151
|
Global overview and major challenges of host prediction methods for uncultivated phages. Curr Opin Virol 2021; 49:117-126. [PMID: 34126465 DOI: 10.1016/j.coviro.2021.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022]
Abstract
Bacterial communities play critical roles across all of Earth's biomes, affecting human health and global ecosystem functioning. They do so under strong constraints exerted by viruses, that is, bacteriophages or 'phages'. Phages can reshape bacterial communities' structure, influence long-term evolution of bacterial populations, and alter host cell metabolism during infection. Metagenomics approaches, that is, shotgun sequencing of environmental DNA or RNA, recently enabled large-scale exploration of phage genomic diversity, yielding several millions of phage genomes now to be further analyzed and characterized. One major challenge however is the lack of direct host information for these phages. Several methods and tools have been proposed to bioinformatically predict the potential host(s) of uncultivated phages based only on genome sequence information. Here we review these different approaches and highlight their distinct strengths and limitations. We also outline complementary experimental assays which are being proposed to validate and refine these bioinformatic predictions.
Collapse
|
152
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
153
|
Ku YS, Wang Z, Duan S, Lam HM. Rhizospheric Communication through Mobile Genetic Element Transfers for the Regulation of Microbe-Plant Interactions. BIOLOGY 2021; 10:biology10060477. [PMID: 34071379 PMCID: PMC8227670 DOI: 10.3390/biology10060477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Rhizosphere, where microbes and plants coexist, is a hotspot of mobile genetic element (MGE) transfers. It was suggested that ancient MGE transfers drove the evolution of both microbes and plants. On the other hand, recurrent MGE transfers regulate microbe-plant interaction and the adaptation of microbes and plants to the environment. The studies of MGE transfers in the rhizosphere provide useful information for the research on pathogenic/ beneficial microbe-plant interaction. In addition, MGE transfers between microbes and the influence by plant root exudates on such transfers provide useful information for the research on bioremediation. Abstract The transfer of mobile genetic elements (MGEs) has been known as a strategy adopted by organisms for survival and adaptation to the environment. The rhizosphere, where microbes and plants coexist, is a hotspot of MGE transfers. In this review, we discuss the classic mechanisms as well as novel mechanisms of MGE transfers in the rhizosphere. Both intra-kingdom and cross-kingdom MGE transfers will be addressed. MGE transfers could be ancient events which drove evolution or recurrent events which regulate adaptations. Recent findings on MGE transfers between plant and its interacting microbes suggest gene regulations brought forth by such transfers for symbiosis or defense mechanisms. In the natural environment, factors such as temperature and soil composition constantly influence the interactions among different parties in the rhizosphere. In this review, we will also address the effects of various environmental factors on MGE transfers in the rhizosphere. Besides environmental factors, plant root exudates also play a role in the regulation of MGE transfer among microbes in the rhizosphere. The potential use of microbes and plants for bioremediation will be discussed.
Collapse
|
154
|
Cieślik M, Bagińska N, Jończyk-Matysiak E, Węgrzyn A, Węgrzyn G, Górski A. Temperate Bacteriophages-The Powerful Indirect Modulators of Eukaryotic Cells and Immune Functions. Viruses 2021; 13:v13061013. [PMID: 34071422 PMCID: PMC8228536 DOI: 10.3390/v13061013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages are natural biological entities that limit the growth and amplification of bacteria. They are important stimulators of evolutionary variability in bacteria, and currently are considered a weapon against antibiotic resistance of bacteria. Nevertheless, apart from their antibacterial activity, phages may act as modulators of mammalian immune responses. In this paper, we focus on temperate phages able to execute the lysogenic development, which may shape animal or human immune response by influencing various processes, including phagocytosis of bacterial invaders and immune modulation of mammalian host cells.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| |
Collapse
|
155
|
Du J, Zayed AA, Kigerl KA, Zane K, Sullivan MB, Popovich PG. Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. mSystems 2021; 6:e01356-20. [PMID: 33975974 PMCID: PMC8125080 DOI: 10.1128/msystems.01356-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic "blind spots," primer bias, and an inability to profile microbiota functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by applying genome- and gene-resolved metagenomic analysis of murine stool samples collected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th thoracic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4) abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality metagenome-assembled genomes (MAGs) were recovered, with most (n = 96) representing new bacterial species. Read mapping revealed that after SCI, the relative abundance of beneficial commensals (Lactobacillus johnsonii and CAG-1031 spp.) decreased, while potentially pathogenic bacteria (Weissella cibaria, Lactococcus lactis _A, Bacteroides thetaiotaomicron) increased. Functionally, microbial genes encoding proteins for tryptophan, vitamin B6, and folate biosynthesis, essential pathways for central nervous system function, were reduced after SCI. Among viruses, 1,028 mostly novel viral populations were recovered, expanding known murine gut viral species sequence space ∼3-fold compared to that of public databases. Phages of beneficial commensal hosts (CAG-1031, Lactobacillus, and Turicibacter) decreased, while phages of pathogenic hosts (Weissella, Lactococcus, and class Clostridia) increased after SCI. Although the microbiomes and viromes were changed in all SCI mice, some of these changes varied as a function of spinal injury level, implicating loss of sympathetic tone as a mechanism underlying gut dysbiosis.IMPORTANCE To our knowledge, this is the first article to apply metagenomics to characterize changes in gut microbial population dynamics caused by a clinically relevant model of central nervous system (CNS) trauma. It also utilizes the most current approaches in genome-resolved metagenomics and viromics to maximize the biological inferences that can be made from these data. Overall, this article highlights the importance of autonomic nervous system regulation of a distal organ (gut) and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing information on taxonomy, function, and viruses, metagenomic data may better predict how SCI-induced gut dysbiosis influences systemic and neurological outcomes after SCI.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kylie Zane
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
156
|
Pasechnek A, Rabinovich L, Stadnyuk O, Azulay G, Mioduser J, Argov T, Borovok I, Sigal N, Herskovits AA. Active Lysogeny in Listeria Monocytogenes Is a Bacteria-Phage Adaptive Response in the Mammalian Environment. Cell Rep 2021; 32:107956. [PMID: 32726621 PMCID: PMC7397523 DOI: 10.1016/j.celrep.2020.107956] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/05/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
Some Listeria monocytogenes (Lm) strains harbor a prophage within the comK gene, which renders it inactive. During Lm infection of macrophage cells, the prophage turns into a molecular switch, promoting comK gene expression and therefore Lm intracellular growth. During this process, the prophage does not produce infective phages or cause bacterial lysis, suggesting it has acquired an adaptive behavior suited to the pathogenic lifestyle of its host. In this study, we demonstrate that this non-classical phage behavior, named active lysogeny, relies on a transcriptional response that is specific to the intracellular niche. While the prophage undergoes lytic induction, the process is arrested midway, preventing the transcription of the late genes. Further, we demonstrate key phage factors, such as LlgA transcription regulator and a DNA replicase, that support the phage adaptive behavior. This study provides molecular insights into the adaptation of phages to their pathogenic hosts, uncovering unusual cooperative interactions.
Collapse
Affiliation(s)
- Anna Pasechnek
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Lev Rabinovich
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Olga Stadnyuk
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Gil Azulay
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Jessica Mioduser
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Tal Argov
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Ilya Borovok
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Nadejda Sigal
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Anat A Herskovits
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel.
| |
Collapse
|
157
|
Das AK, Chichghare SA, Sharma SK, Kumar JPT, Singh S, Baranwal VK, Kumar A, Nerkar S. Genetic diversity and population structure of 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing in India based on the prophage types. World J Microbiol Biotechnol 2021; 37:95. [PMID: 33963452 DOI: 10.1007/s11274-021-03057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022]
Abstract
Huanglongbing (HLB), also known as 'citrus greening', is an extremely destructive disease of citrus worldwide. HLB is associated with three species of the fastidious proteobacterium, Candidatus Liberibacter asiaticus (CaLas), Ca. L. africanus and Ca. L. americanus with CaLas being the most widely distributed around the world and the only species detected and described so far in India, one of the major global citrus fruit producers. Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. Three types of prophages, Type 1, Type 2 and Type 3 have been identified and described in CaLas so far. In the present study, 441 CaLas isolates sampled across 18 Indian states were used for prophage typing. Based on detection of three prophage types by PCR, all the eight probable combinations of CaLas prophages were identified, including single Type 1 (26.5%), single Type 2 (18.8%), single Type 3 (1.4%), Type 1 + Type 2 (20.4%), Type 1 + Type 3 (12.5%), Type 2 + Type 3 (4.8%), Type 1 + Type 2 + Type 3 (11.3%) and None type (4.3%). Prophage types were confirmed by PCR amplicon sequencing and subsequent phylogenetic analysis. By discovery of all 3 prophages and based on genetic identity and genetic distance, CaLas populations from eighteen citrus growing states were separated into two major Prophage Typing Groups (PTGs): PTG1 and PTG2. The PTG1 comprised of CaLas from North-West India and PTG2 from rest of the country (North-East, Central and South India), and both major groups were further divided into two (PTG1-A, PTG1-B) and three (PTG2-A, PTG2-B and PTG2-C) subgroups respectively. The findings of CaLas population patterns provide evidence for independent origins of HLB-associated CaLas. CRISPR (clustered regularly interspaced short palindromic repeats) array was also detected in CaLas isolates. This is the first report evaluating the genetic variation of a large population of CaLas bacterium in India using the PCR markers from the prophage regions which would certainly assist the ongoing HLB management efforts in India.
Collapse
Affiliation(s)
- Ashis K Das
- Plant Pathology Lab, ICAR-Central Citrus Research Institute, Amravati Road, Nagpur, 440033, India.
| | - Subham A Chichghare
- Plant Pathology Lab, ICAR-Central Citrus Research Institute, Amravati Road, Nagpur, 440033, India
| | - Susheel K Sharma
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - J Prasanth Tej Kumar
- Plant Pathology Lab, ICAR-Central Citrus Research Institute, Amravati Road, Nagpur, 440033, India
| | - Salvinder Singh
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
| | - Virendra K Baranwal
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ashok Kumar
- Plant Pathology Lab, ICAR-Central Citrus Research Institute, Amravati Road, Nagpur, 440033, India
| | - Sagar Nerkar
- Plant Pathology Lab, ICAR-Central Citrus Research Institute, Amravati Road, Nagpur, 440033, India
| |
Collapse
|
158
|
Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. Infection with Bacteroides Phage BV01 Alters the Host Transcriptome and Bile Acid Metabolism in a Common Human Gut Microbe. Cell Rep 2021; 32:108142. [PMID: 32937127 PMCID: PMC8354205 DOI: 10.1016/j.celrep.2020.108142] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phage-bacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.
Collapse
Affiliation(s)
| | - Lindsey K Ly
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
159
|
Nakamura K, Ogura Y, Gotoh Y, Hayashi T. Prophages integrating into prophages: A mechanism to accumulate type III secretion effector genes and duplicate Shiga toxin-encoding prophages in Escherichia coli. PLoS Pathog 2021; 17:e1009073. [PMID: 33914852 PMCID: PMC8112680 DOI: 10.1371/journal.ppat.1009073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/11/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages (or phages) play major roles in the evolution of bacterial pathogens via horizontal gene transfer. Multiple phages are often integrated in a host chromosome as prophages, not only carrying various novel virulence-related genetic determinants into host bacteria but also providing various possibilities for prophage-prophage interactions in bacterial cells. In particular, Escherichia coli strains such as Shiga toxin (Stx)-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) strains have acquired more than 10 prophages (up to 21 prophages), many of which encode type III secretion system (T3SS) effector gene clusters. In these strains, some prophages are present at a single locus in tandem, which is usually interpreted as the integration of phages that use the same attachment (att) sequence. Here, we present phages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Some of the phages integrated into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages in a single cell. The identified attB sequences in prophage genomes are apparently derived from host chromosomes. In addition, two or three different attB sequences are present in some prophages, which results in the generation of prophage clusters in various complex configurations. These phages integrating into prophages represent a medically and biologically important type of inter-phage interaction that promotes the accumulation of T3SS effector genes in STEC and EPEC, the duplication of Stx phages in STEC, and the conversion of EPEC to STEC and that may be distributed in other types of E. coli strains as well as other prophage-rich bacterial species. Multiple prophages are often integrated in a bacterial host chromosome and some are present at a single locus in tandem. The most striking examples are Shiga toxin (Stx)-producing and enteropathogenic Escherichia coli (STEC and EPEC) strains, which usually contain more than 10 prophages (up to 21). Many of them encode a cluster of type III secretion system (T3SS) effector genes, contributing the acquisition of a large number of effectors (>30) by STEC and EPEC. Here, we describe prophages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Two or three different attachment sequences derived from host chromosomes are present in some prophages, generating prophage clusters in various complex configurations. Of note, some of such phages integrating into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages. Thus, “prophage-in-prophage” represents an important inter-phage interaction as they can promote not only the accumulation of T3SS effectors in STEC and EPEC but also the duplication of Stx phages and the conversion of EPEC to STEC.
Collapse
Affiliation(s)
- Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
160
|
Orellana R, Arancibia A, Badilla L, Acosta J, Arancibia G, Escar R, Ferrada G, Seeger M. Ecophysiological Features Shape the Distribution of Prophages and CRISPR in Sulfate Reducing Prokaryotes. Microorganisms 2021; 9:microorganisms9050931. [PMID: 33925267 PMCID: PMC8146710 DOI: 10.3390/microorganisms9050931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Sulfate reducing prokaryotes (SRP) are a phylogenetically and physiologically diverse group of microorganisms that use sulfate as an electron acceptor. SRP have long been recognized as key players of the carbon and sulfur cycles, and more recently, they have been identified to play a relevant role as part of syntrophic and symbiotic relations and the human microbiome. Despite their environmental relevance, there is a poor understanding about the prevalence of prophages and CRISPR arrays and how their distribution and dynamic affect the ecological role of SRP. We addressed this question by analyzing the results of a comprehensive survey of prophages and CRISPR in a total of 91 genomes of SRP with several genotypic, phenotypic, and physiological traits, including genome size, cell volume, minimum doubling time, cell wall, and habitat, among others. Our analysis discovered 81 prophages in 51 strains, representing the 56% of the total evaluated strains. Prophages are non-uniformly distributed across the SRP phylogeny, where prophage-rich lineages belonged to Desulfovibrionaceae and Peptococcaceae. Furthermore, our study found 160 CRISPR arrays in 71 SRP, which is more abundant and widely spread than previously expected. Although there is no correlation between presence and abundance of prophages and CRISPR arrays at the strain level, our analysis showed that there is a directly proportional relation between cellular volumes and number of prophages per cell. This result suggests that there is an additional selective pressure for strains with smaller cells to get rid of foreign DNA, such as prophages, but not CRISPR, due to less availability of cellular resources. Analysis of the prophage genes encoding viral structural proteins reported that 44% of SRP prophages are classified as Myoviridae, and comparative analysis showed high level of homology, but not synteny, among prophages belonging to the Family Desulfovibrionaceae. We further recovered viral-like particles and structures that resemble outer membrane vesicles from D. vulgaris str. Hildenborough. The results of this study improved the current understanding of dynamic interactions between prophages and CRISPR with their hosts in both cultured and hitherto-uncultured SRP strains, and how their distribution affects the microbial community dynamics in several sulfidogenic natural and engineered environments.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (A.A.); (L.B.)
- Correspondence:
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (A.A.); (L.B.)
| | - Leonardo Badilla
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (A.A.); (L.B.)
| | - Jonathan Acosta
- Departamento de Estadística, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago 7820436, Chile;
| | - Gabriela Arancibia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.A.); (R.E.); (G.F.); (M.S.)
| | - Rodrigo Escar
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.A.); (R.E.); (G.F.); (M.S.)
| | - Gustavo Ferrada
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.A.); (R.E.); (G.F.); (M.S.)
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.A.); (R.E.); (G.F.); (M.S.)
| |
Collapse
|
161
|
Claisse O, Chaïb A, Jaomanjaka F, Philippe C, Barchi Y, Lucas PM, Le Marrec C. Distribution of Prophages in the Oenococcus oeni Species. Microorganisms 2021; 9:856. [PMID: 33923461 PMCID: PMC8074189 DOI: 10.3390/microorganisms9040856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Oenococcus oeni is the most exploited lactic acid bacterium in the wine industry and drives the malolactic fermentation of wines. Although prophage-like sequences have been identified in the species, many are not characterized, and a global view of their integration and distribution amongst strains is currently lacking. In this work, we analyzed the complete genomes of 231 strains for the occurrence of prophages, and analyzed their size and positions of insertion. Our data show the limited variation in the number of prophages in O. oeni genomes, and that six sites of insertion within the bacterial genome are being used for site-specific recombination. Prophage diversity patterns varied significantly for different host lineages, and environmental niches. Overall, the findings highlight the pervasive presence of prophages in the O. oeni species, their role as a major source of within-species bacterial diversity and drivers of horizontal gene transfer. Our data also have implications for enhanced understanding of the prophage recombination events which occurred during evolution of O. oeni, as well as the potential of prophages in influencing the fitness of these bacteria in their distinct niches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claire Le Marrec
- Unité de Recherche Œnologie, Bordeaux INP, University of Bordeaux, INRAE, ISVV, F-33882 Bordeaux, France; (O.C.); (A.C.); (F.J.); (C.P.); (Y.B.); (P.M.L.)
| |
Collapse
|
162
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Proteomic Characterization of Bacteriophage Peptides from the Mastitis Producer Staphylococcus aureus by LC-ESI-MS/MS and the Bacteriophage Phylogenomic Analysis. Foods 2021; 10:799. [PMID: 33917943 PMCID: PMC8068337 DOI: 10.3390/foods10040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The present work describes LC-ESI-MS/MS MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses of tryptic digestion peptides from phages that infect mastitis-causing Staphylococcus aureus isolated from dairy products. A total of 1933 nonredundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 79 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, eighteen of the phage origin peptides found were specific to S. aureus strains. These diagnostic peptides could be useful for the identification and characterization of S. aureus strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides that are present in closely related phages and the existing links between bacteriophage phylogeny and the respective Staphylococcus spp. infected.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain;
| | - José-Luis R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.); (T.G.V.)
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
163
|
Pinto AM, Silva MD, Pastrana LM, Bañobre-López M, Sillankorva S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol Rev 2021; 45:6204673. [PMID: 33784387 DOI: 10.1093/femsre/fuab019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The global emergence of multidrug-resistant pathogens is shaping the current dogma regarding the use of antibiotherapy. Many bacteria have evolved to become resistant to conventional antibiotherapy, representing a health and economic burden for those afflicted. The search for alternative and complementary therapeutic approaches has intensified and revived phage therapy. In recent decades, the exogenous use of lysins, encoded in phage genomes, has shown encouraging effectiveness. These two antimicrobial agents reduce bacterial populations; however, many barriers challenge their prompt delivery at the infection site. Encapsulation in delivery vehicles provides targeted therapy with a controlled compound delivery, surpassing chemical, physical and immunological barriers that can inactivate and eliminate them. This review explores phages and lysins' current use to resolve bacterial infections in the respiratory, digestive, and integumentary systems. We also highlight the different challenges they face in each of the three systems and discuss the advances towards a more expansive use of delivery vehicles.
Collapse
Affiliation(s)
- Ana Mafalda Pinto
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Maria Daniela Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Lorenzo M Pastrana
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| |
Collapse
|
164
|
Abdulrahman RF, Davies RL. Diversity and characterization of temperate bacteriophages induced in Pasteurella multocida from different host species. BMC Microbiol 2021; 21:97. [PMID: 33784980 PMCID: PMC8008546 DOI: 10.1186/s12866-021-02155-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bacteriophages play important roles in the evolution of bacteria and in the emergence of new pathogenic strains by mediating the horizontal transfer of virulence genes. Pasteurella multocida is responsible for different disease syndromes in a wide range of domesticated animal species. However, very little is known about the influence of bacteriophages on disease pathogenesis in this species. Results Temperate bacteriophage diversity was assessed in 47 P. multocida isolates of avian (9), bovine (8), ovine (10) and porcine (20) origin. Induction of phage particles with mitomycin C identified a diverse range of morphological types representing both Siphoviridae and Myoviridae family-types in 29 isolates. Phage of both morphological types were identified in three isolates indicating that a single bacterial host may harbour multiple prophages. DNA was isolated from bacteriophages recovered from 18 P. multocida isolates and its characterization by restriction endonuclease (RE) analysis identified 10 different RE types. Phage of identical RE types were identified in certain closely-related strains but phage having different RE types were present in other closely-related isolates suggesting possible recent acquisition. The host range of the induced phage particles was explored using plaque assay but only 11 (38%) phage lysates produced signs of infection in a panel of indicator strains comprising all 47 isolates. Notably, the majority (9/11) of phage lysates which caused infection originated from two groups of phylogenetically unrelated ovine and porcine strains that uniquely possessed the toxA gene. Conclusions Pasteurella multocida possesses a wide range of Siphoviridae- and Myoviridae-type bacteriophages which likely play key roles in the evolution and virulence of this pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02155-9.
Collapse
Affiliation(s)
- Rezheen F Abdulrahman
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.,Pathology and Microbiology Department, Collage of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
165
|
Yuan Z, Shu L, Tan ZJ. Mechanism of Hubei "Pneumonia No. 1" decoction for treatment of COVID-19 n with regard to intestinal microecology. Shijie Huaren Xiaohua Zazhi 2021; 29:105-109. [DOI: 10.11569/wcjd.v29.i3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chinese medicine plays an important role in the prevention and control of corona virus disease 2019 (COVID-19) epidemic. Based on the symptoms and signs of COVID-19, using the modified Xiaochaihu Decoction Decoction as the basic and based on the symptoms and signs of COVID-19, Hubei Provincial Traditional Chinese Medical Hospital developed the "Pneumonia No. 1" decoction for the treatment of COVID-19. In this paper, we discuss the relationship between COVID-19 and intestinal microflora, and explore the possible mechanism of "Pneumonia No. 1" decoction for treatment of COVID-19 from the perspective of intestinal microflora, with an aim to provide theoretical support for the clinical efficacy of Chinese medicine in treating COVID-19.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Lan Shu
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Zhou-Jin Tan
- Department of Microbiology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
166
|
Golomidova AK, Efimov AD, Kulikov EE, Kuznetsov AS, Belalov IS, Letarov AV. O antigen restricts lysogenization of non-O157 Escherichia coli strains by Stx-converting bacteriophage phi24B. Sci Rep 2021; 11:3035. [PMID: 33542282 PMCID: PMC7862636 DOI: 10.1038/s41598-021-82422-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/18/2021] [Indexed: 11/23/2022] Open
Abstract
Acquisition of new prophages that are able to increase the bacterial fitness by the lysogenic conversion is believed to be an important strategy of bacterial adaptation to the changing environment. However, in contrast to the factors determining the range of bacteriophage lytic activity, little is known about the factors that define the lysogenization host range. Bacteriophage phi24B is the paradigmal model of Stx-converting phages, encoding the toxins of the Shiga-toxigenic E. coli (STEC). This virus has been shown to lysogenize a wide range of E. coli strains that is much broader than the range of the strains supporting its lytic growth. Therefore, phages produced by the STEC population colonizing the small or large intestine are potentially able to lysogenize symbiotic E. coli in the hindgut, and these secondary lysogens may contribute to the overall patient toxic load and to lead to the emergence of new pathogenic STEC strains. We demonstrate, however, that O antigen effectively limit the lysogenization of the wild E. coli strains by phi24B phage. The lysogens are formed from the spontaneous rough mutants and therefore have increased sensitivity to other bacteriophages and to the bactericidal activity of the serum if compared to their respective parental strains.
Collapse
Affiliation(s)
- A K Golomidova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312
| | - A D Efimov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312
| | - E E Kulikov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - A S Kuznetsov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - I Sh Belalov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312
| | - A V Letarov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-letiya Oktyabrya 7 bld. 2, Moscow, Russia, 117312. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
167
|
Complete genome analysis of an active prophage of Vibrio alginolyticus. Arch Virol 2021; 166:891-896. [PMID: 33454862 DOI: 10.1007/s00705-020-04941-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/12/2020] [Indexed: 01/21/2023]
Abstract
An active prophage, Vibrio phage ValM-yong1, was isolated from pathogenic Vibrio alginolyticus by mitomycin C induction. This phage is a member of the family Myoviridae and contains a head approximately 90 nm in diameter and a retractable tail approximately 250 nm in length. The genome of the phage is 33,851 bp in length with a G+C content of 45.6%. The noteworthy features of Vibrio phage ValM-yong1 are its flower-like head and genomic mosaicism. Here, we focus on presenting the genomic characterization of the virus.
Collapse
|
168
|
Yang L, Wang Y, Yu P, Ren S, Zhu Z, Jin Y, Yan J, Peng X, Chen L. Prophage-Related Gene VpaChn25_0724 Contributes to Cell Membrane Integrity and Growth of Vibrio parahaemolyticus CHN25. Front Cell Infect Microbiol 2020; 10:595709. [PMID: 33363055 PMCID: PMC7756092 DOI: 10.3389/fcimb.2020.595709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/06/2020] [Indexed: 01/16/2023] Open
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that can cause acute gastroenteritis and even death in humans. In aquatic ecosystems, phages constantly transform bacterial communities by horizontal gene transfer. Nevertheless, biological functions of prophage-related genes in V. parahaemolyticus remain to be fully unveiled. Herein, for the first time, we studied one such gene VpaChn25_0724 encoding an unknown hypothetical protein in V. parahaemolyticus CHN25. This gene deletion mutant ΔVpaChn25_0724 was constructed by homologous recombination, and its complementary mutant ΔVpaChn25_0724-com was also obtained. The ΔVpaChn25_0724 mutant exhibited a sever defect in growth and swimming motility particularly at lower temperatures. Biofilm formation and cytotoxicity capacity of V. parahaemolyticus CHN25 was significantly lowered in the absence of VpaChn25_0724. Comparative secretomic analysis revealed an increase in extracellular proteins of ΔVpaChn25_0724, which likely resulted from its damaged cell membrane. Comparison of transcriptome data showed twelve significantly altered metabolic pathways in ΔVpaChn25_0724, suggesting inactive transport and utilization of carbon sources, repressed energy production and membrane biogenesis in ΔVpaChn25_0724. Comparative transcriptomic analysis also revealed several remarkably down-regulated key regulators in bacterial gene regulatory networks linked to the observed phenotypic variations. Overall, the results here facilitate better understanding of biological significance of prophage-related genes remaining in V. parahaemolyticus.
Collapse
Affiliation(s)
- Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yaping Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA, United States
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Centre, Richmond, VA, United States
| | - Zhuoying Zhu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yinzhe Jin
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jizhou Yan
- College of Fishers and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, Shanghai, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
169
|
Wu MY, Li WW, Christie G, Setlow P, Li YQ. Characterization of Heterogeneity and Dynamics of Lysis of Single Bacillus subtilis Cells upon Prophage Induction During Spore Germination, Outgrowth, and Vegetative Growth Using Raman Tweezers and Live-Cell Phase-Contrast Microscopy. Anal Chem 2020; 93:1443-1450. [PMID: 33369381 DOI: 10.1021/acs.analchem.0c03341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A prophage comprises a bacteriophage genome that has integrated into a host bacterium's DNA, which generally permits the cell to grow and divide normally. However, the prophage can be induced by various stresses, or induction can occur spontaneously. After prophage induction, viral replication and production of endolysins begin until the cell lyses and phage particles are released. However, the heterogeneity of prophage induction and lysis of individual cells in a population and the dynamics of a cell undergoing lysis by prophage induction have not been fully characterized. Here, we used Raman tweezers and live-cell phase-contrast microscopy to characterize the Raman spectral and cell length changes that occur during the lysis of individual Bacillus subtilis cells from spores that carry PBSX prophage during spores' germination, outgrowth, and then vegetative growth. Major findings of this work are as follows: (i) After addition of xylose to trigger prophage induction, the intensities of Raman spectral bands associated with nucleic acids of single cells in induced cultures gradually fell to zero, in contrast to the much smaller changes in protein band intensities and no changes in nucleic acid bands in uninduced cultures; (ii) the nucleic acid band intensities from an individual induced cell exhibited a rapid decrease, following a long lag period; (iii) after the addition of nutrient-rich medium with xylose, single spores underwent a long period (228 ± 41.4 min) for germination, outgrowth, and vegetative growth, followed by a short period of cell burst in 1.5 ± 0.8 min at a cell length of 8.2 ± 5.5 μm; (iv) the latent time (Tlatent) between the addition of xylose and the start of cell burst was heterogeneous in cell populations; however, the period (ΔTburst) from the latent time to the completion of cell lysis was quite small; (v) in a poor medium with l-alanine alone, addition of xylose caused prophage induction following spore germination but with longer Tlatent and ΔTburst times and without cell elongation; (vi) spontaneous prophage induction and lysis of individual cells from spores in a minimal nutrient medium were observed without xylose addition, and cell length prior to cell lysis was ∼4.1 μm, but spontaneous prophage induction was not observed in a rich medium; (vii) in a rich medium, addition of xylose at a time well after spore germination and outgrowth significantly shortened the average Tlatent time. The results of this study provide new insights into the heterogeneity and dynamics of lysis of individual B. subtilis cells derived from spores upon prophage induction.
Collapse
Affiliation(s)
- Mei-Yan Wu
- Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353, United States
| | | | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, Connecticut 06030-3305, United States
| | - Yong-Qing Li
- Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353, United States.,School of Electronic Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
170
|
Dragoš A, Priyadarshini B, Hasan Z, Strube ML, Kempen PJ, Maróti G, Kaspar C, Bose B, Burton BM, Bischofs IB, Kovács ÁT. Pervasive prophage recombination occurs during evolution of spore-forming Bacilli. ISME JOURNAL 2020; 15:1344-1358. [PMID: 33343000 DOI: 10.1038/s41396-020-00854-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.
Collapse
Affiliation(s)
- Anna Dragoš
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - B Priyadarshini
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Zahraa Hasan
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | - Charlotte Kaspar
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
171
|
Abe K, Takahashi T, Sato T. Extreme C-terminal element of SprA serine integrase is a potential component of the "molecular toggle switch" which controls the recombination and its directionality. Mol Microbiol 2020; 115:1110-1121. [PMID: 33244797 DOI: 10.1111/mmi.14654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/26/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
In Bacillus subtilis, a sporulation-related gene, spsM, is disrupted by SPβ prophage, but reconstituted during sporulation through SPβ excision. The spsM reconstitution is catalyzed by a site-specific DNA recombinase, SprA, and its cognate recombination directionality factor, SprB. SprB interacts with SprA, directing the SprA-mediated recombination reaction from integration to excision; however, the details of the directionality control remains unclear. Here, we demonstrate the importance of the extreme C-terminal region (ECT) of SprA in the DNA recombination and directionality control. We created a series of SprA C-terminal deletants and examined their DNA-binding and recombination activities. Deletions in the ECT caused a loss of integration and excision activity, the magnitudes of which positively correlated with the deletion size. Gel shift study revealed that the loss of the integration activity was attributable to the failure of synaptic complex formation. The excision deficiency was caused by defective interaction with SprB. Moreover, alanine scanning analysis revealed that Phe532 is essential to interact with SprB. SprAF532A , therefore, showed almost no excision activity, while retaining the integration activity. Collectively, these results suggest that the ECT plays the crucial roles in the interaction of SprA with SprB and possibly in the directional control of the recombination.
Collapse
Affiliation(s)
- Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Takumi Takahashi
- Department of Frontier Bioscience, Hosei University, Koganei, Japan
| | - Tsutomu Sato
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Japan
| |
Collapse
|
172
|
Hufsky F, Beerenwinkel N, Meyer IM, Roux S, Cook GM, Kinsella CM, Lamkiewicz K, Marquet M, Nieuwenhuijse DF, Olendraite I, Paraskevopoulou S, Young F, Dijkman R, Ibrahim B, Kelly J, Le Mercier P, Marz M, Ramette A, Thiel V. The International Virus Bioinformatics Meeting 2020. Viruses 2020; 12:E1398. [PMID: 33291220 PMCID: PMC7762161 DOI: 10.3390/v12121398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
The International Virus Bioinformatics Meeting 2020 was originally planned to take place in Bern, Switzerland, in March 2020. However, the COVID-19 pandemic put a spoke in the wheel of almost all conferences to be held in 2020. After moving the conference to 8-9 October 2020, we got hit by the second wave and finally decided at short notice to go fully online. On the other hand, the pandemic has made us even more aware of the importance of accelerating research in viral bioinformatics. Advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks. The International Virus Bioinformatics Meeting 2020 has attracted approximately 120 experts in virology and bioinformatics from all over the world to join the two-day virtual meeting. Despite concerns being raised that virtual meetings lack possibilities for face-to-face discussion, the participants from this small community created a highly interactive scientific environment, engaging in lively and inspiring discussions and suggesting new research directions and questions. The meeting featured five invited and twelve contributed talks, on the four main topics: (1) proteome and RNAome of RNA viruses, (2) viral metagenomics and ecology, (3) virus evolution and classification and (4) viral infections and immunology. Further, the meeting featured 20 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting.
Collapse
Affiliation(s)
- Franziska Hufsky
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Niko Beerenwinkel
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Irmtraud M. Meyer
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Simon Roux
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA;
| | - Georgia May Cook
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Cormac M. Kinsella
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Kevin Lamkiewicz
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mike Marquet
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- CaSe Group, Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, 07743 Jena, Germany
| | - David F. Nieuwenhuijse
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Viroscience Department, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ingrida Olendraite
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Sofia Paraskevopoulou
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Francesca Young
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Ronald Dijkman
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute of Virology and Immunology, University of Bern, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| | - Bashar Ibrahim
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Centre for Applied Mathematics and Bioinformatics, Hawally 32093, Kuwait
- Department of Mathematics and Natural Sciences Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Jenna Kelly
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute of Virology and Immunology, University of Bern, 3012 Bern, Switzerland
| | - Philippe Le Mercier
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, 1205 Geneva, Switzerland
| | - Manja Marz
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Alban Ramette
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
| | - Volker Thiel
- European Virus Bioinformatics Center, 07743 Jena, Germany; (N.B.); (I.M.M.); (G.M.C.); (C.M.K.); (K.L.); (M.M.); (D.F.N.); (I.O.); (S.P.); (R.D.); (B.I.); (J.K.); (P.L.M.); (M.M.); (A.R.); (V.T.)
- Institute of Virology and Immunology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
173
|
Laanto E, Ravantti JJ, Sundberg LR. Prophages and Past Prophage-Host Interactions Revealed by CRISPR Spacer Content in a Fish Pathogen. Microorganisms 2020; 8:E1919. [PMID: 33276599 PMCID: PMC7761591 DOI: 10.3390/microorganisms8121919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
The role of prophages in the evolution, diversification, or virulence of the fish pathogen Flavobacterium columnare has not been studied thus far. Here, we describe a functional spontaneously inducing prophage fF4 from the F. columnare type strain ATCC 23463, which is not detectable with commonly used prophage search methods. We show that this prophage type has a global distribution and is present in strains isolated from Finland, Thailand, Japan, and North America. The virions of fF4 are myoviruses with contractile tails and infect only bacterial strains originating from Northern Finland. The fF4 resembles transposable phages by similar genome organization and several gene orthologs. Additional bioinformatic analyses reveal several species in the phylum Bacteroidetes that host a similar type of putative prophage, including bacteria that are important animal and human pathogens. Furthermore, a survey of F. columnare Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) spacers indicate a shared evolutionary history between F. columnare strains and the fF4 phage, and another putative prophage in the F. columnare strain ATCC 49512, named p49512. First, CRISPR spacer content from the two CRISPR loci (types II-C and VI-B) of the fF4 lysogen F. columnare ATCC 23463 revealed a phage terminase protein-matching spacer in the VI-B locus. This spacer is also present in two Chinese F. columnare strains. Second, CRISPR analysis revealed four F. columnare strains that contain unique spacers targeting different regions of the putative prophage p49512 in the F. columnare strain ATCC 49512, despite the geographical distance or genomovar of the different strains. This suggests a common ancestry for the F. columnare prophages and different host strains.
Collapse
Affiliation(s)
- Elina Laanto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | - Janne J. Ravantti
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland;
| |
Collapse
|
174
|
Xu P, Xie S, Liu W, Jin P, Wei D, Yaseen DG, Wang Y, Miao W. Comparative Genomics Analysis Provides New Strategies for Bacteriostatic Ability of Bacillus velezensis HAB-2. Front Microbiol 2020; 11:594079. [PMID: 33281792 PMCID: PMC7705179 DOI: 10.3389/fmicb.2020.594079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
Biocontrol formulations prepared from biocontrol bacteria are increasingly applied in sustainable agriculture. Notably, inoculants prepared from Bacillus strains have been proven efficient and environmentally friendly alternatives to chemical bactericides. The bacterium Bacillus velezensis HAB-2 (formerly classified as B. amyloliquefaciens HAB-2) is used as a biological control agent in agricultural fields. In this study, we reported a high-quality genome sequence of HAB-2 using third-generation sequencing technology (PacBio RS II). The 3.89 Mb genome encoded 3,820 predicted genes. Comparative analysis among the genome sequences of reference strains B. velezensis FZB42, B. amyloliquefaciens DSM7 and B. subtilis 168 with the HAB-2 genome revealed obvious differences in the variable part of the genomes, while the core genome shared by FZB42 and HAB-2 was similar (96.14%). However, there were differences in the prophage region among the four strains. The numbers of prophage regions and coding genes in HAB-2 and FZB42 were smaller than the other two strains. The HAB-2 genome showed superior ability to produce secondary metabolites and harbored 13 gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Furthermore, there were two unique clusters: one cluster which encoded lanthipeptide was involved in mersacidin synthesis and another cluster which encoded ladderane was shown to direct an unknown compound. Multidomain enzymes, such as non-ribosomal peptide synthetase and polyketide synthase, control the biosynthesis of secondary metabolites and rely on 4'-phosphopantetheinyl transferases (PPTases). Key genes lpaH2 and a encoded PPTases in HAB-2 encoded 224 and 120 amino acids, respectively. The genomic features revealed that HAB-2 possesses immense potential to synthesize antimicrobial acting secondary metabolites by regulating and controlling gene clusters. The prophage regions and genes encoding PPTases may provide novel insight for the bacteriostatic mechanism of Bacillus in the biological control of plant diseases.
Collapse
Affiliation(s)
- Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shangqian Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- College of Forestry, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Pengfei Jin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dandan Wei
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dahar Ghulam Yaseen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Yu Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
175
|
Benler S, Koonin EV. Phage lysis‐lysogeny switches and programmed cell death: Danse macabre. Bioessays 2020; 42:e2000114. [DOI: 10.1002/bies.202000114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Sean Benler
- National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda Maryland USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
176
|
Kim JW, Bugata V, Cortés-Cortés G, Quevedo-Martínez G, Camps M. Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0026-2019. [PMID: 33210586 PMCID: PMC7724965 DOI: 10.1128/ecosalplus.esp-0026-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with ori function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.
Collapse
Affiliation(s)
- Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Vega Bugata
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Giselle Quevedo-Martínez
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
177
|
Stephan MS, Broeker NK, Saragliadis A, Roos N, Linke D, Barbirz S. In vitro Analysis of O-Antigen-Specific Bacteriophage P22 Inactivation by Salmonella Outer Membrane Vesicles. Front Microbiol 2020; 11:510638. [PMID: 33072001 PMCID: PMC7541932 DOI: 10.3389/fmicb.2020.510638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.
Collapse
Affiliation(s)
- Mareike S Stephan
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nina K Broeker
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
178
|
Garriss G, Henriques-Normark B. Lysogeny in Streptococcus pneumoniae. Microorganisms 2020; 8:E1546. [PMID: 33036379 PMCID: PMC7600539 DOI: 10.3390/microorganisms8101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are major contributors to the evolution, pathogenesis and overall biology of their host bacteria. During their life cycle, temperate bacteriophages form stable associations with their host by integrating into the chromosome, a process called lysogeny. Isolates of the human pathogen Streptococcus pneumoniae are frequently lysogenic, and genomic studies have allowed the classification of these phages into distinct phylogenetic groups. Here, we review the recent advances in the characterization of temperate pneumococcal phages, with a focus on their genetic features and chromosomal integration loci. We also discuss the contribution of phages, and specific phage-encoded features, to colonization and virulence. Finally, we discuss interesting research perspectives in this field.
Collapse
Affiliation(s)
- Geneviève Garriss
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Bioclinicum, 171 76 Stockholm, Sweden
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
179
|
Mageeney CM, Mohammed HT, Dies M, Anbari S, Cudkevich N, Chen Y, Buceta J, Ware VC. Mycobacterium Phage Butters-Encoded Proteins Contribute to Host Defense against Viral Attack. mSystems 2020; 5:e00534-20. [PMID: 33024050 PMCID: PMC7542560 DOI: 10.1128/msystems.00534-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
A diverse set of prophage-mediated mechanisms protecting bacterial hosts from infection has been recently uncovered within cluster N mycobacteriophages isolated on the host, Mycobacterium smegmatis mc2155. In that context, we unveil a novel defense mechanism in cluster N prophage Butters. By using bioinformatics analyses, phage plating efficiency experiments, microscopy, and immunoprecipitation assays, we show that Butters genes located in the central region of the genome play a key role in the defense against heterotypic viral attack. Our study suggests that a two-component system, articulated by interactions between protein products of genes 30 and 31, confers defense against heterotypic phage infection by PurpleHaze (cluster A/subcluster A3) or Alma (cluster A/subcluster A9) but is insufficient to confer defense against attack by the heterotypic phage Island3 (cluster I/subcluster I1). Therefore, based on heterotypic phage plating efficiencies on the Butters lysogen, additional prophage genes required for defense are implicated and further show specificity of prophage-encoded defense systems.IMPORTANCE Many sequenced bacterial genomes, including those of pathogenic bacteria, contain prophages. Some prophages encode defense systems that protect their bacterial host against heterotypic viral attack. Understanding the mechanisms undergirding these defense systems is crucial to appreciate the scope of bacterial immunity against viral infections and will be critical for better implementation of phage therapy that would require evasion of these defenses. Furthermore, such knowledge of prophage-encoded defense mechanisms may be useful for developing novel genetic tools for engineering phage-resistant bacteria of industrial importance.
Collapse
Affiliation(s)
- Catherine M Mageeney
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Hamidu T Mohammed
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Marta Dies
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Samira Anbari
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Netta Cudkevich
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Yanyan Chen
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Javier Buceta
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Vassie C Ware
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
180
|
Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020; 22:4919-4933. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage-host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage-host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage-host interactions in the oceans.
Collapse
Affiliation(s)
- Matthew J Tuttle
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
181
|
Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2020; 18:889-904. [PMID: 32901128 DOI: 10.1038/s41423-020-00532-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage-bacteria-host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Sara Federici
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel P Nobs
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
182
|
Horiuk Y, Horiuk V, Kukhtyn M, Tsvihun A, Kernychnyi S. Characterization of lytic activity of Phage SAvB14 on Staphylococcus aureus variant bovis. J Adv Vet Anim Res 2020; 7:509-513. [PMID: 33005677 PMCID: PMC7521818 DOI: 10.5455/javar.2020.g447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Objective The objective of this study was to investigate the intensity of phage infection caused by Phage SAvB14, which was isolated from dairy farms, depending on the initial number of Staphylococcus aureus cells in the medium. Material and methods To evaluate the impact of the viable bacteria S. aureus var. bovis on the intensity of phage infection caused by Phage SAvB14, 1 mg of phagolysate (phage titer 105 CFU/ ml) was introduced in 9 ml of nutrient broth with an appropriate amount of daily culture of S. aureus var. bovis under study. The number of viable staphylococci was determined by total viable count/ml. Results In this experiment, we found that the intensity of phages lytic activity was dependent on the number of sensitive bacterial cells in the volume of the culture medium. Effective phage therapy requires a high concentration of phages in the medium (inflammation foci) for rapid contact of the virus with bacteria. Conclusion When developing a phage drug to treat subclinical mastitis, it is necessary to increase the phage titer in the drug or its dosage compared to the clinical form, as there is a lower probability of phage contact with a susceptible microbial cell. Besides, at a high concentration of bacteria, there is a gradual decrease in nutrients in the medium, resulting in phages going back to the condition of lysogeny.
Collapse
Affiliation(s)
- Yulia Horiuk
- Faculty of Veterinary Medicine and Technologies in Livestock, Department of Infectious and Parasitic Diseases, State Agrarian and Engineering University in Podilya, Kamianets-Podilskyi, Ukraine
| | - Victor Horiuk
- Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Pathology and Surgery, State Agrarian and Engineering University in Podilya, Kamianets-Podilskyi, Ukraine
| | - Mykola Kukhtyn
- Faculty of Engineering of Machines, Structures and Technologies, Department of Food Biotechnology and Chemistry, Ternopil Ivan Pului National Technical University, Ternopil, Ukraine
| | - Anatoliy Tsvihun
- Faculty of Veterinary Medicine and Technologies in Livestock, Department of Animal Feeding, Breeding and Feed Technology, State Agrarian and Engineering University in Podilya, Kamianets-Podilskyi, Ukraine
| | - Sergiy Kernychnyi
- Faculty of Veterinary Medicine and Technologies in Livestock, Department of Veterinary Obstetrics, Pathology and Surgery, State Agrarian and Engineering University in Podilya, Kamianets-Podilskyi, Ukraine
| |
Collapse
|
183
|
Pinto G, Almeida C, Azeredo J. Bacteriophages to control Shiga toxin-producing E. coli - safety and regulatory challenges. Crit Rev Biotechnol 2020; 40:1081-1097. [PMID: 32811194 DOI: 10.1080/07388551.2020.1805719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are usually found on food products due to contamination from the fecal origin, as their main environmental reservoir is considered to be the gut of ruminants. While this pathogen is far from the incidence of other well-known foodborne bacteria, the severity of STEC infections in humans has triggered global concerns as far as its incidence and control are concerned. Major control strategies for foodborne pathogens in food-related settings usually involve traditional sterilization/disinfection techniques. However, there is an increasing need for the development of further strategies to enhance the antimicrobial outcome, either on food-contact surfaces or directly in food matrices. Phages are considered to be a good alternative to control foodborne pathogens, with some phage-based products already cleared by the Food and Drug Administration (FDA) to be used in the food industry. In European countries, phage-based food decontaminants have already been used. Nevertheless, its broad use in the European Union is not yet possible due to the lack of specific guidelines for the approval of these products. Furthermore, some safety concerns remain to be addressed so that the regulatory requirements can be met. In this review, we present an overview of the main virulence factors of STEC and introduce phages as promising biocontrol agents for STEC control. We further present the regulatory constraints on the approval of phages for food applications and discuss safety concerns that are still impairing their use.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
184
|
Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME JOURNAL 2020; 14:3079-3092. [PMID: 32801311 PMCID: PMC7785012 DOI: 10.1038/s41396-020-00739-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023]
Abstract
Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.
Collapse
|
185
|
|
186
|
Abstract
The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Marian L Schmidt
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| |
Collapse
|
187
|
Zuppi M, Tozzoli R, Chiani P, Quiros P, Martinez-Velazquez A, Michelacci V, Muniesa M, Morabito S. Investigation on the Evolution of Shiga Toxin-Converting Phages Based on Whole Genome Sequencing. Front Microbiol 2020; 11:1472. [PMID: 32754128 PMCID: PMC7366253 DOI: 10.3389/fmicb.2020.01472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
Bacteriophages are pivotal elements in the dissemination of virulence genes. The main virulence determinants of Shiga Toxin producing E. coli, Shiga Toxins (Stx), are encoded by genes localized in the genome of lambdoid bacteriophages. Stx comprise two antigenically different types, Stx1 and Stx2, further divided into subtypes. Among these, certain Stx2 subtypes appear to be more commonly occurring in the most severe forms of the STEC disease, haemorrhagic colitis and haemolytic uremic syndrome (HUS). This study aimed at obtaining insights on the evolution of Stx2 bacteriophages, due to their relevance in public health, and we report here on the analysis of the genomic structure of Stx2 converting phages in relation with the known reservoir of the E. coli strains harboring them. Stx2-converting phages conveying the genes encoding different stx2 subtypes have been isolated from STEC strains and their whole genomes have been sequenced, analyzed and compared to those of other Stx2 phages available in the public domain. The phages' regions containing the stx2 genes have been analyzed in depth allowing to make inference on the possible mechanisms of selection and maintenance of certain Stx2 phages in the reservoir. The "stx regions" of different stx2 gene subtypes grouped into three different evolutionary lines in the comparative analysis, reflecting the frequency with which these subtypes are found in different animal niches, suggesting that the colonization of specific reservoir by STEC strains could be influenced by the Stx phage that they carry. Noteworthy, we could identify the presence of nanS-p gene exclusively in the "stx regions" of the phages identified in STEC strains commonly found in cattle. As a matter of fact, this gene encodes an esterase capable of metabolizing sialic acids produced by submaxillary glands of bovines and present in great quantities in their gastrointestinal tract.
Collapse
Affiliation(s)
- Michele Zuppi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rosangela Tozzoli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Pablo Quiros
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Adan Martinez-Velazquez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
188
|
Osuna BA, Karambelkar S, Mahendra C, Christie KA, Garcia B, Davidson AR, Kleinstiver BP, Kilcher S, Bondy-Denomy J. Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes. Cell Host Microbe 2020; 28:31-40.e9. [DOI: 10.1016/j.chom.2020.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
|
189
|
Basso JTR, Ankrah NYD, Tuttle MJ, Grossman AS, Sandaa RA, Buchan A. Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects. THE ISME JOURNAL 2020; 14:1688-1700. [PMID: 32242083 PMCID: PMC7305329 DOI: 10.1038/s41396-020-0637-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023]
Abstract
Temperate phages engage in long-term associations with their hosts that may lead to mutually beneficial interactions, of which the full extent is presently unknown. Here, we describe an environmentally relevant model system with a single host, a species of the Roseobacter clade of marine bacteria, and two genetically similar phages (ɸ-A and ɸ-D). Superinfection of a ɸ-D lysogenized strain (CB-D) with ɸ-A particles resulted in a lytic infection, prophage induction, and conversion of a subset of the host population, leading to isolation of a newly ɸ-A lysogenized strain (CB-A). Phenotypic differences, predicted to result from divergent lysogenic-lytic switch mechanisms, are evident between these lysogens, with CB-A displaying a higher incidence of spontaneous induction. Doubling times of CB-D and CB-A in liquid culture are 75 and 100 min, respectively. As cell cultures enter stationary phase, CB-A viable counts are half of CB-D. Consistent with prior evidence that cell lysis enhances biofilm formation, CB-A produces twice as much biofilm biomass as CB-D. As strains are susceptible to infection by the opposing phage type, co-culture competitions were performed to test fitness effects. When grown planktonically, CB-A outcompeted CB-D three to one. Yet, during biofilm growth, CB-D outcompeted CB-A three to one. These results suggest that genetically similar phages can have divergent influence on the competitiveness of their shared hosts in distinct environmental niches, possibly due to a complex form of phage-mediated allelopathy. These findings have implications for enhanced understanding of the eco-evolutionary dynamics of host-phage interactions that are pervasive in all ecosystems.
Collapse
Affiliation(s)
- Jonelle T R Basso
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Nana Y D Ankrah
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
- Department of Entomology, Cornell University, 5136 Comstock Hall, Ithaca, NY, 14853, USA
| | - Matthew J Tuttle
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Alex S Grossman
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, PO 7803, N-5020, Bergen, Norway
| | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, 1311 Cumberland Avenue, 307 Ken and Blaire Mossman Bldg., Knoxville, TN, 37996, USA.
| |
Collapse
|
190
|
Davidson AR, Lu WT, Stanley SY, Wang J, Mejdani M, Trost CN, Hicks BT, Lee J, Sontheimer EJ. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems. Annu Rev Biochem 2020; 89:309-332. [PMID: 32186918 PMCID: PMC9718424 DOI: 10.1146/annurev-biochem-011420-111224] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Alan R Davidson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , , ,
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Wang-Ting Lu
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Sabrina Y Stanley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , , ,
| | - Jingrui Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , , ,
| | - Marios Mejdani
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Chantel N Trost
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , , ,
| | - Brian T Hicks
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Jooyoung Lee
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; ,
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; ,
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
191
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Cañas B, Rama JLR, Villa TG, Calo-Mata P. Characterization of Bacteriophage Peptides of Pathogenic Streptococcus by LC-ESI-MS/MS: Bacteriophage Phylogenomics and Their Relationship to Their Host. Front Microbiol 2020; 11:1241. [PMID: 32582130 PMCID: PMC7296060 DOI: 10.3389/fmicb.2020.01241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
The present work focuses on LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analysis of phage-origin tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2,546 non-redundant peptides belonging to 1,890 proteins were identified and analyzed. Among them, 65 phage-origin peptides were determined as specific Streptococcus spp. peptides. These peptides belong to proteins such as phage repressors, phage endopeptidases, structural phage proteins, and uncharacterized phage proteins. Studies involving bacteriophage phylogeny and the relationship between phages encoding the peptides determined and the bacteria they infect were also performed. The results show how specific peptides are present in closely related phages, and a link exists between bacteriophage phylogeny and the Streptococcus spp. they infect. Moreover, the phage peptide M∗ATNLGQAYVQIM∗PSAK is unique and specific for Streptococcus agalactiae. These results revealed that diagnostic peptides, among others, could be useful for the identification and characterization of mastitis-causing Streptococcus spp., particularly peptides that belong to specific functional proteins, such as phage-origin proteins, because of their specificity to bacterial hosts.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Jose L. R. Rama
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
192
|
Badawy S, Pajunen MI, Haiko J, Baka ZAM, Abou-Dobara MI, El-Sayed AKA, Skurnik M. Identification and Functional Analysis of Temperate Siphoviridae Bacteriophages of Acinetobacter baumannii. Viruses 2020; 12:v12060604. [PMID: 32486497 PMCID: PMC7354433 DOI: 10.3390/v12060604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that presents a serious clinical challenge due to its increasing resistance to all available antibiotics. Phage therapy has been introduced recently to treat antibiotic-incurable A. baumannii infections. In search for new A. baumannii specific bacteriophages, 20 clinical A. baumannii strains were used in two pools in an attempt to enrich phages from sewage. The enrichment resulted in induction of resident prophage(s) and three temperate bacteriophages, named vB_AbaS_fEg-Aba01, vB_AbaS_fLi-Aba02 and vB_AbaS_fLi-Aba03, all able to infect only one strain (#6597) of the 20 clinical strains, were isolated. Morphological characteristics obtained by transmission electron microscopy together with the genomic information revealed that the phages belong to the family Siphoviridae. The ca. 35 kb genomic sequences of the phages were >99% identical to each other. The linear ds DNA genomes of the phages contained 10 nt cohesive end termini, 52–54 predicted genes, an attP site and one tRNA gene each. A database search revealed an >99% identical prophage in the genome of A. baumannii strain AbPK1 (acc. no. CP024576.1). Over 99% identical prophages were also identified from two of the original 20 clinical strains (#5707 and #5920) and both were shown to be spontaneously inducible, thus very likely being the origins of the isolated phages. The phage vB_AbaS_fEg-Aba01 was also able to lysogenize the susceptible strain #6597 demonstrating that it was fully functional. The phages showed a very narrow host range infecting only two A. baumannii strains. In conclusion, we have isolated and characterized three novel temperate Siphoviridae phages that infect A.baumannii.
Collapse
Affiliation(s)
- Shimaa Badawy
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
| | - Johanna Haiko
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland;
| | - Zakaria A. M. Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Mohamed I. Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Ahmed K. A. El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland;
- Correspondence: ; Tel.: +358-2941-26464
| |
Collapse
|
193
|
Mageeney CM, Lau BY, Wagner JM, Hudson CM, Schoeniger JS, Krishnakumar R, Williams KP. New candidates for regulated gene integrity revealed through precise mapping of integrative genetic elements. Nucleic Acids Res 2020; 48:4052-4065. [PMID: 32182341 PMCID: PMC7192596 DOI: 10.1093/nar/gkaa156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Integrative genetic elements (IGEs) are mobile multigene DNA units that integrate into and excise from host bacterial genomes. Each IGE usually targets a specific site within a conserved host gene, integrating in a manner that preserves target gene function. However, a small number of bacterial genes are known to be inactivated upon IGE integration and reactivated upon excision, regulating phenotypes of virulence, mutation rate, and terminal differentiation in multicellular bacteria. The list of regulated gene integrity (RGI) cases has been slow-growing because IGEs have been challenging to precisely and comprehensively locate in genomes. We present software (TIGER) that maps IGEs with unprecedented precision and without attB site bias. TIGER uses a comparative genomic, ping-pong BLAST approach, based on the principle that the IGE integration module (i.e. its int-attP region) is cohesive. The resultant IGEs from 2168 genomes, along with integrase phylogenetic analysis and gene inactivation tests, revealed 19 new cases of genes whose integrity is regulated by IGEs (including dut, eccCa1, gntT, hrpB, merA, ompN, prkA, tqsA, traG, yifB, yfaT and ynfE), as well as recovering previously known cases (in sigK, spsM, comK, mlrA and hlb genes). It also recovered known clades of site-promiscuous integrases and identified possible new ones.
Collapse
Affiliation(s)
- Catherine M Mageeney
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Britney Y Lau
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Julian M Wagner
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Corey M Hudson
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Joseph S Schoeniger
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Raga Krishnakumar
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Kelly P Williams
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| |
Collapse
|
194
|
Bleriot I, Trastoy R, Blasco L, Fernández-Cuenca F, Ambroa A, Fernández-García L, Pacios O, Perez-Nadales E, Torre-Cisneros J, Oteo-Iglesias J, Navarro F, Miró E, Pascual A, Bou G, Martínez-Martínez L, Tomas M. Genomic analysis of 40 prophages located in the genomes of 16 carbapenemase-producing clinical strains of Klebsiella pneumoniae. Microb Genom 2020; 6:e000369. [PMID: 32375972 PMCID: PMC7371120 DOI: 10.1099/mgen.0.000369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae is the clinically most important species within the genus Klebsiella and, as a result of the continuous emergence of multi-drug resistant (MDR) strains, the cause of severe nosocomial infections. The decline in the effectiveness of antibiotic treatments for infections caused by MDR bacteria has generated particular interest in the study of bacteriophages. In this study, we characterized a total of 40 temperate bacteriophages (prophages) with a genome range of 11.454-84.199 kb, predicted from 16 carbapenemase-producing clinical strains of K. pneumoniae belonging to different sequence types, previously identified by multilocus sequence typing. These prophages were grouped into the three families in the order Caudovirales (27 prophages belonging to the family Myoviridae, 10 prophages belonging to the family Siphoviridae and 3 prophages belonging to the family Podoviridae). Genomic comparison of the 40 prophage genomes led to the identification of four prophages isolated from different strains and of genome sizes of around 33.3, 36.1, 39.6 and 42.6 kb. These prophages showed sequence similarities (query cover >90 %, identity >99.9 %) with international Microbe Versus Phage (MVP) (http://mvp.medgenius.info/home) clusters 4762, 4901, 3499 and 4280, respectively. Phylogenetic analysis revealed the evolutionary proximity among the members of the four groups of the most frequently identified prophages in the bacterial genomes studied (33.3, 36.1, 39.6 and 42.6 kb), with bootstrap values of 100 %. This allowed the prophages to be classified into three clusters: A, B and C. Interestingly, these temperate bacteriophages did not infect the highest number of strains as indicated by a host-range assay, these results could be explained by the development of superinfection exclusion mechanisms. In addition, bioinformatic analysis of the 40 identified prophages revealed the presence of 2363 proteins. In total, 59.7 % of the proteins identified had a predicted function, mainly involving viral structure, transcription, replication and regulation (lysogenic/lysis). Interestingly, some proteins had putative functions associated with bacterial virulence (toxin expression and efflux pump regulators), phage defence profiles such as toxin-antitoxin modules, an anti-CRISPR/Cas9 protein, TerB protein (from terZABCDE operon) and methyltransferase proteins.
Collapse
Affiliation(s)
- Ines Bleriot
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Rocío Trastoy
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Lucia Blasco
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Felipe Fernández-Cuenca
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena. Deparment of Microbiology and Medicine, University of Seville, Seville, Spain
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
| | - Antón Ambroa
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Laura Fernández-García
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Olga Pacios
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
| | - Elena Perez-Nadales
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
- Microbiology Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Cordoba, Spain
| | - Julian Torre-Cisneros
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
- Microbiology Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Cordoba, Spain
| | - Jesús Oteo-Iglesias
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Ferran Navarro
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Microbiology Department, Sant Pau Hospital, Autonomous University of Barcelona (Bellaterra), Barcelona, Spain
| | - Elisenda Miró
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Microbiology Department, Sant Pau Hospital, Autonomous University of Barcelona (Bellaterra), Barcelona, Spain
| | - Alvaro Pascual
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena. Deparment of Microbiology and Medicine, University of Seville, Seville, Spain
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
| | - German Bou
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
| | - Luis Martínez-Martínez
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
- Microbiology Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Cordoba, Spain
| | - Maria Tomas
- Microbiology Department, Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA), Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid
- Spanish Network for the Research in Infectious Diseases, REIPI, Seville, Spain
| |
Collapse
|
195
|
Cryptic prophages in a bla NDM-1-bearing plasmid increase bacterial survival against high NaCl concentration, high and low temperatures, and oxidative and immunological stressors. J Microbiol 2020; 58:483-488. [PMID: 32222943 DOI: 10.1007/s12275-020-9605-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
In this study, we investigated the effect of cryptic prophage regions in a blaNDM-1-bearing plasmid, which was identified in a patient from South Korea, on the survival of bacteria against adverse environmental conditions. First, we conjugated the intact plasmid and plasmids with deleted cryptic prophages into Escherichia coli DH5α. The E. coli transconjugants carrying the plasmid with intact cryptic prophages showed increased survival during treatment with a high concentration of NaCl, high and low temperatures, an oxidative stressor (H2O2), and an immunological stressor (human serum). By contrast, the transconjugants carrying the plasmid with a single-cryptic prophage knockout did not show any change in survival rates. mRNA expression analyses revealed that the genes encoding sigma factor proteins were highly upregulated by the tested stressors and affected the expression of various proteins (antioxidant, cell osmosis-related, heat shock, cold shock, and universal stress proteins) associated with the specific defense against each stress. These findings indicate that a bacterial strain carrying a plasmid with intact carbapenemase gene and cryptic prophage regions exhibited an increased resistance against simulated environmental stresses, and cryptic prophages in the plasmid might contribute to this enhanced stress resistance. Our study indicated that the coselection of antibiotic resistance and resistance to other stresses may help bacteria to increase survival rates against adverse environments and disseminate.
Collapse
|
196
|
Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. New insights into intestinal phages. Mucosal Immunol 2020; 13:205-215. [PMID: 31907364 PMCID: PMC7039812 DOI: 10.1038/s41385-019-0250-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota plays important roles in human health. This last decade, the viral fraction of the intestinal microbiota, composed essentially of phages that infect bacteria, received increasing attention. Numerous novel phage families have been discovered in parallel with the development of viral metagenomics. However, since the discovery of intestinal phages by d'Hérelle in 1917, our understanding of the impact of phages on gut microbiota structure remains scarce. Changes in viral community composition have been observed in several diseases. However, whether these changes reflect a direct involvement of phages in diseases etiology or simply result from modifications in bacterial composition is currently unknown. Here we present an overview of the current knowledge in intestinal phages, their identity, lifestyles, and their possible effects on the gut microbiota. We also gather the main data on phage interactions with the immune system, with a particular emphasis on recent findings.
Collapse
Affiliation(s)
- R Sausset
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Myriade, 68 boulevard de Port Royal, 75005, Paris, France
| | - M A Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - V Gaboriau-Routhiau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Laboratory of Intestinal Immunity, INSERM UMR 1163, Institut Imagine, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, 75006, Paris, France
| | - M De Paepe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
197
|
Silveira CB, Coutinho FH, Cavalcanti GS, Benler S, Doane MP, Dinsdale EA, Edwards RA, Francini-Filho RB, Thompson CC, Luque A, Rohwer FL, Thompson F. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 2020; 21:126. [PMID: 32024463 PMCID: PMC7003362 DOI: 10.1186/s12864-020-6523-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. Results Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. Conclusions This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA. .,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA. .,Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33146, USA.
| | - Felipe H Coutinho
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Apartado 18, 03550, San Juan de Alicante, Spain
| | - Giselle S Cavalcanti
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Sean Benler
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Michael P Doane
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW, 2088, Australia
| | - Elizabeth A Dinsdale
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Ronaldo B Francini-Filho
- Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hypólito do Rego, Km 131,50, São Sebastião, SP, 11600-000, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941- 599, Brazil
| | - Antoni Luque
- Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Computational Science Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Fabiano Thompson
- SAGE/COPPE, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941- 599, Brazil
| |
Collapse
|
198
|
Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang H, Andreopoulos B, Brewer HM, Glavina Del Rio T, Adkins JN, Paul S, Sullivan MB, Duhaime MB. Phage-specific metabolic reprogramming of virocells. ISME JOURNAL 2020; 14:881-895. [PMID: 31896786 PMCID: PMC7082346 DOI: 10.1038/s41396-019-0580-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Ocean viruses are abundant and infect 20–40% of surface microbes. Infected cells, termed virocells, are thus a predominant microbial state. Yet, virocells and their ecosystem impacts are understudied, thus precluding their incorporation into ecosystem models. Here we investigated how unrelated bacterial viruses (phages) reprogram one host into contrasting virocells with different potential ecosystem footprints. We independently infected the marine Pseudoalteromonas bacterium with siphovirus PSA-HS2 and podovirus PSA-HP1. Time-resolved multi-omics unveiled drastically different metabolic reprogramming and resource requirements by each virocell, which were related to phage–host genomic complementarity and viral fitness. Namely, HS2 was more complementary to the host in nucleotides and amino acids, and fitter during infection than HP1. Functionally, HS2 virocells hardly differed from uninfected cells, with minimal host metabolism impacts. HS2 virocells repressed energy-consuming metabolisms, including motility and translation. Contrastingly, HP1 virocells substantially differed from uninfected cells. They repressed host transcription, responded to infection continuously, and drastically reprogrammed resource acquisition, central carbon and energy metabolisms. Ecologically, this work suggests that one cell, infected versus uninfected, can have immensely different metabolisms that affect the ecosystem differently. Finally, we relate phage–host genome complementarity, virocell metabolic reprogramming, and viral fitness in a conceptual model to guide incorporating viruses into ecosystem models.
Collapse
Affiliation(s)
- Cristina Howard-Varona
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Morgan M Lindback
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA
| | - G Eric Bastien
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - HoBin Jang
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, 1800 Mitchell Dr #100, Walnut Creek, CA, 94598, USA
| | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Tijana Glavina Del Rio
- US Department of Energy Joint Genome Institute, 1800 Mitchell Dr #100, Walnut Creek, CA, 94598, USA
| | - Joshua N Adkins
- Biological Science Division, PNNL, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Subhadeep Paul
- Department of Statistics, The Ohio State University, 1958 Neil Ave, Columbus, OH, 43210, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH, 43210, USA. .,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Columbus, OH, 43210, USA. .,Center for RNA Biology, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA.
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
199
|
Wang Y, Luo L, Li Q, Wang H, Wang Y, Sun H, Xu J, Lan R, Ye C. Genomic dissection of the most prevalent Listeria monocytogenes clone, sequence type ST87, in China. BMC Genomics 2019; 20:1014. [PMID: 31870294 PMCID: PMC6929445 DOI: 10.1186/s12864-019-6399-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 12/15/2019] [Indexed: 12/27/2022] Open
Abstract
Background Listeria monocytogenes consists of four lineages that occupy a wide variety of ecological niches. Sequence type (ST) 87 (serotype 1/2b), belonging to lineage I, is one of the most common STs isolated from food products, food associated environments and sporadic listeriosis in China. Here, we performed a comparative genomic analysis of the L. monocytogenes ST87 clone by sequencing 71 strains representing a diverse range of sources, different geographical locations and isolation years. Results The core genome and pan genome of ST87 contained 2667 genes and 3687 genes respectively. Phylogenetic analysis based on core genome SNPs divided the 71 strains into 10 clades. The clinical strains were distributed among multiple clades. Four clades contained strains from multiple geographic regions and showed high genetic diversity. The major gene content variation of ST87 genomes was due to putative prophages, with eleven hotspots of the genome that harbor prophages. All strains carry an intact CRISRP/Cas system. Two major CRISPR spacer profiles were found which were not clustered phylogenetically. A large plasmid of about 90 Kb, which carried heavy metal resistance genes, was found in 32.4% (23/71) of the strains. All ST87 strains harbored the Listeria pathogenicity island (LIPI)-4 and a unique 10-open read frame (ORF) genomic island containing a novel restriction-modification system. Conclusion Whole genome sequence analysis of L. monocytogenes ST87 enabled a clearer understanding of the population structure and the evolutionary history of ST87 L. monocytogenes in China. The novel genetic elements identified may contribute to its virulence and adaptation to different environmental niches. Our findings will be useful for the development of effective strategies for the prevention and treatment of listeriosis caused by this prevalent clone.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, 643000, Sichuan Province, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, 643000, Sichuan Province, China
| | - Yiqian Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
200
|
Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem. Appl Environ Microbiol 2019; 86:AEM.01922-19. [PMID: 31676478 PMCID: PMC6912086 DOI: 10.1128/aem.01922-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages derived from lysogens are abundant in gut microbiomes. Currently, mechanistic knowledge is lacking on the ecological ramifications of prophage carriage yet is essential to explain the abundance of lysogens in the gut. An extensive screen of the bacterial gut symbiont Lactobacillus reuteri revealed that biologically active prophages are widely distributed in this species. L. reuteri 6475 produces phages throughout the mouse intestinal tract, but phage production is associated with reduced fitness of the lysogen. However, phage production provides a competitive advantage in direct competition with a nonlysogenic strain of L. reuteri that is sensitive to these phages. This combination of increased competition with a fitness trade-off provides a potential explanation for the domination of lysogens in gut ecosystem and how lysogens can coexist with sensitive hosts. The gut microbiota harbors a diverse phage population that is largely derived from lysogens, which are bacteria that contain dormant phages in their genome. While the diversity of phages in gut ecosystems is getting increasingly well characterized, knowledge is limited on how phages contribute to the evolution and ecology of their host bacteria. Here, we show that biologically active prophages are widely distributed in phylogenetically diverse strains of the gut symbiont Lactobacillus reuteri. Nearly all human- and rodent-derived strains, but less than half of the tested strains of porcine origin, contain active prophages, suggesting different roles of phages in the evolution of host-specific lineages. To gain insight into the ecological role of L. reuteri phages, we developed L. reuteri strain 6475 as a model to study its phages. After administration to mice, L. reuteri 6475 produces active phages throughout the intestinal tract, with the highest number detected in the distal colon. Inactivation of recA abolished in vivo phage production, which suggests that activation of the SOS response drives phage production in the gut. In conventional mice, phage production reduces bacterial fitness as fewer wild-type bacteria survive gut transit compared to the mutant lacking prophages. However, in gnotobiotic mice, phage production provides L. reuteri with a competitive advantage over a sensitive host. Collectively, we uncovered that the presence of prophages, although associated with a fitness trade-off, can be advantageous for a gut symbiont by killing a competitor strain in its intestinal niche. IMPORTANCE Bacteriophages derived from lysogens are abundant in gut microbiomes. Currently, mechanistic knowledge is lacking on the ecological ramifications of prophage carriage yet is essential to explain the abundance of lysogens in the gut. An extensive screen of the bacterial gut symbiont Lactobacillus reuteri revealed that biologically active prophages are widely distributed in this species. L. reuteri 6475 produces phages throughout the mouse intestinal tract, but phage production is associated with reduced fitness of the lysogen. However, phage production provides a competitive advantage in direct competition with a nonlysogenic strain of L. reuteri that is sensitive to these phages. This combination of increased competition with a fitness trade-off provides a potential explanation for the domination of lysogens in gut ecosystem and how lysogens can coexist with sensitive hosts.
Collapse
|