury. Additionally, miR-421 could negatively regulate Pink1 (phosphatase and tensin homologue-induced putative kinase 1) via a direct binding relationship. Furthermore, the mitigating effects of circPAN3 overexpression on myocardial I/R injury by suppressing autophagy and apoptosis were abolished by knockdown of Pink1. Our findings reveal a novel role for circPAN3 in modulating autophagy and apoptosis in myocardial I/R injury and the circPAN3-miR-421-Pink1 axis as a regulatory network, which might provide potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng-Long Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
| | - Tian-Yi Long
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
| | - Si-Si Bi
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
| | - Sayed-Ali Sheikh
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China
- Internal Medicine Department, Cardiology, College of Medicine, Jouf University, Sakakah, Saudi Arabia
| | - Fei Li
- Department of Cardiology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, P.R. China.
| |
Collapse
|
186
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, Li P, Wang K. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021; 17:134-150. [PMID: 33390839 PMCID: PMC7757044 DOI: 10.7150/ijbs.50773] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hongjing Cai
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiaodan Hao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yinfeng Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinmin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
187
|
Huang J, Chen X, Lv Y. HMGB1 Mediated Inflammation and Autophagy Contribute to Endometriosis. Front Endocrinol (Lausanne) 2021; 12:616696. [PMID: 33815277 PMCID: PMC8018282 DOI: 10.3389/fendo.2021.616696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
AIM High mobility group box (HMGB)-1 has been implicated in endometriosis due to the important regulatory roles of inflammation in endometriosis. The aim of the present study was to explore the roles of HMGB-1 in endometriosis and to elucidate the underlying mechanism. METHODS Endometrial specimens were collected from women with endometriosis and healthy volunteers. Immunohistochemistry staining was used to determine the expression patterns and localization of HMGB-1 in the normal, eutopic and ectopic endometrial tissues. Western blotting and qRT-PCR were used to determine the mRNA and protein levels of inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β], autophagy-related markers [beclin-1, autophagy-related (atg)13, microtubule-associated protein light chain (LC)3-I, LC-II and p62] and HMGB-1, respectively. Spearman's rank correlation analysis was employed to investigate the correlation between HMGB-1 with inflammatory cytokines and beclin-1. Besides, human endometrial stromal cells (HESCs) were isolated from ectopic endometrium and subsequently transfected with shRNA against HMGB-1. After the transfected cells were subjected to hypoxia, ELISA was used to determine the levels of HMGB-1 and inflammatory cytokines in the cell supernatant. Western blotting was used to determine the expression levels of autophagy-related markers in the cells. RESULTS Positive correlations were observed between HMGB-1 and the inflammatory cytokines. In addition, a positive correlation was also identified between HMGB-1 and beclin-1 in the ectopic endometrium. Further results demonstrated that autophagy-related markers beclin-1, atg13 and p62 were significantly upregulated in the ectopic endometrium. In addition, HMGB-1 knockdown suppressed the levels of inflammatory cytokines IL-6, TNF-α and IL-1β and autophagy-related markers beclin-1 and atg13, while upregulated p62 in HESCs under hypoxic condition. CONCLUSION Knockdown of HMGB-1 under hypoxic condition regulated inflammatory cytokines and autophagy-related markers. HMGB-1 might contribute to the development of endometriosis in part through regulating inflammatory response and autophagy.
Collapse
|
188
|
Wang S, Wang B, Zhu L, Hou JT, Yu KK. A ratiometric fluorescent probe for monitoring pH fluctuations during autophagy in living cells. Chem Commun (Camb) 2021; 57:1510-1513. [DOI: 10.1039/d0cc07788g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a ratiometric fluorescent probe for monitoring pH featuring superb photostability and chemostability.
Collapse
Affiliation(s)
- Shan Wang
- School of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Bingya Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| | - Lei Zhu
- School of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan
- P. R. China
| | - Ji-Ting Hou
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| | - Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
189
|
Nishino K, Nishida A, Inatomi O, Imai T, Kume S, Kawahara M, Maegawa H, Andoh A. Targeted deletion of Atg5 in intestinal epithelial cells promotes dextran sodium sulfate-induced colitis. J Clin Biochem Nutr 2020; 68:156-163. [PMID: 33879967 DOI: 10.3164/jcbn.20-90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy-associated genes have been identified as susceptible loci for inflammatory bowel disease. We investigated the role of a core autophagy factor, Atg5, in the development of dextran sodium sulfate (DSS)-induced colitis. Intestinal epithelial cell (IEC)-specific Atg5 gene deficient mice (Atg5 ΔIEC mice) were generated by cross of Atg5-floxed mice (Atg5 fl/fl ) with transgenic mice expressing Cre-recombinase driven by the villin promotor. Mice were given three cycles of 1.5% DSS in drinking water for 5 days and regular water for 14 days over a 60-day period. The dysfunction of autophagy characterized by a marked accumulation of p62 protein, a substrate for autophagy degradation, was detected in epithelial cells in the non-inflamed and inflamed mucosa of inflammatory bowel disease patients. DSS-colitis was exacerbated in Atg5 ΔIEC mice compared to control Atg5 fl/fl mice. Phosphorylation of inositol-requiring transmembrane kinase/endonuclease1α (IRE1α), a sensor for endoplasmic reticulum stress, and c-Jun N-terminal kinase, a downstream target of IRE1α, were significantly enhanced in IECs in DSS-treated Atg5 ΔIEC mice. Accumulation of phosphorylated IRE1α was enhanced by the treatment with chloroquine, an autophagy inhibitor. Apoptotic IECs were more abundant in DSS-treated Atg5 ΔIEC mice. These findings suggest that Atg5 suppresses endoplasmic reticulum stress-induced apoptosis of IECs via the degradation of excess p-IRE1α.
Collapse
Affiliation(s)
- Kyohei Nishino
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Takayuki Imai
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
190
|
Li Y, Zhang J, Liu YD, Zhou XY, Chen X, Zhe J, Zhang QY, Zhang XF, Chen YX, Wang Z, Chen SL. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome. RNA Biol 2020; 17:1798-1810. [PMID: 32559120 PMCID: PMC7714456 DOI: 10.1080/15476286.2020.1783850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 02/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) causes anovulatory infertility in women of reproductive age, but etiopathogenesis of PCOS remains undetermined. Taurine up-regulated 1 (TUG1), an evolutionarily conserved long non-coding RNA, performs various biological functions; however, the role of TUG1 in PCOS remains unclear. Herein, TUG1 expression was assayed in granulosa cells (GCs) of 100 patients with PCOS and 100 control participants. Receiver operating characteristic (ROC) curve analysis was conducted to determine the diagnostic value of TUG1 in PCOS. TUG1 expression was also silenced in KGN cells to explore the role of TUG1 in cellular proliferation, apoptosis, cell-cycle progression, autophagy, and steroidogenesis. We found that TUG1 levels were dramatically increased in the PCOS group compared with those of the control group; this increased expression was related to a rising antral follicle count (R = 0.209, P < 0.001 versus control). The ROC curve indicated a significant separation between PCOS group and the control group (AUC: 0.702; 95% CI: 0.630-0.773; P < 0.001). TUG1 showed a predominantly nuclear localization in human GCs. TUG1 knockdown reduced cellular proliferation, and promoted MAPKs pathway-dependent apoptosis and P21-dependent autophagy, but may not affect cell-cycle progression. TUG1 knockdown increased aromatase expression and oestradiol biosynthesis. Our results indicate that increased TUG1 expression in PCOS GCs may contribute to excessive follicular activation and growth, and may disrupt the selection of dominant follicle. Our study shows that TUG1 can be used as a diagnostic biomarker for PCOS.
Collapse
Affiliation(s)
- Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xin Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jing Zhe
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qing-Yan Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ying-Xue Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhe Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
191
|
Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S, Otomo C, Grishin NV, Forli S, Mizushima N, Otomo T. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat Struct Mol Biol 2020; 27:1194-1201. [PMID: 33106659 PMCID: PMC7718406 DOI: 10.1038/s41594-020-00520-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
De novo formation of the double-membrane compartment autophagosome is seeded by small vesicles carrying membrane protein autophagy-related 9 (ATG9), the function of which remains unknown. Here we find that ATG9A scrambles phospholipids of membranes in vitro. Cryo-EM structures of human ATG9A reveal a trimer with a solvated central pore, which is connected laterally to the cytosol through the cavity within each protomer. Similarities to ABC exporters suggest that ATG9A could be a transporter that uses the central pore to function. Moreover, molecular dynamics simulation suggests that the central pore opens laterally to accommodate lipid headgroups, thereby enabling lipids to flip. Mutations in the pore reduce scrambling activity and yield markedly smaller autophagosomes, indicating that lipid scrambling by ATG9A is essential for membrane expansion. We propose ATG9A acts as a membrane-embedded funnel to facilitate lipid flipping and to redistribute lipids added to the outer leaflet of ATG9 vesicles, thereby enabling growth into autophagosomes.
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Christina M Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Satoru Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chinatsu Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
192
|
Nie T, Tao K, Zhu L, Huang L, Hu S, Yang R, Xu P, Mao Z, Yang Q. Chaperone-mediated autophagy controls the turnover of E3 ubiquitin ligase MARCHF5 and regulates mitochondrial dynamics. Autophagy 2020; 17:2923-2938. [PMID: 33970775 PMCID: PMC8526038 DOI: 10.1080/15548627.2020.1848128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
As a highly dynamic organelle, mitochondria undergo constant fission and fusion to change their morphology and function, coping with various stress conditions. Loss of the balance between fission and fusion leads to impaired mitochondria function, which plays a critical role in the pathogenesis of Parkinson disease (PD). Yet the mechanisms behind mitochondria dynamics regulation remain to be fully illustrated. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process that selectively degrades proteins to maintain cellular proteostasis. In this study, we demonstrated that MARCHF5, an E3 ubiquitin ligase required for mitochondria fission, is a CMA substrate. MARCHF5 interacted with key CMA regulators and was degraded by lysosomes. Severe oxidative stress compromised CMA activity and stabilized MARCHF5, which facilitated DNM1L translocation and led to excessive fission. Increase of CMA activity promoted MARCHF5 turnover, attenuated DNM1L translocation, and reduced mitochondria fragmentation, which alleviated mitochondrial dysfunction under oxidative stress. Furthermore, we showed that conditional expression of LAMP2A, the key CMA regulator, in dopaminergic (DA) neurons helped maintain mitochondria morphology and protected DA neuronal viability in a rodent PD model. Our work uncovers a critical role of CMA in maintaining proper mitochondria dynamics, and loss of this regulatory control may occur in PD and underlie its pathogenic process. Abbreviations: CMA: chaperone-mediated autophagy; DA: dopaminergic; DNM1L: dynamin 1 like; FCCP: carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; HSPA8: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; MARCHF5: membrane-associated ring-CH-type finger 5; MMP: mitochondria membrane potential; OCR: oxygen consumption rate; 6-OHDA: 6-hydroxydopamine; PD: Parkinson disease; SNc: substantia nigra pars compacta; TEM: transmission electron microscopy; TH: tyrosine hydroxylase; TMRE: tetramethylrhodamine ethyl ester perchlorate; WT: wild type.
Collapse
Affiliation(s)
- Tiejian Nie
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruixin Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Zixu Mao
- Departments of Pharmacology and Chemical Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Qian Yang
- Department of Neurology, First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China.,Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
193
|
Li X, Jin F, Li Y. A novel autophagy-related lncRNA prognostic risk model for breast cancer. J Cell Mol Med 2020; 25:4-14. [PMID: 33216456 PMCID: PMC7810925 DOI: 10.1111/jcmm.15980] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are well known as crucial regulators to breast cancer development and are implicated in controlling autophagy. LncRNAs are also emerging as valuable prognostic factors for breast cancer patients. It is critical to identify autophagy-related lncRNAs with prognostic value in breast cancer. In this study, we identified autophagy-related lncRNAs in breast cancer by constructing a co-expression network of autophagy-related mRNAs-lncRNAs from The Cancer Genome Atlas (TCGA). We evaluated the prognostic value of these autophagy-related lncRNAs by univariate and multivariate Cox proportional hazards analyses and eventually obtained a prognostic risk model consisting of 11 autophagy-related lncRNAs (U62317.4, LINC01016, LINC02166, C6orf99, LINC00992, BAIAP2-DT, AC245297.3, AC090912.1, Z68871.1, LINC00578 and LINC01871). The risk model was further validated as a novel independent prognostic factor for breast cancer patients based on the calculated risk score by Kaplan-Meier analysis, univariate and multivariate Cox regression analyses and time-dependent receiver operating characteristic (ROC) curve analysis. Moreover, based on the risk model, the low-risk and high-risk groups displayed different autophagy and oncogenic statues by principal component analysis (PCA) and Gene Set Enrichment Analysis (GSEA) functional annotation. Taken together, these findings suggested that the risk model of the 11 autophagy-related lncRNAs has significant prognostic value for breast cancer and might be autophagy-related therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
194
|
Exercise Reduces the Resumption of Tumor Growth and Proteolytic Pathways in the Skeletal Muscle of Mice Following Chemotherapy. Cancers (Basel) 2020; 12:cancers12113466. [PMID: 33233839 PMCID: PMC7699885 DOI: 10.3390/cancers12113466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Doxorubicin is a chemotherapeutic agent that contributes to muscle wasting. Based on the evidence that many cancer variants are associated with cachexia and that cancer patients are usually treated with chemotherapeutic agents, it is important to determine strategies to mitigate muscle atrophy. Muscle loss is a poor prognosis during cancer treatment, and exercise has emerged as a potential strategy utilized in this context. Once an ongoing regimen of chemotherapeutic treatment is not always possible, our results demonstrated that continuity of endurance exercise is a potential strategy that can be adopted when chemotherapy needs to be interrupted, minimizing the resumption of tumor growth and avoiding muscle loss. Abstract The pathogenesis of muscle atrophy plays a central role in cancer cachexia, and chemotherapy contributes to this condition. Therefore, the present study aimed to evaluate the effects of endurance exercise on time-dependent muscle atrophy caused by doxorubicin. For this, C57 BL/6 mice were subcutaneously inoculated with Lewis lung carcinoma cells (LLC group). One week after the tumor establishment, a group of these animals initiated the doxorubicin chemotherapy alone (LLC + DOX group) or combined with endurance exercise (LLC + DOX + EXER group). One group of animals was euthanized after the chemotherapy cycle, whereas the remaining animals were euthanized one week after the last administration of doxorubicin. The practice of exercise combined with chemotherapy showed beneficial effects such as a decrease in tumor growth rate after chemotherapy interruption and amelioration of premature death due to doxorubicin toxicity. Moreover, the protein degradation levels in mice undergoing exercise returned to basal levels after chemotherapy; in contrast, the mice treated with doxorubicin alone experienced an increase in the mRNA expression levels of the proteolytic pathways in gastrocnemius muscle (Trim63, Fbxo32, Myostatin, FoxO). Collectively, our results suggest that endurance exercise could be utilized during and after chemotherapy for mitigating muscle atrophy promoted by doxorubicin and avoid the resumption of tumor growth.
Collapse
|
195
|
Nadalutti CA, Wilson SH. Using Human Primary Foreskin Fibroblasts to Study Cellular Damage and Mitochondrial Dysfunction. ACTA ACUST UNITED AC 2020; 86:e99. [PMID: 33202115 PMCID: PMC7757388 DOI: 10.1002/cptx.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several cell lines of different origin are routinely used in research and drug development as important models to study human health and disease. Studying cells in culture represents an easy and convenient tool to approach complex biological questions, but the disadvantage is that they may not necessarily reflect what is effectively occurring in vivo. Human primary cells can help address this limitation, as they are isolated directly from human biological samples and can preserve the morphological and functional features of their tissue of origin. In addition, these can offer more relevant data and better solutions to investigators because they are not genetically manipulated. Human foreskin tissue discarded after surgery, for instance, represents a precious source for isolating such cells, including human foreskin fibroblasts (FSK), which are used in several areas of research and medicine. The overall health of cells is determined by the mitochondria. Alterations of cellular metabolism and cell death pathways depend, in part, on the number, size, distribution, and structure of mitochondria, and these can change under different cellular and pathological conditions. This highlights the need to develop accurate approaches to study mitochondria and evaluate their function. Here, we describe three easy, step‐by‐step protocols to study cellular viability and mitochondrial functionality in FSK. We describe how to use circumcision tissue obtained from the clinic to isolate FSK cells by mechanical and enzymatic disaggregation, how to use a cationic dye, crystal violet, which is retained by proliferating cells, to determine cell viability, and how to prepare samples to assess the metabolic status of cells by evaluating different mitochondrial parameters with transmission electron microscopy. We have successfully used the approaches outlined here to recapitulate physiological conditions in these cells in order to study the effects of increased intracellular levels of formaldehyde. © 2020 U.S. Government. Basic Protocol 1: Isolation and maintenance of human primary foreskin fibroblasts (FSK) Basic Protocol 2: Determination of cell viability by crystal violet staining Basic Protocol 3: Transmission electron microscopy to study cellular damage and mitochondrial dysfunction
Collapse
Affiliation(s)
- Cristina A Nadalutti
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Raleigh, North Carolina
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Raleigh, North Carolina
| |
Collapse
|
196
|
Peng D, Li H, Hu B, Zhang H, Chen L, Lin S, Zuo Z, Xue Y, Ren J, Xie Y. PTMsnp: A Web Server for the Identification of Driver Mutations That Affect Protein Post-translational Modification. Front Cell Dev Biol 2020; 8:593661. [PMID: 33240890 PMCID: PMC7683509 DOI: 10.3389/fcell.2020.593661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
High-throughput sequencing technologies have identified millions of genetic mutations in multiple human diseases. However, the interpretation of the pathogenesis of these mutations and the discovery of driver genes that dominate disease progression is still a major challenge. Combining functional features such as protein post-translational modification (PTM) with genetic mutations is an effective way to predict such alterations. Here, we present PTMsnp, a web server that implements a Bayesian hierarchical model to identify driver genetic mutations targeting PTM sites. PTMsnp accepts genetic mutations in a standard variant call format or tabular format as input and outputs several interactive charts of PTM-related mutations that potentially affect PTMs. Additional functional annotations are performed to evaluate the impact of PTM-related mutations on protein structure and function, as well as to classify variants relevant to Mendelian disease. A total of 4,11,574 modification sites from 33 different types of PTMs and 1,776,848 somatic mutations from TCGA across 33 different cancer types are integrated into the web server, enabling identification of candidate cancer driver genes based on PTM. Applications of PTMsnp to the cancer cohorts and a GWAS dataset of type 2 diabetes identified a set of potential drivers together with several known disease-related genes, indicating its reliability in distinguishing disease-related mutations and providing potential molecular targets for new therapeutic strategies. PTMsnp is freely available at: http://ptmsnp.renlab.org.
Collapse
Affiliation(s)
- Di Peng
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huiqin Li
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bosu Hu
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongwan Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Chen
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ren
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
197
|
He T, Li W, Song Y, Li Z, Tang Y, Zhang Z, Yang GY. Sestrin2 regulates microglia polarization through mTOR-mediated autophagic flux to attenuate inflammation during experimental brain ischemia. J Neuroinflammation 2020; 17:329. [PMID: 33153476 PMCID: PMC7643276 DOI: 10.1186/s12974-020-01987-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neuroinflammation is the major pathogenesis of cerebral ischemia. Microglia are activated and polarized to either the pro-inflammatory M1 phenotype or anti-inflammatory M2 phenotype, which act as a critical mediator of neuroinflammation. Sestrin2 has pro-survival properties against ischemic brain injury. However, whether sestrin2 has an anti-inflammatory function by shifting microglia polarization and its underlying mechanism is unknown. Methods Adult male C57BL/6 mice (N = 108) underwent transient middle cerebral artery occlusion (tMCAO) and were treated with exogenous sestrin2. Neurological deficit scores and infarct volume were determined. Cell apoptosis was examined by TUNEL staining and Western blotting. The expression of inflammatory mediators, M1/M2-specific markers, and signaling pathways were detected by reverse transcription-polymerase chain reaction, immunostaining, and Western blotting. To explore the underlying mechanism, primary neurons were subjected to oxygen-glucose deprivation (OGD) and then treated with oxygenated condition medium of BV2 cells incubated with different doses of sestrin2. Results Sestrin2 attenuated the neurological deficits, infarction volume, and cell apoptosis after tMCAO compared to those in the control (p < 0.05). Sestrin2 had an anti-inflammatory effect and could suppress M1 microglia polarization and promote M2 microglia polarization. Condition medium from BV2 cells cultured with sestrin2 reduced neuronal apoptosis after OGD in vitro. Furthermore, we demonstrated that sestrin2 drives microglia to the M2 phenotype by inhibiting the mammalian target of rapamycin (mTOR) signaling pathway and restoring autophagic flux. Conclusions Sestrin2 exhibited neuroprotection by shifting microglia polarization from the M1 to M2 phenotype in ischemic mouse brain, which may be due to suppression of the mTOR signaling pathway and the restoration of autophagic flux.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Wanlu Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Zongwei Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China.
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China.
| |
Collapse
|
198
|
Bjedov I, Cochemé HM, Foley A, Wieser D, Woodling NS, Castillo-Quan JI, Norvaisas P, Lujan C, Regan JC, Toivonen JM, Murphy MP, Thornton J, Kinghorn KJ, Neufeld TP, Cabreiro F, Partridge L. Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genet 2020; 16:e1009083. [PMID: 33253201 PMCID: PMC7738165 DOI: 10.1371/journal.pgen.1009083] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/15/2020] [Accepted: 08/26/2020] [Indexed: 01/26/2023] Open
Abstract
Increased cellular degradation by autophagy is a feature of many interventions that delay ageing. We report here that increased autophagy is necessary for reduced insulin-like signalling (IIS) to extend lifespan in Drosophila and is sufficient on its own to increase lifespan. We first established that the well-characterised lifespan extension associated with deletion of the insulin receptor substrate chico was completely abrogated by downregulation of the essential autophagy gene Atg5. We next directly induced autophagy by over-expressing the major autophagy kinase Atg1 and found that a mild increase in autophagy extended lifespan. Interestingly, strong Atg1 up-regulation was detrimental to lifespan. Transcriptomic and metabolomic approaches identified specific signatures mediated by varying levels of autophagy in flies. Transcriptional upregulation of mitochondrial-related genes was the signature most specifically associated with mild Atg1 upregulation and extended lifespan, whereas short-lived flies, possessing strong Atg1 overexpression, showed reduced mitochondrial metabolism and up-regulated immune system pathways. Increased proteasomal activity and reduced triacylglycerol levels were features shared by both moderate and high Atg1 overexpression conditions. These contrasting effects of autophagy on ageing and differential metabolic profiles highlight the importance of fine-tuning autophagy levels to achieve optimal healthspan and disease prevention.
Collapse
Affiliation(s)
- Ivana Bjedov
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- UCL Cancer Institute, Paul O'Gorman Building, London United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Helena M. Cochemé
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, United Kingdom
| | - Andrea Foley
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, United Kingdom
| | - Daniela Wieser
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nathaniel S. Woodling
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jorge Iván Castillo-Quan
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston MA, United States of America
- Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston MA, United States of America
| | - Povilas Norvaisas
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Celia Lujan
- UCL Cancer Institute, Paul O'Gorman Building, London United Kingdom
| | - Jennifer C. Regan
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janne M. Toivonen
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- LAGENBIO, Facultad de Veterinaria-IIS, IA2-CITA, CIBERNED, Universidad de Zaragoza, Zaragoza, Spain
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, the Keith Peters Building, University of Cambridge, Cambridge, United Kingdom
| | - Janet Thornton
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kerri J. Kinghorn
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Thomas P. Neufeld
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St. SE, Minneapolis, MN, United States of America
| | - Filipe Cabreiro
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
199
|
Long M, McWilliams TG. Monitoring autophagy in cancer: From bench to bedside. Semin Cancer Biol 2020; 66:12-21. [DOI: 10.1016/j.semcancer.2019.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/06/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022]
|
200
|
Atwood DJ, Brown CN, Holditch SJ, Pokhrel D, Thorburn A, Hopp K, Edelstein CL. The effect of trehalose on autophagy-related proteins and cyst growth in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Cell Signal 2020; 75:109760. [DOI: 10.1016/j.cellsig.2020.109760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/27/2022]
|