151
|
Luna Yolba R, Visentin V, Hervé C, Chiche J, Ricci J, Méneyrol J, Paillasse MR, Alet N. EVT-701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti-tumor activity in models of solid cancers. Pharmacol Res Perspect 2021; 9:e00854. [PMID: 34478236 PMCID: PMC8415080 DOI: 10.1002/prp2.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.
Collapse
Affiliation(s)
| | | | | | - Johanna Chiche
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | - Jean‐Ehrland Ricci
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | | | | | | |
Collapse
|
152
|
Lin L, Zhang D, Jin Q, Teng Y, Yao X, Zhao T, Xu X, Jin Y. Mutational Analysis of Mitochondrial tRNA Genes in 200 Patients with Type 2 Diabetes Mellitus. Int J Gen Med 2021; 14:5719-5735. [PMID: 34557026 PMCID: PMC8454214 DOI: 10.2147/ijgm.s330973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Previous studies showed that variants in mitochondrial DNA (mtDNA) are associated with type 2 diabetes mellitus (T2DM). However, the relationships between mitochondrial tRNA (mt-tRNA) variants and T2DM remain poorly understood. Methods In this study, we performed a mutational screening of 22 mt-tRNA genes in a cohort of 200 Han Chinese subjects with T2DM and 200 control subjects through PCR–Sanger sequencing. The identified mt-tRNA variants were assessed for their pathogenicity via the phylogenetic approach, structural and functional analysis. Furthermore, two Han Chinese pedigrees with maternally inherited diabetes and deafness (MIDD) were reported by clinical and genetic assessments. Results A total of 49 genetic variants in mt-tRNA genes were identified; among them, 31 variants (17 pathogenic/likely pathogenic) were absent in controls, located at extremely conserved nucleotides, may have potential structural and functional significance, thereby considered to be T2DM-associated variants. In addition, sequence analysis of entire mitochondrial genomes of the matrilineal relatives from two MIDD pedigrees revealed the occurrence of tRNALeu(UUR) A3243G and T3290C mutations, as well as sets of polymorphisms belonging to mitochondrial haplogroups F2 and D4. However, the lack of any functional variants in connexin 26 gene (GJB2) and tRNA 5-methylaminomethyl-2-thiouridylate (TRMU) suggested that nuclear genes may not play active roles in clinical expression of MIDD in these pedigrees. Conclusion Our data indicated that mt-tRNA variants were associated with T2DM, screening for mt-tRNA pathogenic mutations was recommended for early detection and prevention of mitochondrial diabetes.
Collapse
Affiliation(s)
- Liangyan Lin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Dongdong Zhang
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Qingsong Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Yaqin Teng
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xiaoyan Yao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Tiantian Zhao
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xinmiao Xu
- Department of Endocrinology, Yantai Yeda Hospital, Yantai, Shandong, People's Republic of China
| | - Yongjun Jin
- Department of Endocrinology and Metabolism, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
153
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
154
|
Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol 2021; 9:714370. [PMID: 34422833 PMCID: PMC8377544 DOI: 10.3389/fcell.2021.714370] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, are generated as byproducts of oxidative phosphorylation in the mitochondria or via cell signaling-induced NADPH oxidases in the cytosol. In the recent two decades, a plethora of studies established that elevated ROS levels generated by oxidative eustress are crucial physiological mediators of many cellular and developmental processes. In this review, we discuss the mechanisms of ROS generation and regulation, current understanding of ROS functions in the maintenance of adult and embryonic stem cells, as well as in the process of cell reprogramming to a pluripotent state. Recently discovered cell-non-autonomous ROS functions mediated by growth factors are crucial for controlling cell differentiation and cellular immune response in Drosophila. Importantly, many physiological functions of ROS discovered in Drosophila may allow for deciphering and understanding analogous processes in human, which could potentially lead to the development of novel therapeutic approaches in ROS-associated diseases treatment.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
155
|
Mabanglo MF, Bhandari V, Houry WA. Substrates and interactors of the ClpP protease in the mitochondria. Curr Opin Chem Biol 2021; 66:102078. [PMID: 34446368 DOI: 10.1016/j.cbpa.2021.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
The ClpP protease is found across eukaryotic and prokaryotic organisms. It is well-characterized in bacteria where its function is important in maintaining protein homeostasis. Along with its ATPase partners, it has been shown to play critical roles in the regulation of enzymes involved in important cellular pathways. In eukaryotes, ClpP is found within cellular organelles. Proteomic studies have begun to characterize the role of this protease in the mitochondria through its interactions. Here, we discuss the proteomic techniques used to identify its interactors and present an atlas of mitochondrial ClpP substrates. The ClpP substrate pool is extensive and consists of proteins involved in essential mitochondrial processes such as the Krebs cycle, oxidative phosphorylation, translation, fatty acid metabolism, and amino acid metabolism. Discoveries of these associations have begun to illustrate the functional significance of ClpP in human health and disease.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
156
|
Piccinini G, Iannello M, Puccio G, Plazzi F, Havird JC, Ghiselli F. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves. Mol Biol Evol 2021; 38:2597-2614. [PMID: 33616640 PMCID: PMC8136519 DOI: 10.1093/molbev/msab054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.
Collapse
Affiliation(s)
- Giovanni Piccinini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
157
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
158
|
Keßler M, Wittig I, Ackermann J, Koch I. Prediction and analysis of redox-sensitive cysteines using machine learning and statistical methods. Biol Chem 2021; 402:925-935. [PMID: 34261205 DOI: 10.1515/hsz-2020-0321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species are produced by a number of stimuli and can lead both to irreversible intracellular damage and signaling through reversible post-translational modification. It is unclear which factors contribute to the sensitivity of cysteines to redox modification. Here, we used statistical and machine learning methods to investigate the influence of different structural and sequence features on the modifiability of cysteines. We found several strong structural predictors for redox modification. Sensitive cysteines tend to be characterized by higher exposure, a lack of secondary structure elements, and a high number of positively charged amino acids in their close environment. Our results indicate that modified cysteines tend to occur close to other post-translational modifications, such as phosphorylated serines. We used these features to create models and predict the presence of redox-modifiable cysteines in human mitochondrial complex I as well as make novel predictions regarding redox-sensitive cysteines in proteins.
Collapse
Affiliation(s)
- Marcus Keßler
- Molecular Bioinformatics Group, Institute of Computer Science, Goethe-University, Robert-Mayer-Str. 11-15, 60325, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics Group, Medical School, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jörg Ackermann
- Molecular Bioinformatics Group, Institute of Computer Science, Goethe-University, Robert-Mayer-Str. 11-15, 60325, Frankfurt am Main, Germany
| | - Ina Koch
- Molecular Bioinformatics Group, Institute of Computer Science, Goethe-University, Robert-Mayer-Str. 11-15, 60325, Frankfurt am Main, Germany
| |
Collapse
|
159
|
Kolata P, Efremov RG. Structure of Escherichia coli respiratory complex I reconstituted into lipid nanodiscs reveals an uncoupled conformation. eLife 2021; 10:e68710. [PMID: 34308841 PMCID: PMC8357420 DOI: 10.7554/elife.68710] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
Respiratory complex I is a multi-subunit membrane protein complex that reversibly couples NADH oxidation and ubiquinone reduction with proton translocation against transmembrane potential. Complex I from Escherichia coli is among the best functionally characterized complexes, but its structure remains unknown, hindering further studies to understand the enzyme coupling mechanism. Here, we describe the single particle cryo-electron microscopy (cryo-EM) structure of the entire catalytically active E. coli complex I reconstituted into lipid nanodiscs. The structure of this mesophilic bacterial complex I displays highly dynamic connection between the peripheral and membrane domains. The peripheral domain assembly is stabilized by unique terminal extensions and an insertion loop. The membrane domain structure reveals novel dynamic features. Unusual conformation of the conserved interface between the peripheral and membrane domains suggests an uncoupled conformation of the complex. Considering constraints imposed by the structural data, we suggest a new simple hypothetical coupling mechanism for the molecular machine.
Collapse
Affiliation(s)
- Piotr Kolata
- Center for Structural Biology, Vlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrusselsBelgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
160
|
Zhang J, Ji Y, Chen J, Xu M, Wang G, Ci X, Lin B, Mo JQ, Zhou X, Guan MX. Assocation Between Leber's Hereditary Optic Neuropathy and MT-ND1 3460G>A Mutation-Induced Alterations in Mitochondrial Function, Apoptosis, and Mitophagy. Invest Ophthalmol Vis Sci 2021; 62:38. [PMID: 34311469 PMCID: PMC8322717 DOI: 10.1167/iovs.62.9.38] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-linked MT-ND1 3460G>A mutation. Methods Cybrid cell models were generated by fusing mitochondrial DNA-less ρ0 cells with enucleated cells from a patient carrying the m.3460G>A mutation and a control subject. The impact of m.3460G>A mutations on oxidative phosphorylation was evaluated using Blue Native gel electrophoresis, and measurements of oxygen consumption were made with an extracellular flux analyzer. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Assays for apoptosis and mitophagy were undertaken via immunofluorescence analysis. Results Nineteen Chinese Han pedigrees bearing the m.3460G>A mutation exhibited variable penetrance and expression of LHON. The m.3460G>A mutation altered the structure and function of MT-ND1, as evidenced by reduced MT-ND1 levels in mutant cybrids bearing the mutation. The instability of mutated MT-ND1 manifested as defects in the assembly and activity of complex I, respiratory deficiency, diminished mitochondrial adenosine triphosphate production, and decreased membrane potential, in addition to increased production of mitochondrial ROS in the mutant cybrids carrying the m.3460G>A mutation. The m.3460G>A mutation mediated apoptosis, as evidenced by the elevated release of cytochrome c into the cytosol and increasing levels of the apoptotic-associated proteins BAK, BAX, and PARP, as well as cleaved caspases 3, 7, and 9, in the mutant cybrids. The cybrids bearing the m.3460G>A mutation exhibited reduced levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PTEN-induced kinase 1/parkin-dependent mitophagy. Conclusions Our findings highlight the critical role of m.3460G>A mutation in the pathogenesis of LHON, manifested by mitochondrial dysfunction and alterations in apoptosis and mitophagy.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Chen
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoping Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California, United States
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| |
Collapse
|
161
|
Klusch N, Senkler J, Yildiz Ö, Kühlbrandt W, Braun HP. A ferredoxin bridge connects the two arms of plant mitochondrial complex I. THE PLANT CELL 2021; 33:2072-2091. [PMID: 33768254 PMCID: PMC8290278 DOI: 10.1093/plcell/koab092] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/19/2021] [Indexed: 05/23/2023]
Abstract
Mitochondrial complex I is the main site for electron transfer to the respiratory chain and generates much of the proton gradient across the inner mitochondrial membrane. Complex I is composed of two arms, which form a conserved L-shape. We report the structures of the intact, 47-subunit mitochondrial complex I from Arabidopsis thaliana and the 51-subunit complex I from the green alga Polytomella sp., both at around 2.9 Å resolution. In both complexes, a heterotrimeric γ-carbonic anhydrase domain is attached to the membrane arm on the matrix side. Two states are resolved in A. thaliana complex I, with different angles between the two arms and different conformations of the ND1 (NADH dehydrogenase subunit 1) loop near the quinol binding site. The angle appears to depend on a bridge domain, which links the peripheral arm to the membrane arm and includes an unusual ferredoxin. We propose that the bridge domain participates in regulating the activity of plant complex I.
Collapse
Affiliation(s)
- Niklas Klusch
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
| | - Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover 30419, Germany
| |
Collapse
|
162
|
Murari A, Rhooms SK, Garcia C, Liu T, Li H, Mishra B, Deshong C, Owusu-Ansah E. Dissecting the concordant and disparate roles of NDUFAF3 and NDUFAF4 in mitochondrial complex I biogenesis. iScience 2021; 24:102869. [PMID: 34386730 PMCID: PMC8346666 DOI: 10.1016/j.isci.2021.102869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/12/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Distinct sub-assemblies (modules) of mitochondrial complex I (CI) are assembled with the assistance of CI Assembly Factors (CIAFs) through mechanisms that are incompletely defined. Here, using genetic analyses in Drosophila, we report that when either of the CIAFs – NDUFAF3 or NDUFAF4 – is disrupted, biogenesis of the Q-, N-, and PP-b-modules of CI is impaired. This is due, at least in part, to the compromised integration of NDUFS3 and NDUFS5 into the Q-, and PP-b-modules, respectively, coupled with a destabilization of another CIAF, TIMMDC1, in assembly intermediates. Notably, forced expression of NDUFAF4 rescues the biogenesis defects in the Q-module and some aspects of the defects in the PP-b-module of CI when NDUFAF3 is disrupted. Altogether, our studies furnish new fundamental insights into the mechanism by which NDUFAF3 and NDUFAF4 regulate CI assembly and raises the possibility that certain point mutations in NDUFAF3 may be rescued by overexpression of NDUFAF4. Disruption of NDUFAF3 and NDUFAF4 in Drosophila muscles destabilizes TIMMDC1 NDUFAF3 and NDUFAF4 regulate biogenesis of the N, Q, and Pp modules NDUFAF4 ameliorates some of the CI biogenesis defects in NDUFAF3 mutants
Collapse
Affiliation(s)
- Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christian Garcia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Bibhuti Mishra
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cassie Deshong
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
- The Robert N. Butler Columbia Aging Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Corresponding author
| |
Collapse
|
163
|
Abstract
The electron transport chain of mitochondria is initiated by the respiratory complex I that converts chemical energy into a proton motive force to power synthesis of adenosine triphosphate. On a chemical level, complex I catalyzes elementary electron and proton transfer processes that couple across large molecular distances of >300 Å. However, under low oxygen concentrations, the respiratory chain operates in reverse mode and produces harmful reactive oxygen species. To avoid cell damage, the mitochondrial complex I transitions into a deactive state that inhibits turnover by molecular principles that remain elusive. By combining large-scale molecular simulations with cryo-electron microscopy data, we show here that complex I deactivation blocks the communication between proton pumping and redox modules by conformational and hydration changes. Cellular respiration is powered by membrane-bound redox enzymes that convert chemical energy into an electrochemical proton gradient and drive the energy metabolism. By combining large-scale classical and quantum mechanical simulations with cryo-electron microscopy data, we resolve here molecular details of conformational changes linked to proton pumping in the mammalian complex I. Our data suggest that complex I deactivation blocks water-mediated proton transfer between a membrane-bound quinone site and proton-pumping modules, decoupling the energy-transduction machinery. We identify a putative gating region at the interface between membrane domain subunits ND1 and ND3/ND4L/ND6 that modulates the proton transfer by conformational changes in transmembrane helices and bulky residues. The region is perturbed by mutations linked to human mitochondrial disorders and is suggested to also undergo conformational changes during catalysis of simpler complex I variants that lack the “active”-to-“deactive” transition. Our findings suggest that conformational changes in transmembrane helices modulate the proton transfer dynamics by wetting/dewetting transitions and provide important functional insight into the mammalian respiratory complex I.
Collapse
|
164
|
Gutiérrez Cortés N, Pertuiset C, Dumon E, Börlin M, Da Costa B, Le Guédard M, Stojkovic T, Loundon N, Rouillon I, Nadjar Y, Letellier T, Jonard L, Marlin S, Rocher C. Mutation m.3395A > G in MT-ND1 leads to variable pathologic manifestations. Hum Mol Genet 2021; 29:980-989. [PMID: 32011699 DOI: 10.1093/hmg/ddaa020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 11/12/2022] Open
Abstract
A non-synonymous mtDNA mutation, m.3395A > G, which changes tyrosine in position 30 to cysteine in p.MT-ND1, was found in several patients with a wide range of clinical phenotypes such as deafness, diabetes and cerebellar syndrome but no Leber's hereditary optic neuropathy. Although this mutation has already been described, its pathogenicity has not been demonstrated. Here, it was found isolated for the first time, allowing a study to investigate its pathogenicity. To do so, we constructed cybrid cell lines and carried out a functional study to assess the possible consequences of the mutation on mitochondrial bioenergetics. Results obtained demonstrated that this mutation causes an important dysfunction of the mitochondrial respiratory chain with a decrease in both activity and quantity of complex I due to a diminution of p.MT-ND1 quantity. However, no subcomplexes were found in cybrids carrying the mutation, indicating that the quality of the complex I assembly is not affected. Moreover, based on the crystal structure of p.MT-ND1 and the data found in the literature, we propose a hypothesis for the mechanism of the degradation of p.MT-ND1. Our study provides new insights into the pathophysiology of mitochondrial diseases and in particular of MT-ND1 mutations.
Collapse
Affiliation(s)
- Nicolás Gutiérrez Cortés
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Claire Pertuiset
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Elodie Dumon
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marine Börlin
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Barbara Da Costa
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Marina Le Guédard
- Laboratoire de Biogenèse Membranaire, CNRS UMR 5200, Université de Bordeaux, INRA Bordeaux Aquitaine, Villenave d'Ornon, France.,LEB Aquitaine Transfert-ADERA, FR-33883 Villenave d'Ornon, Cedex, France
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires Ile de France Nord Est, G-H Pitié-Salpêtrière, 75013 Paris, France
| | - Natalie Loundon
- Otorhinolaryngologie Pédiatrique, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Isabelle Rouillon
- Otorhinolaryngologie Pédiatrique, Centre de Référence des Surdités Génétiques, Hôpital Necker, AP-HP, Paris, France
| | - Yann Nadjar
- Neurologie, GH Pitié Salpêtrière, 75013 Paris, France
| | - Thierry Letellier
- Equipe de Médecine Evolutive, AMIS, UMR 5288 CNRS/Université Paul Sabatier, 31073 Toulouse, France
| | - Laurence Jonard
- Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Sandrine Marlin
- Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,Centre de Référence des Surdités Génétiques, Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,UMR 1163, Université Paris Descartes, Sorbonne Paris Cité, Institut IMAGINE, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Christophe Rocher
- INSERM-U688 Physiopathologie Mitochondriale, Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
165
|
Jin X, Zhang J, Yi Q, Meng F, Yu J, Ji Y, Mo JQ, Tong Y, Jiang P, Guan MX. Leber's Hereditary Optic Neuropathy Arising From the Synergy Between ND1 3635G>A Mutation and Mitochondrial YARS2 Mutations. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34156427 PMCID: PMC8237128 DOI: 10.1167/iovs.62.7.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate the mechanism underlying the synergic interaction between Leber's hereditary optic neuropathy (LHON)-associated ND1 and mitochondrial tyrosyl-tRNA synthetase (YARS2) mutations. Methods Molecular dynamics simulation and differential scanning fluorimetry were used to evaluate the structure and stability of proteins. The impact of ND1 3635G>A and YARS2 p.G191V mutations on the oxidative phosphorylation machinery was evaluated using blue native gel electrophoresis and enzymatic activities assays. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analysis of effect of mutations on autophagy was undertaken via flow cytometry for autophagic flux. Results Members of one Chinese family bearing both the YARS2 p.191Gly>Val and m.3635G>A mutations exhibited much higher penetrance of optic neuropathy than those pedigrees carrying only the m.3635G>A mutation. The m.3635G>A (p.Ser110Asn) mutation altered the ND1 structure and function, whereas the p.191Gly>Val mutation affected the stability of YARS2. Lymphoblastoid cell lines harboring both m.3635G>A and p.191Gly>Val mutations revealed more reductions in the levels of mitochondrion-encoding ND1 and CO2 than cells bearing only the m.3635G>A mutation. Strikingly, both m.3635G>A and p.191Gly>Val mutations exhibited decreases in the nucleus-encoding subunits of complex I and IV. These deficiencies manifested greater defects in the stability and activities of complex I and complex IV and overproduction of ROS and promoted greater autophagy in cell lines harboring both m.3635G>A and p.191Gly>Val mutations compared with cells bearing only the m.3635G>A mutation. Conclusions Our findings provide new insights into the pathophysiology of LHON arising from the synergy between ND1 3635G>A mutation and mitochondrial YARS2 mutations.
Collapse
Affiliation(s)
- Xiaofen Jin
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jialing Yu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, United States
| | - Yi Tong
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
166
|
TAT-Conjugated NDUFS8 Can Be Transduced into Mitochondria in a Membrane-Potential-Independent Manner and Rescue Complex I Deficiency. Int J Mol Sci 2021; 22:ijms22126524. [PMID: 34204592 PMCID: PMC8234171 DOI: 10.3390/ijms22126524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
NADH dehydrogenase (ubiquinone) Fe-S protein 8 (NDUFS8) is a nuclear-encoded core subunit of human mitochondrial complex I. Defects in NDUFS8 are associated with Leigh syndrome and encephalomyopathy. Cell-penetrating peptide derived from the HIV-1 transactivator of transcription protein (TAT) has been successfully applied as a carrier to bring fusion proteins into cells without compromising the biological function of the cargoes. In this study, we developed a TAT-mediated protein transduction system to rescue complex I deficiency caused by NDUFS8 defects. Two fusion proteins (TAT-NDUFS8 and NDUFS8-TAT) were exogenously expressed and purified from Escherichia coli for transduction of human cells. In addition, similar constructs were generated and used in transfection studies for comparison. The results showed that both exogenous TAT-NDUFS8 and NDUFS8-TAT were delivered into mitochondria and correctly processed. Interestingly, the mitochondrial import of TAT-containing NDUFS8 was independent of mitochondrial membrane potential. Treatment with TAT-NDUFS8 not only significantly improved the assembly of complex I in an NDUFS8-deficient cell line, but also partially rescued complex I functions both in the in-gel activity assay and the oxygen consumption assay. Our current findings suggest the considerable potential of applying the TAT-mediated protein transduction system for treatment of complex I deficiency.
Collapse
|
167
|
Finger Y, Riemer J. Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biol Chem 2021; 401:749-763. [PMID: 32142475 DOI: 10.1515/hsz-2020-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The proteome of the mitochondrial intermembrane space (IMS) contains more than 100 proteins, all of which are synthesized on cytosolic ribosomes and consequently need to be imported by dedicated machineries. The mitochondrial disulfide relay is the major import machinery for soluble proteins in the IMS. Its major component, the oxidoreductase MIA40, interacts with incoming substrates, retains them in the IMS, and oxidatively folds them. After this reaction, MIA40 is reoxidized by the sulfhydryl oxidase augmenter of liver regeneration, which couples disulfide formation by this machinery to the activity of the respiratory chain. In this review, we will discuss the import of IMS proteins with a focus on recent findings showing the diversity of disulfide relay substrates, describing the cytosolic control of this import system and highlighting the physiological relevance of the disulfide relay machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Yannik Finger
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute for Biochemistry, Redox Biochemistry, University of Cologne, and Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| |
Collapse
|
168
|
Capitanio G, Papa F, Papa S. The allosteric protein interactions in the proton-motive function of mammalian redox enzymes of the respiratory chain. Biochimie 2021; 189:1-12. [PMID: 34097987 DOI: 10.1016/j.biochi.2021.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
Insight into mammalian respiratory complexes defines the role of allosteric protein interactions in their proton-motive activity. In cytochrome c oxidase (CxIV) conformational change of subunit I, caused by O2 binding to heme a32+-CuB+ and reduction, and stereochemical transitions coupled to oxidation/reduction of heme a and CuA, combined with electrostatic effects, determine the proton pumping activity. In ubiquinone-cytochrome c oxidoreductase (CxIII) conformational movement of Fe-S protein between cytochromes b and c1 is the key element of the proton-motive activity. In NADH-ubiquinone oxidoreductase (CxI) ubiquinone binding and reduction result in conformational changes of subunits in the quinone reaction structure which initiate proton pumping.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy.
| |
Collapse
|
169
|
Accessory Subunits of the Matrix Arm of Mitochondrial Complex I with a Focus on Subunit NDUFS4 and Its Role in Complex I Function and Assembly. Life (Basel) 2021; 11:life11050455. [PMID: 34069703 PMCID: PMC8161149 DOI: 10.3390/life11050455] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
NADH:ubiquinone-oxidoreductase (complex I) is the largest membrane protein complex of the respiratory chain. Complex I couples electron transfer to vectorial proton translocation across the inner mitochondrial membrane. The L shaped structure of complex I is divided into a membrane arm and a matrix arm. Fourteen central subunits are conserved throughout species, while some 30 accessory subunits are typically found in eukaryotes. Complex I dysfunction is associated with mutations in the nuclear and mitochondrial genome, resulting in a broad spectrum of neuromuscular and neurodegenerative diseases. Accessory subunit NDUFS4 in the matrix arm is a hot spot for mutations causing Leigh or Leigh-like syndrome. In this review, we focus on accessory subunits of the matrix arm and discuss recent reports on the function of accessory subunit NDUFS4 and its interplay with NDUFS6, NDUFA12, and assembly factor NDUFAF2 in complex I assembly.
Collapse
|
170
|
Galemou Yoga E, Schiller J, Zickermann V. Ubiquinone Binding and Reduction by Complex I-Open Questions and Mechanistic Implications. Front Chem 2021; 9:672851. [PMID: 33996767 PMCID: PMC8119997 DOI: 10.3389/fchem.2021.672851] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
NADH: ubiquinone oxidoreductase (complex I) is the first enzyme complex of the respiratory chain. Complex I is a redox-driven proton pump that contributes to the proton motive force that drives ATP synthase. The structure of complex I has been analyzed by x-ray crystallography and electron cryo-microscopy and is now well-described. The ubiquinone (Q) reduction site of complex I is buried in the peripheral arm and a tunnel-like structure is thought to provide access for the hydrophobic substrate from the membrane. Several intermediate binding positions for Q in the tunnel were identified in molecular simulations. Structural data showed the binding of native Q molecules and short chain analogs and inhibitors in the access pathway and in the Q reduction site, respectively. We here review the current knowledge on the interaction of complex I with Q and discuss recent hypothetical models for the coupling mechanism.
Collapse
Affiliation(s)
- Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
171
|
Jarman OD, Biner O, Wright JJ, Hirst J. Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I. Sci Rep 2021; 11:10143. [PMID: 33980947 PMCID: PMC8115037 DOI: 10.1038/s41598-021-89575-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes.
Collapse
Affiliation(s)
- Owen D. Jarman
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Olivier Biner
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - John J. Wright
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Judy Hirst
- grid.5335.00000000121885934The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
172
|
Yu H, Schut GJ, Haja DK, Adams MWW, Li H. Evolution of complex I-like respiratory complexes. J Biol Chem 2021; 296:100740. [PMID: 33957129 PMCID: PMC8165549 DOI: 10.1016/j.jbc.2021.100740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
The modern-day respiratory complex I shares a common ancestor with the membrane-bound hydrogenase (MBH) and membrane-bound sulfane sulfur reductase (MBS). MBH and MBS use protons and sulfur as their respective electron sinks, which helped to conserve energy during early life in the Proterozoic era when the Earth's atmosphere was low in oxygen. MBH and MBS likely evolved from an integration of an ancestral, membrane-embedded, multiple resistance and pH antiporter and a soluble redox-active module encompassing a [NiFe] hydrogenase. In this review, we discuss how the structures of MBH, MBS, multiple resistance and pH, photosynthetic NADH dehydrogenase-like complex type-1, and complex I, which have been determined recently, thanks to the advent of high-resolution cryo-EM, have significantly improved our understanding of the catalytic reaction mechanisms and the evolutionary relationships of the respiratory complexes.
Collapse
Affiliation(s)
- Hongjun Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Domink K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
173
|
Optic atrophy-associated TMEM126A is an assembly factor for the ND4-module of mitochondrial complex I. Proc Natl Acad Sci U S A 2021; 118:2019665118. [PMID: 33879611 DOI: 10.1073/pnas.2019665118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mitochondrial disease is a debilitating condition with a diverse genetic etiology. Here, we report that TMEM126A, a protein that is mutated in patients with autosomal-recessive optic atrophy, participates directly in the assembly of mitochondrial complex I. Using a combination of genome editing, interaction studies, and quantitative proteomics, we find that loss of TMEM126A results in an isolated complex I deficiency and that TMEM126A interacts with a number of complex I subunits and assembly factors. Pulse-labeling interaction studies reveal that TMEM126A associates with the newly synthesized mitochondrial DNA (mtDNA)-encoded ND4 subunit of complex I. Our findings indicate that TMEM126A is involved in the assembly of the ND4 distal membrane module of complex I. In addition, we find that the function of TMEM126A is distinct from its paralogue TMEM126B, which acts in assembly of the ND2-module of complex I.
Collapse
|
174
|
D'Angelo L, Astro E, De Luise M, Kurelac I, Umesh-Ganesh N, Ding S, Fearnley IM, Gasparre G, Zeviani M, Porcelli AM, Fernandez-Vizarra E, Iommarini L. NDUFS3 depletion permits complex I maturation and reveals TMEM126A/OPA7 as an assembly factor binding the ND4-module intermediate. Cell Rep 2021; 35:109002. [PMID: 33882309 PMCID: PMC8076766 DOI: 10.1016/j.celrep.2021.109002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Complex I (CI) is the largest enzyme of the mitochondrial respiratory chain, and its defects are the main cause of mitochondrial disease. To understand the mechanisms regulating the extremely intricate biogenesis of this fundamental bioenergetic machine, we analyze the structural and functional consequences of the ablation of NDUFS3, a non-catalytic core subunit. We show that, in diverse mammalian cell types, a small amount of functional CI can still be detected in the complete absence of NDUFS3. In addition, we determine the dynamics of CI disassembly when the amount of NDUFS3 is gradually decreased. The process of degradation of the complex occurs in a hierarchical and modular fashion in which the ND4 module remains stable and bound to TMEM126A. We, thus, uncover the function of TMEM126A, the product of a disease gene causing recessive optic atrophy as a factor necessary for the correct assembly and function of CI.
Collapse
Affiliation(s)
- Luigi D'Angelo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Elisa Astro
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Nikkitha Umesh-Ganesh
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Shujing Ding
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Ian M Fearnley
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Massimo Zeviani
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK; Venetian Institute of Molecular Medicine, 35128 Padua, Italy; Department of Neurosciences, University of Padua, 35128 Padua, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy; Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - Erika Fernandez-Vizarra
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK; Institute of Molecular, Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, UK.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
175
|
Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel) 2021; 11:life11040351. [PMID: 33920624 PMCID: PMC8074069 DOI: 10.3390/life11040351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes (complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory complexes are known to coexist in the membrane as single functional entities and as supramolecular aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant biomedical implications because defects in a single protein can derange the overall SC organization and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major metabolic disturbances associated with severe SCs perturbation due to defective complex III are discussed along with interventions that may circumvent these deficiencies.
Collapse
|
176
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
177
|
Masuya T, Uno S, Murai M, Miyoshi H. Pinpoint Dual Chemical Cross-Linking Explores the Structural Dynamics of the Ubiquinone Reaction Site in Mitochondrial Complex I. Biochemistry 2021; 60:813-824. [PMID: 33650850 DOI: 10.1021/acs.biochem.0c00991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ubiquinone reduction step in NADH-ubiquinone oxidoreductase (complex I) is the key to triggering proton translocation in its membrane part. Although the existence of a long and narrow quinone-access channel has been identified, it remains debatable whether the channel model can account for binding of various ligands (ubiquinones and inhibitors) to the enzyme. We previously proposed that the matrix-side interfacial region of the 49 kDa, ND1, PSST, and 39 kDa subunits, which is covered by a loop connecting transmembrane helices (TMHs) 1 and 2 of ND3, may be the area for entry of some bulky ligands into the quinone reaction cavity. However, this proposition lacks direct evidence that the cavity is accessible from the putative matrix-side region, which allows ligands to pass. To address this, we examined whether Cys39 of ND3 and Asp160 of 49 kDa can be specifically cross-linked by bifunctional cross-linkers (tetrazine-maleimide hybrid, named TMBC). On the basis of the structural models of complex I, such dual cross-linking is unexpected because ND3 Cys39 and 49 kDa Asp160 are located on the TMH1-2 loop and deep inside the channel, respectively, and hence, they are physically separated by peptide chains forming the channel wall. However, three TMBCs with different spacer lengths did cross-link the two residues, resulting in the formation of new cross-linked ND3/49 kDa subunits. Chemical modification of either ND3 Cys39 or 49 kDa Asp160 blocked the dual cross-linking, ensuring the specificity of the cross-linking. Altogether, this study provides direct evidence that the quinone reaction cavity is indeed accessible from the proposed matrix-side region covered by the ND3 TMH1-2 loop.
Collapse
Affiliation(s)
- Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shinpei Uno
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
178
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
179
|
The road to the structure of the mitochondrial respiratory chain supercomplex. Biochem Soc Trans 2021; 48:621-629. [PMID: 32311046 PMCID: PMC7200630 DOI: 10.1042/bst20190930] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
The four complexes of the mitochondrial respiratory chain are critical for ATP production in most eukaryotic cells. Structural characterisation of these complexes has been critical for understanding the mechanisms underpinning their function. The three proton-pumping complexes, Complexes I, III and IV associate to form stable supercomplexes or respirasomes, the most abundant form containing 80 subunits in mammals. Multiple functions have been proposed for the supercomplexes, including enhancing the diffusion of electron carriers, providing stability for the complexes and protection against reactive oxygen species. Although high-resolution structures for Complexes III and IV were determined by X-ray crystallography in the 1990s, the size of Complex I and the supercomplexes necessitated advances in sample preparation and the development of cryo-electron microscopy techniques. We now enjoy structures for these beautiful complexes isolated from multiple organisms and in multiple states and together they provide important insights into respiratory chain function and the role of the supercomplex. While we as non-structural biologists use these structures for interpreting our own functional data, we need to remind ourselves that they stand on the shoulders of a large body of previous structural studies, many of which are still appropriate for use in understanding our results. In this mini-review, we discuss the history of respiratory chain structural biology studies leading to the structures of the mammalian supercomplexes and beyond.
Collapse
|
180
|
CHCHD4 (MIA40) and the mitochondrial disulfide relay system. Biochem Soc Trans 2021; 49:17-27. [PMID: 33599699 PMCID: PMC7925007 DOI: 10.1042/bst20190232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.
Collapse
|
181
|
Rosenberger FA, Moore D, Atanassov I, Moedas MF, Clemente P, Végvári Á, Fissi NE, Filograna R, Bucher AL, Hinze Y, The M, Hedman E, Chernogubova E, Begzati A, Wibom R, Jain M, Nilsson R, Käll L, Wedell A, Freyer C, Wredenberg A. The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters. SCIENCE ADVANCES 2021; 7:eabf0717. [PMID: 33608280 PMCID: PMC7895438 DOI: 10.1126/sciadv.abf0717] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 05/15/2023]
Abstract
Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
Collapse
Affiliation(s)
- Florian A Rosenberger
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - David Moore
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Marco F Moedas
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Paula Clemente
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ákos Végvári
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Najla El Fissi
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Roberta Filograna
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Anna-Lena Bucher
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Yvonne Hinze
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Matthew The
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Erik Hedman
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ekaterina Chernogubova
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, 171 65 Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arjana Begzati
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, 171 65 Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Käll
- Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Anna Wedell
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
182
|
Yin Z, Burger N, Kula-Alwar D, Aksentijević D, Bridges HR, Prag HA, Grba DN, Viscomi C, James AM, Mottahedin A, Krieg T, Murphy MP, Hirst J. Structural basis for a complex I mutation that blocks pathological ROS production. Nat Commun 2021; 12:707. [PMID: 33514727 PMCID: PMC7846746 DOI: 10.1038/s41467-021-20942-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia-reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the "deactive" state, usually formed only after prolonged inactivity. Despite its tendency to adopt the "deactive" state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.
Collapse
Affiliation(s)
- Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Dunja Aksentijević
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Hannah R Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Daniel N Grba
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biomedical Sciences, University of Padova via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Amin Mottahedin
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
183
|
Di Luca A, Kaila VRI. Molecular strain in the active/deactive-transition modulates domain coupling in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148382. [PMID: 33513365 DOI: 10.1016/j.bbabio.2021.148382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Complex I functions as a primary redox-driven proton pump in aerobic respiratory chains, establishing a proton motive force that powers ATP synthesis and active transport. Recent cryo-electron microscopy (cryo-EM) experiments have resolved the mammalian complex I in the biomedically relevant active (A) and deactive (D) states (Zhu et al., 2016; Fiedorczuk et al., 2016; Agip et al., 2018 [1-3]) that could regulate enzyme turnover, but it still remains unclear how the conformational state and activity are linked. We show here how global motion along the A/D transition accumulates molecular strain at specific coupling regions important for both redox chemistry and proton pumping. Our data suggest that the A/D motion modulates force propagation pathways between the substrate-binding site and the proton pumping machinery that could alter electrostatic and conformational coupling across large distances. Our findings provide a molecular basis to understand how global protein dynamics can modulate the biological activity of large molecular complexes.
Collapse
Affiliation(s)
- Andrea Di Luca
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
184
|
Maldonado M, Guo F, Letts JA. Atomic structures of respiratory complex III 2, complex IV, and supercomplex III 2-IV from vascular plants. eLife 2021; 10:e62047. [PMID: 33463523 PMCID: PMC7815315 DOI: 10.7554/elife.62047] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial complex III (CIII2) and complex IV (CIV), which can associate into a higher-order supercomplex (SC III2+IV), play key roles in respiration. However, structures of these plant complexes remain unknown. We present atomic models of CIII2, CIV, and SC III2+IV from Vigna radiata determined by single-particle cryoEM. The structures reveal plant-specific differences in the MPP domain of CIII2 and define the subunit composition of CIV. Conformational heterogeneity analysis of CIII2 revealed long-range, coordinated movements across the complex, as well as the motion of CIII2's iron-sulfur head domain. The CIV structure suggests that, in plants, proton translocation does not occur via the H channel. The supercomplex interface differs significantly from that in yeast and bacteria in its interacting subunits, angle of approach and limited interactions in the mitochondrial matrix. These structures challenge long-standing assumptions about the plant complexes and generate new mechanistic hypotheses.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
- BIOEM Facility, University of California DavisDavisUnited States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California DavisDavisUnited States
| |
Collapse
|
185
|
Luo J, Zhao W, Gan Y, Pan B, Liu L, Liu Z, Tian J. Cardiac Troponin I R193H Mutation Is Associated with Mitochondrial Damage in Cardiomyocytes. DNA Cell Biol 2021; 40:184-191. [PMID: 33465007 DOI: 10.1089/dna.2020.5828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Malfunction of myocardial mitochondria plays a crucial role in the development of cardiovascular disorders, especially hypertrophic and dilated cardiomyopathies. Cardiac troponin I (cTnI) is an important structural protein and essential to contraction and relaxation of cardiomyocytes. Recent studies suggest that mutated cTnIR193H could function as a regulatory molecule for other cell functions. This study was to determine whether mutated cTnI could contribute to mitochondrial dysfunction of cardiomyocytes. Primary cardiomyocytes were transfected with cTnIR193H adenovirus with empty vector as control. Mitochondrial structure and function were evaluated in the cells 72 h after transfection. Transmission electron microscopy examination showed mitochondria in the cardiomyocytes with R193H mutation displayed broken cristae, vacuolation, and mitophagy. Mitochondrial function studies revealed a significant decrease in complex I activity, ATP and reactive oxygen species levels, and oxygen consumption rate compared with controls. Western blot analysis demonstrated that expressions of mitochondria-related genes, including ND5 (ubiquinone oxidoreductase chain 5), LRPPRC (a leucine-rich protein of pentatricopeptide repeat family), and PGC-1α (PPARG co-activator 1 alpha), were significantly downregulated in R193H mutation cardiomyocytes compared with the control. Swelling and broken cristae were observed in the mitochondria of cardiomyocytes from cTnIR193H mutation transgenic mice with decreased mitochondrial function, not from the littermate control mice. The data from the present study demonstrated that mitochondrial structure and function were significantly impaired in cardiomyocytes with cTnIR193H mutation, suggesting that cTnI might be critically involved in maintaining the structural and functional integrity of myocardial mitochondria.
Collapse
Affiliation(s)
- Jing Luo
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Weian Zhao
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yi Gan
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Bo Pan
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Lingjuan Liu
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zhenguo Liu
- Department of Medicine, Center for Precision Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Jie Tian
- Department of Cardiovascular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
186
|
Szczepanowska K, Trifunovic A. Tune instead of destroy: How proteolysis keeps OXPHOS in shape. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148365. [PMID: 33417924 DOI: 10.1016/j.bbabio.2020.148365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are highly dynamic and stress-responsive organelles that are renewed, maintained and removed by a number of different mechanisms. Recent findings bring more evidence for the focused, defined, and regulatory function of the intramitochondrial proteases extending far beyond the traditional concepts of damage control and stress responses. Until recently, the macrodegradation processes, such as mitophagy, were promoted as the major regulator of OXPHOS remodelling and turnover. However, the spatiotemporal dynamics of the OXPHOS system can be greatly modulated by the intrinsic mitochondrial mechanisms acting apart from changes in the global mitochondrial dynamics. This, in turn, may substantially contribute to the shaping of the metabolic status of the cell.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| |
Collapse
|
187
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
188
|
Zhang F, Vik SB. Analysis of the assembly pathway for membrane subunits of Complex I reveals that subunit L (ND5) can assemble last in E. coli. BBA ADVANCES 2021; 1. [DOI: 10.1016/j.bbadva.2021.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
189
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
190
|
Röpke M, Saura P, Riepl D, Pöverlein MC, Kaila VRI. Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I. J Am Chem Soc 2020; 142:21758-21766. [PMID: 33325238 PMCID: PMC7785131 DOI: 10.1021/jacs.0c09209] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The respiratory complex I is a gigantic
(1 MDa) redox-driven proton
pump that reduces the ubiquinone pool and generates proton motive
force to power ATP synthesis in mitochondria. Despite resolved molecular
structures and biochemical characterization of the enzyme from multiple
organisms, its long-range (∼300 Å) proton-coupled electron
transfer (PCET) mechanism remains unsolved. We employ here microsecond
molecular dynamics simulations to probe the dynamics of the mammalian
complex I in combination with hybrid quantum/classical (QM/MM) free
energy calculations to explore how proton pumping reactions are triggered
within its 200 Å wide membrane domain. Our simulations predict
extensive hydration dynamics of the antiporter-like subunits in complex
I that enable lateral proton transfer reactions on a microsecond time
scale. We further show how the coupling between conserved ion pairs
and charged residues modulate the proton transfer dynamics, and how
transmembrane helices and gating residues control the hydration process.
Our findings suggest that the mammalian complex I pumps protons by
tightly linked conformational and electrostatic coupling principles.
Collapse
Affiliation(s)
- Michael Röpke
- Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| |
Collapse
|
191
|
Zhang Y, Guo L, Han S, Chen L, Li C, Zhang Z, Hong Y, Zhang X, Zhou X, Jiang D, Liang X, Qiu J, Zhang J, Li X, Zhong S, Liao C, Yan B, Tse HF, Lian Q. Adult mesenchymal stem cell ageing interplays with depressed mitochondrial Ndufs6. Cell Death Dis 2020; 11:1075. [PMID: 33323934 PMCID: PMC7738680 DOI: 10.1038/s41419-020-03289-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a novel strategy to treat many degenerative diseases. Accumulating evidence shows that the function of MSCs declines with age, thus limiting their regenerative capacity. Nonetheless, the underlying mechanisms that control MSC ageing are not well understood. We show that compared with bone marrow-MSCs (BM-MSCs) isolated from young and aged samples, NADH dehydrogenase (ubiquinone) iron-sulfur protein 6 (Ndufs6) is depressed in aged MSCs. Similar to that of Ndufs6 knockout (Ndufs6-/-) mice, MSCs exhibited a reduced self-renewal and differentiation capacity with a tendency to senescence in the presence of an increased p53/p21 level. Downregulation of Ndufs6 by siRNA also accelerated progression of wild-type BM-MSCs to an aged state. In contrast, replenishment of Ndufs6 in Ndufs6-/--BM-MSCs significantly rejuvenated senescent cells and restored their proliferative ability. Compared with BM-MSCs, Ndufs6-/--BM-MSCs displayed increased intracellular and mitochondrial reactive oxygen species (ROS), and decreased mitochondrial membrane potential. Treatment of Ndufs6-/--BM-MSCs with mitochondrial ROS inhibitor Mito-TEMPO notably reversed the cellular senescence and reduced the increased p53/p21 level. We provide direct evidence that impairment of mitochondrial Ndufs6 is a putative accelerator of adult stem cell ageing that is associated with excessive ROS accumulation and upregulation of p53/p21. It also indicates that manipulation of mitochondrial function is critical and can effectively protect adult stem cells against senescence.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liyan Guo
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuo Han
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Ling Chen
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Cheng Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Zhao Zhang
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xiaoxian Zhang
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoya Zhou
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Jiang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Xiaoting Liang
- Clinical Translational Medical Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxiang Qiu
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinqiu Zhang
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shilong Zhong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Can Liao
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Yan
- Department of Computer Science, Faculty of Engineering, the University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
192
|
Essential role of accessory subunit LYRM6 in the mechanism of mitochondrial complex I. Nat Commun 2020; 11:6008. [PMID: 33243981 PMCID: PMC7693276 DOI: 10.1038/s41467-020-19778-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (β1-β2S2 loop), ND1 (TMH5-6ND1 loop) and ND3 (TMH1-2ND3 loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2ND3 loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89ALYRM6 of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism. Respiratory complex I plays a key role in energy metabolism. Cryo-EM structure of a mutant accessory subunit LYRM6 from the yeast Yarrowia lipolytica and molecular dynamics simulations reveal conformational changes at the interface between LYRM6 and subunit ND3, propagated further into the complex. These findings offer insight into the mechanism of proton pumping by respiratory complex I.
Collapse
|
193
|
Structure of the Dietzia Mrp complex reveals molecular mechanism of this giant bacterial sodium proton pump. Proc Natl Acad Sci U S A 2020; 117:31166-31176. [PMID: 33229520 PMCID: PMC7733839 DOI: 10.1073/pnas.2006276117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple resistance and pH adaptation (Mrp) complexes are the most sophisticated known cation/proton exchangers and are essential for the survival of a vast variety of alkaliphilic and/or halophilic microorganisms. Moreover, this family of antiporters represents the ancestor of cation pumps in nearly all known redox-driven transporter complexes, including the complex I of the respiratory chain. For the Mrp complex, an experimental structure is lacking. We now report the structure of Mrp complex at 3.0-Å resolution solved using the single-particle cryo-EM method. The structure-inspired functional study of Mrp provides detailed information for further biophysical and biochemical investigation of the intriguingly pumping mechanism and physiological functions of this complex, as well as for exploring its potential as a therapeutic drug target. Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a Dietzia sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.
Collapse
|
194
|
Yu H, Haja DK, Schut GJ, Wu CH, Meng X, Zhao G, Li H, Adams MWW. Structure of the respiratory MBS complex reveals iron-sulfur cluster catalyzed sulfane sulfur reduction in ancient life. Nat Commun 2020; 11:5953. [PMID: 33230146 PMCID: PMC7684303 DOI: 10.1038/s41467-020-19697-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters. The sulfur-reducing enzyme MBS and the hydrogen-gas evolving MBH are the evolutionary link between the ancestor Mrp antiporter and the mitochondrial respiratory complex I. Here, the authors characterise MBS from the hyperthermophilic archaeon Pyrococcus furiosus, solve its cryo-EM structure and discuss the structural evolution from Mrp to MBH and MBS and to the modern-day complex I.
Collapse
Affiliation(s)
- Hongjun Yu
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Xing Meng
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Gongpu Zhao
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
195
|
Tort F, Barredo E, Parthasarathy R, Ugarteburu O, Ferrer-Cortès X, García-Villoria J, Gort L, González-Quintana A, Martín MA, Fernández-Vizarra E, Zeviani M, Ribes A. Biallelic mutations in NDUFA8 cause complex I deficiency in two siblings with favorable clinical evolution. Mol Genet Metab 2020; 131:349-357. [PMID: 33153867 DOI: 10.1016/j.ymgme.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Isolated complex I (CI) deficiency is the most common cause of oxidative phosphorylation (OXPHOS) dysfunction. Whole-exome sequencing identified biallelic mutations in NDUFA8 (c.[293G > T]; [293G > T], encoding for an accessory subunit of CI, in two siblings with a favorable clinical evolution. The individuals reported here are practically asymptomatic, with the exception of slight failure to thrive and some language difficulties at the age of 6 and 9 years, respectively. These observations are remarkable since the vast majority of patients with CI deficiency, including the only NDUFA8 patient reported so far, showed an extremely poor clinical outcome. Western blot studies demonstrated that NDUFA8 protein was strongly reduced in the patients' fibroblasts and muscle extracts. In addition, there was a marked and specific decrease in the steady-state levels of CI subunits. BN-PAGE demonstrated an isolated defect in the assembly and the activity of CI with impaired supercomplexes formation and abnormal accumulation of CI subassemblies. Confocal microscopy analysis in fibroblasts showed rounder mitochondria and diminished branching degree of the mitochondrial network. Functional complementation studies demonstrated disease-causality for the identified mutation as lentiviral transduction with wild-type NDUFA8 cDNA restored the steady-state levels of CI subunits and completely recovered the deficient enzymatic activity in immortalized mutant fibroblasts. In summary, we provide additional evidence of the involvement of NDUFA8 as a mitochondrial disease-causing gene associated with altered mitochondrial morphology, CI deficiency, impaired supercomplexes formation, and very mild progression of the disease.
Collapse
Affiliation(s)
- Frederic Tort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | | | | | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Xenia Ferrer-Cortès
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Laura Gort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Adrián González-Quintana
- Laboratorio de Enfermedades Mitocondriales, Servicio de Bioquímica, Instituto de Investigación Hospital, 12 de Octubre (imas12), CIBERER, Madrid, Spain
| | - Miguel A Martín
- Laboratorio de Enfermedades Mitocondriales, Servicio de Bioquímica, Instituto de Investigación Hospital, 12 de Octubre (imas12), CIBERER, Madrid, Spain
| | | | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain.
| |
Collapse
|
196
|
Bridges HR, Fedor JG, Blaza JN, Di Luca A, Jussupow A, Jarman OD, Wright JJ, Agip ANA, Gamiz-Hernandez AP, Roessler MM, Kaila VRI, Hirst J. Structure of inhibitor-bound mammalian complex I. Nat Commun 2020; 11:5261. [PMID: 33067417 PMCID: PMC7567858 DOI: 10.1038/s41467-020-18950-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) captures the free energy from oxidising NADH and reducing ubiquinone to drive protons across the mitochondrial inner membrane and power oxidative phosphorylation. Recent cryo-EM analyses have produced near-complete models of the mammalian complex, but leave the molecular principles of its long-range energy coupling mechanism open to debate. Here, we describe the 3.0-Å resolution cryo-EM structure of complex I from mouse heart mitochondria with a substrate-like inhibitor, piericidin A, bound in the ubiquinone-binding active site. We combine our structural analyses with both functional and computational studies to demonstrate competitive inhibitor binding poses and provide evidence that two inhibitor molecules bind end-to-end in the long substrate binding channel. Our findings reveal information about the mechanisms of inhibition and substrate reduction that are central for understanding the principles of energy transduction in mammalian complex I.
Collapse
Affiliation(s)
- Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Justin G Fedor
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - James N Blaza
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Andrea Di Luca
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, 85748, Garching, Germany
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Alexander Jussupow
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, 85748, Garching, Germany
| | - Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Ana P Gamiz-Hernandez
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, 85748, Garching, Germany
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Maxie M Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Ville R I Kaila
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, 85748, Garching, Germany.
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
197
|
Specific features and assembly of the plant mitochondrial complex I revealed by cryo-EM. Nat Commun 2020; 11:5195. [PMID: 33060577 PMCID: PMC7567890 DOI: 10.1038/s41467-020-18814-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/09/2020] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells and the site of essential metabolic reactions. Complex I or NADH:ubiquinone oxidoreductase is the main entry site for electrons into the mitochondrial respiratory chain and constitutes the largest of the respiratory complexes. Its structure and composition vary across eukaryote species. However, high resolution structures are available only for one group of eukaryotes, opisthokonts. In plants, only biochemical studies were carried out, already hinting at the peculiar composition of complex I in the green lineage. Here, we report several cryo-electron microscopy structures of the plant mitochondrial complex I. We describe the structure and composition of the plant respiratory complex I, including the ancestral mitochondrial domain composed of the carbonic anhydrase. We show that the carbonic anhydrase is a heterotrimeric complex with only one conserved active site. This domain is crucial for the overall stability of complex I as well as a peculiar lipid complex composed of cardiolipin and phosphatidylinositols. Moreover, we also describe the structure of one of the plant-specific complex I assembly intermediates, lacking the whole PD module, in presence of the maturation factor GLDH. GLDH prevents the binding of the plant specific P1 protein, responsible for the linkage of the PP to the PD module.
Collapse
|
198
|
Men L, Li Y, Wang X, Li R, Zhang T, Meng X, Liu S, Gong X, Gou M. Protein biomarkers associated with frozen Japanese puffer fish (Takifugu rubripes) quality traits. Food Chem 2020; 327:127002. [PMID: 32438262 DOI: 10.1016/j.foodchem.2020.127002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
This study was designed to investigate proteome changes in Japanese puffer fish (Takifugu rubripes) during short- and long-term frozen storage. In total, 1484 proteins were quantified, and 164 proteins were identified as differential abundance proteins (DAPs) in Japanese puffer fish from two frozen storage treatment groups (14 days and 60 days) compared with the fresh control group. Correlation analysis between the DAPs and quality traits of the puffer fish muscle showed that 106 proteins were correlated closely with colour and texture (hardness, elasticity, and chewiness). Bioinformatics analysis revealed and Western blot analysis verified that Putative prothymosin alpha species, Bridging integrator 3, NADH: the ubiquinone oxidoreductase subunit and Mx species are candidate biomarkers for puffer fish properties. This study offers valuable evidence to improve the quality control and monitoring of Japanese puffer fish during transportation and storage.
Collapse
Affiliation(s)
- Lei Men
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yunzhi Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Ruijun Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Tao Zhang
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Xuesong Meng
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Shengcong Liu
- Dalian Tianzheng Industrial Corporation Limited, Dalian 116011, China
| | - Xiaojie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Meng Gou
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
199
|
Kadenbach B. Complex IV - The regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion 2020; 58:296-302. [PMID: 33069909 DOI: 10.1016/j.mito.2020.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
ATP, the universal energy currency in all living cells, is mainly synthesized in mitochondria by oxidative phosphorylation (OXPHOS). The final and rate limiting step of the respiratory chain is cytochrome c oxidase (COX) which represents the regulatory center of OXPHOS. COX is regulated through binding of various effectors to its "supernumerary" subunits, by reversible phosphorylation, and by expression of subunit isoforms. Of particular interest is its feedback inhibition by ATP, the final product of OXPHOS. This "allosteric ATP-inhibition" of phosphorylated and dimeric COX maintains a low and healthy mitochondrial membrane potential (relaxed state), and prevents the formation of ROS (reactive oxygen species) which are known to cause numerous diseases. Excessive work and stress abolish this feedback inhibition of COX by Ca2+-activated dephosphorylation which leads to monomerization and movement of NDUFA4 from complex I to COX with higher rates of COX activity and ATP synthesis (active state) but increased ROS formation and decreased efficiency.
Collapse
|
200
|
Towarnicki SG, Ballard JWO. Towards understanding the evolutionary dynamics of mtDNA. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:355-364. [PMID: 33026269 DOI: 10.1080/24701394.2020.1830076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Historically, mtDNA was considered a selectively neutral marker that was useful for estimating the population genetic history of the maternal lineage. Over time there has been an increasing appreciation of mtDNA and mitochondria in maintaining cellular and organismal health. Beyond energy production, mtDNA and mitochondria have critical cellular roles in signalling. Here we briefly review the structure of mtDNA and the role of the mitochondrion in energy production. We then discuss the predictions that can be obtained from quaternary structure modelling and focus on mitochondrial complex I. Complex I is the primary entry point for electrons into the electron transport system is the largest respiratory complex of the chain and produces about 40% of the proton flux used to synthesize ATP. A focus of the review is Drosophila's utility as a model organism to study the selective advantage of specific mutations. However, we note that the incorporation of insights from a multitude of systems is necessary to fully understand the range of roles that mtDNA has in organismal fitness. We speculate that dietary changes can illicit stress responses that influence the selective advantage of specific mtDNA mutations and cause spatial and temporal fluctuations in the frequencies of mutations. We conclude that developing our understanding of the roles mtDNA has in determining organismal fitness will enable increased evolutionary insight and propose we can no longer assume it is evolving as a strictly neutral marker without testing this hypothesis.
Collapse
Affiliation(s)
- Samuel G Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|