151
|
Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. Nat Commun 2019; 10:2731. [PMID: 31227690 PMCID: PMC6588578 DOI: 10.1038/s41467-019-10650-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Many bacteria and most archaea possess a crystalline protein surface layer (S-layer), which surrounds their growing and topologically complicated outer surface. Constructing a macromolecular structure of this scale generally requires localized enzymatic machinery, but a regulatory framework for S-layer assembly has not been identified. By labeling, superresolution imaging, and tracking the S-layer protein (SLP) from C. crescentus, we show that 2D protein self-assembly is sufficient to build and maintain the S-layer in living cells by efficient protein crystal nucleation and growth. We propose a model supported by single-molecule tracking whereby randomly secreted SLP monomers diffuse on the lipopolysaccharide (LPS) outer membrane until incorporated at the edges of growing 2D S-layer crystals. Surface topology creates crystal defects and boundaries, thereby guiding S-layer assembly. Unsupervised assembly poses challenges for therapeutics targeting S-layers. However, protein crystallization as an evolutionary driver rationalizes S-layer diversity and raises the potential for biologically inspired self-assembling macromolecular nanomaterials. Bacteria assemble the surface layer (S-layer), a crystalline protein coat surrounding the curved surface, using protein self-assembly. Here authors image native and purified RsaA, the S-layer protein from C. crescentus, and show that protein crystallization alone is sufficient to assemble and maintain the S-layer in vivo.
Collapse
|
152
|
Rodrigues-Oliveira T, Souza AA, Kruger R, Schuster B, Maria de Freitas S, Kyaw CM. Environmental factors influence the Haloferax volcanii S-layer protein structure. PLoS One 2019; 14:e0216863. [PMID: 31075115 PMCID: PMC6607943 DOI: 10.1371/journal.pone.0216863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
S-layers commonly cover archaeal cell envelopes and are composed of proteins that self-assemble into a paracrystalline surface structure. Despite their detection in almost all archaea, there are few reports investigating the structural properties of these proteins, with no reports exploring this topic for halophilic S-layers. The objective of the present study was to investigate the secondary and tertiary organization of the Haloferax volcanii S-layer protein. Such investigations were performed using circular dichroism, fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The protein secondary structure is centered on β-sheets and is affected by environmental pH, with higher disorder in more alkaline conditions. The pH can also affect the protein's tertiary structure, with higher tryptophan side-chain exposure to the medium under the same conditions. The concentrations of Na, Mg and Ca ions in the environment also affect the protein structures, with small changes in α-helix and β-sheet content, as well as changes in tryptophan side chain exposure. These changes in turn influence the protein's functional properties, with cell envelope preparations revealing striking differences when in different salt conditions. Thermal denaturation assays revealed that the protein is stable. It has been reported that the S-layer protein N-glycosylation process is affected by external factors and the present study indicates for the first time changes in the protein structure.
Collapse
Affiliation(s)
- Thiago Rodrigues-Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| | - Amanda Araújo Souza
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| | - Ricardo Kruger
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic
Bioarchitectures, University of Natural Resources and Life Sciences, Vienna,
Austria
| | - Sonia Maria de Freitas
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| | - Cynthia Maria Kyaw
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| |
Collapse
|
153
|
Zhang R, Neu TR, Li Q, Blanchard V, Zhang Y, Schippers A, Sand W. Insight Into Interactions of Thermoacidophilic Archaea With Elemental Sulfur: Biofilm Dynamics and EPS Analysis. Front Microbiol 2019; 10:896. [PMID: 31133998 PMCID: PMC6524610 DOI: 10.3389/fmicb.2019.00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
Biooxidation of reduced inorganic sulfur compounds (RISCs) by thermoacidophiles is of particular interest for the biomining industry and for environmental issues, e.g., formation of acid mine drainage (AMD). Up to now, interfacial interactions of acidophiles with elemental sulfur as well as the mechanisms of sulfur oxidation by acidophiles, especially thermoacidophiles, are not yet fully clear. This work focused on how a crenarchaeal isolate Acidianus sp. DSM 29099 interacts with elemental sulfur. Analysis by Confocal laser scanning microscopy (CLSM) and Atomic force microscopy (AFM) in combination with Epifluorescence microscopy (EFM) shows that biofilms on elemental sulfur are characterized by single colonies and a monolayer in first stage and later on 3-D structures with a diameter of up to 100 μm. The analysis of extracellular polymeric substances (EPS) by a non-destructive lectin approach (fluorescence lectin-barcoding analysis) using several fluorochromes shows that intial attachment was featured by footprints rich in biofilm cells that were embedded in an EPS matrix consisting of various glycoconjugates. Wet chemistry data indicate that carbohydrates, proteins, lipids and uronic acids are the main components. Attenuated reflectance (ATR)-Fourier transformation infrared spectroscopy (FTIR) and high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) indicate glucose and mannose as the main monosaccharides in EPS polysaccharides. EPS composition as well as sugar types in EPS vary according to substrate (sulfur or tetrathionate) and lifestyle (biofilms and planktonic cells). This study provides information on the building blocks/make up as well as dynamics of biofilms of thermoacidophilic archaea in extremely acidic environments.
Collapse
Affiliation(s)
- Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
| | - Thomas R. Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yutong Zhang
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
| | - Wolfgang Sand
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
- TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
154
|
Morphological Plasticity in a Sulfur-Oxidizing Marine Bacterium from the SUP05 Clade Enhances Dark Carbon Fixation. mBio 2019; 10:mBio.00216-19. [PMID: 31064824 PMCID: PMC6509183 DOI: 10.1128/mbio.00216-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying shifts in microbial metabolism across redox gradients will improve efforts to model marine oxygen minimum zone (OMZ) ecosystems. Here, we show that aerobic morphology and metabolism increase cell size, sulfur storage capacity, and carbon fixation rates in “Ca. Thioglobus autotrophicus,” a chemosynthetic bacterium from the SUP05 clade that crosses oxic-anoxic boundaries. Sulfur-oxidizing bacteria from the SUP05 clade are abundant in anoxic and oxygenated marine waters that appear to lack reduced sources of sulfur for cell growth. This raises questions about how these chemosynthetic bacteria survive across oxygen and sulfur gradients and how their mode of survival impacts the environment. Here, we use growth experiments, proteomics, and cryo-electron tomography to show that a SUP05 isolate, “Candidatus Thioglobus autotrophicus,” is amorphous in shape and several times larger and stores considerably more intracellular sulfur when it respires oxygen. We also show that these cells can use diverse sources of reduced organic and inorganic sulfur at submicromolar concentrations. Enhanced cell size, carbon content, and metabolic activity of the aerobic phenotype are likely facilitated by a stabilizing surface-layer (S-layer) and an uncharacterized form of FtsZ-less cell division that supports morphological plasticity. The additional sulfur storage provides an energy source that allows cells to continue metabolic activity when exogenous sulfur sources are not available. This metabolic flexibility leads to the production of more organic carbon in the ocean than is estimated based solely on their anaerobic phenotype.
Collapse
|
155
|
Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev 2019; 43:273-303. [PMID: 30476045 PMCID: PMC6524685 DOI: 10.1093/femsre/fuy042] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cells from all three domains of life, Archaea, Bacteria and Eukarya, produce extracellular vesicles (EVs) which are sometimes associated with filamentous structures known as nanopods or nanotubes. The mechanisms of EV biogenesis in the three domains remain poorly understood, although studies in Bacteria and Eukarya indicate that the regulation of lipid composition plays a major role in initiating membrane curvature. EVs are increasingly recognized as important mediators of intercellular communication via transfer of a wide variety of molecular cargoes. They have been implicated in many aspects of cell physiology such as stress response, intercellular competition, lateral gene transfer (via RNA or DNA), pathogenicity and detoxification. Their role in various human pathologies and aging has aroused much interest in recent years. EVs can be used as decoys against viral attack but virus-infected cells also produce EVs that boost viral infection. Here, we review current knowledge on EVs in the three domains of life and their interactions with the viral world.
Collapse
Affiliation(s)
- Sukhvinder Gill
- Institute for Integrative Biology of the Cell (I2BC), Biologie Cellulaire des Archées (BCA), CEA, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
| | - Ryan Catchpole
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F75015 Paris, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), Biologie Cellulaire des Archées (BCA), CEA, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F75015 Paris, France
| |
Collapse
|
156
|
Schönherr R, Rudolph JM, Redecke L. Protein crystallization in living cells. Biol Chem 2019; 399:751-772. [PMID: 29894295 DOI: 10.1515/hsz-2018-0158] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Protein crystallization in living cells has been observed surprisingly often as a native assembly process during the past decades, and emerging evidence indicates that this phenomenon is also accessible for recombinant proteins. But only recently the advent of high-brilliance synchrotron sources, X-ray free-electron lasers, and improved serial data collection strategies has allowed the use of these micrometer-sized crystals for structural biology. Thus, in cellulo crystallization could offer exciting new possibilities for proteins that do not crystallize applying conventional approaches. In this review, we comprehensively summarize the current knowledge of intracellular protein crystallization. This includes an overview of the cellular functions, the physical properties, and, if known, the mode of regulation of native in cellulo crystal formation, complemented with a discussion of the reported crystallization events of recombinant proteins and the current method developments to successfully collect X-ray diffraction data from in cellulo crystals. Although the intracellular protein self-assembly mechanisms are still poorly understood, regulatory differences between native in cellulo crystallization linked to a specific function and accidently crystallizing proteins, either disease associated or recombinantly introduced, become evident. These insights are important to systematically exploit living cells as protein crystallization chambers in the future.
Collapse
Affiliation(s)
- Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Janine Mia Rudolph
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
157
|
Yarberry A, Lansing S, Luckarift H, Diltz R, Mulbry W, Yarwood S. Effect of anaerobic digester inoculum preservation via lyophilization on methane recovery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:62-70. [PMID: 31109562 DOI: 10.1016/j.wasman.2019.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
A robust anaerobic digestion (AD) inoculum is key to a successful digestion process by providing the abundant bacteria needed for converting substrate to useable methane (CH4). While transporting digester contents from one AD to another for digester startup has been the norm, transportation costs are high, and it is not feasible to transport wet inoculum to remote locations. In this study, the impact of preservation of AD inoculum via lyophilization was investigated for the purposes of digester startup and restabilization. The effect of lyophilizing inoculum on CH4 production using food waste as the substrate was tested using biochemical methane potential (BMP) tests under the following conditions: (1) three inoculum sources, (2) two inoculum to substrate ratios (ISR), (3) two cryoprotectants, and (4) two inoculum growth phases. After lyophilization with skim milk, the three inocula produced 144-146 mL CH4/g volatile solids (VS) and 194-225 mL CH4/g VS at a 2:1 and 4:1 ISR, respectively, with 33-57% more CH4 at the 4:1 ISR. Preservation with 10% skim milk exhibited complete recovery of CH4 production, while 10% glycerol and 10% glycerol/skim milk mixture yielded 76% and 4% CH4 recovery, respectively. Inoculum growth phase before preservation (mid-exponential or stationary growth phase) did not significantly affect CH4 recovery. The study indicates that inoculum can be preserved via lyophilization using 10% skim milk as a cryoprotectant and reactivated for food waste digestion. The results provide a systematic quantification of the conditions needed to successfully preserve a mixed AD inoculum.
Collapse
Affiliation(s)
- Andrea Yarberry
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Stephanie Lansing
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Heather Luckarift
- Universal Technology Corporation, Dayton, OH 45432, USA; Air Force Civil Engineer Center, Requirements and Acquisition Division (CXA), Tyndall Air Force Base, FL 32403, USA
| | - Robert Diltz
- Air Force Civil Engineer Center, Requirements and Acquisition Division (CXA), Tyndall Air Force Base, FL 32403, USA
| | - Walter Mulbry
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Stephanie Yarwood
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
158
|
Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1275-1286. [DOI: 10.1007/s11427-018-9464-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023]
|
159
|
Bischof LF, Haurat MF, Albers SV. Two membrane-bound transcription factors regulate expression of various type-IV-pili surface structures in Sulfolobus acidocaldarius. PeerJ 2019; 7:e6459. [PMID: 30828487 PMCID: PMC6396743 DOI: 10.7717/peerj.6459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
In Archaea and Bacteria, gene expression is tightly regulated in response to environmental stimuli. In the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius nutrient limitation induces expression of the archaellum, the archaeal motility structure. This expression is orchestrated by a complex hierarchical network of positive and negative regulators-the archaellum regulatory network (arn). The membrane-bound one-component system ArnR and its paralog ArnR1 were recently described as main activators of archaellum expression in S. acidocaldarius. They regulate gene expression of the archaellum operon by targeting the promoter of flaB, encoding the archaellum filament protein. Here we describe a strategy for the isolation and biochemical characterization of these two archaellum regulators. Both regulators are capable of forming oligomers and are phosphorylated by the Ser/Thr kinase ArnC. Apart from binding to pflaB, ArnR but not ArnR1 bound to promoter sequences of aapF and upsX, which encode components of the archaeal adhesive pilus and UV-inducible pili system, demonstrating a regulatory connection between different surface appendages of S. acidocaldarius.
Collapse
Affiliation(s)
- Lisa Franziska Bischof
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Maria Florencia Haurat
- Department of Molecular Microbiology, Washington University, School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
| |
Collapse
|
160
|
Luo G, Yang Q, Yao B, Tian Y, Hou R, Shao A, Li M, Feng Z, Wang W. Slp-coated liposomes for drug delivery and biomedical applications: potential and challenges. Int J Nanomedicine 2019; 14:1359-1383. [PMID: 30863066 PMCID: PMC6388732 DOI: 10.2147/ijn.s189935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Slp forms a crystalline array of proteins on the outermost envelope of bacteria and archaea with a molecular weight of 40-200 kDa. Slp can self-assemble on the surface of liposomes in a proper environment via electrostatic interactions, which could be employed to functionalize liposomes by forming Slp-coated liposomes for various applications. Among the molecular characteristics, the stability, adhesion, and immobilization of biomacromolecules are regarded as the most meaningful. Compared to plain liposomes, Slp-coated liposomes show excellent physicochemical and biological stabilities. Recently, Slp-coated liposomes were shown to specifically adhere to the gastrointestinal tract, which was attributed to the "ligand-receptor interaction" effect. Furthermore, Slp as a "bridge" can immobilize functional biomacromol-ecules on the surface of liposomes via protein fusion technology or intermolecular forces, endowing liposomes with beneficial functions. In view of these favorable features, Slp-coated liposomes are highly likely to be an ideal platform for drug delivery and biomedical uses. This review aims to provide a general framework for the structure and characteristics of Slp and the interactions between Slp and liposomes, to highlight the unique properties and drug delivery as well as the biomedical applications of the Slp-coated liposomes, and to discuss the ongoing challenges and perspectives.
Collapse
Affiliation(s)
- Gan Luo
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingliang Yang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Bingpeng Yao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Green Pharmaceutics, Jianxing Honors College, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yangfan Tian
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruixia Hou
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Anna Shao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Mengting Li
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Zilin Feng
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Wenxi Wang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| |
Collapse
|
161
|
El Omari K, Li S, Kotecha A, Walter TS, Bignon EA, Harlos K, Somerharju P, De Haas F, Clare DK, Molin M, Hurtado F, Li M, Grimes JM, Bamford DH, Tischler ND, Huiskonen JT, Stuart DI, Roine E. The structure of a prokaryotic viral envelope protein expands the landscape of membrane fusion proteins. Nat Commun 2019; 10:846. [PMID: 30783086 PMCID: PMC6381117 DOI: 10.1038/s41467-019-08728-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022] Open
Abstract
Lipid membrane fusion is an essential function in many biological processes. Detailed mechanisms of membrane fusion and the protein structures involved have been mainly studied in eukaryotic systems, whereas very little is known about membrane fusion in prokaryotes. Haloarchaeal pleomorphic viruses (HRPVs) have a membrane envelope decorated with spikes that are presumed to be responsible for host attachment and membrane fusion. Here we determine atomic structures of the ectodomains of the 57-kDa spike protein VP5 from two related HRPVs revealing a previously unreported V-shaped fold. By Volta phase plate cryo-electron tomography we show that VP5 is monomeric on the viral surface, and we establish the orientation of the molecules with respect to the viral membrane. We also show that the viral membrane fuses with the host cytoplasmic membrane in a process mediated by VP5. This sheds light on protein structures involved in prokaryotic membrane fusion.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Sai Li
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Thomas S Walter
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Eduardo A Bignon
- Fundación Ciencia & Vida, Laboratorio de Virología Molecular, Avenida Zañartu 1482, 7780272, Ñuñoa, Santiago, Chile
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Felix De Haas
- Thermo Fisher Scientific, Achtseweg Noorg 5, 5651 GG, Eindhoven, The Netherlands
| | - Daniel K Clare
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mika Molin
- Helsinki Institute of Life Science HiLIFE, Institute of Biotechnology, University of Helsinki, Viikinkaari 5, 00014, Helsinki, Finland
| | - Felipe Hurtado
- Fundación Ciencia & Vida, Laboratorio de Virología Molecular, Avenida Zañartu 1482, 7780272, Ñuñoa, Santiago, Chile
| | - Mengqiu Li
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Dennis H Bamford
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Nicole D Tischler
- Fundación Ciencia & Vida, Laboratorio de Virología Molecular, Avenida Zañartu 1482, 7780272, Ñuñoa, Santiago, Chile.
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Helsinki Institute of Life Science HiLIFE and Molecular and Integrative Biosciences Research Program, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland.
| | - David I Stuart
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Elina Roine
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland.
| |
Collapse
|
162
|
Vierbuchen T, Stein K, Heine H. RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease. Allergy 2019; 74:223-235. [PMID: 30475385 DOI: 10.1111/all.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
RNA-sensing Toll-like receptors (TLRs) are often described as antiviral receptors of the innate immune system. However, the past decade has shown that the function and relevance of these receptors are far more complex. They were found to be essential for the detection of various bacterial, archaeal, and eukaryotic microorganisms and facilitate the discrimination between dead and living microbes. The cytokine and interferon response profile that is triggered has the potential to improve the efficacy of next-generation vaccines and may prevent the development of asthma and allergy. Nevertheless, the ability to recognize foreign RNA comes with a cost as also damaged host cells can release nucleic acids that might induce an inappropriate immune response. Thus, it is not surprising that RNA-sensing TLRs play a key role in various autoimmune diseases. However, promising new inhibitors and antagonists are on the horizon to improve their treatment.
Collapse
Affiliation(s)
- Tim Vierbuchen
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
| | - Karina Stein
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| | - Holger Heine
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| |
Collapse
|
163
|
Di Matteo A, Federici L, Masulli M, Carletti E, Santorelli D, Cassidy J, Paradisi F, Di Ilio C, Allocati N. Structural Characterization of the Xi Class Glutathione Transferase From the Haloalkaliphilic Archaeon Natrialba magadii. Front Microbiol 2019; 10:9. [PMID: 30713525 PMCID: PMC6345682 DOI: 10.3389/fmicb.2019.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
Xi class glutathione transferases (GSTs) are a recently identified group, within this large superfamily of enzymes, specifically endowed with glutathione-dependent reductase activity on glutathionyl-hydroquinone. Enzymes belonging to this group are widely distributed in bacteria, fungi, and plants but not in higher eukaryotes. Xi class GSTs are also frequently found in archaea and here we focus on the enzyme produced by the extreme haloalkaliphilic archaeon Natrialba magadii (NmGHR). We investigated its function and stability and determined its 3D structure in the apo form by X-ray crystallography. NmGHR displays the same fold of its mesophilic counterparts, is enriched in negatively charged residues, which are evenly distributed along the surface of the protein, and is characterized by a peculiar distribution of hydrophobic residues. A distinctive feature of haloalkaliphilic archaea is their preference for γ-glutamyl-cysteine over glutathione as a reducing thiol. Indeed we found that the N. magadii genome lacks a gene coding for glutathione synthase. Analysis of NmGHR structure suggests that the thiol binding site (G-site) of the enzyme is well suited for hosting γ-glutamyl-cysteine.
Collapse
Affiliation(s)
- Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,CeSI-MeT, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Masulli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,CeSI-MeT, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Daniele Santorelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,CeSI-MeT, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jennifer Cassidy
- Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin, Dublin, Ireland
| | - Francesca Paradisi
- Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin, Dublin, Ireland.,School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Carmine Di Ilio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Nerino Allocati
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
164
|
GlcNAc De- N-Acetylase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Appl Environ Microbiol 2019; 85:AEM.01879-18. [PMID: 30446550 DOI: 10.1128/aem.01879-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/04/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfolobus solfataricus is an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group of Sulfolobales, N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of the N-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood in Archaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening of S. solfataricus extracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified in Archaea Mass spectrometry analysis of the purified activity showed a protein encoded by the sso2901 gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed in S. solfataricus extracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream of sso2901 (sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism in S. solfataricus IMPORTANCE In this study, a preliminary screening of cellular extracts of S. solfataricus allowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism of Archaea.
Collapse
|
165
|
Abstract
The cell wall of archaea, as of any other prokaryote, is surrounding the cell outside the cytoplasmic membrane and is mediating the interaction with the environment. In this regard, it can be involved in cell shape maintenance, protection against virus, heat, acidity or alkalinity. Throughout the formation of pore like structures, it can resemble a micro sieve and thereby enable or disable transport processes. In some cases, cell wall components can make up more than 10% of the whole cellular protein. So far, a great variety of different cell envelope structures and compounds have be found and described in detail. From all archaeal cell walls described so far, the most common structure is the S-layer. Other archaeal cell wall structures are pseudomurein, methanochondroitin, glutaminylglycan, sulfated heteropolysaccharides and protein sheaths and they are sometimes associated with additional proteins and protein complexes like the STABLE protease or the bindosome. Recent advances in electron microscopy also illustrated the presence of an outer(most) cellular membrane within several archaeal groups, comparable to the Gram-negative cell wall within bacteria. Each new cell wall structure that can be investigated in detail and that can be assigned with a specific function helps us to understand, how the earliest cells on earth might have looked like.
Collapse
Affiliation(s)
- Andreas Klingl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.
| | - Carolin Pickl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jennifer Flechsler
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
166
|
Pohlschroder M, Pfeiffer F, Schulze S, Abdul Halim MF. Archaeal cell surface biogenesis. FEMS Microbiol Rev 2018; 42:694-717. [PMID: 29912330 PMCID: PMC6098224 DOI: 10.1093/femsre/fuy027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Collapse
Affiliation(s)
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
167
|
Karim A, Islam MA, Mohammad Faizal CK, Yousuf A, Howarth M, Dubey BN, Cheng CK, Rahman Khan MM. Enhanced Biohydrogen Production from Citrus Wastewater Using Anaerobic Sludge Pretreated by an Electroporation Technique. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Abu Yousuf
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Martin Howarth
- National Centre of Excellence for Food Engineering (NCEFE), Sheffield Hallam University, Sheffield, South Yorkshire S1 1WB, United Kingdom
| | - Bipro Nath Dubey
- National Centre of Excellence for Food Engineering (NCEFE), Sheffield Hallam University, Sheffield, South Yorkshire S1 1WB, United Kingdom
| | | | | |
Collapse
|
168
|
Chapman RN, Liu L, Boons GJ. 4,6- O-Pyruvyl Ketal Modified N-Acetylmannosamine of the Secondary Cell Wall Polysaccharide of Bacillus anthracis Is the Anchoring Residue for Its Surface Layer Proteins. J Am Chem Soc 2018; 140:17079-17085. [PMID: 30452253 DOI: 10.1021/jacs.8b08857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The secondary cell wall polysaccharide (SCWP) of Bacillus anthracis plays a key role in the organization of the cell envelope of vegetative cells and is intimately involved in host-guest interactions. Genetic studies have indicated that it anchors S-layer and S-layer-associated proteins, which are involved in multiple vital biological functions, to the cell surface of B. anthracis. Phenotypic observations indicate that specific functional groups of the terminal unit of SCWP, including 4,6- O-pyruvyl ketal and acetyl esters, are important for binding of these proteins. These observations are based on genetic manipulations and have not been corroborated by direct binding studies. To address this issue, a synthetic strategy was developed that could provide a range of pyruvylated oligosaccharides derived from B. anthracis SCWP bearing base-labile acetyl esters and free amino groups. The resulting oligosaccharides were used in binding studies with a panel of S-layer and S-layer-associated proteins, which identified structural features of SCWP important for binding. A single pyruvylated ManNAc monosaccharide exhibited strong binding to all proteins, making it a promising structure for S-layer protein manipulation. The acetyl esters and free amine of SCWP did not significantly impact binding, and this observation is contrary to a proposed model in which SCWP acetylation is a prerequisite for association of some but not all S-layer and S-layer-associated proteins.
Collapse
Affiliation(s)
- Robert N Chapman
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Lin Liu
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
169
|
Zhou K, Zang J, Chen H, Wang W, Wang H, Zhao G. On-Axis Alignment of Protein Nanocage Assemblies from 2D to 3D through the Aromatic Stacking Interactions of Amino Acid Residues. ACS NANO 2018; 12:11323-11332. [PMID: 30265511 DOI: 10.1021/acsnano.8b06091] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aromatic-aromatic interactions between natural aromatic amino acids Phe, Tyr, and Trp play crucial roles in protein-protein recognition and protein folding. However, the function of such interactions in the preparation of different dimensional, ordered protein superstructures has not been recognized. Herein, by a combination of the directionality of the symmetry axes of protein building blocks and the strength of the aromatic-aromatic interactions coming from a group of aromatic amino acid residues, we built an engineering strategy to construct protein superlattices. Based on this strategy, substitution of single amino acid residue Glu162 around the C4 rotation axes near the outer surface of 24-mer ferritin nanocage with Phe, Tyr, and Trp, respectively, resulted in 2D and 3D protein superlattices where protein cages are aligned along the C4 axes, imposing a fixed disposition of neighboring ferritins. The self-assembly of these superlattices is reversible, which can be tuned by external stimuli (salt concentration or pH). Moreover, these superlattices can serve as biotemplates for the fabrication of 2D and 3D inorganic nanoparticle arrays.
Collapse
Affiliation(s)
- Kai Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Jiachen Zang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Hai Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry , Institute of Molecular Science, Shanxi University , Taiyuan 030006 , China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry , Institute of Molecular Science, Shanxi University , Taiyuan 030006 , China
| | - Guanghua Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| |
Collapse
|
170
|
The essential genome of the crenarchaeal model Sulfolobus islandicus. Nat Commun 2018; 9:4908. [PMID: 30464174 PMCID: PMC6249222 DOI: 10.1038/s41467-018-07379-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/24/2018] [Indexed: 11/27/2022] Open
Abstract
Sulfolobus islandicus is a model microorganism in the TACK superphylum of the Archaea, a key lineage in the evolutionary history of cells. Here we report a genome-wide identification of the repertoire of genes essential to S. islandicus growth in culture. We confirm previous targeted gene knockouts, uncover the non-essentiality of functions assumed to be essential to the Sulfolobus cell, including the proteinaceous S-layer, and highlight essential genes whose functions are yet to be determined. Phyletic distributions illustrate the potential transitions that may have occurred during the evolution of this archaeal microorganism, and highlight sets of genes that may have been associated with each transition. We use this comparative context as a lens to focus future research on archaea-specific uncharacterized essential genes that may provide valuable insights into the evolutionary history of cells. Sulfolobus islandicus is a model organism within the TACK superphylum of the Archaea. Here, the authors perform a genome-wide analysis of essential genes in this organism, show that the proteinaceous S-layer is not essential, and explore potential stages of evolution of the essential gene repertoire in Archaea.
Collapse
|
171
|
Christensen LFB, Hansen LM, Finster K, Christiansen G, Nielsen PH, Otzen DE, Dueholm MS. The Sheaths of Methanospirillum Are Made of a New Type of Amyloid Protein. Front Microbiol 2018; 9:2729. [PMID: 30483237 PMCID: PMC6242892 DOI: 10.3389/fmicb.2018.02729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The genera Methanospirillum and Methanosaeta contain species of anaerobic archaea that grow and divide within proteinaceous tubular sheaths that protect them from environmental stressors. The sheaths of Methanosaeta thermophila PT are composed of the 60.9 kDa major sheath protein MspA. In this study we show that sheaths purified from Methanospirillum hungatei JF-1 are regularly striated tubular structures with amyloid-like properties similar to those of M. thermophila PT. Depolymerizing the sheaths from M. hungatei JF-1 allowed us to identify a 40.6 kDa protein (WP_011449234.1) that shares 23% sequence similarity to MspA from M. thermophila PT (ABK14853.1), indicating that they might be distant homologs. The genome of M. hungatei JF-1 encodes six homologs of the identified MspA protein. Several homologs also exist in the related strains Methanospirillum stamsii Pt1 (7 homologs, 28–66% sequence identity), M. lacunae Ki8-1 C (15 homologs, 29–60% sequence identity) and Methanolinea tarda NOBI-1 (2 homologs, 31% sequence identity). The MspA protein discovered here could accordingly represent a more widely found sheath protein than the MspA from M. thermophila PT, which currently has no homologs in the NCBI Reference Sequence database (RefSeq).
Collapse
Affiliation(s)
- Line Friis Bakmann Christensen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lonnie Maria Hansen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Kai Finster
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Gunna Christiansen
- Section for Medical Microbiology and Immunology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
172
|
Bader M, Rossberg A, Steudtner R, Drobot B, Großmann K, Schmidt M, Musat N, Stumpf T, Ikeda-Ohno A, Cherkouk A. Impact of Haloarchaea on Speciation of Uranium-A Multispectroscopic Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12895-12904. [PMID: 30125086 DOI: 10.1021/acs.est.8b02667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Haloarchaea represent a predominant part of the microbial community in rock salt, which can serve as host rock for the disposal of high level radioactive waste. However, knowledge is missing about how Haloarchaea interact with radionuclides. Here, we used a combination of spectroscopic and microscopic methods to study the interactions of an extremely halophilic archaeon with uranium, one of the major radionuclides in high level radioactive waste, on a molecular level. The obtained results show that Halobacterium noricense DSM 15987T influences uranium speciation as a function of uranium concentration and incubation time. X-ray absorption spectroscopy reveals the formation of U(VI) phosphate minerals, such as meta-autunite, as the major species at a lower uranium concentration of 30 μM, while U(VI) is mostly associated with carboxylate groups of the cell wall and extracellular polymeric substances at a higher uranium concentration of 85 μM. For the first time, we identified uranium biomineralization in the presence of Halobacterium noricense DSM 15987T cells. These findings highlight the potential importance of Archaea in geochemical cycling of uranium and their role in biomineralization in hypersaline environments, offering new insights into the microbe-actinide interactions in highly saline conditions relevant to the disposal of high-level radioactive waste as well as bioremediation.
Collapse
Affiliation(s)
- Miriam Bader
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
- Technische Universität Dresden , Central Radionuclide Laboratory , Zellescher Weg 19 , 01062 Dresden , Germany
| | - Kay Großmann
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research , Department of Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Niculina Musat
- Helmholtz Centre for Environmental Research , Department of Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| |
Collapse
|
173
|
Altermann E, Schofield LR, Ronimus RS, Beatty AK, Reilly K. Inhibition of Rumen Methanogens by a Novel Archaeal Lytic Enzyme Displayed on Tailored Bionanoparticles. Front Microbiol 2018; 9:2378. [PMID: 30356700 PMCID: PMC6189367 DOI: 10.3389/fmicb.2018.02378] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Methane is a potent greenhouse gas, 25 times more efficient at trapping heat than carbon dioxide. Ruminant methane emissions contribute almost 30% to anthropogenic sources of global atmospheric methane levels and a reduction in methane emissions would significantly contribute to slowing global temperature rises. Here we demonstrate the use of a lytic enyzme, PeiR, from a methanogen virus that infects Methanobrevibacter ruminantium M1 as an effective agent inhibiting a range of rumen methanogen strains in pure culture. We determined the substrate specificity of soluble PeiR and demonstrated that the enzyme is capable of hydrolysing the pseudomurein cell walls of methanogens. Subsequently, peiR was fused to the polyhydroxyalkanoate (PHA) synthase gene phaC and displayed on the surface of PHA bionanoparticles (BNPs) expressed in Eschericia coli via one-step biosynthesis. These tailored BNPs were capable of lysing not only the original methanogen host strain, but a wide range of other rumen methanogen strains in vitro. Methane production was reduced by up to 97% for 5 days post-inoculation in the in vitro assay. We propose that tailored BNPs carrying anti-methanogen enzymes represent a new class of methane inhibitors. Tailored BNPs can be rapidly developed and may be able to modulate the methanogen community in vivo with the aim to lower ruminant methane emissions without impacting animal productivity.
Collapse
Affiliation(s)
- Eric Altermann
- Rumen Microbiology, Animal Science, AgResearch Ltd., Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Linley R Schofield
- Rumen Microbiology, Animal Science, AgResearch Ltd., Palmerston North, New Zealand
| | - Ron S Ronimus
- Rumen Microbiology, Animal Science, AgResearch Ltd., Palmerston North, New Zealand
| | - Amy K Beatty
- Soil Biology, Forage Science, AgResearch Ltd., Christchurch, New Zealand
| | - Kerri Reilly
- Rumen Microbiology, Animal Science, AgResearch Ltd., Palmerston North, New Zealand
| |
Collapse
|
174
|
Carbone V, Schofield LR, Sang C, Sutherland-Smith AJ, Ronimus RS. Structural determination of archaeal UDP-N-acetylglucosamine 4-epimerase from Methanobrevibacter ruminantium M1 in complex with the bacterial cell wall intermediate UDP-N-acetylmuramic acid. Proteins 2018; 86:1306-1312. [PMID: 30242905 DOI: 10.1002/prot.25606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/01/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
The crystal structure of UDP-N-acetylglucosamine 4-epimerase (UDP-GlcNAc 4-epimerase; WbpP; EC 5.1.3.7), from the archaeal methanogen Methanobrevibacter ruminantium strain M1, was determined to a resolution of 1.65 Å. The structure, with a single monomer in the crystallographic asymmetric unit, contained a conserved N-terminal Rossmann-fold for nucleotide binding and an active site positioned in the C-terminus. UDP-GlcNAc 4-epimerase is a member of the short-chain dehydrogenases/reductases superfamily, sharing sequence motifs and structural elements characteristic of this family of oxidoreductases and bacterial 4-epimerases. The protein was co-crystallized with coenzyme NADH and UDP-N-acetylmuramic acid, the latter an unintended inclusion and well known product of the bacterial enzyme MurB and a critical intermediate for bacterial cell wall synthesis. This is a non-native UDP sugar amongst archaea and was most likely incorporated from the E. coli expression host during purification of the recombinant enzyme.
Collapse
Affiliation(s)
- Vincenzo Carbone
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Linley R Schofield
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carrie Sang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Ron S Ronimus
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
175
|
Stel B, Cometto F, Rad B, De Yoreo JJ, Lingenfelder M. Dynamically resolved self-assembly of S-layer proteins on solid surfaces. Chem Commun (Camb) 2018; 54:10264-10267. [PMID: 30151543 DOI: 10.1039/c8cc04597f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
By using high-speed and high-resolution Atomic Force Microscopy (AFM), it was possible to resolve within a single experiment the kinetic pathway in S-layer self-assembly at the solid-liquid interface, obtaining a model that accounts for the nucleation, growth and structural rearrangements in 2D protein self assembly across time (second to hours) and spatial scales (nm to microns).
Collapse
Affiliation(s)
- Bart Stel
- Max Planck-EPFL Laboratory for Molecular Nanoscience, École Polytechnique Fédérale de Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
176
|
Golub M, Martinez N, Michoud G, Ollivier J, Jebbar M, Oger P, Peters J. The Effect of Crowding on Protein Stability, Rigidity, and High Pressure Sensitivity in Whole Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10419-10425. [PMID: 30086639 DOI: 10.1021/acs.langmuir.8b01240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In live cells, high concentrations up to 300-400 mg/mL, as in Eschericia coli (Ellis, R. J. Curr. Opin. Struct. Biol. 2001, 11, 114) are achieved which have effects on their proper functioning. However, in many experiments only individual parts of the cells as proteins or membranes are studied in order to get insight into these specific components and to avoid the high complexity of whole cells, neglecting by the way the influence of crowding. In the present study, we investigated cells of the order of Thermococcales, which are known to live under extreme conditions, in their intact form and after cell lysis to extract the effect of crowding on the molecular dynamics of the proteome and of water molecules. We found that some parameters characterizing the dynamics within the cells seem to be intrinsic to the cell type, as flexibility typical for the proteome, others are more specific to the cellular environment, as bulk water's residence time and some fractions of particles participating to the different motions, which make the lysed cells' dynamics similar to the one of another Thermococcale adapted to live under high hydrostatic pressure. In contrast to studies on the impact of crowding on pure proteins we show here that the release of crowding constraints on proteins leads to an increase in the rigidity and a decrease in the high pressure sensitivity. In a way similar to high pressure adaptation in piezophiles, the hydration water layer is decreased for the lysed cells, demonstrating a first link between protein adaptation and the impact of crowding or osmolytes on proteins.
Collapse
Affiliation(s)
- Maksym Golub
- Université Grenoble Alpes, CNRS and CEA, IBS , Grenoble , F-38000 , France
- Institut Laue Langevin , Grenoble Cedex 9 , F-38042 , France
| | - Nicolas Martinez
- Université Grenoble Alpes, CNRS and CEA, IBS , Grenoble , F-38000 , France
- Institut Laue Langevin , Grenoble Cedex 9 , F-38042 , France
| | - Grégoire Michoud
- Université Brest, CNRS, Ifremer, LM2E, IUEM , Plouzané , 29280 , France
| | | | - Mohamed Jebbar
- Université Brest, CNRS, Ifremer, LM2E, IUEM , Plouzané , 29280 , France
| | - Philippe Oger
- Université Lyon, INSA Lyon CNRS UMR 5240 , Villeurbanne cedex , F-69621 , France
| | - Judith Peters
- Institut Laue Langevin , Grenoble Cedex 9 , F-38042 , France
- University of Grenoble Alpes, CNRS, LIPhy , Grenoble , 38000 , France
| |
Collapse
|
177
|
Blackler RJ, López-Guzmán A, Hager FF, Janesch B, Martinz G, Gagnon SML, Haji-Ghassemi O, Kosma P, Messner P, Schäffer C, Evans SV. Structural basis of cell wall anchoring by SLH domains in Paenibacillus alvei. Nat Commun 2018; 9:3120. [PMID: 30087354 PMCID: PMC6081394 DOI: 10.1038/s41467-018-05471-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Self-assembling protein surface (S-) layers are common cell envelope structures of prokaryotes and have critical roles from structural maintenance to virulence. S-layers of Gram-positive bacteria are often attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Here we present an in-depth characterization of this interaction, with co-crystal structures of the three consecutive SLH domains from the Paenibacillus alvei S-layer protein SpaA with defined SCWP ligands. The most highly conserved SLH domain residue SLH-Gly29 is shown to enable a peptide backbone flip essential for SCWP binding in both biophysical and cellular experiments. Furthermore, we find that a significant domain movement mediates binding by two different sites in the SLH domain trimer, which may allow anchoring readjustment to relieve S-layer strain caused by cell growth and division. Gram-positive bacterial envelopes comprise proteinaceous surface layers (S-layers) important for survival and virulence that are often anchored to the cell wall through secondary cell wall polymers. Here the authors use a structural and biophysical approach to define the molecular mechanism of this important interaction.
Collapse
Affiliation(s)
- Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.,Zymeworks Inc., Vancouver, BC, V6H 3V9, Canada
| | - Arturo López-Guzmán
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Bettina Janesch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Gudrun Martinz
- Department of Chemistry, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Susannah M L Gagnon
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Paul Kosma
- Department of Chemistry, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria.
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| |
Collapse
|
178
|
Bisson-Filho AW, Zheng J, Garner E. Archaeal imaging: leading the hunt for new discoveries. Mol Biol Cell 2018; 29:1675-1681. [PMID: 30001185 PMCID: PMC6080714 DOI: 10.1091/mbc.e17-10-0603] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Since the identification of the archaeal domain in the mid-1970s, we have collected a great deal of metagenomic, biochemical, and structural information from archaeal species. However, there is still little known about how archaeal cells organize their internal cellular components in space and time. In contrast, live-cell imaging has allowed bacterial and eukaryotic cell biologists to learn a lot about biological processes by observing the motions of cells, the dynamics of their internal organelles, and even the motions of single molecules. The explosion of knowledge gained via live-cell imaging in prokaryotes and eukaryotes has motivated an ever-improving set of imaging technologies that could allow analogous explorations into archaeal biology. Furthermore, previous studies of essential biological processes in prokaryotic and eukaryotic organisms give methodological roadmaps for the investigation of similar processes in archaea. In this perspective, we highlight a few fundamental cellular processes in archaea, reviewing our current state of understanding about each, and compare how imaging approaches helped to advance the study of similar processes in bacteria and eukaryotes.
Collapse
Affiliation(s)
| | | | - Ethan Garner
- Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
179
|
Staley JT, Caetano-Anollés G. Archaea-First and the Co-Evolutionary Diversification of Domains of Life. Bioessays 2018; 40:e1800036. [PMID: 29944192 DOI: 10.1002/bies.201800036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/12/2018] [Indexed: 12/13/2022]
Abstract
The origins and evolution of the Archaea, Bacteria, and Eukarya remain controversial. Phylogenomic-wide studies of molecular features that are evolutionarily conserved, such as protein structural domains, suggest Archaea is the first domain of life to diversify from a stem line of descent. This line embodies the last universal common ancestor of cellular life. Here, we propose that ancestors of Euryarchaeota co-evolved with those of Bacteria prior to the diversification of Eukarya. This co-evolutionary scenario is supported by comparative genomic and phylogenomic analyses of the distributions of fold families of domains in the proteomes of free-living organisms, which show horizontal gene recruitments and informational process homologies. It also benefits from the molecular study of cell physiologies responsible for membrane phospholipids, methanogenesis, methane oxidation, cell division, gas vesicles, and the cell wall. Our theory however challenges popular cell fusion and two-domain of life scenarios derived from sequence analysis, demanding phylogenetic reconciliation. Also see the video abstract here: https://youtu.be/9yVWn_Q9faY.
Collapse
Affiliation(s)
- James T Staley
- Department of Microbiology and Astrobiology Program, University of Washington, Seattle, WA, 98195, USA
| | - Gustavo Caetano-Anollés
- Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
180
|
Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins. ISME JOURNAL 2018; 12:2389-2402. [PMID: 29899515 DOI: 10.1038/s41396-018-0191-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 01/17/2023]
Abstract
Surface layers (S-layers) are two-dimensional, proteinaceous, porous lattices that form the outermost cell envelope component of virtually all archaea and many bacteria. Despite exceptional sequence diversity, S-layer proteins (SLPs) share important characteristics such as their ability to form crystalline sheets punctuated with nano-scale pores, and their propensity for charged amino acids, leading to acidic or basic isoelectric points. However, the precise function of S-layers, or the role of charged SLPs and how they relate to cellular metabolism is unknown. Nano-scale lattices affect the diffusion behavior of low-concentration solutes, even if they are significantly smaller than the pore size. Here, we offer a rationale for charged S-layer proteins in the context of the structural evolution of S-layers. Using the ammonia-oxidizing archaea (AOA) as a model for S-layer geometry, and a 2D electrodiffusion reaction computational framework to simulate diffusion and consumption of the charged solute ammonium (NH4+), we find that the characteristic length scales of nanoporous S-layers elevate the concentration of NH4+ in the pseudo-periplasmic space. Our simulations suggest an evolutionary, mechanistic basis for S-layer charge and shed light on the unique ability of some AOA to oxidize ammonia in environments with nanomolar NH4+ availability, with broad implications for comparisons of ecologically distinct populations.
Collapse
|
181
|
Abstract
Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
182
|
Youssefian S, Rahbar N, Van Dessel S. Thermal conductivity and rectification in asymmetric archaeal lipid membranes. J Chem Phys 2018; 148:174901. [DOI: 10.1063/1.5018589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sina Youssefian
- Department of Civil, Environmental and Architectural Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Nima Rahbar
- Department of Civil, Environmental and Architectural Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Steven Van Dessel
- Department of Civil, Environmental and Architectural Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| |
Collapse
|
183
|
Ether-linked lipids: Spin-label EPR and spin echoes. Chem Phys Lipids 2018; 212:130-137. [DOI: 10.1016/j.chemphyslip.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/22/2022]
|
184
|
Schuster B. S-Layer Protein-Based Biosensors. BIOSENSORS 2018; 8:E40. [PMID: 29641511 PMCID: PMC6023001 DOI: 10.3390/bios8020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.
Collapse
Affiliation(s)
- Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
185
|
|
186
|
Caspi Y, Dekker C. Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery. Front Microbiol 2018; 9:174. [PMID: 29551994 PMCID: PMC5840170 DOI: 10.3389/fmicb.2018.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Cell division in most prokaryotes is mediated by the well-studied fts genes, with FtsZ as the principal player. In many archaeal species, however, division is orchestrated differently. The Crenarchaeota phylum of archaea features the action of the three proteins, CdvABC. This Cdv system is a unique and less-well-studied division mechanism that merits closer inspection. In vivo, the three Cdv proteins form a composite band that contracts concomitantly with the septum formation. Of the three Cdv proteins, CdvA is the first to be recruited to the division site, while CdvB and CdvC are thought to participate in the active part of the Cdv division machinery. Interestingly, CdvB shares homology with a family of proteins from the eukaryotic ESCRT-III complex, and CdvC is a homolog of the eukaryotic Vps4 complex. These two eukaryotic complexes are key factors in the endosomal sorting complex required for transport (ESCRT) pathway, which is responsible for various budding processes in eukaryotic cells and which participates in the final stages of division in Metazoa. There, ESCRT-III forms a contractile machinery that actively cuts the membrane, whereas Vps4, which is an ATPase, is necessary for the turnover of the ESCRT membrane-abscission polymers. In contrast to CdvB and CdvC, CdvA is unique to the archaeal Crenarchaeota and Thaumarchaeota phyla. The Crenarchaeota division mechanism has often been suggested to represent a simplified version of the ESCRT division machinery thus providing a model system to study the evolution and mechanism of cell division in higher organisms. However, there are still many open questions regarding this parallelism and the division mechanism of Crenarchaeota. Here, we review the existing data on the role of the Cdv proteins in the division process of Crenarchaeota as well as concisely review the ESCRT system in eukaryotes. We survey the similarities and differences between the division and abscission mechanisms in the two cases. We suggest that the Cdv system functions differently in archaea than ESCRT does in eukaryotes, and that, unlike the eukaryotic case, the Cdv system's main function may be related to surplus membrane invagination and cell-wall synthesis.
Collapse
Affiliation(s)
- Yaron Caspi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
187
|
Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture. Appl Environ Microbiol 2018; 84:AEM.02186-17. [PMID: 29150508 DOI: 10.1128/aem.02186-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022] Open
Abstract
Methane is a very potent greenhouse gas and can be oxidized aerobically or anaerobically through microbe-mediated processes, thus decreasing methane emissions in the atmosphere. Using a complementary array of methods, including phylogenetic analysis, physiological experiments, and light and electron microscopy techniques (including electron tomography), we investigated the community composition and ultrastructure of a continuous bioreactor enrichment culture, in which anaerobic oxidation of methane (AOM) was coupled to nitrate reduction. A membrane bioreactor was seeded with AOM biomass and continuously fed with excess methane. After 150 days, the bioreactor reached a daily consumption of 10 mmol nitrate · liter-1 · day-1 The biomass consisted of aggregates that were dominated by nitrate-dependent anaerobic methane-oxidizing "Candidatus Methanoperedens"-like archaea (40%) and nitrite-dependent anaerobic methane-oxidizing "Candidatus Methylomirabilis"-like bacteria (50%). The "Ca Methanoperedens" spp. were identified by fluorescence in situ hybridization and immunogold localization of the methyl-coenzyme M reductase (Mcr) enzyme, which was located in the cytoplasm. The "Ca Methanoperedens" sp. aggregates consisted of slightly irregular coccoid cells (∼1.5-μm diameter) which produced extruding tubular structures and putative cell-to-cell contacts among each other. "Ca Methylomirabilis" sp. bacteria exhibited the polygonal cell shape typical of this genus. In AOM archaea and bacteria, cytochrome c proteins were localized in the cytoplasm and periplasm, respectively, by cytochrome staining. Our results indicate that AOM bacteria and archaea might work closely together in the process of anaerobic methane oxidation, as the bacteria depend on the archaea for nitrite. Future studies will be aimed at elucidating the function of the cell-to-cell interactions in nitrate-dependent AOM.IMPORTANCE Microorganisms performing nitrate- and nitrite-dependent anaerobic methane oxidation are important in both natural and man-made ecosystems, such as wastewater treatment plants. In both systems, complex microbial interactions take place that are largely unknown. Revealing these microbial interactions would enable us to understand how the oxidation of the important greenhouse gas methane occurs in nature and pave the way for the application of these microbes in wastewater treatment plants. Here, we elucidated the microbial composition, ultrastructure, and physiology of a nitrate-dependent AOM community of archaea and bacteria and describe the cell plan of "Ca Methanoperedens"-like methanotrophic archaea.
Collapse
|
188
|
Bader M, Müller K, Foerstendorf H, Schmidt M, Simmons K, Swanson JS, Reed DT, Stumpf T, Cherkouk A. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea. PLoS One 2018; 13:e0190953. [PMID: 29329319 PMCID: PMC5766140 DOI: 10.1371/journal.pone.0190953] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/23/2017] [Indexed: 11/18/2022] Open
Abstract
Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense.
Collapse
Affiliation(s)
- Miriam Bader
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Katharina Müller
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Harald Foerstendorf
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Leipzig, Germany
| | - Karen Simmons
- Los Alamos National Laboratory Carlsbad Operations, Repository Science and Operations, Carlsbad, New Mexico, United States of America
| | - Juliet S. Swanson
- Los Alamos National Laboratory Carlsbad Operations, Repository Science and Operations, Carlsbad, New Mexico, United States of America
| | - Donald T. Reed
- Los Alamos National Laboratory Carlsbad Operations, Repository Science and Operations, Carlsbad, New Mexico, United States of America
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Resource Ecology, Dresden, Germany
- * E-mail:
| |
Collapse
|
189
|
Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM. Archaeal S-Layers: Overview and Current State of the Art. Front Microbiol 2017; 8:2597. [PMID: 29312266 PMCID: PMC5744192 DOI: 10.3389/fmicb.2017.02597] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023] Open
Abstract
In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.
Collapse
Affiliation(s)
- Thiago Rodrigues-Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Aline Belmok
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Deborah Vasconcellos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cynthia M. Kyaw
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
190
|
Chaudhury P, Quax TEF, Albers SV. Versatile cell surface structures of archaea. Mol Microbiol 2017; 107:298-311. [PMID: 29194812 DOI: 10.1111/mmi.13889] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitously present in nature and colonize environments with broadly varying growth conditions. Several surface appendages support their colonization of new habitats. A hallmark of archaea seems to be the high abundance of type IV pili (T4P). However, some unique non T4 filaments are present in a number of archaeal species. Archaeal surface structures can mediate different processes such as cellular surface adhesion, DNA exchange, motility and biofilm formation and represent an initial attachment site for infecting viruses. In addition to the functionally characterized archaeal T4P, archaeal genomes encode a large number of T4P components that might form yet undiscovered surface structures with novel functions. In this review, we summarize recent advancement in structural and functional characterizations of known archaeal surface structures and highlight the diverse processes in which they play a role.
Collapse
Affiliation(s)
- Paushali Chaudhury
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Tessa E F Quax
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
191
|
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. Sulfolobus - A Potential Key Organism in Future Biotechnology. Front Microbiol 2017; 8:2474. [PMID: 29312184 PMCID: PMC5733018 DOI: 10.3389/fmicb.2017.02474] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Extremophilic organisms represent a potentially valuable resource for the development of novel bioprocesses. They can act as a source for stable enzymes and unique biomaterials. Extremophiles are capable of carrying out microbial processes and biotransformations under extremely hostile conditions. Extreme thermoacidophilic members of the well-characterized genus Sulfolobus are outstanding in their ability to thrive at both high temperatures and low pH. This review gives an overview of the biological system Sulfolobus including its central carbon metabolism and the development of tools for its genetic manipulation. We highlight findings of commercial relevance and focus on potential industrial applications. Finally, the current state of bioreactor cultivations is summarized and we discuss the use of Sulfolobus species in biorefinery applications.
Collapse
Affiliation(s)
- Julian Quehenberger
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
192
|
Electron microscopic observations of prokaryotic surface appendages. J Microbiol 2017; 55:919-926. [DOI: 10.1007/s12275-017-7369-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022]
|
193
|
Structure and assembly mechanism of virus-associated pyramids. Biophys Rev 2017; 10:551-557. [PMID: 29204884 DOI: 10.1007/s12551-017-0357-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
Viruses have developed intricate molecular machines to infect, replicate within and escape from their host cells. Perhaps one of the most intriguing of these mechanisms is the pyramidal egress structure that has evolved in archaeal viruses, such as SIRV2 or STIV1. The structure and mechanism of these virus-associated pyramids (VAPs) has been studied by cryo-electron tomography and complementary biochemical techniques, revealing that VAPs are formed by multiple copies of a virus-encoded 10-kDa protein (PVAP) that integrate into the cell membrane and assemble into hollow, sevenfold symmetric pyramids. In this process, growing VAPs puncture the protective surface layer and ultimately open to release newly replicated viral particles into the surrounding medium. PVAP has the striking capability to spontaneously integrate and self-assemble into VAPs in biological membranes of the archaea, bacteria and eukaryotes. This renders the VAP a universal membrane remodelling system. In this review, we provide an overview of the VAP structure and assembly mechanism and discuss the possible use of VAPs in nano-biotechnology.
Collapse
|
194
|
Biases during DNA extraction affect bacterial and archaeal community profile of anaerobic digestion samples. 3 Biotech 2017; 7:375. [PMID: 29071172 DOI: 10.1007/s13205-017-1009-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 10/09/2017] [Indexed: 01/01/2023] Open
Abstract
The anaerobic digestion (AD) of organic waste for biogas production has received much attention in recent years due to the increasing need for renewable energy and environmentally friendly waste management systems. Identification of the microbial community involved in AD aids in better understanding and optimising of the process. The choice of DNA extraction method is an integral step in any molecular biodiversity study. In the present study, potential biases introduced by DNA extraction methods were examined by comparing quality, quantity and representability of DNA extracted from AD samples using various extraction methods. In spite of the non-kit based method (cetyltrimethylammonium bromide) yielding the largest quantity of DNA (approximately 44 µg DNA per gram dry weight), the extracted DNA contained PCR inhibitors. Furthermore, the quantity of extracted DNA was not proportional to species diversity. Diversity, determined using denaturing gradient gel electrophoresis (DGGE), was strongly linked to the type of extraction method used. The spin-column filter-based kit that incorporated mechanical and chemical lysis (Macherey-Nagel kit) gave the best results in terms of bacterial and archaeal diversity (Shannon-Wiener indices: average 2.5 and 2.6, respectively). Furthermore, this kit was the most effective at lysing hard-to-lyse bacterial and archaeal cells. The choice of DNA extraction method significantly influences the reliability and comparability of results obtained during AD microbial ecology investigations. Moreover, the careful selection of the DNA extraction method is of particular importance when analysing AD samples since these samples are rich in PCR inhibitors and hard-to-lyse cells such as archaea and gram-positive bacteria.
Collapse
|
195
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
196
|
Hibender S, Landeta C, Berkmen M, Beckwith J, Boyd D. Aeropyrum pernix membrane topology of protein VKOR promotes protein disulfide bond formation in two subcellular compartments. MICROBIOLOGY-SGM 2017; 163:1864-1879. [PMID: 29139344 DOI: 10.1099/mic.0.000569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disulfide bonds confer stability and activity to proteins. Bioinformatic approaches allow predictions of which organisms make protein disulfide bonds and in which subcellular compartments disulfide bond formation takes place. Such an analysis, along with biochemical and protein structural data, suggests that many of the extremophile Crenarachaea make protein disulfide bonds in both the cytoplasm and the cell envelope. We have sought to determine the oxidative folding pathways in the sequenced genomes of the Crenarchaea, by seeking homologues of the enzymes known to be involved in disulfide bond formation in bacteria. Some Crenarchaea have two homologues of the cytoplasmic membrane protein VKOR, a protein required in many bacteria for the oxidation of bacterial DsbAs. We show that the two VKORs of Aeropyrum pernix assume opposite orientations in the cytoplasmic membrane, when expressed in E. coli. One has its active cysteines oriented toward the E. coli periplasm (ApVKORo) and the other toward the cytoplasm (ApVKORi). Furthermore, the ApVKORo promotes disulfide bond formation in the E. coli cell envelope, while the ApVKORi promotes disulfide bond formation in the E. coli cytoplasm via a co-expressed archaeal protein ApPDO. Amongst the VKORs from different archaeal species, the pairs of VKORs in each species are much more closely related to each other than to the VKORs of the other species. The results suggest two independent occurrences of the evolution of the two topologically inverted VKORs in archaea. Our results suggest a mechanistic basis for the formation of disulfide bonds in the cytoplasm of Crenarchaea.
Collapse
Affiliation(s)
- Stijntje Hibender
- Faculty of Science, University of Amsterdam, Postbus 94216, 1090 GE Amsterdam, The Netherlands
| | - Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
197
|
Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, Amin SA, Walker CB, Urakawa H, Könneke M, Devol AH, Moffett JW, Armbrust EV, Jensen GJ, Ingalls AE, Stahl DA. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int J Syst Evol Microbiol 2017; 67:5067-5079. [PMID: 29034851 DOI: 10.1099/ijsem.0.002416] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four mesophilic, neutrophilic, and aerobic marine ammonia-oxidizing archaea, designated strains SCM1T, HCA1T, HCE1T and PS0T, were isolated from a tropical marine fish tank, dimly lit deep coastal waters, the lower euphotic zone of coastal waters, and near-surface sediment in the Puget Sound estuary, respectively. Cells are straight or slightly curved small rods, 0.15-0.26 µm in diameter and 0.50-1.59 µm in length. Motility was not observed, although strain PS0T possesses genes associated with archaeal flagella and chemotaxis, suggesting it may be motile under some conditions. Cell membranes consist of glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, with crenarchaeol as the major component. Strain SCM1T displays a single surface layer (S-layer) with p6 symmetry, distinct from the p3-S-layer reported for the soil ammonia-oxidizing archaeon Nitrososphaera viennensis EN76T. Respiratory quinones consist of fully saturated and monounsaturated menaquinones with 6 isoprenoid units in the side chain. Cells obtain energy from ammonia oxidation and use carbon dioxide as carbon source; addition of an α-keto acid (α-ketoglutaric acid) was necessary to sustain growth of strains HCA1T, HCE1T, and PS0T. Strain PS0T uses urea as a source of ammonia for energy production and growth. All strains synthesize vitamin B1 (thiamine), B2 (riboflavin), B6 (pyridoxine), and B12 (cobalamin). Optimal growth occurs between 25 and 32 °C, between pH 6.8 and 7.3, and between 25 and 37 ‰ salinity. All strains have a low mol% G+C content of 33.0-34.2. Strains are related by 98 % or greater 16S rRNA gene sequence identity, sharing ~85 % 16S rRNA gene sequence identity with Nitrososphaera viennensis EN76T. All four isolates are well separated by phenotypic and genotypic characteristics and are here assigned to distinct species within the genus Nitrosopumilus gen. nov. Isolates SCM1T (=ATCC TSD-97T =NCIMB 15022T), HCA1T (=ATCC TSD-96T), HCE1T (=ATCC TSD-98T), and PS0T (=ATCC TSD-99T) are type strains of the species Nitrosopumilusmaritimus sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., respectively. In addition, we propose the family Nitrosopumilaceae fam. nov. and the order Nitrosopumilales ord. nov. within the class Nitrososphaeria.
Collapse
Affiliation(s)
- Wei Qin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Katherine R Heal
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Rasika Ramdasi
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Julia N Kobelt
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Willm Martens-Habbena
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
- Department of Microbiology and Cell Science and Fort Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Florida, FL, USA
| | - Anthony D Bertagnolli
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shady A Amin
- Department of Chemistry, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Christopher B Walker
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Hidetoshi Urakawa
- Department of Marine and Ecological Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Martin Könneke
- Marine Archaea Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Allan H Devol
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - James W Moffett
- Departments of Biological Sciences and Earth Sciences and Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | | | - Grant J Jensen
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
198
|
Buckeridge MS. The evolution of the Glycomic Codes of extracellular matrices. Biosystems 2017; 164:112-120. [PMID: 28993247 DOI: 10.1016/j.biosystems.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022]
Abstract
The extracellular matrices (ECMs) of living organisms are compartments responsible for maintenance of cell shape, cell adhesion, and cell communication. They are also involved in cell signaling and defense against the attack of pathogens. The plant cell walls have been recently defined as encoded structures that combine polysaccharides with other encoded structures (proteins and phenolic compounds). The term Glycomic Code has been used to define the set of mechanisms that generate cell wall architecture (the combination of polymers of different types) and biological function. Here, the composition of the extracellular matrices of archaea, bacteria, animals, fungi, algae, and plants was compared to understand how the Glycomic Code of these different organisms operate to produce polysaccharides and therefore how the Glycomic Code may have evolved in nature. It was found that the heterotrophs display EMC polysaccharides containing aminosugars (nitrogen-based polysaccharides) whereas the photosynthetic organisms have cellulose-based walls, with polymers that hardly present aminosugars in its composition. Another subgroup is of the organisms containing EMCs with sulfated polysaccharides (animals and red algae). The main hemicellulose found in plants (xyloglucan) is used as a case study along with other seed cell wall storage polysaccharides of plants to exemplify the evolution of the Glycomic Code in plants. Overall, the trends observed in this work shows for the first time how the Glycomic Code in ECMs of living organisms may have evolved and diversified in nature.
Collapse
Affiliation(s)
- Marcos S Buckeridge
- Systems and Synthetic Biology Center, Institute of Biosciences, Department of Botany, University of São Paulo, Brazil.
| |
Collapse
|
199
|
Tolar BB, Herrmann J, Bargar JR, van den Bedem H, Wakatsuki S, Francis CA. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:484-491. [PMID: 28677304 DOI: 10.1111/1758-2229.12567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/01/2017] [Accepted: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Knowledge of the molecular ecology and environmental determinants of ammonia-oxidizing organisms is critical to understanding and predicting the global nitrogen (N) and carbon cycles, but an incomplete biochemical picture hinders in vitro studies of N-cycling enzymes. Although an integrative structural and dynamic characterization at the atomic scale would advance our understanding of function tremendously, structural knowledge of key N-cycling enzymes from ecologically relevant ammonia oxidizers is unfortunately extremely limited. Here, we discuss the challenges and opportunities for examining the ecology of ammonia-oxidizing organisms, particularly uncultivated Thaumarchaeota, through (meta)genome-driven structural biology of the enzymes ammonia monooxygenase (AMO) and nitrite reductase (NirK).
Collapse
Affiliation(s)
- Bradley B Tolar
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Herrmann
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - John R Bargar
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Henry van den Bedem
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
200
|
Sollich M, Yoshinaga MY, Häusler S, Price RE, Hinrichs KU, Bühring SI. Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments. Front Microbiol 2017; 8:1550. [PMID: 28878741 PMCID: PMC5572230 DOI: 10.3389/fmicb.2017.01550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments such as hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we investigated a thermal gradient from 18 to 101°C across a marine sediment field and tested the hypothesis that cell membrane lipids provide a major biochemical basis for the bioenergetics of archaea and bacteria under heat stress. This paper features a detailed lipidomics approach with the focus on membrane lipid structure-function. Membrane lipids analyzed here include polar lipids of bacteria and polar and core lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we found that archaeal polar lipids generally dominate over bacterial lipids in deep layers of the sediments influenced by hydrothermal fluids. A close examination of archaeal and bacterial lipids revealed a membrane quandary: not only low permeability, but also increased fluidity of membranes are required as a unified property of microbial membranes for energy conservation under heat stress. For instance, bacterial fatty acids were composed of longer chain lengths in concert with higher degree of unsaturation while archaea modified their tetraethers by incorporation of additional methyl groups at elevated sediment temperatures. It is possible that these configurations toward a more fluidized membrane at elevated temperatures are counterbalanced by the high abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce membrane permeability through strong intermolecular hydrogen bonding. Our results provide a new angle for interpreting membrane lipid structure-function enabling archaea and bacteria to survive and grow in hydrothermal systems.
Collapse
Affiliation(s)
- Miriam Sollich
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Marcos Y Yoshinaga
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Stefan Häusler
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Roy E Price
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony BrookNY, United States
| | - Kai-Uwe Hinrichs
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Solveig I Bühring
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| |
Collapse
|