151
|
Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:805-826. [PMID: 29660240 DOI: 10.1111/jipb.12654] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 05/18/2023]
Abstract
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Collapse
Affiliation(s)
- Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China
| | - Jianmin Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
152
|
Dogra V, Rochaix JD, Kim C. Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: An emerging perspective. PLANT, CELL & ENVIRONMENT 2018; 41:1727-1738. [PMID: 29749057 DOI: 10.1111/pce.13332] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) is a prime cause of photo-damage of the photosynthetic apparatus. The chlorophyll molecules in the photosystem II reaction center and in the light-harvesting antenna complex are major sources of 1 O2 generation. It has been thought that the generation of 1 O2 mainly takes place in the appressed regions of the thylakoid membranes, namely, the grana core, where most of the active photosystem II complexes are localized. Apart from being a toxic molecule, new evidence suggests that 1 O2 significantly contributes to chloroplast-to-nucleus retrograde signalling that primes acclimation and cell death responses. Interestingly, recent studies reveal that chloroplasts operate two distinct 1 O2 -triggered retrograde signalling pathways in which β-carotene and a nuclear-encoded chloroplast protein EXECUTER1 play essential roles as signalling mediators. The coexistence of these mediators raises several questions: their crosstalk, source(s) of 1 O2 , downstream signalling components, and the perception and reaction mechanism of these mediators towards 1 O2 . In this review, we mainly discuss the molecular genetic basis of the mode of action of these two putative 1 O2 sensors and their corresponding retrograde signalling pathways. In addition, we also propose the possible existence of an alternative source of 1 O2 , which is spatially and functionally separated from the grana core.
Collapse
Affiliation(s)
- Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
153
|
Littlejohn GR. SUMO enters the ring: the emerging role of SUMOylation in Magnaporthe oryzae pathogenicity. THE NEW PHYTOLOGIST 2018; 219:848-849. [PMID: 29998531 DOI: 10.1111/nph.15336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Portland Square Building, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
154
|
Künstler A, Bacsó R, Albert R, Barna B, Király Z, Hafez YM, Fodor J, Schwarczinger I, Király L. Superoxide (O 2.-) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:115-125. [PMID: 29775863 DOI: 10.1016/j.plaphy.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Nonhost resistance is the most common form of disease resistance exhibited by plants against most pathogenic microorganisms. Type I nonhost resistance is symptomless (i.e. no macroscopically visible cell/tissue death), implying an early halt of pathogen growth. The timing/speed of defences is much more rapid during type I nonhost resistance than during type II nonhost and host ("gene-for-gene") resistance associated with a hypersensitive response (localized necrosis, HR). However, the mechanism(s) underlying symptomless (type I) nonhost resistance is not entirely understood. Here we assessed accumulation dynamics of the reactive oxygen species superoxide (O2.-) during interactions of plants with a range of biotrophic and hemibiotrophic pathogens resulting in susceptibility, symptomless nonhost resistance or host resistance with HR. Our results show that the timing of macroscopically detectable superoxide accumulation (1-4 days after inoculation, DAI) is always associated with the speed of the defense response (symptomless nonhost resistance vs. host resistance with HR) in inoculated leaves. The relatively early (1 DAI) superoxide accumulation during symptomless nonhost resistance of barley to wheat powdery mildew (Blumeria graminis f. sp. tritici) is localized to mesophyll chloroplasts of inoculated leaves and coupled to enhanced NADPH oxidase (EC 1.6.3.1) activity and transient increases in expression of genes regulating superoxide levels and cell death (superoxide dismutase, HvSOD1 and BAX inhibitor-1, HvBI-1). Importantly, the partial suppression of symptomless nonhost resistance of barley to wheat powdery mildew by heat shock (49 °C, 45 s) and antioxidant (SOD and catalase) treatments points to a functional role of superoxide in symptomless (type I) nonhost resistance.
Collapse
Affiliation(s)
- András Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Renáta Bacsó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Réka Albert
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Zoltán Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Yaser Mohamed Hafez
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Ildikó Schwarczinger
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary.
| |
Collapse
|
155
|
Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N. ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. Free Radic Biol Med 2018; 122:52-64. [PMID: 29410363 DOI: 10.1016/j.freeradbiomed.2018.01.033] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 01/09/2023]
Abstract
Like all aerobic organisms, plants and algae co-opt reactive oxygen species (ROS) as signalling molecules to drive cellular responses to changes in their environment. In this respect, there is considerable commonality between all eukaryotes imposed by the constraints of ROS chemistry, similar metabolism in many subcellular compartments, the requirement for a high degree of signal specificity and the deployment of thiol peroxidases as transducers of oxidising equivalents to regulatory proteins. Nevertheless, plants and algae carry out specialised signalling arising from oxygenic photosynthesis in chloroplasts and photoautotropism, which often induce an imbalance between absorption of light energy and the capacity to use it productively. A key means of responding to this imbalance is through communication of chloroplasts with the nucleus to adjust cellular metabolism. Two ROS, singlet oxygen (1O2) and hydrogen peroxide (H2O2), initiate distinct signalling pathways when photosynthesis is perturbed. 1O2, because of its potent reactivity means that it initiates but does not transduce signalling. In contrast, the lower reactivity of H2O2 means that it can also be a mobile messenger in a spatially-defined signalling pathway. How plants translate a H2O2 message to bring about changes in gene expression is unknown and therefore, we draw on information from other eukaryotes to propose a working hypothesis. The role of these ROS generated in other subcellular compartments of plant cells in response to HL is critically considered alongside other eukaryotes. Finally, the responses of animal cells to oxidative stress upon high irradiance exposure is considered for new comparisons between plant and animal cells.
Collapse
Affiliation(s)
- Philip M Mullineaux
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | | | | | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
156
|
Wang M, Rui L, Yan H, Shi H, Zhao W, Lin JE, Zhang K, Blakeslee JJ, Mackey D, Tang D, Wei Z, Wang G. The major leaf ferredoxin Fd2 regulates plant innate immunity in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2018; 19:1377-1390. [PMID: 28976113 PMCID: PMC6637997 DOI: 10.1111/mpp.12621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/30/2017] [Accepted: 09/29/2017] [Indexed: 05/06/2023]
Abstract
Ferredoxins, the major distributors for electrons to various acceptor systems in plastids, contribute to redox regulation and antioxidant defence in plants. However, their function in plant immunity is not fully understood. In this study, we show that the expression of the major leaf ferredoxin gene Fd2 is suppressed by Pseudomonas syringae pv. tomato (Pst) DC3000 infection, and that knockout of Fd2 (Fd2-KO) in Arabidopsis increases the plant's susceptibility to both Pst DC3000 and Golovinomyces cichoracearum. On Pst DC3000 infection, the Fd2-KO mutant accumulates increased levels of jasmonic acid and displays compromised salicylic acid-related immune responses. Fd2-KO also shows defects in the accumulation of reactive oxygen species induced by pathogen-associated molecular pattern-triggered immunity. However, Fd2-KO shows enhanced R-protein-mediated resistance to Pst DC3000/AvrRpt2 infection, suggesting that Fd2 plays a negative role in effector-triggered immunity. Furthermore, Fd2 interacts with FIBRILLIN4 (FIB4), a harpin-binding protein localized in chloroplasts. Interestingly, Fd2, but not FIB4, localizes to stromules that extend from chloroplasts. Taken together, our results demonstrate that Fd2 plays an important role in plant immunity.
Collapse
Affiliation(s)
- Mo Wang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- Fujian University Key Laboratory for Plant–Microbe InteractionFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Lu Rui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing 100101China
| | - Hua Shi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | - Wanying Zhao
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
| | - Jinshan Ella Lin
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
- Department of Horticulture and Crop SciencesOARDC Metabolite Analysis Cluster (OMAC)WoosterOH 44691USA
| | - Kai Zhang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| | - Joshua J. Blakeslee
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
- Department of Horticulture and Crop SciencesOARDC Metabolite Analysis Cluster (OMAC)WoosterOH 44691USA
| | - David Mackey
- Department of Horticulture and Crop ScienceOhio State University, Columbus/WoosterOH 43210USA
| | - Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity Center, Fujian Agriculture and Forestry UniversityFuzhou 350002China
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsFujian Agriculture and Forestry UniversityFuzhou 350002China
| | | | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOH 43210USA
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| |
Collapse
|
157
|
Su J, Yang L, Zhu Q, Wu H, He Y, Liu Y, Xu J, Jiang D, Zhang S. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol 2018; 16:e2004122. [PMID: 29723186 PMCID: PMC5953503 DOI: 10.1371/journal.pbio.2004122] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/15/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023] Open
Abstract
Extensive research revealed tremendous details about how plants sense pathogen effectors during effector-triggered immunity (ETI). However, less is known about downstream signaling events. In this report, we demonstrate that prolonged activation of MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MPKs), is essential to ETI mediated by both coiled coil-nucleotide binding site-leucine rich repeats (CNLs) and toll/interleukin-1 receptor nucleotide binding site-leucine rich repeats (TNLs) types of R proteins. MPK3/MPK6 activation rapidly alters the expression of photosynthesis-related genes and inhibits photosynthesis, which promotes the accumulation of superoxide ( O2•−) and hydrogen peroxide (H2O2), two major reactive oxygen species (ROS), in chloroplasts under light. In the chemical-genetically rescued mpk3 mpk6 double mutants, ETI-induced photosynthetic inhibition and chloroplastic ROS accumulation are compromised, which correlates with delayed hypersensitive response (HR) cell death and compromised resistance. Furthermore, protection of chloroplasts by expressing a plastid-targeted cyanobacterial flavodoxin (pFLD) delays photosynthetic inhibition and compromises ETI. Collectively, this study highlights a critical role of MPK3/MPK6 in manipulating plant photosynthetic activities to promote ROS accumulation in chloroplasts and HR cell death, which contributes to the robustness of ETI. Furthermore, the dual functionality of MPK3/MPK6 cascade in promoting defense and inhibiting photosynthesis potentially allow it to orchestrate the trade-off between plant growth and defense in plant immunity. Plants follow different strategies to defend themselves against pathogens and activate their immune systems once the pathogens have been detected. One of the responses observed is the inhibition of photosynthesis and the global down-regulation of genes that regulate this process, similar to what is frequently observed in plants under various biotic stress conditions. However, the mechanisms underlying the turning off of the photosynthetic activity and whether this process contributes to plants’ defense against pathogens remain to be determined. In this study, we analyze these mechanisms in Arabidopsis plants and show that prolonged activation of MPK3 and MPK6, two kinases critical for pathogen resistance, results in the inhibition of photosynthesis and accumulation of reactive oxygen species (ROS) in the chloroplasts. We find that this response is similar to that observed during pathogen effector-triggered immunity (ETI). Correspondingly, plants that carry mutant versions of MPK3 and MPK6 result in compromised ETI-induced photosynthetic inhibition and chloroplastic ROS accumulation; thus, these two kinases seem to be essential for ETI. Our results suggest that MPK3/MPK6 activation induces a global down-regulation of photosynthesis along with an up-regulation of defense-related genes, and coordinates the growth and defense trade-off in plants.
Collapse
Affiliation(s)
- Jianbin Su
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Liuyi Yang
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiankun Zhu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjiao Wu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi He
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Juan Xu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dean Jiang
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
158
|
Akimoto‐Tomiyama C, Tanabe S, Kajiwara H, Minami E, Ochiai H. Loss of chloroplast-localized protein phosphatase 2Cs in Arabidopsis thaliana leads to enhancement of plant immunity and resistance to Xanthomonas campestris pv. campestris infection. MOLECULAR PLANT PATHOLOGY 2018; 19:1184-1195. [PMID: 28815858 PMCID: PMC6637992 DOI: 10.1111/mpp.12596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 05/20/2023]
Abstract
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine-specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight. In Arabidopsis thaliana, orthologous PP2C genes (AtPP2C62 and AtPP2C26) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris (Xcc, causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62- and atpp2c26-deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis-related protein, chaperonin-60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two-dimensional isoelectric focusing sodium dodecylsulfate-polyacrylamide gel electrophoresis (2D-IDF-SDS-PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.
Collapse
Affiliation(s)
- Chiharu Akimoto‐Tomiyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
| | - Shigeru Tanabe
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
- Present address:
Sakata Seed CorporationYokohamaJapan
| | - Hideyuki Kajiwara
- Advanced Analysis CenterNational Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
| | - Eiichi Minami
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
| | - Hirokazu Ochiai
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
| |
Collapse
|
159
|
Abstract
As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
160
|
The role of chloroplasts in plant pathology. Essays Biochem 2018; 62:21-39. [PMID: 29273582 DOI: 10.1042/ebc20170020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Plants have evolved complex tolerance systems to survive abiotic and biotic stresses. Central to these programmes is a sophisticated conversation of signals between the chloroplast and the nucleus. In this review, we examine the antagonism between abiotic stress tolerance (AST) and immunity: we propose that to generate immunogenic signals, plants must disable AST systems, in particular those that manage reactive oxygen species (ROS), while the pathogen seeks to reactivate or enhance those systems to achieve virulence. By boosting host systems of AST, pathogens trick the plant into suppressing chloroplast immunogenic signals and steer the host into making an inappropriate immune response. Pathogens disrupt chloroplast function, both transcriptionally-by secreting effectors that alter host gene expression by interacting with defence-related kinase cascades, with transcription factors, or with promoters themselves-and post-transcriptionally, by delivering effectors that enter the chloroplast or alter the localization of host proteins to change chloroplast activities. These mechanisms reconfigure the chloroplast proteome and chloroplast-originating immunogenic signals in order to promote infection.
Collapse
|
161
|
Matei A, Ernst C, Günl M, Thiele B, Altmüller J, Walbot V, Usadel B, Doehlemann G. How to make a tumour: cell type specific dissection of Ustilago maydis-induced tumour development in maize leaves. THE NEW PHYTOLOGIST 2018; 217:1681-1695. [PMID: 29314018 DOI: 10.1111/nph.14960] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/09/2017] [Indexed: 05/09/2023]
Abstract
The biotrophic fungus Ustilago maydis causes smut disease on maize (Zea mays), which is characterized by immense plant tumours. To establish disease and reprogram organ primordia to tumours, U. maydis deploys effector proteins in an organ-specific manner. However, the cellular contribution to leaf tumours remains unknown. We investigated leaf tumour formation at the tissue- and cell type-specific levels. Cytology and metabolite analysis were deployed to understand the cellular basis for tumourigenesis. Laser-capture microdissection was performed to gain a cell type-specific transcriptome of U. maydis during tumour formation. In vivo visualization of plant DNA synthesis identified bundle sheath cells as the origin of hyperplasic tumour cells, while mesophyll cells become hypertrophic tumour cells. Cell type-specific transcriptome profiling of U. maydis revealed tailored expression of fungal effector genes. Moreover, U. maydis See1 was identified as the first cell type-specific fungal effector, being required for induction of cell cycle reactivation in bundle sheath cells. Identification of distinct cellular mechanisms in two different leaf cell types and of See1 as an effector for induction of proliferation of bundle sheath cells are major steps in understanding U. maydis-induced tumour formation. Moreover, the cell type-specific U. maydis transcriptome data are a valuable resource to the scientific community.
Collapse
Affiliation(s)
- Alexandra Matei
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), BioCenter, University of Cologne, Zuelpicher Str. 47a, Cologne, 50674, Germany
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Medical Faculty, University Hospital Cologne, University of Cologne, Cologne, NRW, 50931, Germany
| | - Markus Günl
- Plant Sciences, IBG-2, Forschungszentrum Jülich, Wilhelm-Johnen Str, Jülich, 52428, Germany
| | - Björn Thiele
- Plant Sciences, IBG-2, Forschungszentrum Jülich, Wilhelm-Johnen Str, Jülich, 52428, Germany
| | - Janine Altmüller
- Cologne Center for Genomics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, D-50674, Germany
| | - Virginia Walbot
- Department of Biology MC5020, Stanford University, 385 Serra Mall, Stanford, CA, 94305, USA
| | - Björn Usadel
- BioSC, IBG-2, Institute for Botany, RWTH Aachen, Worringer Weg 3, Aachen, 52078, Germany
| | - Gunther Doehlemann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), BioCenter, University of Cologne, Zuelpicher Str. 47a, Cologne, 50674, Germany
| |
Collapse
|
162
|
Abdelkefi H, Sugliani M, Ke H, Harchouni S, Soubigou‐Taconnat L, Citerne S, Mouille G, Fakhfakh H, Robaglia C, Field B. Guanosine tetraphosphate modulates salicylic acid signalling and the resistance of Arabidopsis thaliana to Turnip mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:634-646. [PMID: 28220595 PMCID: PMC6638062 DOI: 10.1111/mpp.12548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 05/21/2023]
Abstract
Chloroplasts can act as key players in the perception and acclimatization of plants to incoming environmental signals. A growing body of evidence indicates that chloroplasts play a critical role in plant immunity. Chloroplast function can be regulated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp]. In plants, (p)ppGpp levels increase in response to abiotic stress and to plant hormones which are involved in abiotic and biotic stress signalling. In this study, we analysed the transcriptome of Arabidopsis plants that over-accumulate (p)ppGpp, and unexpectedly found a decrease in the levels of a broad range of transcripts for plant defence and immunity. To determine whether (p)ppGpp is involved in the modulation of plant immunity, we analysed the susceptibility of plants with different levels of (p)ppGpp to Turnip mosaic virus (TuMV) carrying a green fluorescent protein (GFP) reporter. We found that (p)ppGpp accumulation was associated with increased susceptibility to TuMV and reduced levels of the defence hormone salicylic acid (SA). In contrast, plants with lower (p)ppGpp levels showed reduced susceptibility to TuMV, and this was associated with the precocious up-regulation of defence-related genes and increased SA content. We have therefore demonstrated a new link between (p)ppGpp metabolism and plant immunity in Arabidopsis.
Collapse
Affiliation(s)
- Hela Abdelkefi
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar, 2092 Elmanar TunisTunisia
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Matteo Sugliani
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Hang Ke
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Seddik Harchouni
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Ludivine Soubigou‐Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRAUniversité Paris‐Sud, Université Evry, Université Paris‐Saclay, Bâtiment 630Orsay91405France
- Paris Diderot, Sorbonne Paris‐CitéInstitute of Plant Sciences Paris‐Saclay IPS2, Bâtiment 630Orsay91405France
| | - Sylvie Citerne
- Institut Jean‐Pierre Bourgin, INRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersailles78000France
| | - Gregory Mouille
- Institut Jean‐Pierre Bourgin, INRA, AgroParisTech, CNRSUniversité Paris‐SaclayVersailles78000France
| | - Hatem Fakhfakh
- Faculty of Sciences of Tunis, Laboratory of Molecular Genetics, Immunology and BiotechnologyUniversity of Tunis El Manar, 2092 Elmanar TunisTunisia
| | - Christophe Robaglia
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| | - Ben Field
- CEA, CNRS, Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, Biologie Végétal et Microbiologie Environnemental, Bioscience and Biotechnology Institute of Aix‐MarseilleAix Marseille UniversitéMarseille13009France
| |
Collapse
|
163
|
Anjanappa RB, Mehta D, Okoniewski MJ, Szabelska‐Berȩsewicz A, Gruissem W, Vanderschuren H. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response. MOLECULAR PLANT PATHOLOGY 2018; 19:476-489. [PMID: 28494519 PMCID: PMC6638049 DOI: 10.1111/mpp.12565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 05/19/2023]
Abstract
Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs, we inoculated CBSV-susceptible and CBSV-resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time point of full infection (28 days after grafting) in the susceptible scions. The expression of genes encoding proteins in RNA silencing, salicylic acid pathways and callose deposition was altered in the susceptible cassava variety, but transcriptional changes were limited in the resistant variety. In total, the expression of 585 genes was altered in the resistant variety and 1292 in the susceptible variety. Transcriptional changes led to the activation of β-1,3-glucanase enzymatic activity and a reduction in callose deposition in the susceptible cassava variety. Time course analysis also showed that CBSV replication in susceptible cassava induced a strong up-regulation of RDR1, a gene previously reported to be a susceptibility factor in other potyvirus-host pathosystems. The differences in the transcriptional responses to CBSV infection indicated that susceptibility involves the restriction of callose deposition at plasmodesmata. Aniline blue staining of callose deposits also indicated that the resistant variety displays a moderate, but significant, increase in callose deposition at the plasmodesmata. Transcriptome data suggested that resistance does not involve typical antiviral defence responses (i.e. RNA silencing and salicylic acid). A meta-analysis of the current RNA-sequencing (RNA-seq) dataset and selected potyvirus-host and virus-cassava RNA-seq datasets revealed that the conservation of the host response across pathosystems is restricted to genes involved in developmental processes.
Collapse
Affiliation(s)
| | - Devang Mehta
- Department of BiologyETH Zurich8092 ZurichSwitzerland
| | - Michal J. Okoniewski
- ID Scientific IT ServicesETH Zurich8092 ZurichSwitzerland
- Functional Genomics Center Zurich8057 ZurichSwitzerland
| | - Alicja Szabelska‐Berȩsewicz
- Functional Genomics Center Zurich8057 ZurichSwitzerland
- Department of Mathematical and Statistical MethodsPoznan University of Life Sciences60‐637 PoznanPoland
| | | | - Hervé Vanderschuren
- Department of BiologyETH Zurich8092 ZurichSwitzerland
- AgroBioChem Department, Gembloux Agro‐Bio TechUniversity of Liège5030 GemblouxBelgium
| |
Collapse
|
164
|
A Localized Pseudomonas syringae Infection Triggers Systemic Clock Responses in Arabidopsis. Curr Biol 2018; 28:630-639.e4. [PMID: 29398214 DOI: 10.1016/j.cub.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/05/2017] [Accepted: 01/02/2018] [Indexed: 11/22/2022]
Abstract
The circadian clock drives daily rhythms of many plant physiological responses, providing a competitive advantage that improves plant fitness and survival rates [1-5]. Whereas multiple environmental cues are predicted to regulate the plant clock function, most studies focused on understanding the effects of light and temperature [5-8]. Increasing evidence indicates a significant role of plant-pathogen interactions on clock regulation [9, 10], but the underlying mechanisms remain elusive. In Arabidopsis, the clock function largely relies on a transcriptional feedback loop between morning (CCA1 and LHY)- and evening (TOC1)-expressed transcription factors [6-8]. Here, we focused on these core components to investigate the Arabidopsis clock regulation using a unique biotic stress approach. We found that a single-leaf Pseudomonas syringae infection systemically lengthened the period and reduced the amplitude of circadian rhythms in distal uninfected tissues. Remarkably, the low-amplitude phenotype observed upon infection was recapitulated by a transient treatment with the defense-related phytohormone salicylic acid (SA), which also triggered a significant clock phase delay. Strikingly, despite SA-modulated circadian rhythms, we revealed that the master regulator of SA signaling, NPR1 [11, 12], antagonized clock responses triggered by both SA treatment and P. syringae. In contrast, we uncovered that the NADPH oxidase RBOHD [13] largely mediated the aforementioned clock responses after either SA treatment or the bacterial infection. Altogether, we demonstrated novel and unexpected roles for SA, NPR1, and redox signaling in clock regulation by P. syringae and revealed a previously unrecognized layer of systemic clock regulation by locally perceived environmental cues.
Collapse
|
165
|
Zembek P, Danilecka A, Hoser R, Eschen-Lippold L, Benicka M, Grech-Baran M, Rymaszewski W, Barymow-Filoniuk I, Morgiewicz K, Kwiatkowski J, Piechocki M, Poznanski J, Lee J, Hennig J, Krzymowska M. Two Strategies of Pseudomonas syringae to Avoid Recognition of the HopQ1 Effector in Nicotiana Species. FRONTIERS IN PLANT SCIENCE 2018; 9:978. [PMID: 30042777 PMCID: PMC6048448 DOI: 10.3389/fpls.2018.00978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/15/2018] [Indexed: 05/18/2023]
Abstract
Pseudomonas syringae employs a battery of type three secretion effectors to subvert plant immune responses. In turn, plants have developed receptors that recognize some of the bacterial effectors. Two strain-specific HopQ1 effector variants (for Hrp outer protein Q) from the pathovars phaseolicola 1448A (Pph) and tomato DC3000 (Pto) showed considerable differences in their ability to evoke disease symptoms in Nicotiana benthamiana. Surprisingly, the variants differ by only six amino acids located mostly in the N-terminal disordered region of HopQ1. We found that the presence of serine 87 and leucine 91 renders PtoHopQ1 susceptible to N-terminal processing by plant proteases. Substitutions at these two positions did not strongly affect PtoHopQ1 virulence properties in a susceptible host but they reduced bacterial growth and accelerated onset of cell death in a resistant host, suggesting that N-terminal mutations rendered PtoHopQ1 susceptible to processing in planta and, thus, represent a mechanism of recognition avoidance. Furthermore, we found that co-expression of HopR1, another effector encoded within the same gene cluster masks HopQ1 recognition in a strain-dependent manner. Together, these data suggest that HopQ1 is under high host-pathogen co-evolutionary selection pressure and P. syringae may have evolved differential effector processing or masking as two independent strategies to evade HopQ1 recognition, thus revealing another level of complexity in plant - microbe interactions.
Collapse
Affiliation(s)
- Patrycja Zembek
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
| | | | - Rafał Hoser
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
| | | | - Marta Benicka
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
| | | | | | | | | | | | | | | | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
| | - Magdalena Krzymowska
- Institute of Biochemistry and Biophysics (PAS), Warsaw, Poland
- *Correspondence: Magdalena Krzymowska,
| |
Collapse
|
166
|
Kretschmer M, Croll D, Kronstad JW. Chloroplast-associated metabolic functions influence the susceptibility of maize to Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2017; 18:1210-1221. [PMID: 27564650 PMCID: PMC6638283 DOI: 10.1111/mpp.12485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 05/10/2023]
Abstract
Biotrophic fungal pathogens must evade or suppress plant defence responses to establish a compatible interaction in living host tissue. In addition, metabolic changes during disease reflect both the impact of nutrient acquisition by the fungus to support proliferation and the integration of metabolism with the plant defence response. In this study, we used transcriptome analyses to predict that the chloroplast and associated functions are important for symptom formation by the biotrophic fungus Ustilago maydis on maize. We tested our prediction by examining the impact on disease of a genetic defect (whirly1) in chloroplast function. In addition, we examined whether disease was influenced by inhibition of glutamine synthetase by glufosinate (impacting amino acid biosynthesis) or inhibition of 3-phosphoshikimate 1-carboxyvinyltransferase by glyphosate (influencing secondary metabolism). All of these perturbations increased the severity of disease, thus suggesting a contribution to resistance. Overall, these findings provide a framework for understanding the components of host metabolism that benefit the plant versus the pathogen during a biotrophic interaction. They also reinforce the emerging importance of the chloroplast as a mediator of plant defence.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Daniel Croll
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Present address:
Institute of Integrative BiologyETH Zürich8092 ZürichSwitzerland
| | - James W. Kronstad
- Michael Smith Laboratories, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
167
|
Xu YJ, Lei Y, Li R, Zhang LL, Zhao ZX, Zhao JH, Fan J, Li Y, Yang H, Shang J, Xiao S, Wang WM. XAP5 CIRCADIAN TIMEKEEPER Positively Regulates RESISTANCE TO POWDERY MILDEW8.1-Mediated Immunity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2044. [PMID: 29250093 PMCID: PMC5714888 DOI: 10.3389/fpls.2017.02044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/15/2017] [Indexed: 06/02/2023]
Abstract
Ectopic expression of the Arabidopsis RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1) boosts pattern-triggered immunity leading to enhanced resistance to different pathogens in Arabidopsis and rice. However, the underlying regulatory mechanism remains largely elusive. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT, At2g21150) positively regulates RPW8.1-mediated cell death and disease resistance. Forward genetic screen identified the b3-17 mutant that exhibited less cell death and susceptibility to powdery mildew and bacterial pathogens. Map-based cloning identified a G-to-A point mutation at the 3' splice site of the 8th intron, which resulted in splice shift to 8-bp down-stream of the original splice site of XCT in b3-17, and introduced into a stop codon after two codons leading to a truncated XCT. XCT has previously been identified as a circadian clock gene required for small RNA biogenesis and acting down-stream of ETHYLENE-INSENSITIVE3 (EIN3) in the ethylene-signaling pathway. Here we further showed that mutation or down-regulation of XCT by artificial microRNA reduced RPW8.1-mediated immunity in R1Y4, a transgenic line expressing RPW8.1-YFP from the RPW8.1 native promoter. On the contrary, overexpression of XCT in R1Y4 background enhanced RPW8.1-mediated cell death, H2O2 production and resistance against powdery mildew. Consistently, the expression of RPW8.1 was down- and up-regulated in xct mutant and XCT overexpression lines, respectively. Taken together, these results indicate that XCT positively regulates RPW8.1-mediated cell death and disease resistance, and provide new insight into the regulatory mechanism of RPW8.1-mediated immunity.
Collapse
Affiliation(s)
- Yong-Ju Xu
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yang Lei
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ran Li
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Ling-Li Zhang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Hui Yang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Jing Shang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research and Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, College Park, MD, United States
| | - Wen-Ming Wang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
168
|
Su F, Villaume S, Rabenoelina F, Crouzet J, Clément C, Vaillant-Gaveau N, Dhondt-Cordelier S. Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans. PHOTOSYNTHESIS RESEARCH 2017; 134:201-214. [PMID: 28840464 DOI: 10.1007/s11120-017-0435-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Pathogen infection of plant results in modification of photosynthesis and defense mechanisms. Beneficial microorganisms are known to improve plant tolerance to stresses. Burkholderia phytofirmans PsJN (Bp), a beneficial endophytic bacterium, promotes growth of a wide range of plants and induces plant resistance against abiotic and biotic stresses such as coldness and infection by a necrotrophic pathogen. However, mechanisms underlying its role in plant tolerance towards (hemi)biotrophic invaders is still lacking. We thus decipher photosynthetic and defense responses during the interaction between Arabidopsis, Bp and the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst). Different Bp inoculations allowed analyzes at both systemic and local levels. Despite no direct antibacterial action, our results showed that only local presence of Bp alleviates Pst growth in planta during the early stage of infection. Molecular investigations showed that seed inoculation of Bp, leading to a restricted presence in the root system, transiently primed PR1 expression after challenge with Pst but continuously primed PDF1.2 expression. Bacterization with Bp reduced Y(ND) but had no impact on PSII activity or RuBisCO accumulation. Pst infection caused an increase of Y(NA) and a decrease in ΦPSI, ETRI and in PSII activity, showed by a decrease in Fv/Fm, Y(NPQ), ΦPSII, and ETRII values. Inoculation with both bacteria did not display any variation in photosynthetic activity compared to plants inoculated with only Pst. Our findings indicated that the role of Bp here is not multifaceted, and relies only on priming of defense mechanisms but not on improving photosynthetic activity.
Collapse
Affiliation(s)
- Fan Su
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Sandra Villaume
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Fanja Rabenoelina
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Jérôme Crouzet
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Christophe Clément
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France.
| |
Collapse
|
169
|
Garcia-Seco D, Chiapello M, Bracale M, Pesce C, Bagnaresi P, Dubois E, Moulin L, Vannini C, Koebnik R. Transcriptome and proteome analysis reveal new insight into proximal and distal responses of wheat to foliar infection by Xanthomonas translucens. Sci Rep 2017; 7:10157. [PMID: 28860643 PMCID: PMC5579275 DOI: 10.1038/s41598-017-10568-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022] Open
Abstract
The molecular details of local plant response against Xanthomonas translucens infection is largely unknown. Moreover, there is no knowledge about effects of the pathogen on the root's transcriptome and proteome. Therefore, we investigated the global gene and protein expression changes both in leaves and roots of wheat (Triticum aestivum) 24 h post leaf infection of X. translucens. This simultaneous analysis allowed us to obtain insight into possible metabolic rearrangements in above- and belowground tissues and to identify common responses as well as specific alterations. At the site of infection, we observed the implication of various components of the recognition, signaling, and amplification mechanisms in plant response to the pathogen. Moreover, data indicate a massive down-regulation of photosynthesis and confirm the chloroplast as crucial signaling hub during pathogen attack. Notably, roots responded as well to foliar attack and their response significantly differed from that locally triggered in infected leaves. Data indicate that roots as a site of energy production and synthesis of various secondary metabolites may actively influence the composition and colonisation level of root-associated microbes. Finally, our results emphasize the accumulation of jasmonic acid, pipecolic acid and/or the downstream mediator of hydrogen peroxide as long distal signals from infected leaves to roots.
Collapse
Affiliation(s)
- D Garcia-Seco
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France.
| | - M Chiapello
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - M Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - C Pesce
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology Phytopathology, Louvain-la-Neuve, Belgium
| | - P Bagnaresi
- Council for agricultural research and economics (CREA) - Genomics Research Centre, via San Protaso 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - E Dubois
- CNRS, Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Montpellier Cedex 34, France
| | - L Moulin
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
| | - C Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy.
| | - R Koebnik
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
| |
Collapse
|
170
|
Wang H, Seo JK, Gao S, Cui X, Jin H. Silencing of AtRAP, a target gene of a bacteria-induced small RNA, triggers antibacterial defense responses through activation of LSU2 and down-regulation of GLK1. THE NEW PHYTOLOGIST 2017; 215:1144-1155. [PMID: 28656601 PMCID: PMC5730055 DOI: 10.1111/nph.14654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/28/2017] [Indexed: 05/29/2023]
Abstract
Plants fine-tune their sophisticated immunity systems in response to pathogen infections. We previously showed that AtlsiRNA-1, a bacteria-induced plant endogenous small interfering RNA, silences the AtRAP gene, which encodes a putative RNA binding protein. In this study, we demonstrate that AtRAP functions as a negative regulator in plant immunity by characterizing molecular and biological responses of the knockout mutant and overexpression lines of AtRAP upon bacterial infection. AtRAP is localized in chloroplasts and physically interacts with Low Sulfur Upregulated 2 (LSU2), which positively regulates plant defense. Our results suggest that AtRAP negatively regulates defense responses by suppressing LSU2 through physical interaction. We also detected downregulation of the transcription factor GOLDEN2-LIKE 1 (GLK1) in atrap-1 using microarray analysis. The glk1 glk2 double mutant showed enhanced resistance to Pseudomonas syringae pv. tomato, which is consistent with a previous study showing enhanced resistance of a glk1 glk2 double mutant to Hyaloperonospora arabidopsidis. Taken together, our data suggest that silencing of AtRAP by AtlsiRNA-1 upon bacterial infection triggers defense responses through regulation of LSU2 and GLK1.
Collapse
Affiliation(s)
- Huan Wang
- Department of Plant Pathology & Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Jang-Kyun Seo
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do 25354, Korea
| | - Shang Gao
- Department of Plant Pathology & Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA 92521-0122, USA
| | - Hailing Jin
- Department of Plant Pathology & Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| |
Collapse
|
171
|
Cheval C, Perez M, Leba LJ, Ranty B, Perochon A, Reichelt M, Mithöfer A, Robe E, Mazars C, Galaud JP, Aldon D. PRR2, a pseudo-response regulator, promotes salicylic acid and camalexin accumulation during plant immunity. Sci Rep 2017; 7:6979. [PMID: 28765536 PMCID: PMC5539105 DOI: 10.1038/s41598-017-07535-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Calcium signalling mediated by Calmodulin (CaM) and calmodulin-like (CML) proteins is critical to plant immunity. CaM and CML regulate a wide range of target proteins and cellular responses. While many CaM-binding proteins have been identified, few have been characterized for their specific role in plant immunity. Here, we report new data on the biological function of a CML-interacting partner, PRR2 (PSEUDO-RESPONSE REGULATOR 2), a plant specific transcription factor. Until now, the physiological relevance of PRR2 remained largely unknown. Using a reverse genetic strategy in A. thaliana, we identified PRR2 as a positive regulator of plant immunity. We propose that PRR2 contributes to salicylic acid (SA)-dependent responses when challenged with the phytopathogenic bacterium Pseudomonas syringae. PRR2 is transcriptionally upregulated by SA and P. syringae, enhances SA biosynthesis and SA signalling responses; e.g. in response to P. syringae, PRR2 induces the production of SA and the accumulation of the defence-related protein PR1. Moreover, PRR2 overexpressing lines exhibit an enhanced production of camalexin, a phytoalexin that confers enhanced resistance against pathogens. Together, these data reveal the importance of PRR2 in plant immune responses against P. syringae and suggest a novel function for this particular plant specific transcription factor in plant physiology.
Collapse
Affiliation(s)
- C Cheval
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - M Perez
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - L J Leba
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- UMR QualiSud, Université de Guyane, Campus Universitaire de Troubiran, P.O. Box 792, 97337, Cayenne Cedex, French Guiana, France
| | - B Ranty
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - A Perochon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin, Ireland
| | - M Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745, Jena, Germany
| | - A Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745, Jena, Germany
| | - E Robe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - C Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - J P Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - D Aldon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France.
| |
Collapse
|
172
|
Mwaba I, Rey MEC. Nitric oxide associated protein 1 is associated with chloroplast perturbation and disease symptoms in Nicotiana benthamiana infected with South African cassava mosaic virus. Virus Res 2017; 238:75-83. [PMID: 28577889 DOI: 10.1016/j.virusres.2017.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
Nitric oxide associated 1 (NOA1) in plants is a cyclic GTPase involved in protein translation in the chloroplast and has been indirectly linked to nitric oxide (NO) accumulation and response to biotic stress. The association between NOA1 and NO accumulation in Arabidopsis noa1 mutants has been linked to the inability of noa1 mutants to accumulate carbon reserves such as fumarate, leading to chloroplast dysfunction and a pale green leaf phenotype. To understand the role played by NOA1 in response to South African cassava mosaic virus infection in Nicotiana benthamiana, the expression of NbNOA1 and the accumulation of NO in leaf samples was compared between south african cassava mosaic (SACMV)-infected and mock-infected plants at 14 and 28 dpi. Real-time qPCR was used to measure SACMV viral load which increased significantly by 20% from 14 to 28 dpi as chlorosis and symptom severity progressed. At 14 and 28 dpi, NbNOA1 expression was significantly lower than mock inoculated plants (2-fold lower at 14 dpi, p-value=0.01 and 5-fold lower at 28, p-value=0.00). At 14 dpi, NO accumulation remained unchanged in infected leaf tissue compared to mock inoculated, while at 28 dpi, NO accumulation was 40% lower (p-value=0.01). At 28 dpi, the decrease in NbNOA1 expression and NO accumulation was accompanied by chloroplast dysfunction, evident from the significant reduction in chlorophylls a and b and carotenoids in SACMV-infected leaves. Furthermore, the expression of chloroplast translation factors (chloroplast RNA binding, chloroplast elongation factor G, translation elongation factor Tu, translation initiation factor 3-2, plastid-specific ribosomal protein 6 and plastid ribosome recycling factor) were found to be repressed in infected N. benthamiana. GC-MS analysis showed a decrease in fumarate and an increase in glucose in SACMV-infected N. benthamiana in comparison to mock samples suggesting a decrease in carbon stores. Collectively, these results provide evidence that in response to SACMV infection, a decrease in photopigments and carbon stores, accompanied by an increase in glucose and decrease in fumarate, leads to a decline in NbNOA1expression and NO levels. This is manifested by suppressed translation factors and disruption of chloroplast function, thereby contributing to chlorotic disease symptoms.
Collapse
Affiliation(s)
- Imanu Mwaba
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Marie Emma Christine Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa.
| |
Collapse
|
173
|
Mittelberger C, Yalcinkaya H, Pichler C, Gasser J, Scherzer G, Erhart T, Schumacher S, Holzner B, Janik K, Robatscher P, Müller T, Kräutler B, Oberhuber M. Pathogen-Induced Leaf Chlorosis: Products of Chlorophyll Breakdown Found in Degreened Leaves of Phytoplasma-Infected Apple (Malus × domestica Borkh.) and Apricot (Prunus armeniaca L.) Trees Relate to the Pheophorbide a Oxygenase/Phyllobilin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2651-2660. [PMID: 28267924 DOI: 10.1021/acs.jafc.6b05501] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phytoplasmoses such as apple proliferation (AP) and European stone fruit yellows (ESFY) cause severe economic losses in fruit production. A common symptom of both phytoplasma diseases is early yellowing or leaf chlorosis. Even though chlorosis is a well-studied symptom of biotic and abiotic stresses, its biochemical pathways are hardly known. In particular, in this context, a potential role of the senescence-related pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway is elusive, which degrades chlorophyll (Chl) to phyllobilins (PBs), most notably to colorless nonfluorescent Chl catabolites (NCCs). In this work, we identified the Chl catabolites in extracts of healthy senescent apple and apricot leaves. In extracts of apple tree leaves, a total of 12 Chl catabolites were detected, and in extracts of leaves of the apricot tree 16 Chl catabolites were found. The seven major NCC fractions in the leaves of both fruit tree species were identical and displayed known structures. All of the major Chl catabolites were also found in leaf extracts from AP- or ESFY-infected trees, providing the first evidence that the PaO/PB pathway is relevant also for pathogen-induced chlorosis. This work supports the hypothesis that Chl breakdown in senescence and phytoplasma infection proceeds via a common pathway in some members of the Rosaceae family.
Collapse
Affiliation(s)
- Cecilia Mittelberger
- Laimburg Research Center , Laimburg 6 - Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
| | - Hacer Yalcinkaya
- Institute of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Christa Pichler
- Laimburg Research Center , Laimburg 6 - Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
| | - Johanna Gasser
- Institute of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Gerhard Scherzer
- Institute of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Theresia Erhart
- Institute of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Sandra Schumacher
- Laimburg Research Center , Laimburg 6 - Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
| | - Barbara Holzner
- Laimburg Research Center , Laimburg 6 - Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
| | - Katrin Janik
- Laimburg Research Center , Laimburg 6 - Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
| | - Peter Robatscher
- Laimburg Research Center , Laimburg 6 - Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
| | - Thomas Müller
- Institute of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael Oberhuber
- Laimburg Research Center , Laimburg 6 - Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
| |
Collapse
|
174
|
Sperschneider J, Catanzariti AM, DeBoer K, Petre B, Gardiner DM, Singh KB, Dodds PN, Taylor JM. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci Rep 2017; 7:44598. [PMID: 28300209 PMCID: PMC5353544 DOI: 10.1038/srep44598] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2017] [Indexed: 12/17/2022] Open
Abstract
Pathogens secrete effector proteins and many operate inside plant cells to enable infection. Some effectors have been found to enter subcellular compartments by mimicking host targeting sequences. Although many computational methods exist to predict plant protein subcellular localization, they perform poorly for effectors. We introduce LOCALIZER for predicting plant and effector protein localization to chloroplasts, mitochondria, and nuclei. LOCALIZER shows greater prediction accuracy for chloroplast and mitochondrial targeting compared to other methods for 652 plant proteins. For 107 eukaryotic effectors, LOCALIZER outperforms other methods and predicts a previously unrecognized chloroplast transit peptide for the ToxA effector, which we show translocates into tobacco chloroplasts. Secretome-wide predictions and confocal microscopy reveal that rust fungi might have evolved multiple effectors that target chloroplasts or nuclei. LOCALIZER is the first method for predicting effector localisation in plants and is a valuable tool for prioritizing effector candidates for functional investigations. LOCALIZER is available at http://localizer.csiro.au/.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, Australia
| | - Ann-Maree Catanzariti
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Kathleen DeBoer
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Donald M. Gardiner
- Queensland Bioscience Precinct, CSIRO Agriculture and Food, Brisbane, QLD, Australia
| | - Karam B. Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Perth, WA, Australia
| | - Peter N. Dodds
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jennifer M. Taylor
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
175
|
Garcia-Molina A, Altmann M, Alkofer A, Epple PM, Dangl JL, Falter-Braun P. LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1185-1197. [PMID: 28207043 PMCID: PMC5441861 DOI: 10.1093/jxb/erw498] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In natural environments, plants often experience different stresses simultaneously, and adverse abiotic conditions can weaken the plant immune system. Interactome mapping revealed that the LOW SULPHUR UPREGULATED (LSU) proteins are hubs in an Arabidopsis protein interaction network that are targeted by virulence effectors from evolutionarily diverse pathogens. Here we show that LSU proteins are up-regulated in several abiotic and biotic stress conditions, such as nutrient depletion or salt stress, by both transcriptional and post-translational mechanisms. Interference with LSU expression prevents chloroplastic reactive oxygen species (ROS) production and proper stomatal closure during sulphur stress. We demonstrate that LSU1 interacts with the chloroplastic superoxide dismutase FSD2 and stimulates its enzymatic activity in vivo and in vitro. Pseudomonas syringae virulence effectors interfere with this interaction and preclude re-localization of LSU1 to chloroplasts. We demonstrate that reduced LSU levels cause a moderately enhanced disease susceptibility in plants exposed to abiotic stresses such as nutrient deficiency, high salinity, or heavy metal toxicity, whereas LSU1 overexpression confers significant disease resistance in several of these conditions. Our data suggest that the network hub LSU1 plays an important role in co-ordinating plant immune responses across a spectrum of abiotic stress conditions.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Technische Universität München (TUM), School for Life Sciences Weihenstephan (WZW), Plant Systems Biology, Emil-Ramann-Straße, 4, D-85354 Freising, Germany
| | - Melina Altmann
- Technische Universität München (TUM), School for Life Sciences Weihenstephan (WZW), Plant Systems Biology, Emil-Ramann-Straße, 4, D-85354 Freising, Germany
| | - Angela Alkofer
- Technische Universität München (TUM), School for Life Sciences Weihenstephan (WZW), Plant Systems Biology, Emil-Ramann-Straße, 4, D-85354 Freising, Germany
| | - Petra M Epple
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- BASF Plant Science LP, Research Triangle Park, NC 27709, USA
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Microbe-Host Interactions, Ludwig-Maximilians-Universität München (LMU Munich), Planegg-Martinsried, Germany
| |
Collapse
|
176
|
Differential Coexpression Analysis Reveals Extensive Rewiring of Arabidopsis Gene Coexpression in Response to Pseudomonas syringae Infection. Sci Rep 2016; 6:35064. [PMID: 27721457 PMCID: PMC5056366 DOI: 10.1038/srep35064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/23/2016] [Indexed: 01/21/2023] Open
Abstract
Plant defense responses to pathogens involve massive transcriptional reprogramming. Recently, differential coexpression analysis has been developed to study the rewiring of gene networks through microarray data, which is becoming an important complement to traditional differential expression analysis. Using time-series microarray data of Arabidopsis thaliana infected with Pseudomonas syringae, we analyzed Arabidopsis defense responses to P. syringae through differential coexpression analysis. Overall, we found that differential coexpression was a common phenomenon of plant immunity. Genes that were frequently involved in differential coexpression tend to be related to plant immune responses. Importantly, many of those genes have similar average expression levels between normal plant growth and pathogen infection but have different coexpression partners. By integrating the Arabidopsis regulatory network into our analysis, we identified several transcription factors that may be regulators of differential coexpression during plant immune responses. We also observed extensive differential coexpression between genes within the same metabolic pathways. Several metabolic pathways, such as photosynthesis light reactions, exhibited significant changes in expression correlation between normal growth and pathogen infection. Taken together, differential coexpression analysis provides a new strategy for analyzing transcriptional data related to plant defense responses and new insights into the understanding of plant-pathogen interactions.
Collapse
|
177
|
Carmody M, Waszczak C, Idänheimo N, Saarinen T, Kangasjärvi J. ROS signalling in a destabilised world: A molecular understanding of climate change. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:69-83. [PMID: 27364884 DOI: 10.1016/j.jplph.2016.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 05/29/2023]
Abstract
Climate change results in increased intensity and frequency of extreme abiotic and biotic stress events. In plants, reactive oxygen species (ROS) accumulate in proportion to the level of stress and are major signalling and regulatory metabolites coordinating growth, defence, acclimation and cell death. Our knowledge of ROS homeostasis, sensing, and signalling is therefore key to understanding the impacts of climate change at the molecular level. Current research is uncovering new insights into temporal-spatial, cell-to-cell and systemic ROS signalling pathways, particularly how these affect plant growth, defence, and more recently acclimation mechanisms behind stress priming and long term stress memory. Understanding the stabilising and destabilising factors of ROS homeostasis and signalling in plants exposed to extreme and fluctuating stress will concomitantly reveal how to address future climate change challenges in global food security and biodiversity management.
Collapse
Affiliation(s)
- Melanie Carmody
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Cezary Waszczak
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Niina Idänheimo
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Timo Saarinen
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland; Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
178
|
Hulsmans S, Rodriguez M, De Coninck B, Rolland F. The SnRK1 Energy Sensor in Plant Biotic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:648-661. [PMID: 27156455 DOI: 10.1016/j.tplants.2016.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 05/20/2023]
Abstract
Our understanding of plant biotic interactions has grown significantly in recent years with the identification of the mechanisms involved in innate immunity, hormone signaling, and secondary metabolism. The impact of such interactions on primary metabolism and the role of metabolic signals in the response of the plants, however, remain far less explored. The SnRK1 (SNF1-related kinase 1) kinases act as metabolic sensors, integrating very diverse stress conditions, and are key in maintaining energy homeostasis for growth and survival. Consistently, an important role is emerging for these kinases as regulators of biotic stress responses triggered by viral, bacterial, fungal, and oomycete infections as well as by herbivory. While this identifies SnRK1 as a promising target for directed modification or selection for more quantitative and sustainable resistance, its central function also increases the chances of unwanted side effects on growth and fitness, stressing the need for identification and in-depth characterization of the mechanisms and target processes involved. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sander Hulsmans
- Laboratory of Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 cuadras km 5.5 X5020ICA, Córdoba, Argentina
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Microbial and Molecular Systems Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee-Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB), Department of Plant Systems Biology, Technologiepark 927, 9052 Gent, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium.
| |
Collapse
|
179
|
Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait. Genetics 2016; 204:337-53. [PMID: 27412712 PMCID: PMC5012398 DOI: 10.1534/genetics.116.190678] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.
Collapse
|
180
|
Liu P, Myo T, Ma W, Lan D, Qi T, Guo J, Song P, Guo J, Kang Z. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus. FRONTIERS IN PLANT SCIENCE 2016; 7:873. [PMID: 27446108 PMCID: PMC4914568 DOI: 10.3389/fpls.2016.00873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/02/2016] [Indexed: 05/29/2023]
Abstract
Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Guo
- *Correspondence: Jun Guo, ; Zhensheng Kang,
| | | |
Collapse
|
181
|
Yang J, Penfold CA, Grant MR, Rattray M. Inferring the perturbation time from biological time course data. Bioinformatics 2016; 32:2956-64. [PMID: 27288495 PMCID: PMC5039917 DOI: 10.1093/bioinformatics/btw329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Time course data are often used to study the changes to a biological process after perturbation. Statistical methods have been developed to determine whether such a perturbation induces changes over time, e.g. comparing a perturbed and unperturbed time course dataset to uncover differences. However, existing methods do not provide a principled statistical approach to identify the specific time when the two time course datasets first begin to diverge after a perturbation; we call this the perturbation time. Estimation of the perturbation time for different variables in a biological process allows us to identify the sequence of events following a perturbation and therefore provides valuable insights into likely causal relationships. RESULTS We propose a Bayesian method to infer the perturbation time given time course data from a wild-type and perturbed system. We use a non-parametric approach based on Gaussian Process regression. We derive a probabilistic model of noise-corrupted and replicated time course data coming from the same profile before the perturbation time and diverging after the perturbation time. The likelihood function can be worked out exactly for this model and the posterior distribution of the perturbation time is obtained by a simple histogram approach, without recourse to complex approximate inference algorithms. We validate the method on simulated data and apply it to study the transcriptional change occurring in Arabidopsis following inoculation with Pseudomonas syringae pv. tomato DC3000 versus the disarmed strain DC3000hrpA AVAILABILITY AND IMPLEMENTATION: : An R package, DEtime, implementing the method is available at https://github.com/ManchesterBioinference/DEtime along with the data and code required to reproduce all the results. CONTACT Jing.Yang@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jing Yang
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | - Magnus Rattray
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
182
|
Grieco M, Jain A, Ebersberger I, Teige M. An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3883-96. [PMID: 27117338 DOI: 10.1093/jxb/erw164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.
Collapse
Affiliation(s)
- Michele Grieco
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Arpit Jain
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| |
Collapse
|
183
|
Serrano I, Audran C, Rivas S. Chloroplasts at work during plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3845-54. [PMID: 26994477 DOI: 10.1093/jxb/erw088] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The major role played by chloroplasts during light harvesting, energy production, redox homeostasis, and retrograde signalling processes has been extensively characterized. Beyond the obvious link between chloroplast functions in primary metabolism and as providers of photosynthesis-derived carbon sources and energy, a growing body of evidence supports a central role for chloroplasts as integrators of environmental signals and, more particularly, as key defence organelles. Here, we review the importance of these organelles as primary sites for the biosynthesis and transmission of pro-defence signals during plant immune responses. In addition, we highlight interorganellar communication as a crucial process for amplification of the immune response. Finally, molecular strategies used by microbes to manipulate, directly or indirectly, the production/function of defence-related signalling molecules and subvert chloroplast-based defences are also discussed.
Collapse
Affiliation(s)
- Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
184
|
Simeunovic A, Mair A, Wurzinger B, Teige M. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3855-72. [PMID: 27117335 DOI: 10.1093/jxb/erw157] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.
Collapse
Affiliation(s)
- Andrea Simeunovic
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
185
|
Camejo D, Guzmán-Cedeño Á, Moreno A. Reactive oxygen species, essential molecules, during plant-pathogen interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:10-23. [PMID: 26950921 DOI: 10.1016/j.plaphy.2016.02.035] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.
Collapse
Affiliation(s)
- Daymi Camejo
- CEBAS-CSIC, Centro de Edafología y Biología Aplicada del Segura, Department of Stress Biology and Plant Pathology, E-30100, Murcia, Spain; ESPAM-MES, Escuela Superior Politécnica Agropecuaria de Manabí, Manuel Félix López, Agricultural School, Manabí, Ecuador.
| | - Ángel Guzmán-Cedeño
- ESPAM-MES, Escuela Superior Politécnica Agropecuaria de Manabí, Manuel Félix López, Agricultural School, Manabí, Ecuador; ULEAM-MES, "Eloy Alfaro" University, Agropecuary School, Manabí, Ecuador.
| | - Alexander Moreno
- UTMachala-MES, Universidad Técnica de Machala, Botany Laboratory, Machala, Ecuador.
| |
Collapse
|
186
|
Pu XJ, Li YN, Wei LJ, Xi DH, Lin HH. Mitochondrial energy-dissipation pathway and cellular redox disruption compromises Arabidopsis resistance to turnip crinkle virus infection. Biochem Biophys Res Commun 2016; 473:421-7. [DOI: 10.1016/j.bbrc.2016.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
|
187
|
Järvi S, Isojärvi J, Kangasjärvi S, Salojärvi J, Mamedov F, Suorsa M, Aro EM. Photosystem II Repair and Plant Immunity: Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3. FRONTIERS IN PLANT SCIENCE 2016; 7:405. [PMID: 27064270 PMCID: PMC4814454 DOI: 10.3389/fpls.2016.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 05/29/2023]
Abstract
Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.
Collapse
Affiliation(s)
- Sari Järvi
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | - Janne Isojärvi
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | | | - Jarkko Salojärvi
- Plant Biology, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry—Ångström Laboratory, Uppsala UniversityUppsala, Sweden
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
188
|
PP2A Phosphatase as a Regulator of ROS Signaling in Plants. Antioxidants (Basel) 2016; 5:antiox5010008. [PMID: 26950157 PMCID: PMC4808757 DOI: 10.3390/antiox5010008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/21/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants.
Collapse
|
189
|
Chandra S, Singh D, Pathak J, Kumari S, Kumar M, Poddar R, Balyan HS, Gupta PK, Prabhu KV, Mukhopadhyay K. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection. PLoS One 2016; 11:e0148453. [PMID: 26840746 PMCID: PMC4739524 DOI: 10.1371/journal.pone.0148453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/17/2016] [Indexed: 11/20/2022] Open
Abstract
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Dharmendra Singh
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Jyoti Pathak
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Supriya Kumari
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Raju Poddar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Puspendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Kumble Vinod Prabhu
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
190
|
Cheng DD, Liu MJ, Sun XB, Zhao M, Chow WS, Sun GY, Zhang ZS, Hu YB. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci. FRONTIERS IN PLANT SCIENCE 2016; 7:512. [PMID: 27148334 PMCID: PMC4838606 DOI: 10.3389/fpls.2016.00512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/31/2016] [Indexed: 05/13/2023]
Abstract
Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant's tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection.
Collapse
Affiliation(s)
- Dan-Dan Cheng
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Mei-Jun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
| | - Xing-Bin Sun
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Min Zhao
- College of Life Science, Northeast Forestry UniversityHarbin, China
| | - Wah S. Chow
- College of Life Science, Northeast Forestry UniversityHarbin, China
- Division of Plant Science, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Guang-Yu Sun
- College of Life Science, Northeast Forestry UniversityHarbin, China
- *Correspondence: Guang-Yu Sun, ; Zi-Shan Zhang,
| | - Zi-Shan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
- *Correspondence: Guang-Yu Sun, ; Zi-Shan Zhang,
| | - Yan-Bo Hu
- College of Life Science, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
191
|
Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:812. [PMID: 27375664 PMCID: PMC4901049 DOI: 10.3389/fpls.2016.00812] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/25/2016] [Indexed: 05/20/2023]
Abstract
Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants.
Collapse
Affiliation(s)
- Guido Durian
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Mikael Brosché
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry, Molecular Plant Biology, University of TurkuTurku, Finland
- *Correspondence: Saijaliisa Kangasjärvi,
| |
Collapse
|
192
|
Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27375664 DOI: 10.3389/fpls.2016.00812/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants.
Collapse
Affiliation(s)
- Guido Durian
- Department of Biochemistry, Molecular Plant Biology, University of Turku Turku, Finland
| | - Moona Rahikainen
- Department of Biochemistry, Molecular Plant Biology, University of Turku Turku, Finland
| | - Sara Alegre
- Department of Biochemistry, Molecular Plant Biology, University of Turku Turku, Finland
| | - Mikael Brosché
- Department of Biochemistry, Molecular Plant Biology, University of Turku Turku, Finland
| | | |
Collapse
|
193
|
Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 2015; 18:453-65. [DOI: 10.1111/cmi.12530] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Benjamin Petre
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Cécile Lorrain
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Diane G.O. Saunders
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
- The Genome Analysis Centre; Norwich Research Park; Norwich NR4 7UH UK
- The John Innes Centre; Norwich Research Park; Norwich NR4 7UH UK
| | - Joe Win
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Jan Sklenar
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes; Centre INRA Nancy Lorraine; Champenoux 54280 France
- Université de Lorraine; UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies; Vandoeuvre-lès-Nancy 54506 France
| | - Sophien Kamoun
- The Sainsbury Laboratory; Norwich Research Park; Norwich NR4 7UH UK
| |
Collapse
|
194
|
Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, Penfold CA, Jenkins DJ, Hill C, Baxter L, Kulasekaran S, Truman W, Littlejohn G, Prusinska J, Mead A, Steinbrenner J, Hickman R, Rand D, Wild DL, Ott S, Buchanan-Wollaston V, Smirnoff N, Beynon J, Denby K, Grant M. Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000. THE PLANT CELL 2015; 27:3038-64. [PMID: 26566919 PMCID: PMC4682296 DOI: 10.1105/tpc.15.00471] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 05/17/2023]
Abstract
Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.
Collapse
Affiliation(s)
- Laura A Lewis
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Krzysztof Polanski
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Marta de Torres-Zabala
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Siddharth Jayaraman
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Laura Bowden
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Jonathan Moore
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Christopher A Penfold
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Dafyd J Jenkins
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Claire Hill
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Laura Baxter
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Satish Kulasekaran
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - William Truman
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - George Littlejohn
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Justyna Prusinska
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Jens Steinbrenner
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Richard Hickman
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - David Rand
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - David L Wild
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Vicky Buchanan-Wollaston
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Nick Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Jim Beynon
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Katherine Denby
- Warwick Systems Biology Centre, University of Warwick, Warwick CV4 7AL, United Kingdom School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Murray Grant
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
195
|
Mozgová I, Wildhaber T, Liu Q, Abou-Mansour E, L'Haridon F, Métraux JP, Gruissem W, Hofius D, Hennig L. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. NATURE PLANTS 2015; 1:15127. [PMID: 27250680 DOI: 10.1038/nplants.2015.127] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/03/2015] [Indexed: 05/21/2023]
Abstract
Plants have evolved efficient defence systems against pathogens that often rely on specific transcriptional responses. Priming is part of the defence syndrome, by establishing a hypersensitive state of defence genes such as after a first encounter with a pathogen. Because activation of defence responses has a fitness cost, priming must be tightly controlled to prevent spurious activation of defence. However, mechanisms that repress defence gene priming are poorly understood. Here, we show that the histone chaperone CAF-1 is required to establish a repressed chromatin state at defence genes. Absence of CAF-1 results in spurious activation of a salicylic acid-dependent pathogen defence response in plants grown under non-sterile conditions. Chromatin at defence response genes in CAF-1 mutants under non-inductive (sterile) conditions is marked by low nucleosome occupancy and high H3K4me3 at transcription start sites, resembling chromatin in primed wild-type plants. We conclude that CAF-1-mediated chromatin assembly prevents the establishment of a primed state that may under standard non-sterile growth conditions result in spurious activation of SA-dependent defence responses and consequential reduction of plant vigour.
Collapse
Affiliation(s)
- Iva Mozgová
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Thomas Wildhaber
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, Zurich CH-8092, Switzerland
| | - Qinsong Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Eliane Abou-Mansour
- Department of Biology, University of Fribourg, Ch. du Musée 10, Fribourg 1700, Switzerland
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, Ch. du Musée 10, Fribourg 1700, Switzerland
| | - Jean-Pierre Métraux
- Department of Biology, University of Fribourg, Ch. du Musée 10, Fribourg 1700, Switzerland
| | - Wilhelm Gruissem
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, Zurich CH-8092, Switzerland
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-75007, Sweden
| |
Collapse
|
196
|
Affiliation(s)
- Vera Göhre
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence in Plant Sciences, iGRAD-plant, Düsseldorf 40225, Germany
| |
Collapse
|