151
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. ULTRASONICS 2023; 135:107132. [PMID: 37604030 DOI: 10.1016/j.ultras.2023.107132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Delayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases. This study aims to use ultrasound to noninvasively modulate the brain 5-HT levels of mice to promote recovery from GA and improve cognition in mice. The dorsal raphe nucleus (DRN) of mice during GA was stimulated by the 1.1 MHz ultrasound with a negative pressure of 356 kPa, and the liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) method was used to measure the DRN 5-HT concentrations. The mice's recovery time from GA was assessed, and the cognition was evaluated through spontaneous alternation Y-maze and novel object recognition (NOR) tests. After ultrasound stimulation, the mice's DRN 5-HT levels were significantly increased (control: 554.0 ± 103.2 ng/g, anesthesia + US: 664.2 ± 84.1 ng/g, *p = 0.0389); the GA recovery time (return of the righting reflex (RORR) emergence latency time) of mice was significantly reduced (anesthesia: 331.6 ± 70 s, anesthesia + US: 223.2 ± 67.7 s, *p = 0.0215); the spontaneous rotation behavior score of mice was significantly increased (anesthesia: 59.46 ± 5.26 %, anesthesia + US: 68.55 ± 5.24 %; *p = 0.0126); the recognition index was significantly increased (anesthesia: 55.02 ± 6.23 %, anesthesia + US: 78.52 ± 12.21 %; ***p = 0.0009). This study indicates that ultrasound stimulation of DRN increases serotonin levels, accelerates recovery from anesthesia, and improves cognition, which could be an important strategy for treating delayed arousal, postoperative delirium, or even lasting cognitive dysfunction after GA.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
152
|
Badawe HM, El Hassan RH, Khraiche ML. Modeling ultrasound modulation of neural function in a single cell. Heliyon 2023; 9:e22522. [PMID: 38046165 PMCID: PMC10686887 DOI: 10.1016/j.heliyon.2023.e22522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Background Low intensity ultrasound stimulation has been shown to non-invasively modulate neural function in the central nervous system (CNS) and peripheral nervous system (PNS) with high precision. Ultrasound sonication is capable of either excitation or inhibition, depending on the ultrasound parameters used. On the other hand, the mode of interaction of ultrasonic waves with the neural tissue for effective neuromodulation remains ambiguous. New method Here within we propose a numerical model that incorporates the mechanical effects of ultrasound stimulation on the Hodgkin-Huxley (HH) neuron by incorporating the relation between increased external pressure and the membrane induced tension, with a stress on the flexoelectric effect on the neural membrane. The external pressure causes an increase in the total tension of the membrane thus affecting the probability of the ion channels being open after the conformational changes that those channels undergo. Results The interplay between varying the acoustic intensities and frequencies depicts different action potential suppression rates, whereby a combination of low intensity and low frequency ultrasound sonication proved to be the most effective in modulating neural function.Comparison with Existing Methods: Our method solely depends on the HH model of a single neuron and the linear flexoelectric effect of the dielectric neural membrane, when under an ultrasound-induced mechanical strain, while varying the ion-channels conductances based on different sonication frequencies and intensities. We study the effect of ultrasound parameters on the firing rate, latency, and action potential amplitude of a HH neuron for a better understanding of the neuromodulation modality of ultrasound stimulation (in the continuous and pulsed modes). Conclusions This simulation work confirms the published experimental data that low intensity and low frequency ultrasound sonication has a higher success rate of modulating neural firing.
Collapse
Affiliation(s)
- Heba M. Badawe
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Rima H. El Hassan
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| | - Massoud L. Khraiche
- Neural Engineering and Nanobiosensors Group, Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
153
|
Phillips N, Remedios SW, Nikolaidou A, Baracskai Z, Adamatzky A. No ultrasounds detected from fungi when dehydrated. ULTRASONICS 2023; 135:107111. [PMID: 37598499 DOI: 10.1016/j.ultras.2023.107111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 08/22/2023]
Abstract
Many organisms (including certain plant species) can be observed to emit sounds, potentially signifying threat alerts. Sensitivity to such sounds and vibrations may also play an important role in the lives of fungi. In this work, we explore the potential of ultrasound activity in dehydrating fungi, and discover that several species of fungi do not emit sounds (detectable with conventional instrumentation) in the frequency range of 10kHz to 210kHz upon dehydration. Over 5 terabytes of ultrasound recordings were collected and analysed. We conjecture that fungi interact via non-sound means, such as electrical or chemical.
Collapse
Affiliation(s)
- Neil Phillips
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK.
| | - Samuel W Remedios
- Department of Computer Science, John Hopkins University, Baltimore, MD, USA
| | - Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
| | - Zlatko Baracskai
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, UK
| |
Collapse
|
154
|
Xie Z, Dong S, Zhang Y, Yuan Y. Transcranial ultrasound stimulation at the peak-phase of theta-cycles in the hippocampus improve memory performance. Neuroimage 2023; 283:120423. [PMID: 37884166 DOI: 10.1016/j.neuroimage.2023.120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The present study aimed to investigate the effectiveness of closed-loop transcranial ultrasound stimulation (closed-loop TUS) as a non-invasive, high temporal-spatial resolution method for modulating brain function to enhance memory. For this purpose, we applied closed-loop TUS to the CA1 region of the rat hippocampus for 7 consecutive days at different phases of theta cycles. Following the intervention, we evaluated memory performance through behavioral testing and recorded the neural activity. Our results indicated that closed-loop TUS applied at the peak phase of theta cycles significantly improves the memory performance in rats, as evidenced by behavioral testing. Furthermore, we observed that closed-loop TUS modifies the power and cross-frequency coupling strength of local field potentials (LFPs) during memory task, as well as modulates neuronal activity patterns and synaptic transmission, depending on phase of stimulation relative to theta rhythm. We demonstrated that closed-loop TUS can modulate neural activity and memory performance in a phase-dependent manner. Specifically, we observed that effectiveness of closed-loop TUS in regulating neural activity and memory is dependent on the timing of stimulation in relation to different theta phase. The findings implied that closed-loop TUS may have the capability to alter neural activity and memory performance in a phase-sensitive manner, and suggested that the efficacy of closed-loop TUS in modifying neural activity and memory was contingent on timing of stimulation with respect to the theta rhythm. Moreover, the improvement in memory performance after closed-loop TUS was found to be persistent.
Collapse
Affiliation(s)
- Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Yiyao Zhang
- Neuroscience Institute, NYU Langone Health, New York 10016, USA.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
155
|
Cepkenovic B, Friedland F, Noetzel E, Maybeck V, Offenhäusser A. Single-neuron mechanical perturbation evokes calcium plateaus that excite and modulate the network. Sci Rep 2023; 13:20669. [PMID: 38001109 PMCID: PMC10673841 DOI: 10.1038/s41598-023-47090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mechanical stimulation is a promising means to non-invasively excite and modulate neuronal networks with a high spatial resolution. Despite the thorough characterization of the initiation mechanism, whether or how mechanical responses disperse into non-target areas remains to be discovered. Our in vitro study demonstrates that a single-neuron deformation evokes responses that propagate to about a third of the untouched neighbors. The responses develop via calcium influx through mechanosensitive channels and regeneratively propagate through the neuronal ensemble via gap junctions. Although independent of action potentials and synapses, mechanical responses reliably evoke membrane depolarizations capable of inducing action potentials both in the target and neighbors. Finally, we show that mechanical stimulation transiently potentiates the responding assembly for further inputs, as both gain and excitability are transiently increased exclusively in neurons that respond to a neighbor's mechanical stimulation. The findings indicate a biological component affecting the spatial resolution of mechanostimulation and point to a cross-talk in broad-network mechanical stimulations. Since giga-seal formation in patch-clamp produces a similar mechanical stimulus on the neuron, our findings inform which neuroscientific questions could be reliably tackled with patch-clamp and what recovery post-gigaseal formation is necessary.
Collapse
Affiliation(s)
- Bogdana Cepkenovic
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Florian Friedland
- Institute of Biological Information Processing: Mechanobiology (IBI-2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing: Mechanobiology (IBI-2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
| | - Vanessa Maybeck
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany.
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 1, 52428, Jülich, Germany
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| |
Collapse
|
156
|
Du X, McManus DP, French JD, Sivakumaran H, Johnston RL, Kondrashova O, Fogarty CE, Jones MK, You H. Lentiviral Transduction-based CRISPR/Cas9 Editing of Schistosoma mansoni Acetylcholinesterase. Curr Genomics 2023; 24:155-170. [PMID: 38178986 PMCID: PMC10761339 DOI: 10.2174/1389202924666230823094608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 01/06/2024] Open
Abstract
Background Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Juliet D. French
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca L. Johnston
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
157
|
Kaiser CRW, Tuma AB, Zebarjadi M, Zachs DP, Organ AJ, Lim HH, Collins MN. Rib detection using pitch-catch ultrasound and classification algorithms for a novel ultrasound therapy device. Bioelectron Med 2023; 9:25. [PMID: 37964380 PMCID: PMC10647025 DOI: 10.1186/s42234-023-00127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Noninvasive ultrasound (US) has been used therapeutically for decades, with applications in tissue ablation, lithotripsy, and physical therapy. There is increasing evidence that low intensity US stimulation of organs can alter physiological and clinical outcomes for treatment of health disorders including rheumatoid arthritis and diabetes. One major translational challenge is designing portable and reliable US devices that can be used by patients in their homes, with automated features to detect rib location and aid in efficient transmission of energy to organs of interest. This feasibility study aimed to assess efficacy in rib bone detection without conventional imaging, using a single channel US pitch-catch technique integrated into an US therapy device to detect pulsed US reflections from ribs. METHODS In 20 healthy volunteers, the location of the ribs and spleen were identified using a diagnostic US imaging system. Reflected ultrasound signals were recorded at five positions over the spleen and adjacent ribs using the therapy device. Signals were classified as between ribs (intercostal), partially over a rib, or fully over a rib using four models: threshold-based time domain classification, threshold-based frequency domain classification, logistic regression, and support vector machine (SVM). RESULTS SVM performed best overall on the All Participants cohort with accuracy up to 96.25%. All models' accuracies were improved by separating participants into two cohorts based on Body Mass Index (BMI) and re-fitting each model. After separation into Low BMI and High BMI cohorts, a simple time-thresholding approach achieved accuracies up to 100% and 93.75%, respectively. CONCLUSION These results demonstrate that US reflection signal classification can accurately provide low complexity, real-time automated onboard rib detection and user feedback to advance at-home therapeutic US delivery.
Collapse
Affiliation(s)
- Claire R W Kaiser
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA.
| | - Adam B Tuma
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Maryam Zebarjadi
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Daniel P Zachs
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Anna J Organ
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Morgan N Collins
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| |
Collapse
|
158
|
Kim H, Choi Y, Kim SY, Pahk KJ. Increased intracellular diffusivity of macromolecules within a mammalian cell by low-intensity pulsed ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106644. [PMID: 37844347 PMCID: PMC10587770 DOI: 10.1016/j.ultsonch.2023.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Whilst a number of studies have demonstrated that low-intensity pulsed ultrasound (LIPUS) is a promising therapeutic ultrasound technique that can be used for delivering mild mechanical stimuli to target tissue non-invasively, the underlying biophysical mechanisms still remain unclear. Most mechanism studies have focused explicitly on the effects of LIPUS on the cell membrane and mechanosensitive receptors. In the present study, we propose an additional mechanism by which LIPUS propagation through living cells may directly impact intracellular dynamics, particularly the diffusion transport of biomolecules. To support our hypothesis, human epithelial-like cells (SaOS-2 and HeLa) seeded on a confocal dish placed on a microscope stage were exposed to LIPUS with various exposure conditions (ultrasound frequencies of 0.5, 1 and 3 MHz, peak acoustic pressure of 200 and 400 kPa, a pulse repetition frequency of 1 kHz and a 20 % duty cycle), and the diffusivities of various sizes of biomolecules in the cytoplasm area were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, giant unilamellar vesicles (GUVs) filled with macromolecules were used to examine the physical causal relationship between LIPUS and molecular diffusion changes. Nucleocytoplasmic transport coefficients were also measured by modified FRAP that bleaches the whole cell nuclear region. Extracellular signal-regulated kinases (ERK) activity (the phosphorylation dynamics) was monitored using fluorescence resonance energy transfer (FRET) microscopy. All the measurements were taken during, before and after the LIPUS exposure. Our experimental results clearly showed that the diffusion coefficients of macromolecules within the cell increased with acoustic pressure by 12.1 to 33.5 % during the sonication, and the increments were proportional to their molecular sizes regardless of the ultrasound frequency used. This observation in living cells was consistent with the GUVs exposed to the LIPUS, which indicated that the diffusivity increase was a passive physical response to the acoustic energy of LIPUS. Under the 1 MHz LIPUS exposure with 400 kPa, the passive nucleocytoplasmic transport of enhanced green fluorescent protein (EGFP) was accelerated by 21.4 %. With the same LIPUS exposure condition, both the diffusivity and phosphorylation of ERK induced by EGF treatment were significantly elevated simultaneously, which implied that LIPUS could also modify the kinase kinetics in the signal transduction process. Taken together, this study is the first attempt to uncover the physical link between LIPUS and the dynamics of intracellular macromolecules and related biological processes that LIPUS can possibly increase the diffusivity of intracellular macromolecules, leading to the changes in the basic cellular processes: passive nucleocytoplasmic transport and ERK. Our findings can provide a novel perspective that the mechanotransduction process that the intracellular region, in addition to the cell membrane, can convert the acoustic stimuli of LIPUS to biochemical signals.
Collapse
Affiliation(s)
- Hyojun Kim
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Yeonho Choi
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
| | - So Yeon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
159
|
Schafer SF, Croke H, Kriete A, Ayaz H, Lewin PA, von Reyn CR, Schafer ME. A Miniature Ultrasound Source for Neural Modulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1544-1553. [PMID: 37812556 PMCID: PMC10751802 DOI: 10.1109/tuffc.2023.3322963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
This work describes a unique ultrasound (US) exposure system designed to create very localized ( [Formula: see text]) sound fields at operating frequencies that are currently being used for preclinical US neuromodulation. This system can expose small clusters of neuronal tissue, such as cell cultures or intact brain structures in target animal models, opening up opportunities to examine possible mechanisms of action. We modified a dental descaler and drove it at a resonance frequency of 96 kHz, well above its nominal operating point of 28 kHz. A ceramic microtip from an ultrasonic wire bonder was attached to the end of the applicator, creating a 100- [Formula: see text] point source. The device was calibrated with a polyvinylidene difluoride (PVDF) membrane hydrophone, in a novel, air-backed, configuration. The experimental results were confirmed by simulation using a monopole model. The results show a consistent decaying sound field from the tip, well-suited to neural stimulation. The system was tested on an existing neurological model, Drosophila melanogaster, which has not previously been used for US neuromodulation experiments. The results show brain-directed US stimulation induces or suppresses motor actions, demonstrated through synchronized tracking of fly limb movements. These results provide the basis for ongoing and future studies of US interaction with neuronal tissue, both at the level of single neurons and intact organisms.
Collapse
|
160
|
Di Ianni T, Morrison KP, Yu B, Murphy KR, de Lecea L, Airan RD. High-throughput ultrasound neuromodulation in awake and freely behaving rats. Brain Stimul 2023; 16:1743-1752. [PMID: 38052373 PMCID: PMC10795522 DOI: 10.1016/j.brs.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Transcranial ultrasound neuromodulation is a promising potential therapeutic tool for the noninvasive treatment of neuropsychiatric disorders. However, the expansive parameter space and difficulties in controlling for peripheral auditory effects make it challenging to identify ultrasound sequences and brain targets that may provide therapeutic efficacy. Careful preclinical investigations in clinically relevant behavioral models are critically needed to identify suitable brain targets and acoustic parameters. However, there is a lack of ultrasound devices allowing for multi-target experimental investigations in awake and unrestrained rodents. We developed a miniaturized 64-element ultrasound array that enables neurointerventional investigations with within-trial active control targets in freely behaving rats. We first characterized the acoustic field with measurements in free water and with transcranial propagation. We then confirmed in vivo that the array can target multiple brain regions via electronic steering, and verified that wearing the device does not cause significant impairments to animal motility. Finally, we demonstrated the performance of our system in a high-throughput neuromodulation experiment, where we found that ultrasound stimulation of the rat central medial thalamus, but not an active control target, promotes arousal and increases locomotor activity.
Collapse
Affiliation(s)
- Tommaso Di Ianni
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, 94158, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, 94158, CA, USA.
| | | | - Brenda Yu
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Raag D Airan
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA; Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, USA.
| |
Collapse
|
161
|
Bian N, Long A, Yuan Y. Desynchronization of neuronal firing in multiparameter ultrasound stimulation. Biomed Phys Eng Express 2023; 9:065023. [PMID: 37820600 DOI: 10.1088/2057-1976/ad023f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Low-intensity transcranial ultrasound stimulation, a novel neuromodulation technique, that possesses the advantages of non-invasiveness, high penetration depth, and high spatial resolution, has achieved positive neuromodulation effects in animal studies. But the regulatory mechanism remains controversial. The intramembrane cavitation effect is considered one of the mechanisms for ultrasound neuromodulation. In this study, the modified equations of ultrasonic cavitation bubble dynamics were coupled with the dual-coupled neuron Hindmarsh-Rose model, small-world neural network model, and the Jansen-Rit neural mass model, which simulate simple coupled neurons, complex neuronal networks, and discharge signals in epileptic disorders respectively. The results demonstrated that ultrasound stimulation has an appreciable modulatory effect on neuronal firing desynchronization in Hindmarsh-Rose model and small-world neural network model. The desynchronization effect is related to the stimulation frequency and intensity. Furthermore, ultrasound stimulation has an inhibitory effect on epileptic seizures, and the effect is enhanced by increasing ultrasound frequency from 0.1-1.0 MHz. This is the first combination of ultrasonic intramembrane cavitation effect theory with neurons and neural network firing desynchronization, which can provide guidance of parametric and theories support for the studies of neurological diseases such as epilepsy and Parkinson's disease.
Collapse
Affiliation(s)
- Nannan Bian
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Ai Long
- Xiangtan Big Data and Industrial Innovation Development Center, Xiangtan 411104, People's Republic of China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
162
|
Li J, Wu C, Zeng M, Zhang Y, Wei D, Sun J, Fan H. Functional material-mediated wireless physical stimulation for neuro-modulation and regeneration. J Mater Chem B 2023; 11:9056-9083. [PMID: 37649427 DOI: 10.1039/d3tb01354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nerve injuries and neurological diseases remain intractable clinical challenges. Despite the advantages of stem cell therapy in treating neurological disorders, uncontrollable cell fates and loss of cell function in vivo are still challenging. Recently, increasing attention has been given to the roles of external physical signals, such as electricity and ultrasound, in regulating stem cell fate as well as activating or inhibiting neuronal activity, which provides new insights for the treatment of neurological disorders. However, direct physical stimulations in vivo are short in accuracy and safety. Functional materials that can absorb energy from a specific physical field exerted in a wireless way and then release another localized physical signal hold great advantages in mediating noninvasive or minimally invasive accurate indirect physical stimulations to promote the therapeutic effect on neurological disorders. In this review, the mechanism by which various physical signals regulate stem cell fate and neuronal activity is summarized. Based on these concepts, the approaches of using functional materials to mediate indirect wireless physical stimulation for neuro-modulation and regeneration are systematically reviewed. We expect that this review will contribute to developing wireless platforms for neural stimulation as an assistance for the treatment of neurological diseases and injuries.
Collapse
Affiliation(s)
- Jialu Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
163
|
Zheng N, Jiang Y, Jiang S, Kim J, Chen G, Li Y, Cheng J, Jia X, Yang C. Multifunctional Fiber-Based Optoacoustic Emitter as a Bidirectional Brain Interface. Adv Healthc Mater 2023; 12:e2300430. [PMID: 37451259 PMCID: PMC10592200 DOI: 10.1002/adhm.202300430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
A bidirectional brain interface with both "write" and "read" functions can be an important tool for fundamental studies and potential clinical treatments for neurological diseases. Herein, a miniaturized multifunctional fiber-based optoacoustic emitter (mFOE) is reported thatintegrates simultaneous optoacoustic stimulation for "write" and electrophysiology recording of neural circuits for "read". Because of the intrinsic ability of neurons to respond to acoustic wave, there is no requirement of the viral transfection. The orthogonality between optoacoustic waves and electrical field provides a solution to avoid the interference between electrical stimulation and recording. The stimulation function of the mFOE is first validated in cultured ratcortical neurons using calcium imaging. In vivo application of mFOE for successful simultaneous optoacoustic stimulation and electrical recording of brain activities is confirmed in mouse hippocampus in both acute and chronical applications up to 1 month. Minor brain tissue damage is confirmed after these applications. The capability of simultaneous neural stimulation and recording enabled by mFOE opens up new possibilities for the investigation of neural circuits and brings new insights into the study of ultrasound neurostimulation.
Collapse
Affiliation(s)
- Nan Zheng
- Division of Materials Science and EngineeringBoston UniversityBostonMA02215USA
| | - Ying Jiang
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
| | - Guo Chen
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
| | - Yueming Li
- Department of Mechanical EngineeringBoston UniversityBostonMA02215USA
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
- Department of Materials Science and EngineeringVirginia TechBlacksburgVA24061USA
| | - Chen Yang
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
- Department of ChemistryBoston UniversityBostonMA02215USA
| |
Collapse
|
164
|
Javid A, Ilham S, Kiani M. A Review of Ultrasound Neuromodulation Technologies. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1084-1096. [PMID: 37506009 DOI: 10.1109/tbcas.2023.3299750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The invasiveness of neuromodulation technologies that require surgical implantation (e.g., electrical and optical stimulation) may limit their clinical application. Thus, alternative technologies that offer similar benefits without surgery are of paramount importance in the field of neuromodulation. Low-intensity ultrasound is an emerging modality for neural stimulation as ultrasound can be focused in deep tissues with millimeter resolution. Transcranial focused ultrasound stimulation (tFUS) has already been demonstrated in a wide range of animals and even humans at different sonication frequencies (mostly in the sub-MHz range due to the presence of the skull). This article first provides some fundamental knowledge in ultrasound, and then reviews various examples of successful tFUS experiments in animals and humans using different stimulation patterns, as well as available tFUS technologies for generating, focusing, and steering ultrasound beams in neural tissues. In particular, phased array technologies for the ultrasound stimulation application are discussed with an emphasis on the design, fabrication, and integration of ultrasound transducer arrays as well as the design and development of phased array electronics with beamformer and high-voltage driver circuitry. The challenges in tFUS, such as its underlying mechanism, indirect auditory response, and skull aberration effects, are also discussed.
Collapse
|
165
|
Bok I, Vareberg A, Gokhale Y, Bhatt S, Masterson E, Phillips J, Zhu T, Ren X, Hai A. Wireless agents for brain recording and stimulation modalities. Bioelectron Med 2023; 9:20. [PMID: 37726851 PMCID: PMC10510192 DOI: 10.1186/s42234-023-00122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/19/2023] [Indexed: 09/21/2023] Open
Abstract
New sensors and modulators that interact wirelessly with medical modalities unlock uncharted avenues for in situ brain recording and stimulation. Ongoing miniaturization, material refinement, and sensitization to specific neurophysiological and neurochemical processes are spurring new capabilities that begin to transcend the constraints of traditional bulky and invasive wired probes. Here we survey current state-of-the-art agents across diverse realms of operation and evaluate possibilities depending on size, delivery, specificity and spatiotemporal resolution. We begin by describing implantable and injectable micro- and nano-scale electronic devices operating at or below the radio frequency (RF) regime with simple near field transmission, and continue with more sophisticated devices, nanoparticles and biochemical molecular conjugates acting as dynamic contrast agents in magnetic resonance imaging (MRI), ultrasound (US) transduction and other functional tomographic modalities. We assess the ability of some of these technologies to deliver stimulation and neuromodulation with emerging probes and materials that provide minimally invasive magnetic, electrical, thermal and optogenetic stimulation. These methodologies are transforming the repertoire of readily available technologies paired with compatible imaging systems and hold promise toward broadening the expanse of neurological and neuroscientific diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Adam Vareberg
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Yash Gokhale
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Suyash Bhatt
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Emily Masterson
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Jack Phillips
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
| | - Tianxiang Zhu
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Xiaoxuan Ren
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of WI - Madison, 1550 Engineering Dr, Madison, WI, Rm 2112, USA.
- Department of Electrical and Computer Engineering, University of WI - Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
166
|
Ashe J, Graf J, Madhavan R, Wallace K, Cotero V, Abate S, Pandey RK, Herzog R, Porindla SN, Shoudy D, Fan Y, Kao TJ, Puleo C. Investigation of liver-targeted peripheral focused ultrasound stimulation (pFUS) and its effect on glucose homeostasis and insulin resistance in type 2 diabetes mellitus: a proof of concept, phase 1 trial. QJM 2023; 116:667-685. [PMID: 37243693 DOI: 10.1093/qjmed/hcad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/26/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Mechanical waves produced by ultrasound pulses have been shown to activate mechanosensitive ion channels and modulate peripheral nerves. However, while peripheral ultrasound neuromodulation has been demonstrated in vitro and in pre-clinical models, there have been few reports of clinical tests. AIM We modified a diagnostic imaging system for ultrasound neuromodulation in human subjects. We report the first safety and feasibility outcomes in subjects with type 2 diabetes (T2D) mellitus and discuss these outcomes in relation to previous pre-clinical results. DESIGN The study was performed as an open label feasibility study to assess the effects of hepatic ultrasound (targeted to the porta hepatis) on glucometabolic parameters in subjects with T2D. Stimulation (peripheral focused ultrasound stimulation treatment) was performed for 3 days (i.e. 15 min per day), preceded by a baseline examination and followed by a 2-week observation period. METHODS Multiple metabolic assays were employed including measures of fasting glucose and insulin, insulin resistance and glucose metabolism. The safety and tolerability were also assessed by monitoring adverse events, changes in vital signs, electrocardiogram parameters and clinical laboratory measures. RESULTS AND CONCLUSION We report post-pFUS trends in several outcomes that were consistent with previous pre-clinical findings. Fasting insulin was lowered, resulting in a reduction of HOMA-IR scores (P-value 0.01; corrected Wilcoxon signed-rank test). Additional safety and exploratory markers demonstrated no device-related adverse impact of pFUS. Our findings demonstrate that pFUS represents a promising new treatment modality that could be used as a non-pharmaceutical adjunct or even alternative to current drug treatments in diabetes.
Collapse
Affiliation(s)
- J Ashe
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - J Graf
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - R Madhavan
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - K Wallace
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - V Cotero
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - S Abate
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - R K Pandey
- General Electric (GE) Research, Bengaluru, India
| | - R Herzog
- Yale Endocrinology & Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - S N Porindla
- General Electric (GE) Research, Bengaluru, India
| | - D Shoudy
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - Y Fan
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - T-J Kao
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| | - C Puleo
- General Electric (GE) Research, 1 Research Circle, Niskayuna, NY, USA
| |
Collapse
|
167
|
Zhang Z, You Y, Ge M, Lin H, Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J Nanobiotechnology 2023; 21:319. [PMID: 37674191 PMCID: PMC10483742 DOI: 10.1186/s12951-023-02084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Stimulating ion channels targeting in neuromodulation by external signals with the help of functionalized nanoparticles, which integrates the pioneering achievements in the fields of neurosciences and nanomaterials, has involved into a novel interdisciplinary field. The emerging technique developed in this field enable simple, remote, non-invasive, and spatiotemporally precise nerve regulations and disease therapeutics, beyond traditional treatment methods. In this paper, we define this emerging field as nano-neuromodulation and summarize the most recent developments of non-genetic nano-neuromodulation (non-genetic NNM) over the past decade based on the innovative design concepts of neuromodulation nanoparticle systems. These nanosystems, which feature diverse compositions, structures and synthesis approaches, could absorb certain exogenous stimuli like light, sound, electric or magnetic signals, and subsequently mediate mutual transformations between above signals, or chemical reactions, to regulate stimuli-sensitive ion channels and ion migrations which play vital roles in the nervous system. We will also discuss the obstacles and challenges in the future development of non-genetic NNM, and propose its future developments, to add the further progress of this promising field.
Collapse
Affiliation(s)
- Zhimin Zhang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanling You
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Min Ge
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China.
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, People's Republic of China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
168
|
Zhang Z, You Y, Ge M, Lin H, Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J Nanobiotechnology 2023; 21:319. [DOI: doi.org/10.1186/s12951-023-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
AbstractStimulating ion channels targeting in neuromodulation by external signals with the help of functionalized nanoparticles, which integrates the pioneering achievements in the fields of neurosciences and nanomaterials, has involved into a novel interdisciplinary field. The emerging technique developed in this field enable simple, remote, non-invasive, and spatiotemporally precise nerve regulations and disease therapeutics, beyond traditional treatment methods. In this paper, we define this emerging field as nano-neuromodulation and summarize the most recent developments of non-genetic nano-neuromodulation (non-genetic NNM) over the past decade based on the innovative design concepts of neuromodulation nanoparticle systems. These nanosystems, which feature diverse compositions, structures and synthesis approaches, could absorb certain exogenous stimuli like light, sound, electric or magnetic signals, and subsequently mediate mutual transformations between above signals, or chemical reactions, to regulate stimuli-sensitive ion channels and ion migrations which play vital roles in the nervous system. We will also discuss the obstacles and challenges in the future development of non-genetic NNM, and propose its future developments, to add the further progress of this promising field.
Graphical Abstract
Collapse
|
169
|
Lee K, Lee JM, Phan TT, Lee CJ, Park JM, Park J. Ultrasonocoverslip: In-vitro platform for high-throughput assay of cell type-specific neuromodulation with ultra-low-intensity ultrasound stimulation. Brain Stimul 2023; 16:1533-1548. [PMID: 37909109 DOI: 10.1016/j.brs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Brain stimulation with ultra-low-intensity ultrasound has rarely been investigated due to the lack of a reliable device to measure small neuronal signal changes made by the ultra-low intensity range. We propose Ultrasonocoverslip, an ultrasound-transducer-integrated-glass-coverslip that determines the minimum intensity for brain cell activation. Brain cells can be cultured directly on Ultrasonocoverslip to simultaneously deliver uniform ultrasonic pressure to hundreds of cells with real-time monitoring of cellular responses using fluorescence microscopy and single-cell electrophysiology. The sensitivity for detecting small responses to ultra-low-intensity ultrasound can be improved by averaging simultaneously obtained responses. Acoustic absorbers can be placed under Ultrasonocoverslip, and stimuli distortions are substantially reduced to precisely deliver user-intended acoustic stimulations. With the proposed device, we discover the lowest acoustic threshold to induce reliable neuronal excitation releasing glutamate. Furthermore, mechanistic studies on the device show that the ultra-low-intensity ultrasound stimulation induces cell type-specific neuromodulation by activating astrocyte-mediated neuronal excitation without direct neuronal involvement. The performance of ultra-low-intensity stimulation is validated by in vivo experiments demonstrating improved safety and specificity in motor modulation of tail movement compared to that with supra-watt-intensity.
Collapse
Affiliation(s)
- Keunhyung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Tien Thuy Phan
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea; IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
170
|
Yaakub SN, White TA, Roberts J, Martin E, Verhagen L, Stagg CJ, Hall S, Fouragnan EF. Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans. Nat Commun 2023; 14:5318. [PMID: 37658076 PMCID: PMC10474159 DOI: 10.1038/s41467-023-40998-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is an emerging non-invasive technique for focally modulating human brain function. The mechanisms and neurochemical substrates underlying TUS neuromodulation in humans and how these relate to excitation and inhibition are still poorly understood. In 24 healthy controls, we separately stimulated two deep cortical regions and investigated the effects of theta-burst TUS, a protocol shown to increase corticospinal excitability, on the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and functional connectivity. We show that theta-burst TUS in humans selectively reduces GABA levels in the posterior cingulate, but not the dorsal anterior cingulate cortex. Functional connectivity increased following TUS in both regions. Our findings suggest that TUS changes overall excitability by reducing GABAergic inhibition and that changes in TUS-mediated neuroplasticity last at least 50 mins after stimulation. The difference in TUS effects on the posterior and anterior cingulate could suggest state- or location-dependency of the TUS effect-both mechanisms increasingly recognized to influence the brain's response to neuromodulation.
Collapse
Affiliation(s)
- Siti N Yaakub
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Tristan A White
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Jamie Roberts
- Department of Clinical Measurement and Innovation, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Lennart Verhagen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Stephen Hall
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Elsa F Fouragnan
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK.
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
171
|
Liu M, Yuan Y, Wang X, Wang T, Bian N, Zhao L, Cui G, Liu W, Ma Z, Yang X, Liang S, Liu Z. Low-intensity transcranial ultrasound stimulation modulates neural activities in mice under propofol anaesthesia. BMC Neurosci 2023; 24:48. [PMID: 37648991 PMCID: PMC10466774 DOI: 10.1186/s12868-023-00817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Previous studies have reported that transcranial focused ultrasound stimulation can significantly decrease the time to emergence from intraperitoneal ketamine-xylazine anaesthesia in rats. However, how transcranial focused ultrasound stimulation modulates neural activity in anaesthetized rats is unclear. METHODS In this study, to answer this question, we used low-intensity transcranial ultrasound stimulation (TUS) to stimulate the brain tissue of propofol-anaesthetized mice, recorded local field potentials (LFPs) in the mouse motor cortex and electromyography (EMG) signals from the mouse neck, and analysed the emergence and recovery time, mean absolute power, relative power and entropy of local field potentials. RESULTS We found that the time to emergence from anaesthesia in the TUS group (20.3 ± 1.7 min) was significantly less than that in the Sham group (32 ± 2.6 min). We also found that compared with the Sham group, 20 min after low-intensity TUS during recovery from anaesthesia, (1) the absolute power of local field potentials in mice was significantly reduced in the [1-4 Hz] and [13-30 Hz] frequency bands and significantly increased in the [55-100 Hz], [100-140 Hz] and [140-200 Hz] frequency bands; (2) the relative power of local field potentials in mice was enhanced at [30-45 Hz], [100-140 Hz] and [140-200 Hz] frequency bands; (3) the entropy of local field potentials ([1-200 Hz]) was increased. CONCLUSION These results demonstrate that low-intensity TUS can effectively modulate neural activities in both awake and anaesthetized mice and has a positive effect on recovery from propofol anaesthesia in mice.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xingran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Nannan Bian
- School of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Li Zhao
- Department of Thoracic Surgery, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Guangying Cui
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Wenchao Liu
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Zhongfeng Ma
- Department of General Surgery, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Xiaochun Yang
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Shujuan Liang
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Zhuo Liu
- Department of Anesthesiology, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China.
| |
Collapse
|
172
|
Ozkan AD, Wijerathne TD, Gettas T, Lacroix JJ. Force-induced motions of the PIEZO1 blade probed with fluorimetry. Cell Rep 2023; 42:112837. [PMID: 37471225 PMCID: PMC10530446 DOI: 10.1016/j.celrep.2023.112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Mechanical forces are thought to activate mechanosensitive PIEZO channels by changing the conformation of a large transmembrane blade domain. Yet, whether different stimuli induce identical conformational changes in this domain remains unclear. Here, we repurpose a cyclic permuted green fluorescent protein as a conformation-sensitive probe to track local rearrangements along the PIEZO1 blade. Two independent probes, one inserted in an extracellular site distal to the pore and the other in a distant intracellular proximal position, elicit sizable fluorescence signals when the tagged channels activate in response to fluid shear stress of low intensity. Neither cellular indentations nor osmotic swelling of the cell elicit detectable fluorescence signals from either probe, despite the ability of these stimuli to activate the tagged channels. High-intensity flow stimuli are ineffective at eliciting fluorescence signals from either probe. Together, these findings suggest that low-intensity fluid shear stress causes a distinct form of mechanical stress to the cell.
Collapse
Affiliation(s)
- Alper D Ozkan
- Department of Pharmaceutical Microbiology, Bahçeşehir University, Yıldız, Çırağan Cd, 34349 Beşiktaş/İstanbul, Turkey
| | - Tharaka D Wijerathne
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Tina Gettas
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Jérôme J Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA.
| |
Collapse
|
173
|
Wen Z, Liu C, Teng Z, Jin Q, Liao Z, Zhu X, Huo S. Ultrasound meets the cell membrane: for enhanced endocytosis and drug delivery. NANOSCALE 2023; 15:13532-13545. [PMID: 37548587 DOI: 10.1039/d3nr02562d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endocytosis plays a crucial role in drug delivery for precision therapy. As a non-invasive and spatiotemporal-controllable stimulus, ultrasound (US) has been utilized for improving drug delivery efficiency due to its ability to enhance cell membrane permeability. When US meets the cell membrane, the well-known cavitation effect generated by US can cause various biophysical effects, facilitating the delivery of various cargoes, especially nanocarriers. The comprehension of recent progress in the biophysical mechanism governing the interaction between ultrasound and cell membranes holds significant implications for the broader scientific community, particularly in drug delivery and nanomedicine. This review will summarize the latest research results on the biological effects and mechanisms of US-enhanced cellular endocytosis. Moreover, the latest achievements in US-related biomedical applications will be discussed. Finally, challenges and opportunities of US-enhanced endocytosis for biomedical applications will be provided.
Collapse
Affiliation(s)
- Zihao Wen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
174
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
175
|
Gomez A, Muzzio N, Dudek A, Santi A, Redondo C, Zurbano R, Morales R, Romero G. Elucidating Mechanotransduction Processes During Magnetomechanical Neuromodulation Mediated by Magnetic Nanodiscs. Cell Mol Bioeng 2023; 16:283-298. [PMID: 37811002 PMCID: PMC10550892 DOI: 10.1007/s12195-023-00786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Noninvasive cell-type-specific manipulation of neural signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Magnetic nanotechnologies have emerged as non-invasive neuromodulation approaches with high spatiotemporal control. We recently developed a wireless force-induced neurostimulation platform utilizing micro-sized magnetic discs (MDs) and low-intensity alternating magnetic fields (AMFs). When targeted to the cell membrane, MDs AMFs-triggered mechanoactuation enhances specific cell membrane receptors resulting in cell depolarization. Although promising, it is critical to understand the role of mechanical forces in magnetomechanical neuromodulation and their transduction to molecular signals for its optimization and future translation. Methods MDs are fabricated using top-down lithography techniques, functionalized with polymers and antibodies, and characterized for their physical properties. Primary cortical neurons co-cultured with MDs and transmembrane protein chemical inhibitors are subjected to 20 s pulses of weak AMFs (18 mT, 6 Hz). Calcium cell activity is recorded during AMFs stimulation. Results Neuronal activity in primary rat cortical neurons is evoked by the AMFs-triggered actuation of targeted MDs. Ion channel chemical inhibition suggests that magnetomechanical neuromodulation results from MDs actuation on Piezo1 and TRPC1 mechanosensitive ion channels. The actuation mechanisms depend on MDs size, with cell membrane stretch and stress caused by the MDs torque being the most dominant. Conclusions Magnetomechanical neuromodulation represents a tremendous potential since it fulfills the requirements of negligible heating (ΔT < 0.1 °C) and weak AMFs (< 100 Hz), which are limiting factors in the development of therapies and the design of clinical equipment. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00786-8.
Collapse
Affiliation(s)
- Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 USA
| | - Ania Dudek
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 USA
| | - Athena Santi
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 USA
| | - Carolina Redondo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Raquel Zurbano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Rafael Morales
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- BCMaterials, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 USA
| |
Collapse
|
176
|
Song M, Zhang M, He S, Li L, Hu H. Ultrasonic neuromodulation mediated by mechanosensitive ion channels: current and future. Front Neurosci 2023; 17:1232308. [PMID: 37583416 PMCID: PMC10423872 DOI: 10.3389/fnins.2023.1232308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Ultrasound neuromodulation technology is a promising neuromodulation approach, with the advantages of noninvasiveness, high-resolution, deep penetration and good targeting, which aid in circumventing the side effects of drugs and invasive therapeutic interventions. Ultrasound can cause mechanical effects, activate mechanosensitive ion channels and alter neuronal excitability, producing biological effects. The structural determination of mechanosensitive ion channels will greatly contribute to our understanding of the molecular mechanisms underlying mechanosensory transduction. However, the underlying biological mechanism of ultrasonic neuromodulation remains poorly understood. Hence, this review aims to provide an outline of the properties of ultrasound, the structures of specific mechanosensitive ion channels, and their role in ultrasound neuromodulation.
Collapse
Affiliation(s)
- Mengyao Song
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Mingxia Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Sixuan He
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| |
Collapse
|
177
|
Mandeville R, Sanchez B, Johnston B, Bazarek S, Thum JA, Birmingham A, See RHB, Leochico CFD, Kumar V, Dowlatshahi AS, Brown J, Stashuk D, Rutkove SB. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration, and regeneration: part 1, neurophysiology. J Neural Eng 2023; 20:041001. [PMID: 37279730 DOI: 10.1088/1741-2552/acdbeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Peripheral neuroregeneration research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures that can serve as biomarkers of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, such biomarkers can elucidate regeneration mechanisms and open new avenues for research. Without these measures, clinical decision-making falls short, and research becomes more costly, time-consuming, and sometimes infeasible. As a companion to Part 2, which is focused on non-invasive imaging, Part 1 of this two-part scoping review systematically identifies and critically examines many current and emerging neurophysiological techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Benjamin Sanchez
- Department Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Benjamin Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Stanley Bazarek
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Jasmine A Thum
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Austin Birmingham
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Reiner Henson B See
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Carl Froilan D Leochico
- Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City, Taguig, The Philippines
- Department of Rehabilitation Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, The Philippines
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Arriyan S Dowlatshahi
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Daniel Stashuk
- Department of Systems Design Engineering, University of Waterloo, Ontario N2L 3G1, Canada
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| |
Collapse
|
178
|
Badawe HM, Khraiche ML. Modeling of Calcium-dependent Low Intensity Low Frequency Ultrasound Modulation of a Hodgkin-Huxley Neuron. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083028 DOI: 10.1109/embc40787.2023.10340139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Non-invasive low intensity, low frequency ultrasound is a progressive neuromodulation approach that can reach deep brain areas with peak spatial and temporal resolution for highly-targeted diagnostic and therapeutic purposes. Coupling the ultrasound mechanical effects to the neural membrane comprises different mechanisms that are, to-date, still a topic of debate. The availability of calcium ions in the extracellular medium is of high significance when it comes to the effect of ultrasound on the neural tissue. Whereby the generated calcium influx can directly affect the voltage-gated ion channels, amplifying their action. We modeled the flexoelectric-induced effects of ultrasound to a single firing neuron, taking into consideration the effect of calcium channel embedding into the neural membrane on the neuron's firing rate, latency response, peak-to-peak voltage, and general shape of the action potential.Clinical Relevance- Upon Ultrasound sonication, the mechanical waves interact with the neural membrane and alter the kinetics of the calcium channels, thus changing the neural response.
Collapse
|
179
|
Ferreira Felloni Borges Y, Cheyuo C, Lozano AM, Fasano A. Essential Tremor - Deep Brain Stimulation vs. Focused Ultrasound. Expert Rev Neurother 2023; 23:603-619. [PMID: 37288812 DOI: 10.1080/14737175.2023.2221789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Essential Tremor (ET) is one of the most common tremor syndromes typically presented as action tremor, affecting mainly the upper limbs. In at least 30-50% of patients, tremor interferes with quality of life, does not respond to first-line therapies and/or intolerable adverse effects may occur. Therefore, surgery may be considered. AREAS COVERED In this review, the authors discuss and compare unilateral ventral intermedius nucleus deep brain stimulation (VIM DBS) and bilateral DBS with Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy, which comprises focused acoustic energy generating ablation under real-time MRI guidance. Discussion includes their impact on tremor reduction and their potential complications. Finally, the authors provide their expert opinion. EXPERT OPINION DBS is adjustable, potentially reversible and allows bilateral treatments; however, it is invasive requires hardware implantation, and has higher surgical risks. Instead, MRgFUS is less invasive, less expensive, and requires no hardware maintenance. Beyond these technical differences, the decision should also involve the patient, family, and caregivers.
Collapse
Affiliation(s)
- Yuri Ferreira Felloni Borges
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Parkinson's Disease & Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital, Gravedona Ed Uniti, Como, Italy
| |
Collapse
|
180
|
Kim YH, Lee CH, Firouzi K, Park BH, Pyun JY, Kim JN, Park KK, Khuri-Yakub BT. Acoustic radiation force for analyzing the mechanical stress in ultrasound neuromodulation. Phys Med Biol 2023; 68:10.1088/1361-6560/acdbb5. [PMID: 37366067 PMCID: PMC10404470 DOI: 10.1088/1361-6560/acdbb5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Objective. Although recent studies have shown that mechanical stress plays an important role in ultrasound neuromodulation, the magnitude and distribution of the mechanical stress generated in tissues by focused ultrasound transducers have not been adequately examined. Various acoustic radiation force (ARF) equations used in previous studies have been evaluated based on the tissue displacement results and are suitable for estimating the displacement. However, it is unclear whether mechanical stress can be accurately determined. This study evaluates the mechanical stress predicted by various AFR equations and suggests the optimal equation for estimating the mechanical stress in the brain tissue.Approach. In this paper, brain tissue responses are compared through numerical finite element simulations by applying the three most used ARF equations-Reynolds stress force ((RSF)), momentum flux density tensor force, and attenuation force. Three ARF fields obtained from the same pressure field were applied to the linear elastic model to calculate the displacement, mechanical stress, and mean pressure generated inside the tissue. Both the simple pressure field using a single transducer and the complex standing wave pressure field using two transducers were simulated.Main results. For the case using a single transducer, all three ARFs showed similar displacement. However, when comparing the mechanical stress results, only the results using the RSF showed a strong stress tensor at the focal point. For the case of using two transducers, the displacement and stress tensor field of the pattern related to the standing wave were calculated only from the results using the RSF.Significance. The model using RSF equation allows accurate analysis on stress tensor inside the tissue for ultrasound neuromodulation.
Collapse
Affiliation(s)
- Young Hun Kim
- Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang Hoon Lee
- Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Kamyar Firouzi
- Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, United States of America
| | - Beom Hoon Park
- Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joo Young Pyun
- Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jeong Nyeon Kim
- Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, United States of America
| | - Kwan Kyu Park
- Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Butrus T Khuri-Yakub
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
181
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
182
|
Shin EJ, Park S, Kang S, Kim J, Chang JH. Improving the quality of ultrasound images acquired using a therapeutic transducer. ULTRASONICS 2023; 134:107063. [PMID: 37300907 DOI: 10.1016/j.ultras.2023.107063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
To enhance the effectiveness and safety of focused ultrasound (FUS) therapy, ultrasound image-based guidance and treatment monitoring are crucial. However, the use of FUS transducers for both therapy and imaging is impractical due to their low spatial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To address this issue, we propose a new method that significantly improve the quality of images obtained by a FUS transducer. The proposed method employs coded excitation to enhance SNR and Wiener deconvolution to solve the problem of low axial resolution resulting from the narrow spectral bandwidth of FUS transducers. Specifically, the method eliminates the impulse response of a FUS transducer from received ultrasound signals using Wiener deconvolution, and pulse compression is performed using a mismatched filter. Simulation and commercial phantom experiments confirmed that the proposed method significantly improves the quality of images acquired by the FUS transducer. The -6 dB axial resolution was improved 1.27 mm to 0.37 mm that was similar to the resolution achieved by the imaging transducer, i.e., 0.33 mm. SNR and CNR also increased from 16.5 dB and 0.69 to 29.1 dB and 3.03, respectively, that were also similar to those by the imaging transducer (27.8 dB and 3.16). Based on the results, we believe that the proposed method has great potential to enhance the clinical utility of FUS transducers in ultrasound image-guided therapy.
Collapse
Affiliation(s)
- Eui-Ji Shin
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Sunghun Park
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Sungwoo Kang
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea
| | - Jinwoo Kim
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea
| | - Jin Ho Chang
- Department of Electrical Engineering and Computer Science, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Korea.
| |
Collapse
|
183
|
Strohman A, In A, Stebbins K, Legon W. Evaluation of a Novel Acoustic Coupling Medium for Human Low-Intensity Focused Ultrasound Neuromodulation Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1422-1430. [PMID: 36889994 DOI: 10.1016/j.ultrasmedbio.2023.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Single-element low-intensity focused ultrasound (LIFU) is an emerging form of human neuromodulation. Current coupling methods are impractical for clinical bedside use. Here, we evaluate commercially available high-viscosity gel polymer matrices as couplants for human LIFU neuromodulation applications. METHODS We first empirically tested the acoustic transmission of three densities at 500 kHz and then subjected the gel with the least acoustic attenuation to further tests of the effect of thickness, frequency, de-gassing and production variability. RESULTS The highest-density gel had the lowest acoustic attenuation (3.3%) with low lateral (<0.5 mm) and axial (<2 mm) beam distortion. Different thicknesses of the gel up to 10 mm did not appreciably affect results. The gel polymers exhibited frequency-dependent attenuation at 1 and 3 MHz up to 86.6%, as well as significant beam distortion >4 mm. Poor de-gassing methods also increased pressure attenuation at 500 kHz up to 59.6%. Standardized methods of making these gels should be established to reduce variability. CONCLUSION Commercially available de-gassed, high-density gel matrices are a low-cost, easily malleable, low-attenuation and distortion medium for the coupling of single-element LIFU transducers for human neuromodulation applications at 500 kHz.
Collapse
Affiliation(s)
- Andrew Strohman
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Katelyn Stebbins
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
184
|
Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541780. [PMID: 37293117 PMCID: PMC10245917 DOI: 10.1101/2023.05.22.541780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
Collapse
|
185
|
Gong C, Li R, Lu G, Ji J, Zeng Y, Chen J, Chang C, Zhang J, Xia L, Nair DSR, Thomas BB, Song BJ, Humayun MS, Zhou Q. Non-Invasive Hybrid Ultrasound Stimulation of Visual Cortex In Vivo. Bioengineering (Basel) 2023; 10:577. [PMID: 37237647 PMCID: PMC10215307 DOI: 10.3390/bioengineering10050577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The optic nerve is the second cranial nerve (CN II) that connects and transmits visual information between the retina and the brain. Severe damage to the optic nerve often leads to distorted vision, vision loss, and even blindness. Such damage can be caused by various types of degenerative diseases, such as glaucoma and traumatic optic neuropathy, and result in an impaired visual pathway. To date, researchers have not found a viable therapeutic method to restore the impaired visual pathway; however, in this paper, a newly synthesized model is proposed to bypass the damaged portion of the visual pathway and set up a direct connection between a stimulated visual input and the visual cortex (VC) using Low-frequency Ring-transducer Ultrasound Stimulation (LRUS). In this study, by utilizing and integrating various advanced ultrasonic and neurological technologies, the following advantages are achieved by the proposed LRUS model: 1. This is a non-invasive procedure that uses enhanced sound field intensity to overcome the loss of ultrasound signal due to the blockage of the skull. 2. The simulated visual signal generated by LRUS in the visual-cortex-elicited neuronal response in the visual cortex is comparable to light stimulation of the retina. The result was confirmed by a combination of real-time electrophysiology and fiber photometry. 3. VC showed a faster response rate under LRUS than light stimulation through the retina. These results suggest a potential non-invasive therapeutic method for restoring vision in optic-nerve-impaired patients using ultrasound stimulation (US).
Collapse
Affiliation(s)
- Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
| | - Jiawen Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chifeng Chang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Lily Xia
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
| | - Deepthi S. Rajendran Nair
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Brian J. Song
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Mark S. Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
186
|
Yang Y, Yuan J, Field RL, Ye D, Hu Z, Xu K, Xu L, Gong Y, Yue Y, Kravitz AV, Bruchas MR, Cui J, Brestoff JR, Chen H. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound. Nat Metab 2023; 5:789-803. [PMID: 37231250 PMCID: PMC10229429 DOI: 10.1038/s42255-023-00804-z,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/11/2023] [Indexed: 08/22/2023]
Abstract
Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.
Collapse
Affiliation(s)
- Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Kevin Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, Pharmacology, and Bioengineering, Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Neurotechnology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
187
|
Xu RS, Wu XM, Xiong ZQ. Low-intensity ultrasound directly modulates neural activity of the cerebellar cortex. Brain Stimul 2023; 16:918-926. [PMID: 37245844 DOI: 10.1016/j.brs.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Low-intensity ultrasound is a noninvasive neuromodulation technique with the potential to focally manipulate deep brain activity at millimeter-scale resolution. However, there have been controversies over the direct influence of ultrasound on neurons, due to an indirect auditory activation. Besides, the capacity of ultrasound to stimulate the cerebellum remains underestimated. OBJECTIVE To validate the direct neuromodulation effects of ultrasound on the cerebellar cortex from both cellular and behavioral levels. METHODS Two-photon calcium imaging were used to measure the neuronal responses of cerebellar granule cells (GrCs) and Purkinje cells (PCs) to ultrasound application in awake mice. And a mouse model of paroxysmal kinesigenic dyskinesia (PKD), in which direct activation of the cerebellar cortex leads to dyskinetic movements, was used to assess the ultrasound-induced behavioral responses. RESULTS Low-intensity ultrasound stimulus (0.1 W/cm2) evoked rapidly increased and sustained neural activity in GrCs and PCs at targeted region, while no significant changes in calcium signals were observed responding to off-target stimulus. The efficacy of ultrasonic neuromodulation relies on acoustic dose modified by ultrasonic duration and intensity. In addition, transcranial ultrasound reliably triggered dyskinesia attacks in proline-rich transmembrane protein 2 (Prrt2) mutant mice, suggesting that the intact cerebellar cortex were activated by ultrasound. CONCLUSION Low-intensity ultrasound directly activates the cerebellar cortex in a dose-dependent manner, and thus serves as a promising tool for cerebellar manipulation.
Collapse
Affiliation(s)
- Ruo-Shui Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Mei Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 201210, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
188
|
Zanos S, Ntiloudi D, Pellerito J, Ramdeo R, Graf J, Wallace K, Cotero V, Ashe J, Moon J, Addorisio M, Shoudy D, Coleman TR, Brines M, Puleo C, Tracey KJ, Chavan SS. Focused ultrasound neuromodulation of the spleen activates an anti-inflammatory response in humans. Brain Stimul 2023; 16:703-711. [PMID: 37055009 PMCID: PMC10330863 DOI: 10.1016/j.brs.2023.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Focused ultrasound stimulation (FUS) activates mechanosensitive ion channels and is emerging as a method of noninvasive neuromodulation. In preclinical studies, FUS of the spleen (sFUS) activates an anti-inflammatory neural pathway which suppresses acute and chronic inflammation. However, the relevance of sFUS for regulating inflammatory responses in humans is unknown. Here, we used a modified diagnostic ultrasound imaging system to target the spleen of healthy human subjects with 3 min of continuously swept or stationary focused pulsed ultrasound, delivered at three different energy levels within allowable safety exposure limits. Potential anti-inflammatory effects of sFUS were assessed by measuring sFUS-elicited changes in endotoxin-induced tumor necrosis factor (TNF) production in whole blood samples from insonified subjects. We found that stimulation with either continuously swept or focused pulsed ultrasound has an anti-inflammatory effect: sFUS lowers TNF production for >2 h, with TNF returning to baseline by 24 h following sFUS. This response is independent of anatomical target (i.e., spleen hilum or parenchyma) or ultrasound energy level. No clinical, biochemical, or hematological parameters are adversely impacted. This is the first demonstration that sFUS suppresses the normal inflammatory response in humans, with potential implications for noninvasive bioelectronic therapy of inflammatory disorders.
Collapse
Affiliation(s)
- Stavros Zanos
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Despoina Ntiloudi
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - John Pellerito
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Radiology, Northwell Health, Manhasset, NY, 11030, USA
| | - Richard Ramdeo
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - John Graf
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | - Kirk Wallace
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | | | - Jeff Ashe
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | - Jessica Moon
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Meghan Addorisio
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - David Shoudy
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | - Thomas R Coleman
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Michael Brines
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Chris Puleo
- General Electric (GE) Research, Niskayuna, NY, USA, 12309
| | - Kevin J Tracey
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sangeeta S Chavan
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
189
|
Yang Y, Yuan J, Field RL, Ye D, Hu Z, Xu K, Xu L, Gong Y, Yue Y, Kravitz AV, Bruchas MR, Cui J, Brestoff JR, Chen H. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound. Nat Metab 2023; 5:789-803. [PMID: 37231250 PMCID: PMC10229429 DOI: 10.1038/s42255-023-00804-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.
Collapse
Affiliation(s)
- Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Kevin Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, Pharmacology, and Bioengineering, Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Neurotechnology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
190
|
Liu T, Fu Y, Shi J, He S, Chen D, Li W, Chen Y, Zhang L, Lv Q, Yang Y, Jin Q, Wang J, Xie M. Noninvasive ultrasound stimulation to treat myocarditis through splenic neuro-immune regulation. J Neuroinflammation 2023; 20:94. [PMID: 37069636 PMCID: PMC10108488 DOI: 10.1186/s12974-023-02773-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway (CAP) has been widely studied to modulate the immune response. Current stimulating strategies are invasive or imprecise. Noninvasive low-intensity pulsed ultrasound (LIPUS) has become increasingly appreciated for targeted neuronal modulation. However, its mechanisms and physiological role on myocarditis remain poorly defined. METHODS The mouse model of experimental autoimmune myocarditis was established. Low-intensity pulsed ultrasound was targeted at the spleen to stimulate the spleen nerve. Under different ultrasound parameters, histological tests and molecular biology were performed to observe inflammatory lesions and changes in immune cell subsets in the spleen and heart. In addition, we evaluated the dependence of the spleen nerve and cholinergic anti-inflammatory pathway of low-intensity pulsed ultrasound in treating autoimmune myocarditis in mice through different control groups. RESULTS The echocardiography and flow cytometry of splenic or heart infiltrating immune cells revealed that splenic ultrasound could alleviate the immune response, regulate the proportion and function of CD4+ Treg and macrophages by activating cholinergic anti-inflammatory pathway, and finally reduce heart inflammatory injury and improve cardiac remodeling, which is as effective as an acetylcholine receptor agonists GTS-21. Transcriptome sequencing showed significant differential expressed genes due to ultrasound modulation. CONCLUSIONS It is worth noting that the ultrasound therapeutic efficacy depends greatly on acoustic pressure and exposure duration, and the effective targeting organ was the spleen but not the heart. This study provides novel insight into the therapeutic potentials of LIPUS, which are essential for its future application.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Dandan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
191
|
Zhao Z, Ji H, Zhang C, Pei J, Zhang X, Yuan Y. Modulation effects of low-intensity transcranial ultrasound stimulation on the neuronal firing activity and synaptic plasticity of mice. Neuroimage 2023; 270:119952. [PMID: 36805093 DOI: 10.1016/j.neuroimage.2023.119952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) has been effective in modulating several neurological and psychiatric disorders. However, how TUS modulates neuronal firing activity and synaptic plasticity remains unclear. Thus, we behaviorally tested the whisker-dependent novel object discrimination ability in mice after ultrasound stimulation and examined the cortical neuronal firing activity and synaptic plasticity in awake mice after ultrasound stimulation by two-photon fluorescence imaging. The current study presented the following results: (1) TUS could significantly improve the whisker-dependent new object discrimination ability of mice, suggesting that their learning and memory abilities were significantly enhanced; (2) TUS significantly enhanced neuronal firing activity; and (3) TUS increased the growth rate of dendritic spines in the barrel cortex, but did not promote the extinction of dendritic spines, resulting in enhanced synaptic plasticity. The above results indicate that TUS can improve the learning and memory ability of mice and enhance the neuronal firing activity and synaptic plasticity that are closely related to it. This study provides a research basis for the application of ultrasound stimulation in the treatment of learning- and memory-related diseases.
Collapse
Affiliation(s)
- Zhe Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Hui Ji
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Cong Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jiamin Pei
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
192
|
Yüksel MM, Sun S, Latchoumane C, Bloch J, Courtine G, Raffin EE, Hummel FC. Low-Intensity Focused Ultrasound Neuromodulation for Stroke Recovery: A Novel Deep Brain Stimulation Approach for Neurorehabilitation? IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:300-318. [PMID: 38196977 PMCID: PMC10776095 DOI: 10.1109/ojemb.2023.3263690] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 01/11/2024] Open
Abstract
Stroke as the leading cause of adult long-term disability and has a significant impact on patients, society and socio-economics. Non-invasive brain stimulation (NIBS) approaches such as transcranial magnetic stimulation (TMS) or transcranial electrical stimulation (tES) are considered as potential therapeutic options to enhance functional reorganization and augment the effects of neurorehabilitation. However, non-invasive electrical and magnetic stimulation paradigms are limited by their depth focality trade-off function that does not allow to target deep key brain structures critically important for recovery processes. Transcranial ultrasound stimulation (TUS) is an emerging approach for non-invasive deep brain neuromodulation. Using non-ionizing, ultrasonic waves with millimeter-accuracy spatial resolution, excellent steering capacity and long penetration depth, TUS has the potential to serve as a novel non-invasive deep brain stimulation method to establish unprecedented neuromodulation and novel neurorehabilitation protocols. The purpose of the present review is to provide an overview on the current knowledge about the neuromodulatory effects of TUS while discussing the potential of TUS in the field of stroke recovery, with respect to existing NIBS methods. We will address and discuss critically crucial open questions and remaining challenges that need to be addressed before establishing TUS as a new clinical neurorehabilitation approach for motor stroke recovery.
Collapse
Affiliation(s)
- Mahmut Martin Yüksel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Shiqi Sun
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Charles Latchoumane
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1011Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1011Switzerland
| | - Jocelyne Bloch
- Neuro-X Institute and Brain Mind Institute, School of Life SciencesSwiss Federal Institute of Technology (EPFL)Lausanne1015Switzerland
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Gregoire Courtine
- Department of Clinical NeuroscienceLausanne University Hospital (CHUV) and the University of Lausanne (UNIL)Lausanne1015Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)EPFL/CHUV/UNILLausanne1015Switzerland
- Department of NeurosurgeryLausanne University HospitalLausanne1011Switzerland
| | - Estelle Emeline Raffin
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1201Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
| | - Friedhelm Christoph Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneGeneva1202Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne Valais, Clinique Romande de Réadaptation Sion1951Switzerland
- Clinical NeuroscienceUniversity of Geneva Medical SchoolGeneva1211Switzerland
| |
Collapse
|
193
|
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 2023; 111:1174-1190. [PMID: 36917978 DOI: 10.1016/j.neuron.2023.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
Treating the brain with focused ultrasound (FUS) at low intensities elicits diverse responses in neurons, astroglia, and the extracellular matrix. In combination with intravenously injected microbubbles, FUS also opens the blood-brain barrier (BBB) and facilitates focal drug delivery. However, an incompletely understood cellular specificity and a wide parameter space currently limit the optimal application of FUS in preclinical and human studies. In this perspective, we discuss how different FUS modalities can be utilized to achieve short- and long-term improvements, thereby potentially treating brain disorders. We review the ongoing efforts to determine which parameters induce neuronal inhibition versus activation and how mechanoreceptors and signaling cascades are activated to induce long-term changes, including memory improvements. We suggest that optimal FUS treatments may require different FUS modalities and devices, depending on the targeted brain area or local pathology, and will be greatly enhanced by new techniques for monitoring FUS efficacy.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Razansky
- Institute for Biomedical Engineering, Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
194
|
Yang F, Kim SJ, Wu X, Cui H, Hahn SK, Hong G. Principles and applications of sono-optogenetics. Adv Drug Deliv Rev 2023; 194:114711. [PMID: 36708773 PMCID: PMC9992299 DOI: 10.1016/j.addr.2023.114711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Optogenetics has revolutionized neuroscience research through its spatiotemporally precise activation of specific neurons by illuminating light on opsin-expressing neurons. A long-standing challenge of in vivo optogenetics arises from the limited penetration depth of visible light in the neural tissue due to scattering and absorption of photons. To address this challenge, sono-optogenetics has been developed to enable spatiotemporally precise light production in a three-dimensional volume of neural tissue by leveraging the deep tissue penetration and focusing ability of ultrasound as well as circulation-delivered mechanoluminescent nanotransducers. Here, we present a comprehensive review of the sono-optogenetics method from the physical principles of ultrasound and mechanoluminescence to its emerging applications for unique neuroscience studies. We also discuss a few promising directions in which sono-optogenetics can make a lasting transformative impact on neuroscience research from the perspectives of mechanoluminescent materials, ultrasound-tissue interaction, to the unique neuroscience opportunities of "scanning optogenetics".
Collapse
Affiliation(s)
- Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Han Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
195
|
Chu YC, Ho CY, Chuo Y, Wu HH, Wang JL. On minimal focal distance of a focused ultrasound probe for neuromodulation. JASA EXPRESS LETTERS 2023; 3:024002. [PMID: 36858995 DOI: 10.1121/10.0017106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Focal distance is a key parameter for a focused ultrasound probe, especially in mouse brain stimulation where targets are right below the skull. A closed-form solution for the minimal focal distance with a given transducer size was derived in this study to facilitate precise focal spot alignment with targets in the mouse brain. The spherical profile corresponding to the minimal focal distance does not produce accurate focusing. An iterative algorithm based on Snell's law was introduced for lens profile calculation. With a suitable step size, an accurate lens profile can be obtained for the minimal focal distance.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| | - Chien-Ying Ho
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| | - Yue Chuo
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| | - Hao-Hsuan Wu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan , , , ,
| |
Collapse
|
196
|
Recent updates in autonomic research: a focus on new technologies with high-resolution procedures to study sympathetic nerve activity, plasma proteomic profiling in POTS, and non-invasive neuromodulation with focused ultrasound. Clin Auton Res 2023; 33:11-14. [PMID: 36662319 DOI: 10.1007/s10286-023-00924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
|
197
|
Clennell B, Steward TGJ, Hanman K, Needham T, Benachour J, Jepson M, Elley M, Halford N, Heesom K, Shin E, Molnár E, Drinkwater BW, Whitcomb DJ. Ultrasound modulates neuronal potassium currents via ionotropic glutamate receptors. Brain Stimul 2023; 16:540-552. [PMID: 36731773 DOI: 10.1016/j.brs.2023.01.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Focused ultrasound stimulation (FUS) has the potential to provide non-invasive neuromodulation of deep brain regions with unparalleled spatial precision. However, the cellular and molecular consequences of ultrasound stimulation on neurons remains poorly understood. We previously reported that ultrasound stimulation induces increases in neuronal excitability that persist for hours following stimulation in vitro. In the present study we sought to further elucidate the molecular mechanisms by which ultrasound regulates neuronal excitability and synaptic function. OBJECTIVES To determine the effect of ultrasound stimulation on voltage-gated ion channel function and synaptic plasticity. METHODS Primary rat cortical neurons were exposed to a 40 s, 200 kHz pulsed ultrasound stimulus or sham-stimulus. Whole-cell patch clamp electrophysiology, quantitative proteomics and high-resolution confocal microscopy were employed to determine the effects of ultrasound stimulation on molecular regulators of neuronal excitability and synaptic function. RESULTS We find that ultrasound exposure elicits sustained but reversible increases in whole-cell potassium currents. In addition, we find that ultrasound exposure activates synaptic signalling cascades that result in marked increases in excitatory synaptic transmission. Finally, we demonstrate the requirement of ionotropic glutamate receptor (AMPAR/NMDAR) activation for ultrasound-induced modulation of neuronal potassium currents. CONCLUSION These results suggest specific patterns of pulsed ultrasound can induce contemporaneous enhancement of both neuronal excitability and synaptic function, with implications for the application of FUS in experimental and therapeutic settings. Further study is now required to deduce the precise molecular mechanisms through which these changes occur.
Collapse
Affiliation(s)
- Benjamin Clennell
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Tom G J Steward
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Kaliya Hanman
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Tom Needham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Janette Benachour
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Mark Jepson
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Meg Elley
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Nathan Halford
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Kate Heesom
- Proteomics Facility Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Eunju Shin
- School of Life Sciences, Keele University, ST5 5BG, UK
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Daniel J Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK.
| |
Collapse
|
198
|
Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex. Int J Mol Sci 2023; 24:ijms24032578. [PMID: 36768901 PMCID: PMC9917173 DOI: 10.3390/ijms24032578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Transcranial focused ultrasound (tFUS) is a novel neuromodulating technique. It has been demonstrated that the neuromodulatory effects can be induced by weak ultrasound exposure levels (spatial-peak temporal average intensity, ISPTA < 10 mW/cm2) in vitro. However, fewer studies have examined the use of weak tFUS to potentially induce long-lasting neuromodulatory responses in vivo. The purpose of this study was to determine the lower-bound threshold of tFUS stimulation for inducing neuromodulation in the motor cortex of rats. A total of 94 Sprague-Dawley rats were used. The sonication region aimed at the motor cortex under weak tFUS exposure (ISPTA of 0.338-12.15 mW/cm2). The neuromodulatory effects of tFUS on the motor cortex were evaluated by the changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). In addition to histology analysis, the in vitro cell culture was used to confirm the neuromodulatory mechanisms following tFUS stimulation. In the results, the dose-dependent inhibitory effects of tFUS were found, showing increased intensities of tFUS suppressed MEPs and lasted for 30 min. Weak tFUS significantly decreased the expression of excitatory neurons and increased the expression of inhibitory GABAergic neurons. The PIEZO-1 proteins of GABAergic neurons were found to involve in the inhibitory neuromodulation. In conclusion, we show the use of weak ultrasound to induce long-lasting neuromodulatory effects and explore the potential use of weak ultrasound for future clinical neuromodulatory applications.
Collapse
|
199
|
Sorum B, Docter T, Panico V, Rietmeijer RA, Brohawn SG. Pressure and ultrasound activate mechanosensitive TRAAK K + channels through increased membrane tension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523644. [PMID: 36712118 PMCID: PMC9882092 DOI: 10.1101/2023.01.11.523644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRAAK is a mechanosensitive two-pore domain K + (K2P) channel found in nodes of Ranvier within myelinated axons. It displays low leak activity at rest and is activated up to one hundred-fold by increased membrane tension. Structural and functional studies have led to physical models for channel gating and mechanosensitivity, but no quantitative analysis of channel activation by tension has been reported. Here, we use simultaneous patch-clamp recording and fluorescent imaging to determine the tension response characteristics of TRAAK. TRAAK shows high sensitivity and a broad response to tension spanning nearly the entire physiologically relevant tension range. This graded response profile distinguishes TRAAK from similarly low-threshold mechanosensitive channels Piezo1 and MscS, which activate in a step-like fashion over a narrow tension range. We further use patch imaging to show that ultrasonic activation of TRAAK and MscS is due to increased membrane tension. Together, these results provide mechanistic insight into TRAAK tension gating, a framework for exploring the role of mechanosensitive K + channels at nodes of Ranvier, and biophysical context for developing ultrasound as a mechanical stimulation technique for neuromodulation.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Trevor Docter
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Vincent Panico
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Robert A. Rietmeijer
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Stephen G. Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, California 94720, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA.,Correspondence:
| |
Collapse
|
200
|
Deng Q, Mi J, Dong J, Chen Y, Chen L, He J, Zhou J. Superiorly Stable Three-Layer Air Microbubbles Generated by Versatile Ethanol-Water Exchange for Contrast-Enhanced Ultrasound Theranostics. ACS NANO 2023; 17:263-274. [PMID: 36354372 DOI: 10.1021/acsnano.2c07300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbubbles have been widely used as ultrasound contrast agents in clinical diagnosis. Moreover, most current preparation methods for microbubbles are uncontrollable, and the as-obtained microbubbles are unstable in aqueous solution or under ultrasound. Here, we report a strategy to prepare superiorly stable microbubbles with three-layer structures by the ethanol-water exchange. This versatile method can also be applied to prepare different kinds of protein microbubbles with various sizes for advanced biomedical applications. To demonstrate this, the protein air microbubbles are created, which is stable in water for several days with intact structures and exhibits excellent contrast-enhanced ultrasound imaging. Moreover, the protein air microbubbles can also deliver a mass of drugs while maintaining their stable structures, making them a platform for ultrasound imaging-guided drug delivery. The versatile protein air microbubbles have great potential for the design and application of theranostic platforms.
Collapse
Affiliation(s)
- Qiurong Deng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jiaomei Mi
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianpei Dong
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Yin Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Lanxi Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jinxu He
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|