151
|
Banerjee A, Herring CA, Chen B, Kim H, Simmons AJ, Southard-Smith AN, Allaman MM, White JR, Macedonia MC, Mckinley ET, Ramirez-Solano MA, Scoville EA, Liu Q, Wilson KT, Coffey RJ, Washington MK, Goettel JA, Lau KS. Succinate Produced by Intestinal Microbes Promotes Specification of Tuft Cells to Suppress Ileal Inflammation. Gastroenterology 2020; 159:2101-2115.e5. [PMID: 32828819 PMCID: PMC7725941 DOI: 10.1053/j.gastro.2020.08.029] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Countries endemic for parasitic infestations have a lower incidence of Crohn's disease (CD) than nonendemic countries, and there have been anecdotal reports of the beneficial effects of helminths in CD patients. Tuft cells in the small intestine sense and direct the immune response against eukaryotic parasites. We investigated the activities of tuft cells in patients with CD and mouse models of intestinal inflammation. METHODS We used microscopy to quantify tuft cells in intestinal specimens from patients with ileal CD (n = 19), healthy individuals (n = 14), and TNFΔARE/+ mice, which develop Crohn's-like ileitis. We performed single-cell RNA sequencing, mass spectrometry, and microbiome profiling of intestinal tissues from wild-type and Atoh1-knockout mice, which have expansion of tuft cells, to study interactions between microbes and tuft cell populations. We assessed microbe dependence of tuft cell populations using microbiome depletion, organoids, and microbe transplant experiments. We used multiplex imaging and cytokine assays to assess alterations in inflammatory response following expansion of tuft cells with succinate administration in TNFΔARE/+ and anti-CD3E CD mouse models. RESULTS Inflamed ileal tissues from patients and mice had reduced numbers of tuft cells, compared with healthy individuals or wild-type mice. Expansion of tuft cells was associated with increased expression of genes that regulate the tricarboxylic acid cycle, which resulted from microbe production of the metabolite succinate. Experiments in which we manipulated the intestinal microbiota of mice revealed the existence of an ATOH1-independent population of tuft cells that was sensitive to metabolites produced by microbes. Administration of succinate to mice expanded tuft cells and reduced intestinal inflammation in TNFΔARE/+ mice and anti-CD3E-treated mice, increased GATA3+ cells and type 2 cytokines (IL22, IL25, IL13), and decreased RORGT+ cells and type 17 cytokines (IL23) in a tuft cell-dependent manner. CONCLUSIONS We found that tuft cell expansion reduced chronic intestinal inflammation in mice. Strategies to expand tuft cells might be developed for treatment of CD.
Collapse
Affiliation(s)
- Amrita Banerjee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee
| | - Bob Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee
| | - Hyeyon Kim
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Austin N Southard-Smith
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Mary C Macedonia
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eliot T Mckinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marisol A Ramirez-Solano
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
152
|
Iftode A, Drăghici GA, Macașoi I, Marcovici I, Coricovac DE, Dragoi R, Tischer A, Kovatsi L, Tsatsakis AM, Cretu O, Dehelean C. Exposure to cadmium and copper triggers cytotoxic effects and epigenetic changes in human colorectal carcinoma HT-29 cells. Exp Ther Med 2020; 21:100. [PMID: 33363611 PMCID: PMC7725023 DOI: 10.3892/etm.2020.9532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Recent scientific evidence suggests a link between epigenetic changes (DNA methylation) and tumorigenesis. Moreover, a potential carcinogenic mechanism of cadmium was associated with changes in DNA methylation. In this study we investigated the impact of CdCl2 and CuSO4 aqueous solutions on DNA methylation in HT-29 cells by quantifying DNA methyltransferase (DNMT1, DNMT3A and DNMT3B) mRNA expression. Furthermore, we also studied the cytotoxic and anti-migratory potential of these substances. The results showed a dose-dependent decrease of viable cell percentage following 24 h of exposure (at concentrations of 0.05; 0.2; 1; 10 and 100 µg/ml), and an inhibitory effect on HT-29 cell migration capacity. In addition, RT-qPCR results showed that cadmium acts as a hypomethylating agent by suppressing DNMT expression, whereas copper acts as a hypermethylating compound by increasing DNMT expression. These findings suggest a cytotoxic potential of both cadmium and copper on HT-29 cells and their capacity to induce epigenetic changes.
Collapse
Affiliation(s)
- Andrada Iftode
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - George Andrei Drăghici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioana Macașoi
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dorina E Coricovac
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan Dragoi
- Department of Balneology, Rehabilitation and Rheumatology, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Alina Tischer
- Department of Surgery I, Faculty of Medicine, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Octavian Cretu
- Department of Surgery I, Faculty of Medicine, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, 'Victor Babes' University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
153
|
Irfan M, Delgado RZR, Frias-Lopez J. The Oral Microbiome and Cancer. Front Immunol 2020; 11:591088. [PMID: 33193429 PMCID: PMC7645040 DOI: 10.3389/fimmu.2020.591088] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
154
|
Biological invasions alter environmental microbiomes: A meta-analysis. PLoS One 2020; 15:e0240996. [PMID: 33091062 PMCID: PMC7580985 DOI: 10.1371/journal.pone.0240996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Biological invasions impact both agricultural and natural systems. The damage can be quantified in terms of both economic loss and reduction of biodiversity. Although the literature is quite rich about the impact of invasive species on plant and animal communities, their impact on environmental microbiomes is underexplored. Here, we re-analyze publicly available data using a common framework to create a global synthesis of the effects of biological invasions on environmental microbial communities. Our findings suggest that non-native species are responsible for the loss of microbial diversity and shifts in the structure of microbial populations. Therefore, the impact of biological invasions on native ecosystems might be more pervasive than previously thought, influencing both macro- and micro-biomes. We also identified gaps in the literature which encourage research on a wider variety of environments and invaders, and the influence of invaders across seasons and geographical ranges.
Collapse
|
155
|
Frisan T. Co- and polymicrobial infections in the gut mucosa: The host-microbiota-pathogen perspective. Cell Microbiol 2020; 23:e13279. [PMID: 33040471 PMCID: PMC7900980 DOI: 10.1111/cmi.13279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Infections in humans occur in the context of complex niches where the pathogen interacts with both the host microenvironment and immune response, and the symbiotic microbial community. The polymicrobial nature of many human infections adds a further layer of complexity. The effect of co‐ or polymicrobial infections can result in enhanced severity due to pathogens cooperative interaction or reduced morbidity because one of the pathogens affects the fitness of the other(s). In this review, the concept of co‐infections and polymicrobial interactions in the context of the intestinal mucosa is discussed, focusing on the interplay between the host, the microbiota and the pathogenic organisms. Specifically, we will examine examples of pathogen‐cooperative versus ‐antagonistic behaviour during co‐ and polymicrobial infections. We discuss: the infection‐induced modulation of the host microenvironment and immune responses; the direct modulation of the microorganism's fitness; the potentiation of inflammatory/carcinogenic conditions by polymicrobial biofilms; and the promotion of co‐infections by microbial‐induced DNA damage. Open questions in this very exciting field are also highlighted.
Collapse
Affiliation(s)
- Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
156
|
Cammarota G, Ianiro G, Ahern A, Carbone C, Temko A, Claesson MJ, Gasbarrini A, Tortora G. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol 2020; 17:635-648. [PMID: 32647386 DOI: 10.1038/s41575-020-0327-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
The gut microbiome has been implicated in cancer in several ways, as specific microbial signatures are known to promote cancer development and influence safety, tolerability and efficacy of therapies. The 'omics' technologies used for microbiome analysis continuously evolve and, although much of the research is still at an early stage, large-scale datasets of ever increasing size and complexity are being produced. However, there are varying levels of difficulty in realizing the full potential of these new tools, which limit our ability to critically analyse much of the available data. In this Perspective, we provide a brief overview on the role of gut microbiome in cancer and focus on the need, role and limitations of a machine learning-driven approach to analyse large amounts of complex health-care information in the era of big data. We also discuss the potential application of microbiome-based big data aimed at promoting precision medicine in cancer.
Collapse
Affiliation(s)
- Giovanni Cammarota
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gianluca Ianiro
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Ahern
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Carmine Carbone
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andriy Temko
- School of Engineering, University College Cork, Cork, Ireland.,Qualcomm ML R&D, Cork, Ireland
| | - Marcus J Claesson
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonio Gasbarrini
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
157
|
Macedonia MC, Drewes JL, Markham NO, Simmons AJ, Roland JT, Vega PN, Scurrah CR, Coffey RJ, Shrubsole MJ, Sears CL, Lau KS. Clinically adaptable polymer enables simultaneous spatial analysis of colonic tissues and biofilms. NPJ Biofilms Microbiomes 2020; 6:33. [PMID: 32973205 PMCID: PMC7518420 DOI: 10.1038/s41522-020-00143-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial influences on host cells depend upon the identities of the microbes, their spatial localization, and the responses they invoke on specific host cell populations. Multimodal analyses of both microbes and host cells in a spatially resolved fashion would enable studies into these complex interactions in native tissue environments, potentially in clinical specimens. While techniques to preserve each of the microbial and host cell compartments have been used to examine tissues and microbes separately, we endeavored to develop approaches to simultaneously analyze both compartments. Herein, we established an original method for mucus preservation using Poloxamer 407 (also known as Pluronic F-127), a thermoreversible polymer with mucus-adhesive characteristics. We demonstrate that this approach can preserve spatially-defined compartments of the mucus bi-layer in the colon and the bacterial communities within, compared with their marked absence when tissues were processed with traditional formalin-fixed paraffin-embedded (FFPE) pipelines. Additionally, antigens for antibody staining of host cells were preserved and signal intensity for 16S rRNA fluorescence in situ hybridization (FISH) was enhanced in poloxamer-fixed samples. This in turn enabled us to integrate multimodal analysis using a modified multiplex immunofluorescence (MxIF) protocol. Importantly, we have formulated Poloxamer 407 to polymerize and cross-link at room temperature for use in clinical workflows. These results suggest that the fixative formulation of Poloxamer 407 can be integrated into biospecimen collection pipelines for simultaneous analysis of microbes and host cells.
Collapse
Affiliation(s)
- Mary C Macedonia
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia L Drewes
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas O Markham
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cherie' R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J Coffey
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| | - Martha J Shrubsole
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA
- Division of Epidemiology, Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
158
|
Janney A, Powrie F, Mann EH. Host–microbiota maladaptation in colorectal cancer. Nature 2020; 585:509-517. [DOI: 10.1038/s41586-020-2729-3] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
159
|
Martins Lopes MS, Machado LM, Ismael Amaral Silva PA, Tome Uchiyama AA, Yen CT, Ricardo ED, Mutao TS, Pimenta JR, Shimba DS, Hanriot RM, Peixoto RD. Antibiotics, cancer risk and oncologic treatment efficacy: a practical review of the literature. Ecancermedicalscience 2020; 14:1106. [PMID: 33144874 PMCID: PMC7581329 DOI: 10.3332/ecancer.2020.1106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotics have been extensively used to treat infectious diseases over the past century and have largely contributed to increased life expectancy over time. However, antibiotic use can impose profound and protracted changes to the diversity of the microbial ecosystem, affecting the composition of up to 30% of the bacterial species in the gut microbiome. By modifying human microbiota composition, antibiotics alter the action of several oncologic drugs, potentially leading to decreased efficacy and increased toxicities. Whether antibiotics interfere with cancer therapies or even increase the risk of cancer development has been under investigation, and no randomised trials have been conducted so far. The aim of the current review is to describe the possible effects of antibiotic therapies on different oncologic treatments, especially immunotherapies, and to explore the link between previous antibiotics use and the development of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Cheng T Yen
- Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | | | - Renata D Peixoto
- Centro Paulista de Oncologia (Grupo Oncoclínicas), São Paulo, Brazil
| |
Collapse
|
160
|
Löwenmark T, Löfgren-Burström A, Zingmark C, Eklöf V, Dahlberg M, Wai SN, Larsson P, Ljuslinder I, Edin S, Palmqvist R. Parvimonas micra as a putative non-invasive faecal biomarker for colorectal cancer. Sci Rep 2020; 10:15250. [PMID: 32943695 PMCID: PMC7499209 DOI: 10.1038/s41598-020-72132-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The use of faecal microbial markers as non-invasive biomarkers for colorectal cancer (CRC) has been suggested, but not fully elucidated. Here, we have evaluated the importance of Parvimonas micra as a potential non-invasive faecal biomarker in CRC and its relation to other microbial biomarkers. The levels of P. micra, F. nucleatum and clbA + bacteria were quantified using qPCR in faecal samples from a population-based cohort of patients undergoing colonoscopy due to symptoms from the large bowel. The study included 38 CRC patients, 128 patients with dysplasia and 63 controls. The results were validated in a second consecutive CRC cohort including faecal samples from 238 CRC patients and 94 controls. We found significantly higher levels of P. micra in faecal samples from CRC patients compared to controls. A test for P. micra could detect CRC with a specificity of 87.3% and a sensitivity of 60.5%. In addition, we found that combining P. micra with other microbial markers, could further enhance test sensitivity. Our findings support the potential use of P. micra as a non-invasive biomarker for CRC. Together with other microbial faecal markers, P. micra may identify patients with "high risk" microbial patterns, indicating increased risk and incidence of cancer.
Collapse
Affiliation(s)
- Thyra Löwenmark
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, 90185, Umeå, Sweden
| | - Anna Löfgren-Burström
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, 90185, Umeå, Sweden
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, 90185, Umeå, Sweden
| | - Vincy Eklöf
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, 90185, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, 90185, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, 90185, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, 90185, Umeå, Sweden.
| |
Collapse
|
161
|
Targeting Gut Microbial Biofilms-A Key to Hinder Colon Carcinogenesis? Cancers (Basel) 2020; 12:cancers12082272. [PMID: 32823729 PMCID: PMC7465663 DOI: 10.3390/cancers12082272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is a global public health issue which poses a substantial humanistic and economic burden on patients, healthcare systems and society. In recent years, intestinal dysbiosis has been suggested to be involved in the pathogenesis of CRC, with specific pathogens exhibiting oncogenic potentials such as Fusobacterium nucleatum, Escherichia coli and enterotoxigenic Bacteroides fragilis having been found to contribute to CRC development. More recently, it has been shown that initiation of CRC development by these microorganisms requires the formation of biofilms. Gut microbial biofilm forms in the inner colonic mucus layer and is composed of polymicrobial communities. Biofilm results in the redistribution of colonic epithelial cell E-cadherin, increases permeability of the gut and causes a loss of function of the intestinal barrier, all of which enhance intestinal dysbiosis. This literature review aims to compile the various strategies that target these pathogenic biofilms and could potentially play a role in the prevention of CRC. We explore the potential use of natural products, silver nanoparticles, upconverting nanoparticles, thiosalicylate complexes, anti-rheumatic agent (Auranofin), probiotics and quorum-sensing inhibitors as strategies to hinder colon carcinogenesis via targeting colon-associated biofilms.
Collapse
|
162
|
Kvich L, Burmølle M, Bjarnsholt T, Lichtenberg M. Do Mixed-Species Biofilms Dominate in Chronic Infections?-Need for in situ Visualization of Bacterial Organization. Front Cell Infect Microbiol 2020; 10:396. [PMID: 32850494 PMCID: PMC7419433 DOI: 10.3389/fcimb.2020.00396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic infections present a serious economic burden to health-care systems. The severity and prevalence of chronic infections are continuously increasing due to an aging population and an elevated number of lifestyle related diseases such as diabetes. Treatment of chronic infections has proven difficult, mainly due to the presence of biofilms that render bacteria more tolerant toward antimicrobials and the host immune response. Chronic infections have been described to harbor several different bacterial species and it has been hypothesized that microscale interactions and mixed-species consortia are present as described for most natural occurring biofilms i.e., aquatic systems and industrial settings, but also for some commensal human biofilms i.e., the mouth microbiota. However, the presence of mixed-species biofilms in chronic infections is most often an assumption based on culture-based methods and/or by means of molecular approaches, such as PCR and sequencing performed from homogenized bulk tissue samples. These methods disregard the spatial organization of the bacterial community and thus valuable information on biofilm aggregate composition, spatial organization, and possible interactions between different species is lost. Hitherto, only few studies have made visual in situ presentations of mixed-species biofilms in chronic infections, which is pivotal for the description of bacterial composition, spatial distribution, and interspecies interaction on the microscale. In order for bacteria to interact (synergism, commensalism, mutualism, competition, etc.) they need to be in close proximity to each other on the scale where they can affect e.g., solute concentrations. We argue that visual proof of mixed species biofilms in chronic infections is scarce compared to what is seen in e.g., environmental biofilms and call for a debate on the importance of mixed-species biofilm in chronic infections.
Collapse
Affiliation(s)
- Lasse Kvich
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Lichtenberg
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
163
|
Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G, Facciotti F. Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes. Int J Mol Sci 2020; 21:E5389. [PMID: 32751239 PMCID: PMC7432108 DOI: 10.3390/ijms21155389] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by both environmental and genetic factors. A large body of literature has demonstrated the role of gut microbes in promoting inflammatory responses, creating a suitable microenvironment for the development of skewed interactions between the host and the gut microbiota and cancer initiation. Even if surgery is the primary therapeutic strategy, patients with advanced disease or cancer recurrence after surgery remain difficult to cure. Therefore, the gut microbiota has been proposed as a novel therapeutic target in light of recent promising data in which it seems to modulate the response to cancer immunotherapy. The use of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics, and fecal microbiota transplantation, is therefore considered to support current therapies in CRC management. In this review, we will discuss the importance of host-microbe interactions in CRC and how promoting homeostatic immune responses through microbe-targeted therapies may be useful in preventing/treating CRC development.
Collapse
Affiliation(s)
- Federica Perillo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Chiara Amoroso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Francesco Strati
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20135 Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20135 Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| |
Collapse
|
164
|
Horve PF, Dietz LG, Ishaq SL, Kline J, Fretz M, Van Den Wymelenberg KG. Viable bacterial communities on hospital window components in patient rooms. PeerJ 2020; 8:e9580. [PMID: 33194331 PMCID: PMC7391968 DOI: 10.7717/peerj.9580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies demonstrate an exchange of bacteria between hospital room surfaces and patients, and a reduction in survival of microorganisms in dust inside buildings from sunlight exposure. While the transmission of microorganisms between humans and their local environment is a continuous exchange which generally does not raise cause for alarm, in a hospital setting with immunocompromised patients, these building-source microbial reservoirs may pose a risk. Window glass is often neglected during hospital disinfection protocols, and the microbial communities found there have not previously been examined. This pilot study examined whether living bacterial communities, and specifically the pathogens Methicillin-resistant Staphylococcus aureus (MRSA) and Clostridioides difficile (C. difficile), were present on window components of exterior-facing windows inside patient rooms, and whether relative light exposure (direct or indirect) was associated with changes in bacterial communities on those hospital surfaces. Environmental samples were collected from 30 patient rooms in a single ward at Oregon Health & Science University (OHSU) in Portland, Oregon, USA. Sampling locations within each room included the window glass surface, both sides of the window curtain, two surfaces of the window frame, and the air return grille. Viable bacterial abundances were quantified using qPCR, and community composition was assessed using Illumina MiSeq sequencing of the 16S rRNA gene V3/V4 region. Viable bacteria occupied all sampled locations, but was not associated with a specific hospital surface or relative sunlight exposure. Bacterial communities were similar between window glass and the rest of the room, but had significantly lower Shannon Diversity, theorized to be related to low nutrient density and resistance to bacterial attachment of glass compared to other surface materials. Rooms with windows that were facing west demonstrated a higher abundance of viable bacteria than those facing other directions, potentially because at the time of sampling (morning) west-facing rooms had not yet been exposed to sunlight that day. Viable C. difficile was not detected and viable MRSA was detected at very low abundance. Bacterial abundance was negatively correlated with distance from the central staff area containing the break room and nursing station. In the present study, it can be assumed that there is more human traffic in the center of the ward, and is likely responsible for the observed gradient of total abundance in rooms along the ward, as healthcare staff both deposit more bacteria during activities and affect microbial transit indoors. Overall, hospital window components possess similar microbial communities to other previously identified room locations known to act as reservoirs for microbial agents of hospital-associated infections.
Collapse
Affiliation(s)
- Patrick F Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Leslie G Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Suzanne L Ishaq
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America.,School of Food and Agriculture, University of Maine, Orono, ME, United States of America
| | - Jeff Kline
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Mark Fretz
- Institute for Health in the Built Environment, University of Oregon, Portland, OR, United States of America
| | - Kevin G Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America.,Institute for Health in the Built Environment, University of Oregon, Portland, OR, United States of America
| |
Collapse
|
165
|
Sun J, Tang Q, Yu S, Xie M, Xie Y, Chen G, Chen L. Role of the oral microbiota in cancer evolution and progression. Cancer Med 2020; 9:6306-6321. [PMID: 32638533 PMCID: PMC7476822 DOI: 10.1002/cam4.3206] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria identified in the oral cavity are highly complicated. They include approximately 1000 species with a diverse variety of commensal microbes that play crucial roles in the health status of individuals. Epidemiological studies related to molecular pathology have revealed that there is a close relationship between oral microbiota and tumor occurrence. Oral microbiota has attracted considerable attention for its role in in‐situ or distant tumor progression. Anaerobic oral bacteria with potential pathogenic abilities, especially Fusobacterium nucleatum and Porphyromonas gingivalis, are well studied and have close relationships with various types of carcinomas. Some aerobic bacteria such as Parvimonas are also linked to tumorigenesis. Moreover, human papillomavirus, oral fungi, and parasites are closely associated with oropharyngeal carcinoma. Microbial dysbiosis, colonization, and translocation of oral microbiota are necessary for implementation of carcinogenic functions. Various underlying mechanisms of oral microbiota‐induced carcinogenesis have been reported including excessive inflammatory reaction, immunosuppression of host, promotion of malignant transformation, antiapoptotic activity, and secretion of carcinogens. In this review, we have systemically described the impact of oral microbial abnormalities on carcinogenesis and the future directions in this field for bringing in new ideas for effective prevention of tumors.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yanling Xie
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
166
|
Mann EH, Maughan TS. Fusobacterium nucleatum, rectal cancer and radiotherapy. Ann Oncol 2020; 31:1277-1278. [PMID: 32629022 DOI: 10.1016/j.annonc.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- E H Mann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - T S Maughan
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
167
|
Queen J, Zhang J, Sears CL. Oral antibiotic use and chronic disease: long-term health impact beyond antimicrobial resistance and Clostridioides difficile. Gut Microbes 2020; 11:1092-1103. [PMID: 32037950 PMCID: PMC7524332 DOI: 10.1080/19490976.2019.1706425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We recently reported an increased colon cancer risk associated with oral antibiotic use in a large United Kingdom population. This association between antibiotic exposure and cancer risk adds to a growing body of evidence that antibiotic use has unintended off-target long-term health consequences. This addendum highlights major studies linking antibiotic use and chronic disease in pediatric and adult populations. Microbiota dysbiosis is the key proposed mechanism underlying antibiotic:disease associations, resulting in alterations in gene expression, epigenetic modification, colonization by pathogenic bacteria, instigation of biofilms, and immune regulation and inflammation. These adverse outcomes of antibiotic exposure underscore the need for diagnostic and antibiotic stewardship, as well as the urgency for further development of non-antibiotic therapies for bacterial infections.
Collapse
Affiliation(s)
- Jessica Queen
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA,CONTACT Cynthia Sears The Johns Hopkins University School of Medicine, 1550Orleans Street, CRB 2 Bldg., Suite 1M-05, Baltimore, MD21287, USA
| | - Jiajia Zhang
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
168
|
|
169
|
Shuwen H, Xi Y, Yuefen P, Jiamin X, Quan Q, Haihong L, Yizhen J, Wei W. Effects of postoperative adjuvant chemotherapy and palliative chemotherapy on the gut microbiome in colorectal cancer. Microb Pathog 2020; 149:104343. [PMID: 32562813 DOI: 10.1016/j.micpath.2020.104343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The gut microbiome changes are related to the colorectal cancer (CRC). Chemotherapy is one of the main treatment methods for CRC. PURPOSE To explore the effect of chemotherapy on the gut bacteria and fungi in CRC. METHODS Total of 11 advanced CRC patients treated with the FOLFIRI regimen, 15 postoperative CRC patients treated with the XELOX regimen, and corresponding CRC patients without surgery and chemotherapy were recruited. The 16S ribosomal RNA and ITS sequences were sequenced, and bioinformatics analysis was executed to screen for the distinctive gut microbiome. RESULTS The abundances of Veillonella, Humicola, Tremellomycetes and Malassezia were increased in postoperative CRC patients treated with the XELOX regimen. The abundances of Faecalibacterium, Clostridiales, phascolarctobacterium, Humicola and Rhodotorula were decreased, and the abundances of Candida, Magnusiomyces, Tremellomycetes, Dipodascaceae, Saccharomycetales, Malassezia and Lentinula were increased in advanced CRC patients treated with the FOLFIRI regimen. The abundances of Humicola, Rhodotorula, and Magnusiomyces were decreased, and the abundances of Candida, Tremellomycetes, Dipodascaceae, Saccharomycetales, Malassezia and Lentinula were increased in advanced CRC patients treated with the FOLFIRI regimen combined with cetuximab compared with those treated with the FOLFIRI regimen alone. CONCLUSIONS The community structure of gut bacteria and fungi changes in chemotherapy on CRCs.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China
| | - Yang Xi
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Address: No. 198 Hongqi Road, Huzhou, Zhejiang Province, 313000, China.
| | - Pan Yuefen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Xu Jiamin
- Graduate School of Nursing, Huzhou University, Address: No. 1 Bachelor Road, Huzhou, Zhejiang Province, 313000, China.
| | - Qi Quan
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Liao Haihong
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Jiang Yizhen
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops HuZhou University. Address: 198 Hongqi Rd, Huzhou, Zhejiang, China.
| | - Wu Wei
- Department of Gastroenterology, Huzhou Central Hospital, Address: No. 198 Hongqi Road, Huzhou, Zhejiang Province, 313000, China.
| |
Collapse
|
170
|
Jiang S, Xiao G, Koh AY, Chen Y, Yao B, Li Q, Zhan X. HARMONIES: A Hybrid Approach for Microbiome Networks Inference via Exploiting Sparsity. Front Genet 2020; 11:445. [PMID: 32582274 PMCID: PMC7283552 DOI: 10.3389/fgene.2020.00445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
The human microbiome is a collection of microorganisms. They form complex communities and collectively affect host health. Recently, the advances in next-generation sequencing technology enable the high-throughput profiling of the human microbiome. This calls for a statistical model to construct microbial networks from the microbiome sequencing count data. As microbiome count data are high-dimensional and suffer from uneven sampling depth, over-dispersion, and zero-inflation, these characteristics can bias the network estimation and require specialized analytical tools. Here we propose a general framework, HARMONIES, Hybrid Approach foR MicrobiOme Network Inferences via Exploiting Sparsity, to infer a sparse microbiome network. HARMONIES first utilizes a zero-inflated negative binomial (ZINB) distribution to model the skewness and excess zeros in the microbiome data, as well as incorporates a stochastic process prior for sample-wise normalization. This approach infers a sparse and stable network by imposing non-trivial regularizations based on the Gaussian graphical model. In comprehensive simulation studies, HARMONIES outperformed four other commonly used methods. When using published microbiome data from a colorectal cancer study, it discovered a novel community with disease-enriched bacteria. In summary, HARMONIES is a novel and useful statistical framework for microbiome network inference, and it is available at https://github.com/shuangj00/HARMONIES.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, United States.,Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrew Y Koh
- Departments of Pediatrics, Departments of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yingfei Chen
- Lyda Hill Department of Bioinformatics, Bioinformatics High Performance Computing, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bo Yao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
171
|
Manzoor SS, Doedens A, Burns MB. The promise and challenge of cancer microbiome research. Genome Biol 2020; 21:131. [PMID: 32487228 PMCID: PMC7265652 DOI: 10.1186/s13059-020-02037-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Many microbial agents have been implicated as contributors to cancer genesis and development, and the search to identify and characterize new cancer-related organisms is ongoing. Modern developments in methodologies, especially culture-independent approaches, have accelerated and driven this research. Recent work has shed light on the multifaceted role that the community of organisms in and on the human body plays in cancer onset, development, detection, treatment, and outcome. Much remains to be discovered, however, as methodological variation and functional testing of statistical correlations need to be addressed for the field to advance.
Collapse
Affiliation(s)
| | - Annemiek Doedens
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA.
| |
Collapse
|
172
|
de Leeuw MA, Duval MX. The Presence of Periodontal Pathogens in Gastric Cancer. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-10. [DOI: 10.14218/erhm.2020.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
173
|
Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, San Lucas A, Scheet P, Xu H, Hanash SM, Feng L, Burks JK, Do KA, Peterson CB, Nejman D, Tzeng CWD, Kim MP, Sears CL, Ajami N, Petrosino J, Wood LD, Maitra A, Straussman R, Katz M, White JR, Jenq R, Wargo J, McAllister F. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 2020; 178:795-806.e12. [PMID: 31398337 DOI: 10.1016/j.cell.2019.07.008] [Citation(s) in RCA: 998] [Impact Index Per Article: 199.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 03/06/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Most patients diagnosed with resected pancreatic adenocarcinoma (PDAC) survive less than 5 years, but a minor subset survives longer. Here, we dissect the role of the tumor microbiota and the immune system in influencing long-term survival. Using 16S rRNA gene sequencing, we analyzed the tumor microbiome composition in PDAC patients with short-term survival (STS) and long-term survival (LTS). We found higher alpha-diversity in the tumor microbiome of LTS patients and identified an intra-tumoral microbiome signature (Pseudoxanthomonas-Streptomyces-Saccharopolyspora-Bacillus clausii) highly predictive of long-term survivorship in both discovery and validation cohorts. Through human-into-mice fecal microbiota transplantation (FMT) experiments from STS, LTS, or control donors, we were able to differentially modulate the tumor microbiome and affect tumor growth as well as tumor immune infiltration. Our study demonstrates that PDAC microbiome composition, which cross-talks to the gut microbiome, influences the host immune response and natural history of the disease.
Collapse
Affiliation(s)
- Erick Riquelme
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Yu Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liangliang Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Montiel
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle Zoltan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenli Dong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pompeyo Quesada
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ismet Sahin
- Department of Engineering, Texas Southern University, Houston, TX, USA
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony San Lucas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hanwen Xu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deborah Nejman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cynthia L Sears
- Departments of Medicine, Oncology and Molecular Microbiology & Immunology, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nadim Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Laura D Wood
- Department of Pathology and The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Matthew Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
174
|
Rastogi YR, Saini AK, Thakur VK, Saini RV. New Insights into Molecular Links Between Microbiota and Gastrointestinal Cancers: A Literature Review. Int J Mol Sci 2020; 21:E3212. [PMID: 32370077 PMCID: PMC7246717 DOI: 10.3390/ijms21093212] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Despite decades of exhaustive research on cancer, questions about cancer initiation, development, recurrence, and metastasis have still not been completely answered. One of the reasons is the plethora of factors acting simultaneously in a tumour microenvironment, of which not all have garnered attention. One such factor that has long remained understudied and has only recently received due attention is the host microbiota. Our sheer-sized microbiota exists in a state of symbiosis with the body and exerts significant impact on our body's physiology, ranging from immune-system development and regulation to neurological and cognitive development. The presence of our microbiota is integral to our development, but a change in its composition (microbiota dysbiosis) can often lead to adverse effects, increasing the propensity of serious diseases like cancers. In the present review, we discuss environmental and genetic factors that cause changes in microbiota composition, disposing of the host towards cancer, and the molecular mechanisms (such as β-catenin signalling) and biochemical pathways (like the generation of oncogenic metabolites like N-nitrosamines and hydrogen sulphide) that the microbiota uses to initiate or accelerate cancers, with emphasis on gastrointestinal cancers. Moreover, we discuss how microbiota can adversely influence the success of colorectal-cancer chemotherapy, and its role in tumour metastasis. We also attempted to resolve conflicting results obtained for the butyrate effect on tumour suppression in the colon, often referred to as the 'butyrate paradox'. In addition, we suggest the development of microbiota-based biomarkers for early cancer diagnosis, and a few target molecules of which the inhibition can increase the overall chances of cancer cure.
Collapse
Affiliation(s)
- Yash Raj Rastogi
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India;
| | - Adesh K. Saini
- Faculty of Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V. Saini
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
175
|
Host responses to mucosal biofilms in the lung and gut. Mucosal Immunol 2020; 13:413-422. [PMID: 32112046 PMCID: PMC8323778 DOI: 10.1038/s41385-020-0270-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 02/04/2023]
Abstract
The impact of the human microbiome on health and disease is of utmost importance and has been studied intensively in recent years. Microbes promote immune system development and are essential to the production and absorption of nutrients for the host but are also implicated in disease pathogenesis. Particularly, bacterial biofilms have long been recognized as contributors to chronic infections and diseases in humans. However, our understanding of how the host responds to the presence of biofilms, specifically the immune response to biofilms, and how this contributes to disease pathogenesis is limited. This review aims to highlight what is known about biofilm formation and in vivo models available for the biofilm study. We critique the contribution of biofilms to human diseases, focusing on the lung diseases, cystic fibrosis and chronic obstructive pulmonary disease, and the gut diseases, inflammatory bowel disease and colorectal cancer.
Collapse
|
176
|
Zhang A, Sodhi CP, Wang M, Shores DR, Fulton W, Prindle T, Brosten S, O'Hare E, Lau A, Ding H, Jia H, Lu P, White JR, Hui J, Sears CL, Hackam DJ, Alaish SM. A Central Role for Lipocalin-2 in the Adaptation to Short-Bowel Syndrome Through Down-Regulation of IL22 in Mice. Cell Mol Gastroenterol Hepatol 2020; 10:309-326. [PMID: 32330729 PMCID: PMC7327842 DOI: 10.1016/j.jcmgh.2020.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS In short-bowel syndrome (SBS), inadequate intestinal adaptation is responsible for the majority of complications, including sepsis, liver failure, and death. In this study, we sought to further delineate the adaptive response to identify potential therapeutic targets. METHODS We performed a 75% small-bowel resection (SBR) or sham operation on C57Bl/6J wild-type (WT), lipocalin-2 (LCN2)-/-, and interleukin 22 (IL22)-/- mice. Exogenous IL22 was administered to SBR WT mice. Cecal fecal matter from SBR WT and SBR LCN2-/- mice were transplanted into germ-free mice. Intestinal permeability, inflammation, proliferation, and the microbiome were evaluated 1 week after surgery. CD4+IL22+ laminal propria lymphocytes were sorted by flow cytometry. Naïve T cells were polarized to T-helper cells with or without LCN2. RESULTS A 75% SBR in a mouse re-creates the increased intestinal permeability, enterocyte proliferation, and intestinal dysbiosis seen in SBS. LCN2 expression increases after 75% SBR, and this increase can be abrogated with broad-spectrum antibiotic treatment. LCN2-/- mice have less intestinal inflammation, increased IL22 expression, and greater adaptation as evidenced by less intestinal permeability, increased carbohydrate enzyme expression, less weight loss, and less dysbiosis after 75% SBR than WT mice. The proinflammatory and anti-adaptive effects of LCN2 can be transferred to germ-free mice via a fecal transplant. Administration of exogenous IL22 improves adaptation and restores the normal microbiome after 75% SBR in WT mice. CONCLUSIONS LCN2 promotes inflammation and slows intestinal adaptation through changes in the microbiome and IL22 inhibition in a mouse SBS model. Strategies to reduce LCN2 may offer novel therapeutic approaches to enhance adaptation in SBS.
Collapse
Affiliation(s)
- Ailan Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chhinder P Sodhi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Menghan Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Darla R Shores
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Fulton
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Prindle
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Serena Brosten
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth O'Hare
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander Lau
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hua Ding
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peng Lu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Justin Hui
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David J Hackam
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samuel M Alaish
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
177
|
Kato I, Sun J, Larson J, Hastert T, Abrams J. History of Inflammatory Bowel Disease and Self-Reported Oral Health: Women's Health Initiative Observational Study. J Womens Health (Larchmt) 2020; 29:1032-1040. [PMID: 32302514 DOI: 10.1089/jwh.2019.8162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background and Objective: Both periodontal disease and inflammatory bowel disease (IBD), are chronic inflammatory conditions, which are mediated by a complex interplay among a dysbiotic microbiota, dysregulated host immune-inflammatory responses, and lifestyle factors. Despite substantial differences in physical and chemical environments, rather strong correlations have been detected between microbial compositions of the oral cavity and stool. In this study, we tested the hypothesis that oral health conditions are affected by the presence of IBD. Materials and Methods: We analyzed the data from 73,621 women who were enrolled in the Women's Health Initiative observational cohort study and completed a follow-up questionnaire that surveyed oral health status specifically at year 5. Among these, 880 reported IBD at the baseline, including 47% who were symptomatic cases and 27% who were on immunosuppressive treatment. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IBD and medication status for self-reported oral health outcomes, using logistic regression models, adjusted for selected covariates. Results: IBD was not associated with periodontal disease history itself in a multivariable model; however, poorer self-rated oral health was modestly associated with the presence of IBD (OR = 1.15, 95% CI: 1.01-1.30). Likewise, more frequent eating limitations due to teeth were associated with the presence of IBD history (OR = 1.22, 95% CI: 1.07-1.39). When IBD cases were limited to those who were symptomatic, the associations with these two self-rated oral health outcomes were more pronounced with ORs of 1.28 (95% CI: 1.07-1.54) and 1.36 (95% CI: 1.07-1.54), respectively. Immunosuppressive treatment had little effect on these risk estimates. Conclusions: Among this nation-wide cohort of women 50-79 years of age, history of IBD was associated with poorer perceived oral health status.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joseph Larson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Theresa Hastert
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Judith Abrams
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
178
|
Mo Z, Huang P, Yang C, Xiao S, Zhang G, Ling F, Li L. Meta-analysis of 16S rRNA Microbial Data Identified Distinctive and Predictive Microbiota Dysbiosis in Colorectal Carcinoma Adjacent Tissue. mSystems 2020; 5:e00138-20. [PMID: 32291348 PMCID: PMC7159898 DOI: 10.1128/msystems.00138-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
As research focusing on the colorectal cancer fecal microbiome using shotgun sequencing continues, increasing evidence has supported correlations between colorectal carcinomas (CRCs) and fecal microbiome dysbiosis. However, large-scale on-site and off-site (surrounding adjacent) tissue microbiome characterization of CRC was underrepresented. Here, considering each taxon as a feature, we demonstrate a machine learning-based method to investigate tissue microbial differences among CRC, colorectal adenoma (CRA), and healthy control groups using 16S rRNA data sets retrieved from 15 studies. A total of 2,099 samples were included and analyzed in case-control comparisons. Multiple methods, including differential abundance analysis, random forest classification, cooccurrence network analysis, and Dirichlet multinomial mixture analysis, were conducted to investigate the microbial signatures. We showed that the dysbiosis of the off-site tissue of colonic cancer was distinctive and predictive. The AUCs (areas under the curve) were 80.7%, 96.0%, and 95.8% for CRC versus healthy control random forest models using stool, tissue, and adjacent tissue samples and 69.9%, 91.5%, and 89.5% for the corresponding CRA models, respectively. We also found that the microbiota ecologies of the surrounding adjacent tissues of CRC and CRA were similar to their on-site counterparts according to network analysis. Furthermore, based on the enterotyping of tissue samples, the cohort-specific microbial signature might be the crux in addressing classification generalization problems. Despite cohort heterogeneity, the dysbiosis of lesion-adjacent tissues might provide us with further perspectives in demonstrating the role of the microbiota in colorectal cancer tumorigenesis.IMPORTANCE Turbulent fecal and tissue microbiome dysbiosis of colorectal carcinoma and adenoma has been identified, and some taxa have been proven to be carcinogenic. However, the microbiomes of surrounding adjacent tissues of colonic cancerous tissues were seldom investigated uniformly on a large scale. Here, we characterize the microbiome signatures and dysbiosis of various colonic cancer sample groups. We found a high correlation between colorectal carcinoma adjacent tissue microbiomes and their on-site counterparts. We also discovered that the microbiome dysbiosis in adjacent tissues could discriminate colorectal carcinomas from healthy controls effectively. These results extend our knowledge on the microbial profile of colorectal cancer tissues and highlight microbiota dysbiosis in the surrounding tissues. They also suggest that microbial feature variations of cancerous lesion-adjacent tissues might help to reveal the microbial etiology of colonic cancer and could ultimately be applied for diagnostic and screening purposes.
Collapse
Affiliation(s)
- Zongchao Mo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Chao Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Sihao Xiao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Lin Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
179
|
Gethings-Behncke C, Coleman HG, Jordao HWT, Longley DB, Crawford N, Murray LJ, Kunzmann AT. Fusobacterium nucleatum in the Colorectum and Its Association with Cancer Risk and Survival: A Systematic Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev 2020; 29:539-548. [PMID: 31915144 DOI: 10.1158/1055-9965.epi-18-1295] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/16/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The gut microbiome, in particular Fusobacterium nucleatum, has been reported to play a role in colorectal cancer development and in patient prognosis. We aimed to perform a systematic review and meta-analysis of published studies to assess the prevalence of F. nucleatum in colorectal tumors and evaluate the association between F. nucleatum and colorectal cancer development and prognosis. METHODS MEDLINE, EMBASE, and Web of Science databases were systematically searched for studies published until January 2019. Random effects meta-analyses were used to assess the prevalence of F. nucleatum in patients with colorectal cancer or tissues relative to controls and survival in F. nucleatum-positive versus -negative patients. RESULTS Forty-five relevant articles were identified. Meta-analyses indicated higher odds of F. nucleatum being present in colorectal tissue samples from patients with colorectal cancer [n = 6 studies, pooled OR = 10.06; 95% confidence intervals (CI), 4.48-22.58] and individuals with colorectal polyps (n = 5 studies, pooled OR = 1.83; 95% CI, 1.07-3.16) compared with healthy controls. Similar results were apparent in fecal samples, and when comparing tumor with adjacent normal tissue. Meta-analyses indicated poorer survival in patients with colorectal cancer with high versus low F. nucleatum abundance (n = 5 studies, pooled HR = 1.87; 95% CI, 1.12-3.11). CONCLUSIONS A consistent increase in the prevalence and/or abundance of F. nucleatum in colorectal cancer tissue and fecal samples compared with controls was apparent. High abundance of F. nucleatum in colorectal tumors was also associated with poorer overall survival. IMPACT F. nucleatum could be useful as a diagnostic and prognostic marker for colorectal cancer or as a treatment target.
Collapse
Affiliation(s)
| | - Helen G Coleman
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Haydee W T Jordao
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Liam J Murray
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew T Kunzmann
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
180
|
Microbiome within Primary Tumor Tissue from Renal Cell Carcinoma May Be Associated with PD-L1 Expression of the Venous Tumor Thrombus. Adv Urol 2020; 2020:9068068. [PMID: 32148479 PMCID: PMC7049446 DOI: 10.1155/2020/9068068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Objective To perform a proof of concept microbiome evaluation and PD-L1 expression profiling in clear-cell renal cell carcinoma (cc-RCC) with associated tumor thrombus (TT). Methods After IRB approval, six patients underwent radical nephrectomy (RN) with venous tumor thrombectomy (VTT). We collected fresh tissue specimens from normal adjacent, tumor, and thrombus tissues. We utilized RNA sequencing to obtain PD-L1 expression profiles and perform microbiome analysis. Statistical assessment was performed using Student's t-test, chi-square, and spearman rank correlations using SPSS v25. Results We noted the tumor thrombus to be mostly devoid of diverse microbiota. A large proportion of Staphylococcus epidermidus was detected and unknown if this is a surgical or postsurgical contaminant; however, it was noted more in the thrombus than other tissues. Microbiome diversity profiles were most abundant in the primary tumor compared to the thrombus or normal adjacent tissue. Differential expression of PD-L1 was examined in the tumor thrombus to the normal background tissue and noted three of the six subjects had a threshold above 2-fold. These three similar subjects had foreign microbiota that are typical residents of the oral microbiome. Conclusion Renal tumors have more diverse microbiomes than normal adjacent tissue. Identification of resident oral microbiome profiles in clear-cell renal cancer with tumor thrombus provides a potential biomarker for thrombus response to PD-L1 inhibition.
Collapse
|
181
|
Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol 2020; 28:401-423. [PMID: 32298617 DOI: 10.1016/j.tim.2020.01.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have been identified of which representative isolate cultures interact with human cancer cells in vitro and trigger disease pathways in animal models. However, how the complex interrelationships in dysbiotic communities may be involved in cancer pathogenesis remains a crucial question. Here, we provide a survey of current knowledge of the gut microbiome in colorectal cancer. Moving beyond observational studies, we outline new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Dominik Ternes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mina Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Eco-Systems Biology group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
182
|
Mirzaei R, Mirzaei H, Alikhani MY, Sholeh M, Arabestani MR, Saidijam M, Karampoor S, Ahmadyousefi Y, Moghadam MS, Irajian GR, Hasanvand H, Yousefimashouf R. Bacterial biofilm in colorectal cancer: What is the real mechanism of action? Microb Pathog 2020; 142:104052. [PMID: 32045645 DOI: 10.1016/j.micpath.2020.104052] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
Human colorectal cancer is the third most common cancer around the world. Colorectal cancer has various risk factors, but current works have bolded a significant activity for the microbiota of the human colon in the development of this disease. Bacterial biofilm has been mediated to non-malignant pathologies like inflammatory bowel disease but has not been fully documented in the setting of colorectal cancer. The investigation has currently found that bacterial biofilm is mediated to colon cancer in the human and linked to the location of human cancer, with almost all right-sided adenomas of colon cancers possessing bacterial biofilm, whilst left-sided cancer is rarely biofilm positive. The profound comprehension of the changes in colorectal cancer can provide interesting novel concepts for anticancer treatments. In this review, we will summarize and examine the new knowledge about the links between colorectal cancer and bacterial biofilm.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Shokri Moghadam
- Department of Microbiology, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamze Hasanvand
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
183
|
Tuddenham SA, Koay WLA, Zhao N, White JR, Ghanem KG, Sears CL. The Impact of Human Immunodeficiency Virus Infection on Gut Microbiota α-Diversity: An Individual-level Meta-analysis. Clin Infect Dis 2020; 70:615-627. [PMID: 30921452 PMCID: PMC7319268 DOI: 10.1093/cid/ciz258] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Whether human immunodeficiency virus (HIV) infection impacts gut microbial α-diversity is controversial. We reanalyzed raw 16S ribosomal RNA (rRNA) gene sequences and metadata from published studies to examine α-diversity measures between HIV-uninfected (HIV-) and HIV-infected (HIV+) individuals. METHODS We conducted a systematic review and individual level meta-analysis by searching Embase, Medline, and Scopus for original research studies (inception to 31 December 2017). Included studies reported 16S rRNA gene sequences of fecal samples from HIV+ patients. Raw sequence reads and metadata were obtained from public databases or from study authors. Raw reads were processed through standardized pipelines with use of a high-resolution taxonomic classifier. The χ2 test, paired t tests, and generalized linear mixed models were used to relate α-diversity measures and clinical metadata. RESULTS Twenty-two studies were identified with 17 datasets available for analysis, yielding 1032 samples (311 HIV-, 721 HIV+). HIV status was associated with a decrease in measures of α-diversity (P < .001). However, in stratified analysis, HIV status was associated with decreased α-diversity only in women and in men who have sex with women (MSW) but not in men who have sex with men (MSM). In analyses limited to women and MSW, controlling for HIV status, women displayed increased α-diversity compared with MSW. CONCLUSIONS Our study suggests that HIV status, sexual risk category, and gender impact gut microbial community α-diversity. Future studies should consider MSM status in gut microbiome analyses.
Collapse
Affiliation(s)
| | - Wei Li A Koay
- Children’s National Medical Center, Baltimore, Maryland
- George Washington University, Washington, District of Columbia, Baltimore, Maryland
| | - Ni Zhao
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Khalil G Ghanem
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
184
|
Study of the Relationship between Microbiome and Colorectal Cancer Susceptibility Using 16SrRNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7828392. [PMID: 32083132 PMCID: PMC7011317 DOI: 10.1155/2020/7828392] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
A lot of previous studies have recently reported that the gut microbiota influences the development of colorectal cancer (CRC) in Western countries, but the role of the gut microbiota in Chinese population must be investigated fully. The goal of this study was to determine the role of the gut microbiome in the initiation and development of CRC. We collected fecal samples of 206 Chinese individuals: 59 with polyp (group P), 54 with adenoma (group A), 51 with colorectal cancer (group CC), and 42 healthy controls (group HC).16S ribosomal RNA (rRNA) was used to compare the microbiota community structures among healthy controls, patients with polyp, and those with adenoma or colorectal cancer. Our study proved that intestinal flora, as a specific indicator, showed significant differences in its diversity and composition. Sobs, Chao, and Ace indexes of group CC were significantly lower than those of the healthy control group (CC group: Sobs, Chao, and Ace indexes were 217.3 ± 69, 4265.1 ± 80.7, and 268.6 ± 78.1, respectively; HC group: Sobs, Chao, and Ace indexes were 228.8 ± 44.4, 272.9 ± 58.6, and 271.9 ± 57.2, respectively). When compared with the healthy individuals, the species richness and diversity of intestinal flora in patients with colorectal cancer were significantly reduced: PCA and PCoA both revealed that a significant separation in bacterial community composition between the CC group and HC group (with PCA using the first two principal component scores of PC1 14.73% and PC2 10.34% of the explained variance, respectively; PCoA : PC1 = 14%, PC2 = 9%, PC3 = 6%). Wilcox tests was used to analyze differences between the two groups, it reveals that Firmicutes (P=0.000356), Fusobacteria (P=0.000001), Proteobacteria (P=0.000796), Spirochaetes (P=0.013421), Synergistetes (P=0.005642) were phyla with significantly different distributions between cases and controls. The proportion of microorganism composition is varying at different stages of colon cancer development: Bacteroidetes (52.14%) and Firmicutes (35.88%) were enriched in the healthy individuals; on the phylum level, the abundance of Bacteroidetes (52.14%-53.92%-52.46%–47.06%) and Firmicutes (35.88%-29.73%-24.27%–25.36%) is decreasing with the development of health-polyp-adenomas-CRC, and the abundance of Proteobacteria (9.33%-12.31%-16.51%–22.37%) is increasing. PCA and PCOA analysis showed there was no significant (P < 0.05) difference in species similarity between precancerous and carcinogenic states. However, the composition of the microflora in patients with precancerous lesions (including patients with adenoma and polyp) was proved to have no significant disparity (P < 0.05). Our study provides insights into new angles to dig out potential biomarkers in diagnosis and treatment of colorectal cancer and to provide scientific advice for a healthy lifestyle for the sake of gut microbiota.
Collapse
|
185
|
Tomkovich S, Gharaibeh RZ, Dejea CM, Pope JL, Jiang J, Winglee K, Gauthier J, Newsome RC, Yang Y, Fodor AA, Schmittgen TD, Sears CL, Jobin C. Human Colon Mucosal Biofilms and Murine Host Communicate via Altered mRNA and microRNA Expression during Cancer. mSystems 2020; 5:e00451-19. [PMID: 31937674 PMCID: PMC6967385 DOI: 10.1128/msystems.00451-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/21/2019] [Indexed: 01/09/2023] Open
Abstract
Disrupted interactions between host and intestinal bacteria are implicated in colorectal cancer (CRC) development. However, activities derived from these bacteria and their interplay with the host are unclear. Here, we examine this interplay by performing mouse and microbiota RNA sequencing on colon tissues and 16S and small RNA sequencing on stools from germfree (GF) and gnotobiotic ApcMin Δ 850/+ ;Il10-/- mice associated with microbes from biofilm-positive human CRC tumor (BF+T) and biofilm-negative healthy (BF-bx) tissues. The bacteria in BF+T mice differentially expressed (DE) >2,900 genes, including genes related to bacterial secretion, virulence, and biofilms but affected only 62 host genes. Small RNA sequencing of stools from these cohorts revealed eight significant DE host microRNAs (miRNAs) based on biofilm status and several miRNAs that correlated with bacterial taxon abundances. Additionally, computational predictions suggest that some miRNAs preferentially target bacterial genes while others primarily target mouse genes. 16S rRNA sequencing of mice that were reassociated with mucosa-associated communities from the initial association revealed a set of 13 bacterial genera associated with cancer that were maintained regardless of whether the reassociation inoculums were initially obtained from murine proximal or distal colon tissues. Our findings suggest that complex interactions within bacterial communities affect host-derived miRNA, bacterial composition, and CRC development.IMPORTANCE Bacteria and bacterial biofilms have been implicated in colorectal cancer (CRC), but it is still unclear what genes these microbial communities express and how they influence the host. MicroRNAs regulate host gene expression and have been explored as potential biomarkers for CRC. An emerging area of research is the ability of microRNAs to impact growth and gene expression of members of the intestinal microbiota. This study examined the bacteria and bacterial transcriptome associated with microbes derived from biofilm-positive human cancers that promoted tumorigenesis in a murine model of CRC. The murine response to different microbial communities (derived from CRC patients or healthy people) was evaluated through RNA and microRNA sequencing. We identified a complex interplay between biofilm-associated bacteria and the host during CRC in mice. These findings may lead to the development of new biomarkers and therapeutics for identifying and treating biofilm-associated CRCs.
Collapse
Affiliation(s)
- Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christine M Dejea
- Bloomberg-Kimmel Institute of Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jillian L Pope
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Josee Gauthier
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rachel C Newsome
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Cynthia L Sears
- Bloomberg-Kimmel Institute of Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
186
|
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
187
|
Frias-Lopez J, Duran-Pinedo AE. The Function of the Oral Microbiome in Health and Disease. EMERGING THERAPIES IN PERIODONTICS 2020:141-173. [DOI: 10.1007/978-3-030-42990-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
188
|
Affiliation(s)
- Jacqueline I. Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Frank A. Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
189
|
Tarashi S, Siadat SD, Ahmadi Badi S, Zali M, Biassoni R, Ponzoni M, Moshiri A. Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer? Microorganisms 2019; 7:E561. [PMID: 31766208 PMCID: PMC6920974 DOI: 10.3390/microorganisms7110561] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a worldwide health concern which requires efficient therapeutic strategies. The mechanisms underlying CRC remain an essential subject of investigations in the cancer biology field. The evaluation of human microbiota can be critical in this regard, since the disruption of the normal community of gut bacteria is an important issue in the development of CRC. However, several studies have already evaluated the different aspects of the association between microbiota and CRC. The current study aimed at reviewing and summarizing most of the studies on the modifications of gut bacteria detected in stool and tissue samples of CRC cases. In addition, the importance of metabolites derived from gut bacteria, their relationship with the microbiota, and epigenetic modifications have been evaluated.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, 1316943551 Tehran, Iran; (S.T.); (S.D.S.); (S.A.B.)
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran;
| | - Roberto Biassoni
- Laboratory of Molecular Medicine, IRCCS Instituto Giannina Gaslini, 16147 Genova, Italy;
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Arfa Moshiri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| |
Collapse
|
190
|
Zhang J, Haines C, Watson AJM, Hart AR, Platt MJ, Pardoll DM, Cosgrove SE, Gebo KA, Sears CL. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: a matched case-control study. Gut 2019; 68:1971-1978. [PMID: 31427405 DOI: 10.1136/gutjnl-2019-318593] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microbiome dysbiosis predisposes to colorectal cancer (CRC), but a population-based study of oral antibiotic exposure and risk patterns is lacking. OBJECTIVE To assess the association between oral antibiotic use and CRC risk. DESIGN A matched case-control study (incident CRC cases and up to five matched controls) was performed using the Clinical Practice Research Datalink from 1989 to 2012. RESULTS 28 980 CRC cases and 137 077 controls were identified. Oral antibiotic use was associated with CRC risk, but effects differed by anatomical location. Antibiotic use increased the risk of colon cancer in a dose-dependent fashion (ptrend <0.001). The risk was observed after minimal use, and was greatest in the proximal colon and with antibiotics with anti-anaerobic activity. In contrast, an inverse association was detected between antibiotic use and rectal cancers (ptrend=0.003), particularly with length of antibiotic exposure >60 days (adjusted OR (aOR), 0.85, 95% CI 0.79 to 0.93) as compared with no antibiotic exposure. Penicillins, particularly ampicillin/amoxicillin increased the risk of colon cancer (aOR=1.09 (1.05 to 1.13)), whereas tetracyclines reduced the risk of rectal cancer (aOR=0.90 (0.84 to 0.97)). Significant interactions were detected between antibiotic use and tumour location (colon vs rectum, pinteraction<0.001; proximal colon versus distal colon, pinteraction=0.019). The antibiotic-cancer association was found for antibiotic exposure occurring >10 years before diagnosis (aOR=1.17 (1.06 to 1.31)). CONCLUSION Oral antibiotic use is associated with an increased risk of colon cancer but a reduced risk of rectal cancer. This effect heterogeneity may suggest differences in gut microbiota and carcinogenesis mechanisms along the lower intestinal tract.
Collapse
Affiliation(s)
- Jiajia Zhang
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Haines
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alastair J M Watson
- Department of Medicine, University of East Anglia Norwich Medical School, Norwich, Norfolk, UK.,Department of Gastroenterology, Norfolk and Norwich University Hospital NHS Trust, Norwich, Norfolk, UK
| | - Andrew R Hart
- Department of Medicine, University of East Anglia Norwich Medical School, Norwich, Norfolk, UK.,Department of Gastroenterology, Norfolk and Norwich University Hospital NHS Trust, Norwich, Norfolk, UK
| | - Mary Jane Platt
- Department of Medicine, University of East Anglia Norwich Medical School, Norwich, Norfolk, UK
| | - Drew M Pardoll
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sara E Cosgrove
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly A Gebo
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Cynthia L Sears
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
191
|
Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019; 16:690-704. [PMID: 31554963 DOI: 10.1038/s41575-019-0209-8] [Citation(s) in RCA: 792] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) accounts for about 10% of all new cancer cases globally. Located at close proximity to the colorectal epithelium, the gut microbiota comprises a large population of microorganisms that interact with host cells to regulate many physiological processes, such as energy harvest, metabolism and immune response. Sequencing studies have revealed microbial compositional and ecological changes in patients with CRC, whereas functional studies in animal models have pinpointed the roles of several bacteria in colorectal carcinogenesis, including Fusobacterium nucleatum and certain strains of Escherichia coli and Bacteroides fragilis. These findings give new opportunities to take advantage of our knowledge on the gut microbiota for clinical applications, such as gut microbiota analysis as screening, prognostic or predictive biomarkers, or modulating microorganisms to prevent cancer, augment therapies and reduce adverse effects of treatment. This Review aims to provide an overview and discussion of the gut microbiota in colorectal neoplasia, including relevant mechanisms in microbiota-related carcinogenesis, the potential of utilizing the microbiota as CRC biomarkers, and the prospect for modulating the microbiota for CRC prevention or treatment. These scientific findings will pave the way to clinically translate the use of gut microbiota for CRC in the near future.
Collapse
|
192
|
Alhinai EA, Walton GE, Commane DM. The Role of the Gut Microbiota in Colorectal Cancer Causation. Int J Mol Sci 2019; 20:ijms20215295. [PMID: 31653078 PMCID: PMC6862640 DOI: 10.3390/ijms20215295] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Here, we reviewed emerging evidence on the role of the microbial community in colorectal carcinogenesis. A healthy gut microbiota promotes intestinal homeostasis and can exert anti-cancer effects; however, this microbiota also produces a variety of metabolites that are genotoxic and which can negatively influence epithelial cell behaviour. Disturbances in the normal microbial balance, known as dysbiosis, are frequently observed in colorectal cancer (CRC) patients. Microbial species linked to CRC include certain strains of Bacteroides fragilis, Escherichia coli, Streptococcus gallolyticus, Enterococcus faecalis and Fusobacterium nucleatum, amongst others. Whether these microbes are merely passive dwellers exploiting the tumour environment, or rather, active protagonists in the carcinogenic process is the subject of much research. The incidence of chemically-induced tumours in mice models varies, depending upon the presence or absence of these microorganisms, thus strongly suggesting influences on disease causation. Putative mechanistic explanations differentially link these strains to DNA damage, inflammation, aberrant cell behaviour and immune suppression. In the future, modulating the composition and metabolic activity of this microbial community may have a role in prevention and therapy.
Collapse
Affiliation(s)
- Eiman A Alhinai
- Dietetics Department, Al Nahdha Hospital, Ministry of Health, Muscat, PO Box 937, Ruwi, Muscat PC 112, Oman.
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UA, UK.
| | - Daniel M Commane
- Department of Applied and Health Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
193
|
Tagliamonte MS, Waugh SG, Prosperi M, Mai V. An Integrated Approach for Efficient Multi-Omics Joint Analysis. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2019; 2019:619-625. [PMID: 31588431 DOI: 10.1145/3307339.3343476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The challenges associated with multi-omics analysis, e.g. DNA-seq, RNA-seq, metabolomics, methylomics and microbiomics domains, include: (1) increased high-dimensionality, as all -omics domains include ten thousands to hundreds of thousands of variables each; (2) increased complexity in analyzing domain-domain interactions, quadratic for pairwise correlation, and exponential for higher-order interactions; (3) variable heterogeneity, with highly skewed distributions in different units and scales for methylation and microbiome. Here, we developed an efficient strategy for joint-domain analysis, applying it to an analysis of correlations between colon epithelium methylomics and fecal microbiomics data with colorectal cancer risk as estimated by colorectal polyp prevalence. First, we applied domain-specific standard pipelines for quality assessment, cleaning, batch-effect removal, et cetera. Second, we performed variable homogenization for both the methylation and microbiome data sets, using domain-specific normalization and dimension reduction, obtaining scale-free variables that could be compared across the two domains. Finally, we implemented a joint-domain network analysis to identify relevant microbial-methylation island patterns. The network analysis considered all possible species-island pairs, thus being quadratic in its complexity. However, we were able to pre-select the unpaired variables by performing a preliminary association analysis on the outcome polyp prevalence. All results from association and interaction analyses were adjusted for multiple comparisons. Although the limited sample size did not provide good power (80% to detect medium to large effect sizes with 5% alpha error), a number of potentially significant association (dozens in the uncorrected analysis, reducing to just a few in the corrected one) were identified As a last step, we linked the network patterns identified by our approach to the KEGG functional ontology, showing that the method can generate new mechanistic hypotheses for the biological causes of polyp development.
Collapse
Affiliation(s)
| | - Sheldon G Waugh
- Army Public Health Center, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Mattia Prosperi
- Department of Epidemiology University of Florida Gainesville, FL, USA
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, Emerging Pathogens Institute, University of Florida
| |
Collapse
|
194
|
Drewes JL, Corona A, Sanchez U, Fan Y, Hourigan SK, Weidner M, Sidhu SD, Simner PJ, Wang H, Timp W, Oliva-Hemker M, Sears CL. Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile. JCI Insight 2019; 4:130848. [PMID: 31578306 DOI: 10.1172/jci.insight.130848] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDFecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridioides difficile infection (rCDI) in adults and children, but donor stool samples are currently screened for only a limited number of potential pathogens. We sought to determine whether putative procarcinogenic bacteria (enterotoxigenic Bacteroides fragilis, Fusobacterium nucleatum, and Escherichia coli harboring the colibactin toxin) could be durably transmitted from donors to patients during FMT.METHODSStool samples were collected from 11 pediatric rCDI patients and their respective FMT donors prior to FMT as well as from the patients at 2-10 weeks, 10-20 weeks, and 6 months after FMT. Bacterial virulence factors in stool DNA extracts and stool cultures were measured by quantitative PCR: Bacteroides fragilis toxin (bft), Fusobacterium adhesin A (fadA), and Escherichia coli colibactin (clbB).RESULTSFour of 11 patients demonstrated sustained acquisition of a procarcinogenic bacteria. Whole genome sequencing was performed on colony isolates from one of these donor/recipient pairs and demonstrated that clbB+ E. coli strains present in the recipient after FMT were identical to a strain present in the donor, confirming strain transmission. Conversely, 2 patients exhibited clearance of procarcinogenic bacteria following FMT from a negative donor.CONCLUSIONBoth durable transmission and clearance of procarcinogenic bacteria occurred following FMT, suggesting that additional studies on appropriate screening measures for FMT donors and the long-term consequences and/or benefits of FMT are warranted.FUNDINGCrohn's & Colitis Foundation, the Bloomberg~Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, the National Cancer Institute, and the Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Julia L Drewes
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alina Corona
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Uriel Sanchez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yunfan Fan
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Suchitra K Hourigan
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa Weidner
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah D Sidhu
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Hao Wang
- Department of Oncology, Bioinformatics and Biostatistics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Winston Timp
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Maria Oliva-Hemker
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
195
|
Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20174146. [PMID: 31450675 PMCID: PMC6747549 DOI: 10.3390/ijms20174146] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The human organism coexists with its microbiota in a symbiotic relationship. These polymicrobial communities are involved in many crucial functions, such as immunity, protection against pathogens, and metabolism of dietary compounds, thus maintaining homeostasis. The oral cavity and the colon, although distant anatomic regions, are both highly colonized by distinct microbiotas. However, studies indicate that oral bacteria are able to disseminate into the colon. This is mostly evident in conditions such as periodontitis, where specific bacteria, namely Fusobacterium nucrelatum and Porphyromonas gingivalis project a pathogenic profile. In the colon these bacteria can alter the composition of the residual microbiota, in the context of complex biofilms, resulting in intestinal dysbiosis. This orally-driven disruption promotes aberrant immune and inflammatory responses, eventually leading to colorectal cancer (CRC) tumorigenesis. Understanding the exact mechanisms of these interactions will yield future opportunities regarding prevention and treatment of CRC.
Collapse
|
196
|
Li S, Peppelenbosch MP, Smits R. Bacterial biofilms as a potential contributor to mucinous colorectal cancer formation. Biochim Biophys Acta Rev Cancer 2019; 1872:74-79. [DOI: 10.1016/j.bbcan.2019.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
|
197
|
Hyoju SK, Zaborin A, Keskey R, Sharma A, Arnold W, van den Berg F, Kim SM, Gottel N, Bethel C, Charnot-Katsikas A, Jianxin P, Adriaansens C, Papazian E, Gilbert JA, Zaborina O, Alverdy JC. Mice Fed an Obesogenic Western Diet, Administered Antibiotics, and Subjected to a Sterile Surgical Procedure Develop Lethal Septicemia with Multidrug-Resistant Pathobionts. mBio 2019; 10:e00903-19. [PMID: 31363025 PMCID: PMC6667615 DOI: 10.1128/mbio.00903-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Despite antibiotics and sterile technique, postoperative infections remain a real and present danger to patients. Recent estimates suggest that 50% of the pathogens associated with postoperative infections have become resistant to the standard antibiotics used for prophylaxis. Risk factors identified in such cases include obesity and antibiotic exposure. To study the combined effect of obesity and antibiotic exposure on postoperative infection, mice were allowed to gain weight on an obesogenic Western-type diet (WD), administered antibiotics and then subjected to an otherwise recoverable sterile surgical injury (30% hepatectomy). The feeding of a WD alone resulted in a major imbalance of the cecal microbiota characterized by a decrease in diversity, loss of Bacteroidetes, a bloom in Proteobacteria, and the emergence of antibiotic-resistant organisms among the cecal microbiota. When WD-fed mice were administered antibiotics and subjected to 30% liver resection, lethal sepsis, characterized by multiple-organ damage, developed. Notable was the emergence and systemic dissemination of multidrug-resistant (MDR) pathobionts, including carbapenem-resistant, extended-spectrum β-lactamase-producing Serratia marcescens, which expressed a virulent and immunosuppressive phenotype. Analysis of the distribution of exact sequence variants belonging to the genus Serratia suggested that these strains originated from the cecal mucosa. No mortality or MDR pathogens were observed in identically treated mice fed a standard chow diet. Taken together, these results suggest that consumption of a Western diet and exposure to certain antibiotics may predispose to life-threating postoperative infection associated with MDR organisms present among the gut microbiota.IMPORTANCE Obesity remains a prevalent and independent risk factor for life-threatening infection following major surgery. Here, we demonstrate that when mice are fed an obesogenic Western diet (WD), they become susceptible to lethal sepsis with multiple organ damage after exposure to antibiotics and an otherwise-recoverable surgical injury. Analysis of the gut microbiota in this model demonstrates that WD alone leads to loss of Bacteroidetes, a bloom of Proteobacteria, and evidence of antibiotic resistance development even before antibiotics are administered. After antibiotics and surgery, lethal sepsis with organ damage developed in in mice fed a WD with the appearance of multidrug-resistant pathogens in the liver, spleen, and blood. The importance of these findings lies in exposing how the selective pressures of diet, antibiotic exposure, and surgical injury can converge on the microbiome, resulting in lethal sepsis and organ damage without the introduction of an exogenous pathogen.
Collapse
Affiliation(s)
- Sanjiv K Hyoju
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Alexander Zaborin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Robert Keskey
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Anukriti Sharma
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Wyatt Arnold
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Fons van den Berg
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sangman M Kim
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Neil Gottel
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Cindy Bethel
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | - Peng Jianxin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Guangdong Province Hospital of Chinese Medicine, China
| | - Carleen Adriaansens
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emily Papazian
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jack A Gilbert
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - John C Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
198
|
Abstract
Due to the huge number of bacteria constituting the human colon microbiota, alteration in the balance of its constitutive taxa (i.e., dysbiosis) is highly suspected of being involved in colorectal oncogenesis. Indeed, bacterial signatures in association with CRC have been described. These signatures may vary if bacteria are identified in feces or in association with tumor tissues. Here, we show that bacteria colonize human colonic crypts in tissues obtained from patients with CRC and with normal colonoscopy results. Aerobic nonfermentative Proteobacteria previously identified as constitutive of the crypt-specific core microbiota in murine colonic samples are similarly prevalent in human colonic crypts in combination with other anaerobic taxa. We also show that bacterial signatures characterizing the crypts of colonic tumors vary depending whether right-side or left-side tumors are analyzed. We have previously identified a crypt-specific core microbiota (CSCM) in the colons of healthy laboratory mice and related wild rodents. Here, we confirm that a CSCM also exists in the human colon and appears to be altered during colon cancer. The colonic microbiota is suggested to be involved in the development of colorectal cancer (CRC). Because the microbiota identified in fecal samples from CRC patients does not directly reflect the microbiota associated with tumor tissues themselves, we sought to characterize the bacterial communities from the crypts and associated adjacent mucosal surfaces of 58 patients (tumor and normal homologous tissue) and 9 controls with normal colonoscopy results. Here, we confirm that bacteria colonize human colonic crypts in both control and CRC tissues, and using laser-microdissected tissues and 16S rRNA gene sequencing, we further show that right and left crypt- and mucosa-associated bacterial communities are significantly different. In addition to Bacteroidetes and Firmicutes, and as with murine proximal colon crypts, environmental nonfermentative Proteobacteria are found in human colonic crypts. Fusobacterium and Bacteroides fragilis are more abundant in right-side tumors, whereas Parvimonas micra is more prevalent in left-side tumors. More precisely, Fusobacterium periodonticum is more abundant in crypts from cancerous samples in the right colon than in associated nontumoral samples from adjacent areas but not in left-side colonic samples. Future analysis of the interaction between these bacteria and the crypt epithelium, particularly intestinal stem cells, will allow deciphering of their possible oncogenic potential.
Collapse
|
199
|
Morales E, Chen J, Greathouse KL. Compositional Analysis of the Human Microbiome in Cancer Research. Methods Mol Biol 2019; 1928:299-335. [PMID: 30725462 DOI: 10.1007/978-1-4939-9027-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gut microbial composition has shown to be associated with obesity, diabetes mellitus, inflammatory bowel disease, colitis, autoimmune disorders, and cancer, among other diseases. Microbiome research has significantly evolved through the years and continues to advance as we develop new and better strategies to more accurately measure its composition and function. Careful selection of study design, inclusion and exclusion criteria of participants, and methodology are paramount to accurately analyze microbial structure. Here we present the most up-to-date available information on methods for gut microbial collection and analysis.
Collapse
Affiliation(s)
- Elisa Morales
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - K Leigh Greathouse
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA.
| |
Collapse
|
200
|
Zhang Y, Niu Q, Fan W, Huang F, He H. Oral microbiota and gastrointestinal cancer. Onco Targets Ther 2019; 12:4721-4728. [PMID: 31417273 PMCID: PMC6592037 DOI: 10.2147/ott.s194153] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The microbiota inhabiting the oral cavity is a complex ecosystem and responsible for resisting pathogens, maintaining homeostasis, and modulating the immune system. Some components of the oral microbiota contribute to the etiology of some oral diseases. Accumulating evidence suggests that the human oral microbiota is implicated in the development and progression of gastrointestinal cancer. In this review, we described the current understanding of possible roles and mechanisms of oral microbiota in the gastrointestinal cancers studied to date. The perspectives for oral microbiota as the biomarkers for early detection and new therapeutic targets were also discussed.
Collapse
Affiliation(s)
- Yangyang Zhang
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- The Oral Medicine Clinical Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Qiaoli Niu
- The Oral Medicine Clinical Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Wenguo Fan
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fang Huang
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongwen He
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|