151
|
Ferro E, Enrico Bena C, Grigolon S, Bosia C. From Endogenous to Synthetic microRNA-Mediated Regulatory Circuits: An Overview. Cells 2019; 8:E1540. [PMID: 31795372 PMCID: PMC6952906 DOI: 10.3390/cells8121540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that are evolutionarily conserved and are pivotal post-transcriptional mediators of gene regulation. Together with transcription factors and epigenetic regulators, they form a highly interconnected network whose building blocks can be classified depending on the number of molecular species involved and the type of interactions amongst them. Depending on their topology, these molecular circuits may carry out specific functions that years of studies have related to the processing of gene expression noise. In this review, we first present the different over-represented network motifs involving microRNAs and their specific role in implementing relevant biological functions, reviewing both theoretical and experimental studies. We then illustrate the recent advances in synthetic biology, such as the construction of artificially synthesised circuits, which provide a controlled tool to test experimentally the possible microRNA regulatory tasks and constitute a starting point for clinical applications.
Collapse
Affiliation(s)
- Elsi Ferro
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Chiara Enrico Bena
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (Torino), Italy
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carla Bosia
- IIGM—Italian Institute for Genomic Medicine, c/o IRCCS, 10060 Candiolo (Torino), Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
152
|
Potential Impact of MicroRNA Gene Polymorphisms in the Pathogenesis of Diabetes and Atherosclerotic Cardiovascular Disease. J Pers Med 2019; 9:jpm9040051. [PMID: 31775219 PMCID: PMC6963792 DOI: 10.3390/jpm9040051] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, small (18–23 nucleotides), non-coding RNA molecules. They regulate the posttranscriptional expression of their target genes. MiRNAs control vital physiological processes such as metabolism, development, differentiation, cell cycle and apoptosis. The control of the gene expression by miRNAs requires efficient binding between the miRNA and their target mRNAs. Genome-wide association studies (GWASs) have suggested the association of single-nucleotide polymorphisms (SNPs) with certain diseases in various populations. Gene polymorphisms of miRNA target sites have been implicated in diseases such as cancers, diabetes, cardiovascular and Parkinson’s disease. Likewise, gene polymorphisms of miRNAs have been reported to be associated with diseases. In this review, we discuss the SNPs in miRNA genes that have been associated with diabetes and atherosclerotic cardiovascular disease in different populations. We also discuss briefly the potential underlining mechanisms through which these SNPs increase the risk of developing these diseases.
Collapse
|
153
|
Wang X, Yan X, Yang Y, Yang W, Zhang Y, Wang J, Ye D, Wu Y, Ma P, Yan B. Dibutyl phthalate-mediated oxidative stress induces splenic injury in mice and the attenuating effects of vitamin E and curcumin. Food Chem Toxicol 2019; 136:110955. [PMID: 31712109 DOI: 10.1016/j.fct.2019.110955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Dibutyl phthalate (DBP) is a ubiquitous environmental contaminant that at certain levels can be harmful to human health. Although DBP has been widely linked to immunotoxicity, any association between DBP exposure and splenic injury remains unknown. The purpose of this study was to investigate whether DBP exposure can induce splenic injury and the antagonistic effects of two antioxidants, vitamin E (VitE) and curcumin (Cur), on DBP-induced splenic injury. The levels of ROS, GSH, T-AOC, IL-1β, TNF-α, cytochrome C, caspase-8, caspase-9 and caspase-3 in the spleen homogenate of mice were measured. Any histopathological changes in the spleen were observed using H&E and toluidine blue staining. And the morphology of mitochondria was observed using Janus Green B staining. The results indicate that exposure to 50 mg/kg DBP could cause histopathological changes of the spleen and result in inflammation and apoptosis associated with oxidative stress, which may lead to splenic injury in mice. Moreover, both VitE and Cur could antagonize the oxidative stress induced by DBP to reduce splenic injury. These findings help to expand our understanding of DBP-mediated immunotoxicity, and to show that VitE and Cur can alleviate DBP-induced splenic injury and the possible DBP-associated decline in immune function.
Collapse
Affiliation(s)
- Xianliang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Xu Yan
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yuyan Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Wenjing Yang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yujing Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Jiao Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Dan Ye
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yang Wu
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Ping Ma
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Biao Yan
- Laboratory of Environment-immunological and Neurological Diseases, Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
154
|
Luly FR, Lévêque M, Licursi V, Cimino G, Martin-Chouly C, Théret N, Negri R, Cavinato L, Ascenzioni F, Del Porto P. MiR-146a is over-expressed and controls IL-6 production in cystic fibrosis macrophages. Sci Rep 2019; 9:16259. [PMID: 31700158 PMCID: PMC6838115 DOI: 10.1038/s41598-019-52770-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disease that is characterised by susceptibility to bacterial infections and chronic lung inflammation. Recently, it was suggested that macrophages contribute to impaired host defence and excessive inflammatory responses in CF. Indeed, dysfunction attributed to CF macrophages includes decreased bacterial killing and exaggerated inflammatory responses. However, the mechanisms behind such defects have only been partially defined. MicroRNAs (miRNAs) have emerged as key regulators of several macrophage functions, including their activation, differentiation and polarisation. The goal of this study was to investigate whether miRNA dysregulation underlies the functional abnormalities of CF macrophages. MiRNA profiling of macrophages was performed, with 22 miRNAs identified as differentially expressed between CF and non-CF individuals. Among these, miR-146a was associated with significant enrichment of validated target genes involved in responses to microorganisms and inflammation. As miR-146a dysregulation has been reported in several human inflammatory diseases, we analysed the impact of increased miR-146a expression on inflammatory responses of CF macrophages. These data show that inhibition of miR-146a in lipopolysaccharide-stimulated CF macrophages results in increased interleukin-6 production, which suggests that miR-146a overexpression in CF is functional, to restrict inflammatory responses.
Collapse
Affiliation(s)
- Francesco R Luly
- Department of Biology and Biotechnology, "C. Darwin" Sapienza University, Rome, Italy
| | - Manuella Lévêque
- Department of Biology and Biotechnology, "C. Darwin" Sapienza University, Rome, Italy.,Service de Dermatologie CHU de Poitiers, University of Poitiers, Poitiers, France
| | - Valerio Licursi
- Department of Biology and Biotechnology, "C. Darwin" Sapienza University, Rome, Italy
| | | | - Corinne Martin-Chouly
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR S 1085, F-35000 University of Rennes, Rennes, France
| | - Nathalie Théret
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR S 1085, F-35000 University of Rennes, Rennes, France
| | - Rodolfo Negri
- Department of Biology and Biotechnology, "C. Darwin" Sapienza University, Rome, Italy.,Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Luca Cavinato
- Department of Biology and Biotechnology, "C. Darwin" Sapienza University, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology, "C. Darwin" Sapienza University, Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology, "C. Darwin" Sapienza University, Rome, Italy.
| |
Collapse
|
155
|
Zhang P, Yu J, Gui Y, Sun C, Han W. Inhibition of miRNA-222-3p Relieves Staphylococcal Enterotoxin B-Induced Liver Inflammatory Injury by Upregulating Suppressors of Cytokine Signaling 1. Yonsei Med J 2019; 60:1093-1102. [PMID: 31637892 PMCID: PMC6813146 DOI: 10.3349/ymj.2019.60.11.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Staphylococcal enterotoxin B (SEB) has been well-documented to induce liver injury. miRNA-222-3p (miR-222-3p) was implicated in SEB-induced lung injury and several liver injuries. This study aimed to explore the role of miR-222-3p in SEB-induced liver injury. MATERIALS AND METHODS Expression of miR-222-3p and suppressors of cytokine signaling 1 (SOCS1) was detected using real-time quantitative PCR and western blot. Liver injury was determined by levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and inflammatory cytokines, numbers of infiltrating mononuclear cells using AST/ALT assay kit, enzyme-linked immunosorbent assay (ELISA), and hematoxylin-eosin staining, respectively. Target binding between miR-222-3p and SOCS1 was predicted on targetScan software, and confirmed by luciferase reporter assay. RESULTS SEB induced liver injury in D-galactosamine (D-gal)-sensitized mice, as demonstrated by increased serum levels of AST and ALT, elevated release of interferon-gamma (INF-γ), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-2, and promoted infiltrating immune cells into liver. Expression of miR-222-3p was dramatically upregulated, and SOCS1 was downregulated in SEB-induced liver injury both in mice and splenocytes. Moreover, miR-222-3p knockout (KO) mice exhibited alleviated liver injury accompanied with SOCS1 upregulation. Besides, splenocytes under SEB challenge released less INF-γ, TNF-α, IL-6, and IL-2 during miR-222-3p knockdown. Mechanically, SOCS1 was targeted and downregulated by miR-222-3p. Upregulation of SOCS1 attenuated INF-γ, TNF-α, IL-6, and IL-2 release in SEB-induced splenocytes; downregulation of SOCS1 could block the suppressive role of miR-222-3p knockdown in SEB-induced splenocytes. CONCLUSION Inhibition of miR-222-3p relieves SEB-induced liver inflammatory injury by upregulating SOCS1, thereby providing the first evidence of miR-222-3p in SEB-induced liver injury.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian, China
| | - Jingda Yu
- Department of Clinical Laboratory, the Baotou Medical College of Inner Mongolia University of Science and Technology, Inner Mongolia, China
| | - Yifang Gui
- Department of Clinical Laboratory, the Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Cui Sun
- Department of Clinical Laboratory, the Third People's Hospital of Dalian, Dalian, China
| | - Weiping Han
- Department of Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
156
|
Mai H, Fan W, Wang Y, Cai Y, Li X, Chen F, Chen X, Yang J, Tang P, Chen H, Zou T, Hong T, Wan C, Zhao B, Cui L. Intranasal Administration of miR-146a Agomir Rescued the Pathological Process and Cognitive Impairment in an AD Mouse Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:681-695. [PMID: 31707205 PMCID: PMC6849368 DOI: 10.1016/j.omtn.2019.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and cannot be cured. The etiology and pathogenesis of AD is still not fully understood, the genetics is considered to be one of the most important factors for AD onset, and the identified susceptible genes could provide clues to the AD mechanism and also be the potential targets. MicroRNA-146a-5p (miR-146a) is well known in the regulation of the inflammatory response, and the functional SNP of miR-146a was associated with AD risk. In this study, using a noninvasive nasal administration, we discovered that a miR-146a agomir (M146AG) rescued cognitive impairment in the APP/PS1 transgenic mouse and alleviated the overall pathological process in the AD mouse model, including neuroinflammation, glia activation, Aβ deposit, and tau phosphorylation in hippocampi. Furthermore, the transcriptional analysis revealed that besides the effect of neuroinflammation, M146AG may serve as a multi-potency target for intervention in AD. In addition, Srsf6 was identified as a target of miR-146a, which may play a role in AD progression. In conclusion, our study supports that the nasal-to-brain pathway is efficient and operable for the brain administration of microRNAs (miRNAs), and that miR-146a may be a new potential target for AD treatment.
Collapse
Affiliation(s)
- Hui Mai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weihao Fan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaohui Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Pei Tang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Zou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Conghua Wan
- School of Humanities and Management, Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China.
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
157
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
158
|
Kondo Y, Kogure T, Ninomiya M, Fukuda R, Monma N, Ikeo K, Tanaka Y. The reduction of miR146b-5p in monocytes and T cells could contribute to the immunopathogenesis of hepatitis C virus infection. Sci Rep 2019; 9:13393. [PMID: 31527804 PMCID: PMC6746729 DOI: 10.1038/s41598-019-49706-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
It has been reported that various kinds of miRNAs could affect the pathogenesis of hepatitis C virus infection. Recently, our group reported that deep-sequencing analysis was useful to detect disease-specific miRNAs. The aim of this study is to identify the HCV-specific miRNAs that could contribute to the immunopathogenesis of HCV by using clinical samples and in vitro analysis. Five miRNAs (hsa-miR181a-2-3p, hsa-miR-374a-3p, hsa-miR374a-5p, hsa-miR-204-5p and hsa-miR146b-5p) were shown to be significantly downregulated in CH-C by deep sequence analysis. The average ratio (PBMCs miRNAs/serum miRNAs) of hsa-miR146b-5p was highest among all the miRNAs. Moreover, serum hsa-miR146b-5p was significantly down-regulated in CH-C patients in comparison to CH-B patients and healthy subjects. The expression of hsa-miR146b-5p in CD3+ T cells and CD14+ monocytes of CH-C patients was significantly lower than that of the other groups. The hsa-miR146b-5p expression in CD14+ monocytes of SVR patients treated with Peg-IFN/RBV was significantly higher than in those of non-SVR patients treated with Peg IFN/RBV. However, the hsa-miR146b-5p expression in CD14+ monocytes of SVR patients treated with DCV and ASV was comparable to that in monocytes of non-SVR patients treated with DCV and ASV. Moreover, the expression levels of hsa-miR146b-5p in CD14+ monocytes were significantly increased after achieving SVR and 1(OH)Vitamin D3 treatment. Further, the expression of HCV-Core could suppress miR146b-5p expression in immune cells and affect the expression of various kinds of cytokines by affecting the NF-κB signaling. In conclusion, the reduction of miR146b-5p in monocytes and T cells could contribute to the immunopathogenesis of hepatitis C virus infection.
Collapse
Affiliation(s)
- Yasuteru Kondo
- Department of Hepatology, Sendai Kousei Hospital, 4-15 Hirose, Aoba, Sendai City, Miyagi, Japan.
- Department of Virology & Liver unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho, Nagoya, 467-8601, Japan.
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai City, Miyagi, Japan
| | - Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai City, Miyagi, Japan
| | - Ryo Fukuda
- Department of Hepatology, Sendai Kousei Hospital, 4-15 Hirose, Aoba, Sendai City, Miyagi, Japan
| | - Norikazu Monma
- Center for information Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Center for information Biology, National Institute of Genetics, Mishima, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho, Nagoya, 467-8601, Japan
| |
Collapse
|
159
|
miR-146a Deficiency Accelerates Hepatic Inflammation Without Influencing Diet-induced Obesity in Mice. Sci Rep 2019; 9:12626. [PMID: 31477775 PMCID: PMC6718417 DOI: 10.1038/s41598-019-49090-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
miR-146a, an anti-inflammatory microRNA, is shown to be a negative regulator of adipocyte inflammation. However, the functional contribution of miR-146a in the development of obesity is not defined. In order to determine whether miR-146a influences diet-induced obesity, mice that were either wild type (WT) or miR-146a deficient (KO) were fed with high (60% kcal) fat diet (HFD) for 16 weeks. Deficiency of miR-146a did not influence obesity measured as HFD-induced body weight and fat mass gain, or metabolism of glucose and insulin tolerance. In addition, adipocyte apoptosis, adipose tissue collagen and macrophage accumulation as detected by TUNEL, Picro Sirius and F4/80 immunostaining, respectively, were comparable between the two groups of mice. Although, miR-146a deficiency had no influence on HFD-induced hepatic lipid accumulation, interestingly, it significantly increased obesity-induced inflammatory responses in liver tissue. The present study demonstrates that miR-146a deficiency had no influence on the development of HFD-induced obesity and adipose tissue remodeling, whereas it significantly increased hepatic inflammation in obese mice. This result suggests that miR-146a regulates hepatic inflammation during development of obesity.
Collapse
|
160
|
Li Z, Han S, Jia Y, Yang Y, Han F, Wu G, Li X, Zhang W, Jia W, He X, Han J, Hu D. MCPIP1 regulates RORα expression to protect against liver injury induced by lipopolysaccharide via modulation of miR-155. J Cell Physiol 2019; 234:16562-16572. [PMID: 30811042 DOI: 10.1002/jcp.28327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Liver injury plays vital roles in the development of inflammation and organ dysfunction during sepsis. MCP-1-induced protein 1 (MCPIP1), as an endoribonuclease, is a critical regulator for the maintenance of immune homeostasis. However, whether MCPIP1 participates in the septic liver injury remains unknown. The aim of this study was to investigate the role of MCPIP1 in lipopolysaccharides-induced liver injury and the underlying modulatory mechanisms. Quantitative real-time polymerase chain reaction and immunoblotting were used to determine proinflammatory cytokines, MCPIP1, retinoid-related orphan receptor α (RORα), miR-155, and related protein from nuclear factor-κB (NF-κB) pathway expression. Dual luciferase reporter assay was used to analyze whether miR-155 regulates RORα transcription. Secretion of inflammatory cytokines into sera in mice were measured by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining, alanine aminotransferase, and aspartate transaminase, assay were used to evaluate liver function. We found that MCPIP1 expression was notably upregulated and significantly downregulated inflammatory cytokine secretion and NF-κB signaling activation in macrophages following exposure to lipopolysaccharide. Moreover, miR-155, lowered by MCPIP1, directly targeted on 3'-untranslated region of RORα to activate an inflammatory response. Importantly, MCPIP1 overexpression in mice alleviated septic liver injury symptoms following lipopolysaccharides stimulation. Collectively, these data highlight MCPIP1/miR-155/RORα axis as a novel modulation of inflammation in liver injury and potential therapeutic target for future research.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.,Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Wenbin Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiang He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
161
|
Inhibition of MALT1 paracaspase activity improves lesion recovery following spinal cord injury. Sci Bull (Beijing) 2019; 64:1179-1194. [PMID: 36659689 DOI: 10.1016/j.scib.2019.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023]
Abstract
Spinal cord injury (SCI) is a devastating traumatic injury that causes persistent, severe motor and sensory dysfunction. Immune responses are involved in functional recovery after SCI. Mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) has been shown to regulate the survival and differentiation of immune cells and to play a critical role in many diseases, but its function in lesion recovery after SCI remains unclear. In this paper, we generated KI (knock in) mice with a point mutation (C472G) in the active center of MALT1 and found that the KI mice exhibited improved functional recovery after SCI. Fewer macrophages were recruited to the injury site in KI mice and these macrophages differentiated into anti-inflammatory macrophages. Moreover, macrophages from KI mice exhibited reduced phosphorylation of p65, which in turn resulted in decreased SOCS3 expression and increased pSTAT6 levels. Similar results were obtained upon inhibition of MALT1 paracaspase with the small molecule inhibitor "MI-2" or the more specific inhibitor "MLT-827". In patients with SCI, peripheral blood mononuclear cells (PBMC) displayed increased MALT1 paracaspase. Human macrophages showed reduced pro-inflammatory and increased anti-inflammatory characteristics following the inhibition of MALT1 paracaspase. These findings suggest that inhibition of MALT1 paracaspase activity in the clinic may improve lesion recovery in subjects with SCI.
Collapse
|
162
|
Bronisz-Budzyńska I, Chwalenia K, Mucha O, Podkalicka P, Karolina-Bukowska-Strakova, Józkowicz A, Łoboda A, Kozakowska M, Dulak J. miR-146a deficiency does not aggravate muscular dystrophy in mdx mice. Skelet Muscle 2019; 9:22. [PMID: 31412923 PMCID: PMC6693262 DOI: 10.1186/s13395-019-0207-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease evoked by a mutation in the dystrophin gene. It is associated with progressive muscle degeneration and increased inflammation. Up to this date, mainly anti-inflammatory treatment is available for patients suffering from DMD. miR-146a is known to diminish inflammation and fibrosis in different tissues by downregulating the expression of proinflammatory cytokines. However, its role in DMD has not been studied so far. In our work, we have generated mice globally lacking both dystrophin and miR-146a (miR-146a−/−mdx) and examined them together with wild-type, single miR-146a knockout and dystrophic (mdx—lacking dystrophin) mice in a variety of aspects associated with DMD pathophysiology (muscle degeneration, inflammatory reaction, muscle satellite cells, muscle regeneration, and fibrosis). We have shown that miR-146a level is increased in dystrophic muscles in comparison to wild-type mice. Its deficiency augments the expression of proinflammatory cytokines (IL-1β, CCL2, TNFα). However, muscle degeneration was not significantly worsened in mdx mice lacking miR-146a up to 24 weeks of age, although some aggravation of muscle damage and inflammation was evident in 12-week-old animals, though no effect of miR-146a deficiency was visible on quantity, proliferation, and in vitro differentiation of muscle satellite cells isolated from miR-146a−/−mdx mice vs. mdx. Similarly, muscle regeneration and collagen deposition were not changed by miR-146a deficiency. Nevertheless, the lack of miR-146a is associated with decreased Vegfa and increased Tgfb1. Overall, the lack of miR-146a did not aggravate significantly the dystrophic conditions in mdx mice, but its effect on DMD in more severe conditions warrants further investigation.
Collapse
Affiliation(s)
- Iwona Bronisz-Budzyńska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Katarzyna Chwalenia
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Karolina-Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Department of Clinical Immunology and Transplantology, Institute of Paediatrics, Medical College, Jagiellonian University, Wielicka 265, 30-663, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
163
|
Wu X, Wu C, Gu W, Ji H, Zhu L. Serum Exosomal MicroRNAs Predict Acute Respiratory Distress Syndrome Events in Patients with Severe Community-Acquired Pneumonia. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3612020. [PMID: 31467883 PMCID: PMC6699276 DOI: 10.1155/2019/3612020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/25/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Severe community-acquired pneumonia (SCAP) requiring intensive care unit (ICU) treatment commonly causes acute respiratory distress syndrome (ARDS) with high mortality. This study was aimed at evaluating whether microRNAs (miRNAs) in circulating exosomes have the predictive values for patients at risk of developing ARDS due to SCAP. METHODS ARDS/ALI-relevant miRNAs were obtained by literature search. Exosomes in serum were isolated by ultracentrifugation method and identified by Transmission Electron Microscopy. Then the miR profiling in the exosomes using real-time PCR was analyzed in SCAP patients with or without ARDS. Moreover, multivariate Cox proportional regression analysis was performed to estimate the odds ratio of miRNA for the occurrence of ARDS and prognosis. The receiver operating characteristics (ROC) curves were calculated to discriminate ARDS cases. Finally, the Kaplan-Meier curve using log-rank method was performed to test the equality for survival distributions with different miRNA classifiers. RESULTS A total of 53 SCAP patients were finally recruited. Ten miRNAs were picked out. Further, a subset of exosomal miRNAs, including the miR-146a, miR-27a, miR-126, and miR-155 in ARDS group exhibited significantly elevated levels than those in non-ARDS group. The combined expression of miR-126, miR-27a, miR-146a, and miR-155 predicted ARDS with an area under the curve of 0.909 (95 % CI 0.815 -1). Only miR-126 was selected to have potential to predict the 28-day mortality (OR=1.002, P=0.024) with its median value classifier. CONCLUSIONS The altered levels of circulating exosomal microRNAs may be useful biologic confirmation of ARDS in patients with SCAP.
Collapse
Affiliation(s)
- Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chengzhi Wu
- Department of Laboratory, Qihe People's Hospital, Dezhou, 251100, China
| | - Wenyu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd., Shanghai, 200072, China
| | - Haiying Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
164
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Molecular Changes in Diabetic Wound Healing following Administration of Vitamin D and Ginger Supplements: Biochemical and Molecular Experimental Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4352470. [PMID: 31428171 PMCID: PMC6679851 DOI: 10.1155/2019/4352470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. AIM In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. METHODS Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT-PCR and immunoassay analysis. RESULTS Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P < 0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. CONCLUSION Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
165
|
Chen X, Yuan L, Du J, Zhang C, Sun H. The polysaccharide from the roots of Actinidia eriantha activates RAW264.7 macrophages via regulating microRNA expression. Int J Biol Macromol 2019; 132:203-212. [DOI: 10.1016/j.ijbiomac.2019.03.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
|
166
|
Xie Z, Wang Y, Huang J, Qian N, Shen G, Chen L. Anti-inflammatory activity of polysaccharides from Phellinus linteus by regulating the NF-κB translocation in LPS-stimulated RAW264.7 macrophages. Int J Biol Macromol 2019; 129:61-67. [DOI: 10.1016/j.ijbiomac.2019.02.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/28/2022]
|
167
|
Liu Y, Kim S, Kim YJ, Perumalsamy H, Lee S, Hwang E, Yi TH. Green synthesis of gold nanoparticles using Euphrasia officinalisleaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. Int J Nanomedicine 2019; 14:2945-2959. [PMID: 31114201 PMCID: PMC6487898 DOI: 10.2147/ijn.s199781] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Gold nanoparticles (AuNPs) have potential applications in the treatment and diagnosis process, which are attributed to their biocompatibility and high efficiency of drug delivery. In the current study, we utilized an extract of Euphrasia officinalis, a traditional folk medicine, to synthesize gold nanoparticles (EO-AuNPs), and investigated their anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Materials and methods The AuNPs were synthesized from an ethanol extract of E. officinalis leaves and characterized using several analytical techniques. Anti-inflammatory activities of EO-AuNPs were detected by a model of LPS-induced upregulation of inflammatory mediators and cytokines including nitric oxide (NO), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 in RAW 264.7 cells. The activation of nuclear factor (NF)-κB and Janus kinase/signal transducer and activators of transcription (JAK/STAT) signaling pathways was investigated by Western blot. Results The results confirmed the successful synthesis of AuNPs by E. officinalis. Transmission electron microscopy images showed obvious uptake of EO-AuNPs and internalization into intracellular membrane–bound compartments, resembling endosomes and lysosomes by RAW 264.7 cells. Cell viability assays showed that EO-AuNPs exhibited little cytotoxicity in RAW 264.7 cells at 100 µg/mL concentration after 24 hours. EO-AuNPs significantly suppressed the LPS-induced release of NO, TNF-α, IL-1β, and IL-6 as well as the expression of the iNOS gene and protein in RAW 264.7 cells. Further experiments demonstrated that pretreatment with EO-AuNPs significantly reduced the phosphorylation and degradation of inhibitor kappa B-alpha and inhibited the nuclear translocation of NF-κB p65. In addition, EO-AuNPs suppressed LPS-stimulated inflammation by blocking the activation of JAK/STAT pathway. Conclusion The synthesized EO-AuNPs showed anti-inflammatory activity in LPS-induced RAW 264.7 cells, suggesting they may be potential candidates for treating inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Ying Liu
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea, ;
| | - Senghyun Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea, ;
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea, ; .,Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea, ;
| | - Haribalan Perumalsamy
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea, ;
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Eunson Hwang
- Snow White Factory Co., Ltd., Gangnamgu, Seoul, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea, ; .,Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea, ;
| |
Collapse
|
168
|
Vaz AR, Pinto S, Ezequiel C, Cunha C, Carvalho LA, Moreira R, Brites D. Phenotypic Effects of Wild-Type and Mutant SOD1 Expression in N9 Murine Microglia at Steady State, Inflammatory and Immunomodulatory Conditions. Front Cell Neurosci 2019; 13:109. [PMID: 31024256 PMCID: PMC6465643 DOI: 10.3389/fncel.2019.00109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulation of mutated superoxide dismutase 1 (mSOD1) in amyotrophic lateral sclerosis (ALS) involves injury to motor neurons (MNs), activation of glial cells and immune unbalance. However, neuroinflammation, besides its detrimental effects, also plays beneficial roles in ALS pathophysiology. Therefore, the targeting of microglia to modulate the release of inflammatory neurotoxic mediators and their exosomal dissemination, while strengthening cell neuroprotective properties, has gained growing interest. We used the N9 microglia cell line to identify phenotype diversity upon the overexpression of wild-type (WT; hSOD1WT) and mutated G93A (hSOD1G93A) protein. To investigate how each transduced cell respond to an inflammatory stimulus, N9 microglia were treated with lipopolysaccharide (LPS). Glycoursodeoxycholic acid (GUDCA) and dipeptidyl vinyl sulfone (VS), known to exert neuroprotective properties, were tested for their immunoregulatory properties. Reduced Fizz1, IL-10 and TLR4 mRNAs were observed in both transduced cells. However, in contrast with hSOD1WT-induced decreased of inflammatory markers, microglia transduced with hSOD1G93A showed upregulation of pro-inflammatory (TNF-α/IL-1β/HMGB1/S100B/iNOS) and membrane receptors (MFG-E8/RAGE). Importantly, their derived exosomes were enriched in HMGB1 and SOD1. When inflammatory-associated miRNAs were evaluated, increased miR-146a in cells with overexpressed hSOD1WT was not recapitulated in their exosomes, whereas hSOD1G93A triggered elevated exosomal miR-155/miR-146a, but no changes in cells. LPS stimulus increased M1/M2 associated markers in the naïve microglia, including MFG-E8, miR-155 and miR-146a, whose expression was decreased in both hSOD1WT and hSOD1G93A cells treated with LPS. Treatment with GUDCA or VS led to a decrease of TNF-α, IL-1β, HMGB1, S100B and miR-155 in hSOD1G93A microglia. Only GUDCA was able to increase cellular IL-10, RAGE and TLR4, together with miR-21, while decreased exosomal miR-155 cargo. Conversely, VS reduced MMP-2/MMP-9 activation, as well as upregulated MFG-E8 and miR-146a, while producing miR-21 shuttling into exosomes. The current study supports the powerful role of overexpressed hSOD1WT in attenuating M1/M2 activation, and that of hSOD1G93A in switching microglia from the steady state into a reactive phenotype with low responsiveness to stimuli. This work further reveals GUDCA and VS as promising modulators of microglia immune response by eliciting common and compound-specific molecular mechanisms that may promote neuroregeneration.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Sara Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Catarina Ezequiel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carolina Cunha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Luís A. Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
169
|
Yang J, Si D, Zhao Y, He C, Yang P. S-amlodipine improves endothelial dysfunction via the RANK/RANKL/OPG system by regulating microRNA-155 in hypertension. Biomed Pharmacother 2019; 114:108799. [PMID: 30951948 DOI: 10.1016/j.biopha.2019.108799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
S-amlodipine has been broadly used to treat hypertension, but its protective effects and underlying mechanism remain controversial. The purpose of our study was to investigate the mechanism by which S-amlodipine improves endothelial dysfunction. Specifically, we investigated if S-amlodipine regulates RANK/RANKL/OPG and micro-RNA 155 (miR-155) levels. Spontaneous hypertensive rats (SHR) were randomly divided into two groups: SHR (n = 12) and S-amlodipine (n = 12). We found that left ventricular ejection fraction (LVEF) increased significantly in the S-amlodipine group compared to the SHR group. After 10 weeks of S-amlodipine treatment, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were significantly lower and eNOS and NO production was significantly higher in the S-amlodipine group compared to the SHR group. In human umbilical vein endothelial cells (HUVECs), miR-155, RANK, and RANKL levels were significantly decreased, while OPG mRNA levels were significantly increased in the S-amlodipine group. HUVECs were transfected with miR-155 mimics or an inhibitor to determine the relationship between miR-155 and RANK/RANKL/OPG and NF-κB signaling. OPG mRNA levels following miR-155 inhibition were significantly higher compared to levels following treatment with miR-155 mimics. S-amlodipine significantly inhibited RANKL expression and NF-κB phosphorylation, and there were no significant differences in response to the NF-κB inhibitor (Bay110785). RANKL expression and NF-κB phosphorylation significantly decreased in the miR-155 inhibitor group. Furthermore, OPG protein expression significantly increased in response to miR-155 inhibition and S-amlodipine treatment (all p < 0.05). Our results indicate that S-amlodipine inhibits inflammation and protects against endothelial dysfunction, likely via regulating the RANK/RANKL/OPG pathway, which appears to be downstream of miR-155.
Collapse
Affiliation(s)
- Jining Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China; Department of Medicine Centre, China-Japan Union Hospital of Jilin University, China
| | - Daoyuan Si
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
| | - Yanan Zhao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
| | - Chengyan He
- Department of Medicine Centre, China-Japan Union Hospital of Jilin University, China.
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China.
| |
Collapse
|
170
|
Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging Roles of miRNAs in Brain Development and Perinatal Brain Injury. Front Physiol 2019; 10:227. [PMID: 30984006 PMCID: PMC6447777 DOI: 10.3389/fphys.2019.00227] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
In human beings the immature brain is highly plastic and depending on the stage of gestation is particularly vulnerable to a range of insults that if sufficiently severe, can result in long-term motor, cognitive and behavioral impairment. With improved neonatal care, the incidence of major motor deficits such as cerebral palsy has declined with prematurity. Unfortunately, however, milder forms of injury characterized by diffuse non-cystic white matter lesions within the periventricular region and surrounding white matter, involving loss of oligodendrocyte progenitors and subsequent axonal hypomyelination as the brain matures have not. Existing therapeutic options for treatment of preterm infants have proved inadequate, partly owing to an incomplete understanding of underlying post-injury cellular and molecular changes that lead to poor neurodevelopmental outcomes. This has reinforced the need to improve our understanding of brain plasticity, explore novel solutions for the development of protective strategies, and identify biomarkers. Compelling evidence exists supporting the involvement of microRNAs (miRNAs), a class of small non-coding RNAs, as important post-transcriptional regulators of gene expression with functions including cell fate specification and plasticity of synaptic connections. Importantly, miRNAs are differentially expressed following brain injury, and can be packaged within exosomes/extracellular vesicles, which play a pivotal role in assuring their intercellular communication and passage across the blood-brain barrier. Indeed, an increasing number of investigations have examined the roles of specific miRNAs following injury and regeneration and it is apparent that this field of research could potentially identify protective therapeutic strategies to ameliorate perinatal brain injury. In this review, we discuss the most recent findings of some important miRNAs in relation to the development of the brain, their dysregulation, functions and regulatory roles following brain injury, and discuss how these can be targeted either as biomarkers of injury or neuroprotective agents.
Collapse
Affiliation(s)
- Kenta Hyeon Tae Cho
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Bing Xu
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Departments of Molecular Medicine and Pathology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
171
|
Abstract
MicroRNAs (miRNAs) are naturally occurring, highly conserved families of transcripts (∼22 nucleotides in length) that are processed from larger hairpin precursors. miRNAs primarily regulate gene expression by promoting messenger RNA (mRNA) degradation or repressing mRNA translation. miRNAs have been shown to be important regulators of a variety of cellular processes involving development, differentiation, and signaling. Moreover, various human diseases, including cancer and immune dysfunction, are associated with aberrant expression of miRNAs. This review will focus on how the multifunctional miRNA, miR-155, regulates inflammatory diseases, including cancer and pulmonary disorders, and also how miR-155 expression and biogenesis are regulated. We will also provide examples of miR-155-regulated networks in coordination with other noncoding RNAs, including long noncoding RNAs as well as coding mRNAs acting as competing endogenous RNAs.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
172
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
173
|
Zeng Q, Jewell CM. Directing toll-like receptor signaling in macrophages to enhance tumor immunotherapy. Curr Opin Biotechnol 2019; 60:138-145. [PMID: 30831487 DOI: 10.1016/j.copbio.2019.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/06/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
Abstract
A key challenge facing immunotherapy is poor infiltration of T cells into tumors, along with suppression of cells reaching these sites. However, macrophages make up a majority of immune cell infiltrates into tumors, creating natural targets for immunotherapies able to direct macrophages away from tumor-supportive functions and toward anti-tumor phenotypes. Recent studies demonstrate that toll-like receptors (TLRs) - pathways that quickly trigger early immune responses - play an important role in polarizing macrophages. Here, we present emerging ways in which TLR signaling is being manipulated in macrophages to create new opportunities for cancer immunotherapy. In particular, we discuss approaches to deliver TLR agonists, to leverage biomaterials in these therapies, and to couple TLR-based approaches with other frontline treatments as combination cancer therapies.
Collapse
Affiliation(s)
- Qin Zeng
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, Maryland VA Health Care System, 10 North Greene Street, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
174
|
NF-κB-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase. Exp Mol Med 2019; 51:1-12. [PMID: 30765689 PMCID: PMC6376011 DOI: 10.1038/s12276-019-0212-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) play an important role in maintaining vascular function. Inflammation-mediated VSMC dysfunction leads to atherosclerotic intimal hyperplasia and preeclamptic hypertension; however, the underlying mechanisms are not clearly understood. We analyzed the expression levels of microRNA-155 (miR-155) in cultured VSMCs, mouse vessels, and clinical specimens and then assessed its role in VSMC function. Treatment with tumor necrosis factor-α (TNF-α) elevated miR-155 biogenesis in cultured VSMCs and vessel segments, which was prevented by NF-κB inhibition. MiR-155 expression was also increased in high-fat diet-fed ApoE−/− mice and in patients with atherosclerosis and preeclampsia. The miR-155 levels were inversely correlated with soluble guanylyl cyclase β1 (sGCβ1) expression and nitric oxide (NO)-dependent cGMP production through targeting the sGCβ1 transcript. TNF-α-induced miR-155 caused VSMC phenotypic switching, which was confirmed by the downregulation of VSMC-specific marker genes, suppression of cell proliferation and migration, alterations in cell morphology, and NO-induced vasorelaxation. These events were mitigated by miR-155 inhibition. Moreover, TNF-α did not cause VSMC phenotypic modulation and limit NO-induced vasodilation in aortic vessels of miR-155−/− mice. These findings suggest that NF-κB-induced miR-155 impairs the VSMC contractile phenotype and NO-mediated vasorelaxation by downregulating sGCβ1 expression. These data suggest that NF-κB-responsive miR-155 is a novel negative regulator of VSMC functions by impairing the sGC/cGMP pathway, which is essential for maintaining the VSMC contractile phenotype and vasorelaxation, offering a new therapeutic target for the treatment of atherosclerosis and preeclampsia. The overexpression of a microRNA molecule adversely affects the functioning of vascular smooth muscle cells (VSMCs) and may contribute to the development of artherosclerosis and preeclampsia. The interactions between VSMCs and the cells lining blood vessels (endothelium) are crucial for maintaining the healthy phenotype and relaxation of blood vessels. Disruption to these interactions via inflammation, for example, can trigger serious vascular diseases. Young-Myeong Kim at Kangwon National University, Chungcheon, South Korea, and co-workers demonstrated that expression levels of a microRNA-155 are elevated in patients with artherosclerosis and preeclampsia, while an enzyme found in VSMCs called soluble guanylyl cyclase is considerably reduced. Using human and mice tissues, the team showed that miR-155 impairs the contractile phenotype and relaxation of VSMCs by reducing guanylyl cyclase expression. Their findings may inform new therapies for vascular diseases.
Collapse
|
175
|
Xiao Q, Zhu X, Yang S, Wang J, Yin R, Song J, Ma A, Pan X. LPS induces CXCL16 expression in HUVECs through the miR-146a-mediated TLR4 pathway. Int Immunopharmacol 2019; 69:143-149. [PMID: 30710793 DOI: 10.1016/j.intimp.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Endothelial inflammation characterizes the early stages of atherosclerosis. CXCL16 is a protein that functions as both a chemokine and adhesion molecule, playing a crucial role in the pathogenesis of atherosclerosis. However, it is uncertain if LPS, a major inducer of inflammation, affects CXCL16 expression in endothelial cells and whether miR-146a, a negative regulator of atherosclerosis, participates in this process. The present study showed that exposure of human umbilical vein endothelial cells (HUVECs) to LPS induced the overexpression of CXCL16, TLR4 and NF-κB, and this induction was blocked by the TLR4 inhibitor TAK-242. In addition, LPS induced the upregulation of miR-146a in HUVECs. Overexpression or inhibition of miR-146a either inhibited or increased the LPS-induced expression CXCL16, TLR4 and NF-κB protein production, respectively. Additionally, miR-146a-induced CXCL16 expression was blocked by TAK-242. Thus, in this study, we demonstrate that LPS stimulates CXCL16 expression via the TLR4/NF-κB signaling pathway, and simultaneously, miR-146 negatively regulates LPS-induced CXCL16 expression through a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong Province 266100, China
| | - Xiaoyan Zhu
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong Province 266100, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong Province 266100, China
| | - Jing Wang
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong Province 266100, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong Province 266100, China
| | - Jinyang Song
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong Province 266100, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong Province 266100, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of the Qingdao University, Medical School of Qingdao University, Qingdao, Shandong Province 266100, China.
| |
Collapse
|
176
|
Morris G, Berk M, Maes M, Puri BK. Could Alzheimer's Disease Originate in the Periphery and If So How So? Mol Neurobiol 2019; 56:406-434. [PMID: 29705945 PMCID: PMC6372984 DOI: 10.1007/s12035-018-1092-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Level 1 North, Main Block, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, Kenneth Myer Building, University of Melbourne, 30 Royal Parade, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Rd, Parkville, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, Victoria, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
177
|
Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and Viroids in Lethal Diseases of Plants and Animals. Potential Contribution to Human Neurodegenerative Disorders. BIOCHEMISTRY (MOSCOW) 2018; 83:1018-1029. [PMID: 30472940 DOI: 10.1134/s0006297918090031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both plants and animals have adopted a common strategy of using ~18-25-nucleotide small non-coding RNAs (sncRNAs), known as microRNAs (miRNAs), to transmit DNA-based epigenetic information. miRNAs (i) shape the total transcriptional output of individual cells; (ii) regulate and fine-tune gene expression profiles of cell clusters, and (iii) modulate cell phenotype in response to environmental stimuli and stressors. These miRNAs, the smallest known carriers of gene-encoded post-transcriptional regulatory information, not only regulate cellular function in healthy cells but also act as important mediators in the development of plant and animal diseases. Plants possess their own specific miRNAs; at least 32 plant species have been found to carry infectious sncRNAs called viroids, whose mechanisms of generation and functions are strikingly similar to those of miRNAs. This review highlights recent remarkable and sometimes controversial findings in miRNA signaling in plants and animals. Special attention is given to the intriguing possibility that dietary miRNAs and/or sncRNAs can function as mobile epigenetic and/or evolutionary linkers between different species and contribute to both intra- and interkingdom signaling. Wherever possible, emphasis has been placed on the relevance of these miRNAs to the development of human neurodegenerative diseases, such as Alzheimer's disease. Based on the current available data, we suggest that such xeno-miRNAs may (i) contribute to the beneficial properties of medicinal plants, (ii) contribute to the negative properties of disease-causing or poisonous plants, and (iii) provide cross-species communication between kingdoms of living organisms involving multiple epigenetic and/or potentially pathogenic mechanisms associated with the onset and pathogenesis of various diseases.
Collapse
Affiliation(s)
- L Cong
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA.,Department of Neurology, Shengjing Hospital, China Medical University, Heping District, Shenyang, Liaoning Province, China
| | - Y Zhao
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA.,Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA
| | - A I Pogue
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
| | - W J Lukiw
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA. .,Department Neurology, Louisiana State University School of Medicine, New Orleans, LA 70112-2272, USA.,Department Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112-2272, USA
| |
Collapse
|
178
|
Tang L, Li X, Bai Y, Wang P, Zhao Y. MicroRNA‐146a negatively regulates the inflammatory response toPorphyromonas gingivalisin human periodontal ligament fibroblasts via TRAF6/p38 pathway. J Periodontol 2018; 90:391-399. [PMID: 30378773 DOI: 10.1002/jper.18-0190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Lu Tang
- Department of StomatologyXuanwu HospitalCapital Medical University Beijing China
| | - Xudong Li
- The affiliated Stomatology Hospital of Kunming medical University Kunming Yunnan China
| | - Yuhao Bai
- Department of StomatologyXuanwu HospitalCapital Medical University Beijing China
| | - Pengcheng Wang
- Department of StomatologyXuanwu HospitalCapital Medical University Beijing China
| | - Ying Zhao
- Department of StomatologyXuanwu HospitalCapital Medical University Beijing China
| |
Collapse
|
179
|
Dalgaard LT, Carvalho E. Editorial commentary: Wanted: MicroRNAs to the aid of the diabetic foot. Trends Cardiovasc Med 2018; 29:138-140. [PMID: 30292469 DOI: 10.1016/j.tcm.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Arkansas Children's Research Institute, Little Rock, AR, United States.
| |
Collapse
|
180
|
Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:242. [PMID: 30285793 PMCID: PMC6169013 DOI: 10.1186/s13046-018-0911-3] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023]
Abstract
Background Cancer-associated fibroblasts (CAFs) have been widely reported to promote tumor angiogenesis. However, the underlying mechanisms of the proangiogenic switch of CAFs remain poorly understood. This study aims to clarify the mechanisms underlying the proangiogenic switch of CAFs. Methods NIH/3T3 cells were treated with B16 and B16F10-derived exosomes. Then the CAFs markers and proangiogenic factors were detected by RT-PCR and Western blot. CCK-8 assay, transwell migration assay, tube formation assay, and in vivo Matrigel plug assay were conducted to determine the proangiogenic capability of CAFs. Western blot and AG490 were used to investigate the role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in the proangiogenic switch of CAFs. Bioinformatics analysis, luciferase reporter assay, microRNA mimic and inhibitor, and xenograft models were used to investigate the role of mmu-miR-155-5p (miR-155) in the proangiogenic switch of CAFs. Results In this study, we show that melanoma cell-secreted exosomes can induce reprogramming of fibroblasts into CAFs and that exosomal miR-155 can trigger the proangiogenic switch of CAFs. Mechanistically exosomal miR-155 can be delivered into fibroblasts and promote the expression of proangiogenic factors, including vascular endothelial growth factor A (VEGFa), fibroblast growth factor 2 (FGF2), and matrix metalloproteinase 9 (MMP9), by directly targeting suppressor of cytokine signaling 1 (SOCS1). Downregulation of SOCS1 activates JAK2/STAT3 signaling pathway and elevates the expression levels of VEGFa, FGF2, and MMP9 in fibroblasts. Treatment with exosomes containing overexpressed miR-155 can promote angiogenesis, and the reduction of miR-155 in melanoma cell-secreted exosomes alleviates angiogenesis in vitro and in vivo. Conclusions These results demonstrate that by promoting the expression of proangiogenic factors in recipient fibroblasts via SOCS1/JAK2/STAT3 signaling pathway, melanoma cell-secreted exosomal miR-155 can induce the proangiogenic switch of CAFs. Although tumor angiogenesis is modulated by various factors, exosomal miR-155 may be a potential target for controlling melanoma angiogenesis and used to set up novel strategies to treat melanoma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0911-3) contains supplementary material, which is available to authorized users.
Collapse
|
181
|
Memi F, Tirziu D, Papangeli I. Tissue-specific miRNA Expression Profiling in Mouse Heart Sections Using In Situ Hybridization. J Vis Exp 2018. [PMID: 30272664 DOI: 10.3791/57920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
micro-RNAs (miRNAs) are single-stranded RNA transcripts that bind to messenger RNAs (mRNAs) and inhibit their translation or promote their degradation. To date, miRNAs have been implicated in a large number of biological and disease processes, which has signified the need for the reliable detection methods of miRNA transcripts. Here, we describe a detailed protocol for digoxigenin-labeled (DIG) Locked Nucleic Acid (LNA) probe-based miRNA detection, combined with protein immunostaining on mouse heart sections. First, we performed an in situ hybridization technique using the probe to identify miRNA-182 expression in heart sections from control and cardiac hypertrophy mice. Next, we performed immunostaining for cardiac Troponin T (cTnT) protein, on the same sections, to co-localize miRNA-182 with the cardiomyocyte cells. Using this protocol, we were able to detect miRNA-182 through an alkaline phosphatase based colorimetric assay, and cTnT through fluorescent staining. This protocol can be used to detect the expression of any miRNA of interest through DIG-labeled LNA probes, and relevant protein expression on mouse heart tissue sections.
Collapse
Affiliation(s)
- Fani Memi
- Department of Cell and Developmental Biology, University College London
| | - Daniela Tirziu
- Yale Cardiovascular Research Group, Section of Cardiovascular Medicine, Yale School of Medicine
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine;
| |
Collapse
|
182
|
Wang RH, He LY, Zhou SH. The role of gene sculptor microRNAs in human precancerous lesions. Onco Targets Ther 2018; 11:5667-5675. [PMID: 30254459 PMCID: PMC6141127 DOI: 10.2147/ott.s171241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs. These noncoding RNAs regulate the expression of target genes and inhibit the translation of target proteins at the post-transcriptional level. miRNAs also play an important role in human health, from the development and differentiation of cells to the occurrence and progression of disorders such as cancer, cardiovascular diseases, and neurodegenerative diseases. Precancerous lesions are lesions prior to invasive carcinomas, and carcinogenesis is a very complicated process, which is multistage and the result of multigene synergy. miRNAs exert effects as both oncogenes and tumor suppressor genes by regulating target genes involved in signaling pathways. Hence, precancerous lesions are accompanied by relevant miRNA changes. Based on the morphology of miRNAs in vivo and the specificity of miRNA, various novel miRNA analysis methods have been developed, including reverse transcription quantitative PCR, enzyme analysis, molecular beacons, and deep sequencing. For example, in the laryngeal epithelial precancerous lesions, the data demonstrate that the expression of miR-10a-5p is downregulated and miR-484 is the most abundant miRNA in hepatic precancerous lesions. In this review, we discuss the functional roles of miRNAs in human precancerous lesions.
Collapse
Affiliation(s)
- Ran-Hong Wang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China, .,Department of Otolaryngology, The Third Hospital of Hangzhou City, Hangzhou City, People's Republic of China
| | - Lan-Ying He
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China,
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China,
| |
Collapse
|
183
|
Dewanjee S, Bhattacharjee N. MicroRNA: A new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol 2018; 155:32-47. [DOI: 10.1016/j.bcp.2018.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
|
184
|
Yang Z, Guo Z, Dong J, Sheng S, Wang Y, Yu L, Wang H, Tang L. miR-374a Regulates Inflammatory Response in Diabetic Nephropathy by Targeting MCP-1 Expression. Front Pharmacol 2018; 9:900. [PMID: 30147653 PMCID: PMC6095963 DOI: 10.3389/fphar.2018.00900] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
The microRNA (mir)-374a has been implicated in several types of human cancer; however, its role in diabetic nephropathy (DN) remains unclear. Monocyte chemoattractant protein (MCP)-1 is a chemokine that recruits macrophages to inflammatory sites and is important for the development and progression of DN. However, the relationship between miR-374a and MCP-1 in DN is unknown. We addressed this in the present study by examining the expression of these factors in kidney tissue samples from DN patients and through loss- and gain-of-function experiments using HK2 human renal tubular epithelial cells. We found that miR-374a was downregulated whereas MCP-1 was upregulated in DN tissue. A bioinformatics analysis revealed that MCP-1 is a putative target of miR-374a. To confirm this relationship, HK2 cells treated with normal glucose (5.6 mmol/l D-glucose), high glucose (HG) (30 mmol/l D-glucose), or high osmotic pressure solution (5.6 mmol/l D-glucose + 24.4 mmol/l D-mannitol) were transfected with miR-374a mimic or inhibitor. miR-374a mimic reduced MCP-1 mRNA expression and migration of co-cultured U937 cells, whereas miR-374a inhibition had the opposite effects. Additionally, interleukin-6 and -18 and tumor necrosis factor-α levels were downregulated by transfection of miR-374a mimic. On the other hand, MCP-1 overexpression reversed the inhibitory effects of miR-374a in HK2 cells. Thus, miR-374a suppresses the inflammatory response in DN through negative regulation of MCP-1 expression. These findings suggest that therapeutic strategies that target the miR-374a/MCP-1 axis can be an effective treatment for DN.
Collapse
Affiliation(s)
- Zijun Yang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zuishuang Guo
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji Dong
- Henan Medical College, Zhengzhou, China
| | - Shifeng Sheng
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Yu
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongru Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
185
|
De Cauwer A, Mariotte A, Sibilia J, Bahram S, Georgel P. DICER1: A Key Player in Rheumatoid Arthritis, at the Crossroads of Cellular Stress, Innate Immunity, and Chronic Inflammation in Aging. Front Immunol 2018; 9:1647. [PMID: 30087677 PMCID: PMC6066587 DOI: 10.3389/fimmu.2018.01647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/04/2018] [Indexed: 12/20/2022] Open
Abstract
Loss-of-function or knockout mouse models have established a fundamental role for the RNAse III enzyme DICER1 in development and tissue morphogenesis and/or homeostasis. These functions are currently assumed to result mainly from the DICER1-dependent biogenesis of microRNAs which exhibit important gene expression regulatory properties. However, non-canonical DICER1 functions have recently emerged. These include interaction with the DNA damage response (DDR) pathway and the processing of cytotoxic non-coding RNAs, suggesting that DICER1 might also participate in the regulation of major cellular processes through miRNA-independent mechanisms. Recent findings indicated that reduced Dicer1 expression, which correlates with worsened symptoms in mouse models of joint inflammation, is also noted in fibroblast-like synoviocytes (FLS) harvested from rheumatoid arthritis (RA) patients, as opposed to FLS cultured from biopsies of osteoarthritic patients. In addition, low DICER1 levels are associated with the establishment of cellular stress and its associated responses, such as cellular senescence. Senescent and/or stressed cells are associated with an inflammatory secretome (cytokines and chemokines), as well as with "find-me" and "eat-me" signals which will attract and activate the innate immune compartment (NK cells, macrophages, and neutrophils) to be eliminated. Failure of this immunosurveillance mechanism and improper restauration of homeostasis could lead to the establishment of a systemic and chronic inflammatory state. In this review, we suggest that reduced DICER1 expression contributes to a vicious cycle during which accumulating inflammation and premature senescence, combined to inadequate innate immunity responses, creates the appropriate conditions for the initiation and/or progression of autoimmune-autoinflammatory diseases, such as RA.
Collapse
Affiliation(s)
- Aurore De Cauwer
- Université de Strasbourg, INSERM, ImmunoRhumatologie Moléculaire UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Strasbourg, France.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| | - Alexandre Mariotte
- Université de Strasbourg, INSERM, ImmunoRhumatologie Moléculaire UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Strasbourg, France.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| | - Jean Sibilia
- Université de Strasbourg, INSERM, ImmunoRhumatologie Moléculaire UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Strasbourg, France.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France.,Centre de Référence des Maladies Autoimmunes Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Université de Strasbourg, INSERM, ImmunoRhumatologie Moléculaire UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Strasbourg, France.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| | - Philippe Georgel
- Université de Strasbourg, INSERM, ImmunoRhumatologie Moléculaire UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg, Faculté de Médecine, Strasbourg, France.,Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| |
Collapse
|
186
|
Cho S, Lee HM, Yu IS, Choi YS, Huang HY, Hashemifar SS, Lin LL, Chen MC, Afanasiev ND, Khan AA, Lin SW, Rudensky AY, Crotty S, Lu LF. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun 2018; 9:2757. [PMID: 30013024 PMCID: PMC6048122 DOI: 10.1038/s41467-018-05196-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
Reciprocal interactions between B and follicular T helper (Tfh) cells orchestrate the germinal center (GC) reaction, a hallmark of humoral immunity. Abnormal GC responses could lead to the production of pathogenic autoantibodies and the development of autoimmunity. Here we show that miR-146a controls GC responses by targeting multiple CD40 signaling pathway components in B cells; by contrast, loss of miR-146a in T cells does not alter humoral responses. However, specific deletion of both miR-146a and its paralog, miR-146b, in T cells increases Tfh cell numbers and enhanced GC reactions. Thus, our data reveal differential cell-intrinsic regulations of GC B and Tfh cells by miR-146a and miR-146b. Together, members of the miR-146 family serve as crucial molecular brakes to coordinately control GC reactions to generate protective humoral responses without eliciting unwanted autoimmunity. In the germinal center (GC), B and T cells interact to induce the production of protective antibodies against threats. Here the authors show that microRNA miR-146a modulates CD40 signaling in GC B cells, while both miR-146a and miR-146b synergize to control GC T cell responses, thereby implicating intricate controls of GC response by miR-146.
Collapse
Affiliation(s)
- Sunglim Cho
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Hyang-Mi Lee
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Hsi-Yuan Huang
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | | | - Ling-Li Lin
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Mei-Chi Chen
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Nikita D Afanasiev
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | | | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Division of Infectious Diseases, Department of Medicine, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, 92093, USA. .,Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
187
|
Secretome from SH-SY5Y APP Swe cells trigger time-dependent CHME3 microglia activation phenotypes, ultimately leading to miR-21 exosome shuttling. Biochimie 2018; 155:67-82. [PMID: 29857185 DOI: 10.1016/j.biochi.2018.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/27/2018] [Indexed: 01/08/2023]
Abstract
Exosome-mediated intercellular communication has been increasingly recognized as having a broad impact on Alzheimer's disease (AD) pathogenesis. Still, limited information exists regarding their "modus operandi", as it critically depends on exosomal cargo, environmental context and target cells. Therefore, a more thorough understanding of the role of exosomes from different cell types as mediators of neuroinflammation in AD context is a decisive step to open avenues for innovative and efficient therapies. In this study, we demonstrate that SH-SY5Y cells transfected with the Swedish mutant of APP695 (SHSwe) remarkably express increased inflammatory markers, combined with higher APP and Aβ1-40 production, when compared to naïve SH-SY5Y (SH) cells. Although exerting an early clearance effect on extracellular APP and Aβ accumulation when in co-culture with SHSwe cells, human CHME3 microglia gradually lose such property, and express both pro-inflammatory (iNOS, IL-1β, TNF-α, MHC class II, IL-6) and pro-resolving genes (IL-10 and Arginase 1), while also evidence increased senescence-associated β-galactosidase activity. Interestingly, upregulation of inflammatory-associated miRNA (miR)-155, miR-146a and miR-124 by SHSwe secretome shows to be time-dependent and to inversely correlate with their respective targets (SOCS-1, IRAK1 and C/EBP-α). We report that microglia also internalize exosomes released from SHSwe cells, which are enriched in miR-155, miR-146a, miR-124, miR-21 and miR-125b and recapitulate the cells of origin. Furthermore, we show that SHSwe-derived exosomes are capable of inducing acute and delayed microglial upregulation of TNF-α, HMGB1 and S100B pro-inflammatory markers, from which only S100B is found on their derived exosomes. Most importantly, our data reveal that miR-21 is a consistent biomarker that is found not only in SHSwe cells and in their released exosomes, but also in the recipient CHME3 microglia and derived exosomes. This work contributes to the increased understanding of neuron-microglia communication and exosome-mediated neuroinflammation in AD, while highlights miR-21 as a promising biomarker/target for therapeutic intervention.
Collapse
|
188
|
Hirschberger S, Hinske LC, Kreth S. MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer. Cancer Lett 2018; 431:11-21. [PMID: 29800684 DOI: 10.1016/j.canlet.2018.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed.
Collapse
Affiliation(s)
- Simon Hirschberger
- Department of Anesthesiology, University Hospital, LMU Munich, Germany; Walter-Brendel-Center of Experimental Medicine, LMU Munich, Germany
| | | | - Simone Kreth
- Department of Anesthesiology, University Hospital, LMU Munich, Germany; Walter-Brendel-Center of Experimental Medicine, LMU Munich, Germany.
| |
Collapse
|
189
|
Tremella fuciformis Polysaccharides Attenuate Oxidative Stress and Inflammation in Macrophages through miR-155. Anal Cell Pathol (Amst) 2018; 2018:5762371. [PMID: 29854576 PMCID: PMC5954968 DOI: 10.1155/2018/5762371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Aim To investigate the function of Tremella fuciformis polysaccharides (TFPS) in LPS-induced inflammation and oxidative stress of macrophages. Methods RAW264.7 cells were pretreated with TFPS and then stimulated with 0.1 μg/ml LPS. NFκB, Akt, p38MAPK, MCP-1, and SOD-1 were analyzed by Western blotting. Cell viability was measured using MTT assays. Reactive oxygen species (ROS) production, real-time PCR, ELISA, and immunofluorescence staining were performed on RAW264.7 cells that were treated with LPS and/or TFPS to investigate the anti-inflammatory effect of TFPS. Results LPS induced inflammation and ROS production and promoted the secretion of cytokines such as TNF-α and IL-6. LPS also enhanced the nuclear translocation of NFκB, which promoted inflammation by oxidative stress. However, pretreatment with TFPS profoundly inhibited the activation of Akt, p38MAPK, and NFκB and attenuated the expression of MCP-1 in macrophages. Meanwhile, TFPS also decreased cytokine and ROS levels and attenuated cell inflammation after treatment with LPS. Moreover, miR-155, one of the key small RNAs which regulate NFκB and inflammation in macrophages, was significantly downregulated. Conclusion TFPS inhibits LPS-induced oxidative stress and inflammation by inhibiting miR-155 expression and NFκB activation in macrophages, which suggests that TFPS may be a potential reagent for inhibiting the development of inflammation.
Collapse
|
190
|
MiR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2018; 500:828-837. [PMID: 29689269 DOI: 10.1016/j.bbrc.2018.04.168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
MiR-150 is involved into some pathological processes, such as tumorigenesis and autoimmune diseases. However, little is known about the involvement of miR-150 in human sepsis. In this study, plasma miR-150 level had a diagnostic and independent prognostic value in patients with sepsis, and negatively correlated with renal dysfunction and 28-day survival as well as plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). MiR-150 expression was also significantly decreased in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mice with sepsis after lipopolysaccharides (LPS) treatment. In-vitro, miR-150 over-expression protected HUVECs from LPS-induced apoptosis and the expressions of nuclear factor-κB1 (NF-κB1), IL-6, TNF-α, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin. Furthermore, NF-κB1 was identified as a direct target of miR-150. Restored NF-κB1 expression antagonized the protective effects of miR-150, while suppression of NF-κB1 enhanced these protective effects. Our findings indicate miR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells. Thus, miR-150 may be a useful biomarker or target in the diagnosis, prognosis and treatment of patients with sepsis.
Collapse
|
191
|
Zununi Vahed S, Nakhjavani M, Etemadi J, Jamshidi H, Jadidian N, Pourlak T, Abediazar S. Altered levels of immune-regulatory microRNAs in plasma samples of patients with lupus nephritis. ACTA ACUST UNITED AC 2018; 8:177-183. [PMID: 30211077 PMCID: PMC6128973 DOI: 10.15171/bi.2018.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/16/2018] [Accepted: 04/07/2018] [Indexed: 12/26/2022]
Abstract
![]()
Introduction: Lupus nephritis (LN) is a major cause of mortality and morbidity in the patients with lupus, a chronic autoimmune disease. The role of genetic and epigenetic factors is emphasized in the pathogenesis of LN. The aim of the present study was to evaluate the levels of immune-regulatory microRNAs (e.g., miR-31, miR-125a, miR-142-3p, miR-146a, and miR-155) in plasma samples of patients with LN.
Methods: In this study, 26 patients with LN and 26 healthy individuals were included. The plasma levels of the microRNAs were evaluated by a quantitative real-time PCR. Moreover, the correlation of circulating plasma microRNAs with disease activity and pathological findings along with their ability to distinguish patients with LN were assessed.
Results: Plasma levels of miR-125a (P = 0.048), miR-146a (P = 0.005), and miR-155 (P< 0.001) were significantly higher in comparison between the cases and controls. The plasma level of miR-146a significantly correlated with the level of anti-double strand-DNA antibody and proteinuria. Moreover, there was a significant correlation between miR-142-3p levels and disease chronicity and activity index (P <0.05). The multivariate ROC curve analysis indicated the plasma circulating miR-125a, miR-142-3p, miR-146, and miR-155 together could discriminate most of the patients with LN from controls with area an under curve (AUC) of 0.89 [95% CI, 0.80-0.98, P<0.001], 88% sensitivity, and 78% specificity.
Conclusion: Based on the findings of the present study, the studied microRNAs may be involved in the pathogenesis and development of LN and have the potential to be used as diagnostic and therapeutic markers in LN.
Collapse
Affiliation(s)
| | - Mohammadreza Nakhjavani
- Department of Rheumatology, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Henghame Jamshidi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Jadidian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tala Pourlak
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
192
|
Momen-Heravi F, Bala S. miRNA regulation of innate immunity. J Leukoc Biol 2018; 103:1205-1217. [PMID: 29656417 DOI: 10.1002/jlb.3mir1117-459r] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA and are pivotal posttranscriptional regulators of both innate and adaptive immunity. They act by regulating the expression of multiple immune genes, thus, are the important elements to the complex immune regulatory network. Deregulated expression of specific miRNAs can lead to potential autoimmunity, immune tolerance, hyper-inflammatory phenotype, and cancer initiation and progression. In this review, we discuss the contributory pathways and mechanisms by which several miRNAs influence the development of innate immunity and fine-tune immune response. Moreover, we discuss the consequence of deregulated miRNAs and their pathogenic implications.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York, New York, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
193
|
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol 2018; 9:586. [PMID: 29686666 PMCID: PMC5900450 DOI: 10.3389/fimmu.2018.00586] [Citation(s) in RCA: 811] [Impact Index Per Article: 115.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called "inflamm-aging." Despite research there is no clear understanding about the causes of "inflamm-aging" that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer's disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with "inflammageing" or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
- Care of Elderly Medicine, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - David S. Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Susan E. McNerlan
- Regional Genetics Service, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - H. Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
194
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
195
|
Wu M, Li N, Xu J, Wu L, Li M, Tong H, Wang F, Liu W, Feng Y. Experimental study on the regulation of the cholinergic pathway in renal macrophages by microRNA-132 to alleviate inflammatory response. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractMicroRNA-132 (miR-132) is correlated with inflammatory response regulation, although its effect on acute kidney injury to provide protection against hemorrhagic shock remains currently unknown. AChE in macrophages of the kidney subjected under hemorrhagic shock is presumed to be regulated by miR-132 after its transcription to alleviate the inflammatory response accordingly. Antagonists such as acetylcholine (Ach) (concentration 10−4mol/L) and galanthamine (Gal) (concentration 10μmol/L) were added into separate groups 1 hour after the macrophages in the kidney were isolated and cultured to induce injury under oxygen and glucose deprivation (OGD) and then cultured for 24 hours. To analyze the effect of miR-132, we placed the renal epithelial cells transfected with miR-132 plasmids with stable expression over the renal macrophages to create a double cell culture system. The expression levels of inflammatory factors and apoptosis under OGD were significantly higher in renal macrophages than in other experimental groups. Moreover, the expression of miR-132 in macrophages of the double cell culture system showing stable expression of miR-132 increased, whereas that of several inflammatory factors was significantly inhibited. The expression levels of AChE mRNA and protein in the macrophages significantly decreased. The cholinergic antiinflammatory pathway in renal macrophages is regulated by miR-132 via inhibition of the hydrolytic activity of cholinesterase to alleviate inflammatory response, which may play a role in the prevention and treatment of kidney injury caused by hemorrhagic shock.
Collapse
Affiliation(s)
- Ming Wu
- Department of Critical Care Medicine of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Nana Li
- HeNan Key Laboratory of Medical Tissue Regeneration XinXiang Medical University, Henan province, 453000, China
| | - Ji Xu
- Department of Central laboratory of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Lefeng Wu
- Department of Critical Care Medicine of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Mingli Li
- Department of interventional therapy of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Huansheng Tong
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, PR China
| | - Wenlan Liu
- Department of Central laboratory of Shengzhen Second Hospital, Shenzhen, 518035, China
| | - Yongwen Feng
- Department of Critical Care Medicine of Shengzhen Second Hospital, Shenzhen, 518035, China
| |
Collapse
|
196
|
Alivernini S, Tolusso B, Ferraccioli G, Gremese E, Kurowska-Stolarska M, McInnes IB. Driving chronicity in rheumatoid arthritis: perpetuating role of myeloid cells. Clin Exp Immunol 2018; 193:13-23. [PMID: 29315512 PMCID: PMC6038003 DOI: 10.1111/cei.13098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Acute inflammation is a complex and tightly regulated homeostatic process that includes leucocyte migration from the vasculature into tissues to eliminate the pathogen/injury, followed by a pro‐resolving response promoting tissue repair. However, if inflammation is uncontrolled as in chronic diseases such as rheumatoid arthritis (RA), it leads to tissue damage and disability. Synovial tissue inflammation in RA patients is maintained by sustained activation of multiple inflammatory positive‐feedback regulatory pathways in a variety of cells, including myeloid cells. In this review, we will highlight recent evidence uncovering biological mechanisms contributing to the aberrant activation of myeloid cells that contributes to perpetuation of inflammation in RA, and discuss emerging data on anti‐inflammatory mediators contributing to sustained remission that may inform a novel category of therapeutic targets.
Collapse
Affiliation(s)
- S Alivernini
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - B Tolusso
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - G Ferraccioli
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - E Gremese
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - M Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, UK
| | - I B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, UK
| |
Collapse
|
197
|
Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X. Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:171-177. [PMID: 29398906 PMCID: PMC5775734 DOI: 10.2147/dddt.s157109] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose Recent evidence has shown the involvement of inflammation in the development of diabetic peripheral neuropathy (DPN). MicroRNA-146a (miR-146a) is closely involved in the inflammatory response. However, the role of miR-146a in the inflammatory reaction in DPN has not been clarified. This study was designed to explore the role of miR-146a in the regulation of inflammatory responses in DPN. Methods Rats were randomly divided into three groups (n=6 per group): control group, type 2 diabetes mellitus (T2DM) group and DPN group. T2DM and DPN rats were intraperitoneally injected with streptozotocin. Sciatic nerve conduction velocity (NCV) was determined at the 6th week and the 12th week in each group. The expression of microRNAs was detected by quantitative real-time polymerase chain reaction in three sciatic nerves for each group of rats. Expression of inflammatory cytokines in nerve tissues and plasma was measured by Western blot and Bio-Plex Pro™ assays. Results The NCV and expression levels of miR-146a in the DPN group were significantly decreased (P<0.01) compared to the other two groups. Expression of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the DPN group was significantly increased compared with the control and T2DM groups (P<0.01). Pearson’s correlation analysis showed that the expression level of miR-146a was negatively correlated with the levels of IL-1β, TNF-α and NF-κB. Conclusion miR-146a is involved in the pathogenesis of DPN, and its expression level is closely related to the inflammatory responses that aggravate sciatic nerve injuries.
Collapse
Affiliation(s)
- Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Long Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Qiong Luo
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
198
|
Alivernini S, Gremese E, McSharry C, Tolusso B, Ferraccioli G, McInnes IB, Kurowska-Stolarska M. MicroRNA-155-at the Critical Interface of Innate and Adaptive Immunity in Arthritis. Front Immunol 2018; 8:1932. [PMID: 29354135 PMCID: PMC5760508 DOI: 10.3389/fimmu.2017.01932] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that fine-tune the cell response to a changing environment by modulating the cell transcriptome. miR-155 is a multifunctional miRNA enriched in cells of the immune system and is indispensable for the immune response. However, when deregulated, miR-155 contributes to the development of chronic inflammation, autoimmunity, cancer, and fibrosis. Herein, we review the evidence for the pathogenic role of miR-155 in driving aberrant activation of the immune system in rheumatoid arthritis, and its potential as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Stefano Alivernini
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Gremese
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Barbara Tolusso
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Gianfranco Ferraccioli
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| |
Collapse
|