151
|
Mussin J, Giusiano G, Porras JC, Corredor Sanguña LH, Pividori MI. Carbon nanoparticle-based lateral flow assay for the detection of specific double-tagged DNA amplicons of Paracoccidioides spp. Mikrochim Acta 2024; 191:287. [PMID: 38671236 DOI: 10.1007/s00604-024-06367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
To overcome the limitations of current methods for diagnosing paracoccidioidomycosis (PCM), it is critical to develop novel diagnostic strategies that can be implemented in low-resource settings and dramatically improve turnaround times. This study focused on the development of a portable molecular test to screen for Paracoccidioides spp. The proposed approach integrated double-tagging polymerase chain reaction (PCR) and a paper-based lateral flow assay (LFA) for readout, using carbon nanoparticles as a signal generation system. Primers tagged with biotin and digoxigenin were employed to conduct the double-tagging PCR, which can be conveniently carried out on portable thermocyclers. This method can generate billions of tagged DNA copies from a single target molecule, which can be rapidly detected by the LFA platform, providing results within minutes. Avidin-modified carbon nanoparticles served as a signal generation system, enabling detection in the immunochromatographic assay. The LFA demonstrated the capability to detect double-tagged amplicons as low as 0.21 ng or 0.10 ng, depending on whether the results were assessed visually or with a smartphone equipped with an image processor. These findings suggest that the proposed approach holds great promise as a point-of-care diagnostic tool for the early and accurate detection of PCM in low-resource settings. The diagnostic test is rapid and inexpensive, requires minimal handling and can be easily introduced into the general practitioner's armoury for ambulatory screening of infection. This innovative approach has the potential to make a substantial contribution to PCM diagnosis, ultimately reducing morbidity and mortality associated with this disease.
Collapse
Affiliation(s)
- Javier Mussin
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500, Resistencia, Chaco, Argentina.
| | - Gustavo Giusiano
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500, Resistencia, Chaco, Argentina
| | - Juan Carlos Porras
- Grup de Sensors I Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Luis Hernando Corredor Sanguña
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Av. Las Heras 727, 3500, Resistencia, Chaco, Argentina
| | - María Isabel Pividori
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Grup de Sensors I Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
152
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|
153
|
Koksaldi I, Park D, Atilla A, Kang H, Kim J, Seker UOS. RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics. ACS Synth Biol 2024; 13:1026-1037. [PMID: 38588603 PMCID: PMC11036506 DOI: 10.1021/acssynbio.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
In the era of the COVID-19 pandemic, the significance of point-of-care (POC) diagnostic tools has become increasingly vital, driven by the need for quick and precise virus identification. RNA-based sensors, particularly toehold sensors, have emerged as promising candidates for POC detection systems due to their selectivity and sensitivity. Toehold sensors operate by employing an RNA switch that changes the conformation when it binds to a target RNA molecule, resulting in a detectable signal. This review focuses on the development and deployment of RNA-based sensors for POC viral RNA detection with a particular emphasis on toehold sensors. The benefits and limits of toehold sensors are explored, and obstacles and future directions for improving their performance within POC detection systems are presented. The use of RNA-based sensors as a technology for rapid and sensitive detection of viral RNA holds great potential for effectively managing (dealing/coping) with present and future pandemics in resource-constrained settings.
Collapse
Affiliation(s)
- Ilkay
Cisil Koksaldi
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Dongwon Park
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Abdurahman Atilla
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Hansol Kang
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Jongmin Kim
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Urartu Ozgur Safak Seker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
154
|
Davies GE, Thornton CR. A Lateral-Flow Device for the Rapid Detection of Scedosporium Species. Diagnostics (Basel) 2024; 14:847. [PMID: 38667492 PMCID: PMC11048963 DOI: 10.3390/diagnostics14080847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Scedosporium species are human pathogenic fungi, responsible for chronic, localised, and life-threatening disseminated infections in both immunocompetent and immunocompromised individuals. The diagnosis of Scedosporium infections currently relies on non-specific CT, lengthy and insensitive culture from invasive biopsy, and the time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests that detect Scedosporium-specific biomarkers. Here, we report the development of a rapid (30 min) and sensitive (pmol/L sensitivity) lateral-flow device (LFD) test, incorporating a Scedosporium-specific IgG1 monoclonal antibody (mAb), HG12, which binds to extracellular polysaccharide (EPS) antigens between ~15 kDa and 250 kDa secreted during the hyphal growth of the pathogens. The test is compatible with human serum and allows for the detection of the Scedosporium species most frequently reported as agents of human disease (Scedosporium apiospermum, Scedosporium aurantiacum, and Scedosporium boydii), with limits of detection (LODs) of the EPS biomarkers in human serum of ~0.81 ng/mL (S. apiospermum), ~0.94 ng/mL (S. aurantiacum), and ~1.95 ng/mL (S. boydii). The Scedosporium-specific LFD (ScedLFD) test therefore provides a potential novel opportunity for the detection of infections caused by different Scedosporium species.
Collapse
Affiliation(s)
- Genna E. Davies
- ISCA Diagnostics Ltd., B12A, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK;
| | - Christopher R. Thornton
- ISCA Diagnostics Ltd., B12A, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK;
- Biosciences, Faculty of Health and Life Sciences, Prince of Wales Road, Exeter EX4 4PS, UK
| |
Collapse
|
155
|
Diforti JF, Cunningham T, Piccinini E, Marmisollé WA, Piccinini JM, Azzaroni O. Noninvasive and Multiplex Self-Test of Kidney Disease Biomarkers with Graphene-Based Lab-on-a-Chip (G-LOC): Toward Digital Diagnostics in the Hands of Patients. Anal Chem 2024; 96:5832-5842. [PMID: 38573917 DOI: 10.1021/acs.analchem.3c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic kidney disease is one of the major health issues worldwide. However, diagnosis is now highly centralized in large laboratories, resulting in low access to patient monitoring and poor personalized treatments. This work reports the development of a graphene-based lab-on-a-chip (G-LOC) for the digital testing of renal function biomarkers in serum and saliva samples. G-LOC integrates multiple bioelectronic sensors with a microfluidic system that enables multiplex self-testing of urea, potassium, sodium, and chloride. The linearity, limit of detection (LOD), accuracy, and coefficient of variability (CV) were studied. Accuracy values higher than 95.5% and CV lower than 9% were obtained for all of the biomarkers. The analytical performance was compared against three reference lab benchtop analyzers by measuring healthy- and renal-failure-level samples of serum. From receiver operating characteristic (ROC) plots, sensitivities (%) of 99.7, 97.6, 99.1, and 89.0 were obtained for urea, potassium, sodium, and chloride, respectively. Then, the test was evaluated in noninvasive saliva samples and compared against reference methods. Correlation and Bland-Altman plots showed good correlation and agreement of the G-LOC with the reference methods. It is noteworthy that the precision of G-LOC was similar to better than benchtop lab analyzers, with the advantage of being highly portable. Finally, a user testing study was conducted. The analytical performance obtained with untrained volunteers was similar to that obtained with trained chemists. Additionally, based on a user experience survey, G-LOC was found to have very simple usability and would be suitable for at-home diagnostics.
Collapse
Affiliation(s)
- Joaquin F Diforti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET. 64 and 113, 1900 Buenos Aires, Argentina
- Department of Bioelectronic, GISENS BIOTECH, 2150 Shattuck Ave PH, Berkeley, California 94704, United States
| | - Thomas Cunningham
- Department of Bioelectronic, GISENS BIOTECH, 2150 Shattuck Ave PH, Berkeley, California 94704, United States
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET. 64 and 113, 1900 Buenos Aires, Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET. 64 and 113, 1900 Buenos Aires, Argentina
| | - Jose M Piccinini
- Department of Bioelectronic, GISENS BIOTECH, 2150 Shattuck Ave PH, Berkeley, California 94704, United States
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)-Departamento de Química-Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET. 64 and 113, 1900 Buenos Aires, Argentina
| |
Collapse
|
156
|
Montero-Gómez A. [Diagnosis by isothermal amplification of nucleic acids. Opportunity for community pharmacies]. FARMACEUTICOS COMUNITARIOS 2024; 16:46-53. [PMID: 39156031 PMCID: PMC11328073 DOI: 10.33620/fc.2173-9218.(2024).14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/16/2024] [Indexed: 08/20/2024]
Abstract
This review focuses on describing new commercially available POC-type molecular diagnostic systems that can be easily implemented in community pharmacies and have the potential to expand the portfolio of pharmaceutical services and make a significant contribution to the improvement of public health.Knowledge of new molecular diagnostic techniques other than PCR is relatively unexplored. However, the available options are diverse and have reached sufficient technological maturity for large-scale use. The SARS-CoV-2 pandemic has brought diagnostic tests to market that, in some cases, have been used exclusively in research for decades.Isothermal nucleic acid amplification technology continues to evolve and it is likely that in the coming years we will witness an exponential increase in its use, as well as the development of new improvements that further simplify and reduce the cost of each assay.Furthermore, we cannot ignore the fact that during the COVID-19 pandemic, the public has become accustomed to self-diagnosing through mass distribution channels such as community pharmacies. Which can open the sector to other diseases - such as sexually transmitted diseases or animal health -, food control, water and air contamination (fungi) or the presence of allergens.Knowledge of them is an essential technological surveillance strategy for the pharmaceutical sector.
Collapse
|
157
|
Pereira SH, Sá Magalhães Serafim M, Moraes TDFS, Zini N, Abrahão JS, Nogueira ML, Coelho dos Reis JGA, Bagno FF, da Fonseca FG. Design, development, and validation of multi-epitope proteins for serological diagnosis of Zika virus infections and discrimination from dengue virus seropositivity. PLoS Negl Trop Dis 2024; 18:e0012100. [PMID: 38635656 PMCID: PMC11025737 DOI: 10.1371/journal.pntd.0012100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is the causative agent of Zika fever, a mild and frequent oligosymptomatic disease in humans. Nonetheless, on rare occasions, ZIKV infection can be associated with Guillain-Barré Syndrome (GBS), and severe congenital complications, such as microcephaly. The oligosymptomatic disease, however, presents symptoms that are quite similar to those observed in infections caused by other frequent co-circulating arboviruses, including dengue virus (DENV). Moreover, the antigenic similarity between ZIKV and DENV, and even with other members of the Flaviviridae family, complicates serological testing due to the high cross-reactivity of antibodies. Here, we designed, produced in a prokaryotic expression system, and purified three multiepitope proteins (ZIKV-1, ZIKV-2, and ZIKV-3) for differential diagnosis of Zika. The proteins were evaluated as antigens in ELISA tests for the detection of anti-ZIKV IgG using ZIKV- and DENV-positive human sera. The recombinant proteins were able to bind and detect anti-ZIKV antibodies without cross-reactivity with DENV-positive sera and showed no reactivity with Chikungunya virus (CHIKV)- positive sera. ZIKV-1, ZIKV-2, and ZIKV-3 proteins presented 81.6%, 95%, and 66% sensitivity and 97%, 96%, and 84% specificity, respectively. Our results demonstrate the potential of the designed and expressed antigens in the development of specific diagnostic tests for the detection of IgG antibodies against ZIKV, especially in regions with the circulation of multiple arboviruses.
Collapse
Affiliation(s)
- Samille Henriques Pereira
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Sá Magalhães Serafim
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís de Fátima Silva Moraes
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | | | - Flávia Fonseca Bagno
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
158
|
Costa JNY, Pimentel GJC, Poker JA, Merces L, Paschoalino WJ, Vieira LCS, Castro ACH, Alves WA, Ayres LB, Kubota LT, Santhiago M, Garcia CD, Piazzetta MHO, Gobbi AL, Shimizu FM, Lima RS. Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag. Adv Healthc Mater 2024; 13:e2303509. [PMID: 38245830 PMCID: PMC11468374 DOI: 10.1002/adhm.202303509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.
Collapse
Affiliation(s)
- Juliana N. Y. Costa
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Júlia A. Poker
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Leandro Merces
- Research Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Waldemir J. Paschoalino
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Luis C. S. Vieira
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Ana C. H. Castro
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Wendel A. Alves
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Lucas B. Ayres
- Department of ChemistryClemson UniversityClemsonSC29634USA
| | - Lauro T. Kubota
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | | | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Flávio M. Shimizu
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
- Department of ChemistryClemson UniversityClemsonSC29634USA
- São Carlos Institute of ChemistryUniversity of São PauloSão CarlosSão Paulo13565‐590Brazil
| |
Collapse
|
159
|
Dai C, Xiong H, He R, Zhu C, Li P, Guo M, Gou J, Mei M, Kong D, Li Q, Wee ATS, Fang X, Kong J, Liu Y, Wei D. Electro-Optical Multiclassification Platform for Minimizing Occasional Inaccuracy in Point-of-Care Biomarker Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312540. [PMID: 38288781 DOI: 10.1002/adma.202312540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Indexed: 02/06/2024]
Abstract
On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Huiwen Xiong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Rui He
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 73000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chenxin Zhu
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Pintao Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Miaomiao Mei
- Yizheng Hospital of Traditional Chinese Medicine, Yangzhou, 211400, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Xueen Fang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| |
Collapse
|
160
|
Pakdeerat S, Boonklang P, Angchagun K, Chomkatekaew C, Apichaidejudom N, Dokket Y, Faosap A, Wongsuwan G, Wuthiekanun V, Aramrueung P, Khamnoi P, Thananchai H, Siriboon S, Chamnan P, Peacock SJ, Day NPJ, Thomson NR, Uttamapinant C, Wongpalee SP, Chewapreecha C. Benchmarking CRISPR-BP34 for point-of-care melioidosis detection in low-income and middle-income countries: a molecular diagnostics study. THE LANCET. MICROBE 2024; 5:e379-e389. [PMID: 38493790 PMCID: PMC10990966 DOI: 10.1016/s2666-5247(23)00378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND Melioidosis is a neglected but often fatal tropical disease. The disease has broad clinical manifestations, which makes diagnosis challenging and time consuming. To improve diagnosis, we aimed to evaluate the performance of the CRISPR-Cas12a system (CRISPR-BP34) to detect Burkholderia pseudomallei DNA across clinical specimens from patients suspected to have melioidosis. METHODS We conducted a prospective, observational cohort study of adult patients (aged ≥18 years) with melioidosis at Sunpasitthiprasong Hospital, a tertiary care hospital in Thailand. Participants were eligible for inclusion if they had culture-confirmed B pseudomallei infection from any clinical samples. Data were collected from patient clinical records and follow-up telephone calls. Routine clinical samples (blood, urine, respiratory secretion, pus, and other body fluids) were collected for culture. We documented time taken for diagnosis, and mortality at day 28 of follow-up. We also performed CRISPR-BP34 detection on clinical specimens collected from 330 patients with suspected melioidosis and compared its performance with the current gold-standard culture-based method. Discordant results were validated by three independent qualitative PCR tests. This study is registered with the Thai Clinical Trial Registry, TCTR20190322003. FINDINGS Between Oct 1, 2019, and Dec 31, 2022, 876 patients with culture-confirmed melioidosis were admitted or referred to Sunpasitthiprasong Hospital, 433 of whom were alive at diagnosis and were enrolled in this study. Median time from sample collection to diagnosis by culture was 4·0 days (IQR 3·0-5·0) among all patients with known survival status at day 28, which resulted in delayed treatment. 199 (23%) of 876 patients died before diagnosis and 114 (26%) of 433 patients in follow-up were treated, but died within 28 days of admission. To test the CRISPR-BP34 assay, we enrolled and collected clinical samples from 114 patients with melioidosis and 216 patients without melioidosis between May 26 and Dec 31, 2022. Application of CRISPR-BP34 reduced the median sample-to-diagnosis time to 1·1 days (IQR 0·7-1·5) for blood samples, 2·3 h (IQR 2·3-2·4) for urine, and 3·3 h (3·1-3·4) for respiratory secretion, pus, and other body fluids. The overall sensitivity of CRISPR-BP34 was 93·0% (106 of 114 samples [95% CI 86·6-96·9]) compared with 66·7% (76 of 114 samples [57·2-75·2]) for culture. The overall specificity of CRISPR-BP34 was 96·8% (209 of 216 samples [95% CI 93·4-98·7]), compared with 100% (216 of 216 samples [98·3-100·0]) for culture. INTERPRETATION The sensitivity, specificity, speed, and window of clinical intervention offered by CRISPR-BP34 support its prospective use as a point-of-care diagnostic tool for melioidosis. Future development should be focused on scalability and cost reduction. FUNDING Chiang Mai University Thailand and Wellcome Trust UK.
Collapse
Affiliation(s)
- Sukripong Pakdeerat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phumrapee Boonklang
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kesorn Angchagun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalita Chomkatekaew
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Navaporn Apichaidejudom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yaowaret Dokket
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Areeya Faosap
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gumphol Wongsuwan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Panatda Aramrueung
- Central Laboratory, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Phadungkiat Khamnoi
- Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand
| | - Hathairat Thananchai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suwattiya Siriboon
- Department of Infectious Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Parinya Chamnan
- Cardiometabolic Research Group, Department of Social Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | | | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas R Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
161
|
Han DH, Lee G, Oh U, Choi Y, Park JK. Evaluation of Fluid Behaviors in a Pushbutton-Activated Microfluidic Device for User-Independent Flow Control. MICROMACHINES 2024; 15:465. [PMID: 38675276 PMCID: PMC11052212 DOI: 10.3390/mi15040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Although numerous studies have been conducted to realize ideal point-of-care testing (POCT), the development of a user-friendly and user-independent power-free microfluidic platform is still a challenge. Among various methods, the finger-actuation method shows a promising technique that provides a user-friendly and equipment-free way of delivering fluid in a designated manner. However, the design criteria and elaborate evaluation of the fluid behavior of a pushbutton-activated microfluidic device (PAMD) remain a critical bottleneck to be widely adopted in various applications. In this study, we have evaluated the fluid behavior of the PAMD based on various parameters, such as pressing velocity and depth assisted by a press machine. We have further developed a user-friendly and portable pressing block that reduces user variation in fluid behavior based on the evaluation.
Collapse
Affiliation(s)
- Dong Hyun Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (D.H.H.); (G.L.); (U.O.); (Y.C.)
| | - Gihyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (D.H.H.); (G.L.); (U.O.); (Y.C.)
| | - Untaek Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (D.H.H.); (G.L.); (U.O.); (Y.C.)
| | - Yejin Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (D.H.H.); (G.L.); (U.O.); (Y.C.)
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (D.H.H.); (G.L.); (U.O.); (Y.C.)
- KI for Health Science and Technology, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KI for NanoCentury, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
162
|
Razi F, Ostovar A, Fahimfar N, M. Amoli M, Fana SE, Dimai HP, Obermayer-Pietsch B, Luegger B, Rivadeneira F, Nabipour I, Larijani B, Khashayar P. Protocol for preliminary, multicenteric validation of "PoCOsteo device": A point of care tool for proteomic and genomic study of osteoporosis. Biol Methods Protoc 2024; 9:bpae006. [PMID: 38559752 PMCID: PMC10978377 DOI: 10.1093/biomethods/bpae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
One of the goals of the HORIZON 2020 project PoCOsteo was to develop a medical device, which would measure and/or quantify proteomic as well as genomic factors as present in whole blood samples collected through finger prick. After validating the tool in the clinical setting, the next step would be its clinical validation based on the existing guidelines. This article presents the protocol of a validation study to be carried out independently at two different centers (Division of Endocrinology and Diabetology at the Medical University of Graz as a clinic-based cohort, and the Endocrinology and Metabolism Research Institute at the Tehran University of Medical Sciences as a population-based cohort). It aims to assess the tool according to the Clinical & Laboratory Standards Institute guidelines, confirming if the proteomics and genomics measurements provided by the tool are accurate and reproducible compared with the existing state-of-the-art tests. This is the first time that such a detailed protocol for lab validation of a medical tool for proteomics and genomic measurement is designed based on the existing guidelines and thus could be used as a template for clinical validation of future point-of-care tools. Moreover, the multicentric cohort design will allow the study of a large number of diverse individuals, which will improve the validity and generalizability of the results for different settings.
Collapse
Affiliation(s)
- Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center (MDRC), Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hans Peter Dimai
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | - Barbara Luegger
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Styria, Austria
| | | | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Zwijnaarde, Gent, Belgium
| |
Collapse
|
163
|
Owusu Agyare B, Eder P, Shenai S, Chendi BH, Carlson C, Iradukunda A, Mukoka M, Ogony J, Manigart O, Ogbaini-Emovon E, Seida AA, Prado EO, Ghadrshenas A, Carmona S, Tucker JD. Potential implications of the climate crisis on diagnostics. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002935. [PMID: 38457445 PMCID: PMC10923424 DOI: 10.1371/journal.pgph.0002935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Affiliation(s)
- Bernard Owusu Agyare
- Center for Global Health Science and Security, Georgetown University, Washington, DC, United States of America
| | - Paul Eder
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Bih H. Chendi
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- SAMRC Centre for Tuberculosis Research, Division of Immunology, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Colin Carlson
- Center for Global Health Science and Security, Georgetown University, Washington, DC, United States of America
| | | | - Marithe Mukoka
- Rodolphe Meriuex Laboratory INRB- Goma, Goma, Democratic Republic of Congo
| | - Jack Ogony
- College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Olivier Manigart
- GFA Consulting Group, Bobo-Dioulasso, Burkina Faso
- PROALAB, West African Health Organization, Bobo-Dioulasso, Burkina Faso
| | | | - Ahmed A. Seida
- Immunology and Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | | | | | - Joseph D. Tucker
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
164
|
Bharucha T, Gangadharan B, Clarke R, Fernandez LG, Arman BY, Walsby-Tickle J, Deats M, Mosca S, Lin Q, Stokes R, Dunachie S, Merchant HA, Dubot-Pérès A, Caillet C, McCullagh J, Matousek P, Zitzmann N, Newton PN. Repurposing rapid diagnostic tests to detect falsified vaccines in supply chains. Vaccine 2024; 42:1506-1511. [PMID: 38355318 DOI: 10.1016/j.vaccine.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose but have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global 'Prevent, Detect and Respond' strategy.
Collapse
Affiliation(s)
- Tehmina Bharucha
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic.
| | - Bevin Gangadharan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Rebecca Clarke
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Laura Gomez Fernandez
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Benediktus Yohan Arman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | | | - Michael Deats
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford-Appleton Laboratory, UKRI, Harwell Campus, Didcot OX11 0QX, UK
| | - Qianqi Lin
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford-Appleton Laboratory, UKRI, Harwell Campus, Didcot OX11 0QX, UK
| | - Robert Stokes
- Agilent Technologies LDA UK, Becquerel Avenue, Didcot OX11 0RA, UK
| | - Susanna Dunachie
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Hamid A Merchant
- Department of Bioscience, School of Health, Sport and Bioscience, University of East London, Water Lane London E15 4LZ, UK; Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Audrey Dubot-Pérès
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK; Unité Des Virus Emergents (UVE: Aix Marseille Univ, IRD190, INSERM 1207), Marseille, France
| | - Céline Caillet
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - James McCullagh
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Pavel Matousek
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK; Central Laser Facility, Research Complex at Harwell, STFC Rutherford-Appleton Laboratory, UKRI, Harwell Campus, Didcot OX11 0QX, UK
| | - Nicole Zitzmann
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic; Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK.
| |
Collapse
|
165
|
Ke CH, Du MY, Hsieh WJ, Lin CC, Ting JM, Chiou MT, Lin CN. Implementation of point-of-care platforms for rapid detection of porcine circovirus type 2. J Vet Sci 2024; 25:e28. [PMID: 38568829 PMCID: PMC10990909 DOI: 10.4142/jvs.23323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) infection is ubiquitous around the world. Diagnosis of the porcine circovirus-associated disease requires clinic-pathological elements together with the quantification of viral loads. Furthermore, given pig farms in regions lacking access to sufficient laboratory equipment, developing diagnostic devices with high accuracy, accessibility, and affordability is a necessity. OBJECTIVES This study aims to investigate two newly developed diagnostic tools that may satisfy these criteria. METHODS We collected 250 specimens, including 170 PCV2-positive and 80 PCV2-negative samples. The standard diagnosis and cycle threshold (Ct) values were determined by quantitative polymerase chain reaction (qPCR). Then, two point-of-care (POC) diagnostic platforms, convective polymerase chain reaction (cPCR, qualitative assay: positive or negative results are shown) and EZtargex (quantitative assay: Ct values are shown), were examined and analyzed. RESULTS The sensitivity and specificity of cPCR were 88.23% and 100%, respectively; the sensitivity and specificity of EZtargex were 87.65% and 100%, respectively. These assays also showed excellent concordance compared with the qPCR assay (κ = 0.828 for cPCR and κ = 0.820 for EZtargex). The statistical analysis showed a great diagnostic power of the EZtargex assay to discriminate between samples with different levels of positivity. CONCLUSIONS The two point-of-care diagnostic platforms are accurate, rapid, convenient and require little training for PCV2 diagnosis. These POC platforms can discriminate viral loads to predict the clinical status of the animals. The current study provided evidence that these diagnostics were applicable with high sensitivity and specificity in the diagnosis of PCV2 infection in the field.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Mao-Yuan Du
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Wang-Ju Hsieh
- Schweitzer Biotech Company Ltd., Taipei 11493, Taiwan
| | | | | | - Ming-Tang Chiou
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
166
|
Shamsabadi A, Haghighi T, Carvalho S, Frenette LC, Stevens MM. The Nanozyme Revolution: Enhancing the Performance of Medical Biosensing Platforms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300184. [PMID: 37102628 DOI: 10.1002/adma.202300184] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Nanozymes represent a class of nanosized materials that exhibit innate catalytic properties similar to biological enzymes. The unique features of these materials have positioned them as promising candidates for applications in clinical sensing devices, specifically those employed at the point-of-care. They notably have found use as a means to amplify signals in nanosensor-based platforms and thereby improve sensor detection limits. Recent developments in the understanding of the fundamental chemistries underpinning these materials have enabled the development of highly effective nanozymes capable of sensing clinically relevant biomarkers at detection limits that compete with "gold-standard" techniques. However, there remain considerable hurdles that need to be overcome before these nanozyme-based sensors can be utilized in a platform ready for clinical use. An overview of the current understandings of nanozymes for disease diagnostics and biosensing applications and the unmet challenges that must be considered prior to their translation in clinical diagnostic tests is provided.
Collapse
Affiliation(s)
- André Shamsabadi
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Tabasom Haghighi
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Sara Carvalho
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Leah C Frenette
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
167
|
Baldeh M, Bawa FK, Bawah FU, Chamai M, Dzabeng F, Jebreel WMA, Kabuya JBB, Molemodile Dele-Olowu SK, Odoyo E, Rakotomalala Robinson D, Cunnington AJ. Lessons from the pandemic: new best practices in selecting molecular diagnostics for point-of-care testing of infectious diseases in sub-Saharan Africa. Expert Rev Mol Diagn 2024; 24:153-159. [PMID: 37908160 DOI: 10.1080/14737159.2023.2277368] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Point-of-care molecular diagnostics offer solutions to the limited diagnostic availability and accessibility in resource-limited settings. During the COVID-19 pandemic, molecular diagnostics became essential tools for accurate detection and monitoring of SARS-CoV-2. The unprecedented demand for molecular diagnostics presented challenges and catalyzed innovations which may provide lessons for the future selection of point-of-care molecular diagnostics. AREAS COVERED We searched PubMed from January 2020 to August 2023 to identify lessons learned from the COVID-19 pandemic which may impact the selection of point-of-care molecular diagnostics for future use in sub-Saharan Africa. We evaluated this in the context of REASSURED criteria (Real-time connectivity; Ease of specimen collection; Affordable; Sensitive; Specific; User-friendly; Rapid and robust; Equipment free; and Deliverable to users at the point of need) for point-of-care diagnostics for resource-limited settings. EXPERT OPINION The diagnostic challenges and successes during the COVID-19 pandemic affirmed the importance of the REASSURED criteria but demonstrated that these are not sufficient to ensure new diagnostics will be appropriate for public health emergencies. Capacity for rapid scale-up of diagnostic testing and transferability of assays, data, and technology are also important, resulting in updated REST-ASSURED criteria. Few diagnostics will meet all criteria, and trade-offs between criteria will need to be context-specific.
Collapse
Affiliation(s)
- Mamadu Baldeh
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Flavia K Bawa
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Faiza U Bawah
- Department of Computer Science, University of Ghana, Accra, Ghana
- Department of Computer Science and Informatics, University of Energy and Natural Resources, Sunyani, Ghana
| | - Martin Chamai
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Francis Dzabeng
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Computer Science, University of Ghana, Accra, Ghana
| | | | | | | | - Erick Odoyo
- Masinde Muliro University of Science & Technology, Kakamega, Kenya
| | | | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease and Centre for Paediatrics and Child Health, Imperial College, London, UK
| |
Collapse
|
168
|
Thornton CR. The potential for rapid antigen testing for mucormycosis in the context of COVID-19. Expert Rev Mol Diagn 2024; 24:161-167. [PMID: 37405409 DOI: 10.1080/14737159.2023.2233906] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Mucormycosis is a highly aggressive angio-invasive disease of humans caused by Mucorales fungi. Prior to the COVID-19 pandemic, mucormycosis was a rare mycosis typically seen in immunocompromised patients with hematological malignancies or in transplant recipients. During the second wave of the pandemic, there was a dramatic increase in the disease, especially in India where a unique set of circumstances led to large numbers of life-threatening and disfiguring rhino-orbital-cerebral mucormycosis (ROCM) infections. AREAS COVERED The review examines mucormycosis as a super-infection of COVID-19 patients, and the risk factors for COVID-19-associated mucormycosis (CAM) that drove the ROCM epidemic in India. The limitations of current diagnostic procedures are identified, and the measures needed to improve the speed and accuracy of detection discussed. EXPERT OPINION Despite increased awareness, global healthcare systems remain unprepared for further outbreaks of ROCM. Current diagnosis of the disease is slow and inaccurate, negatively impacting on patient survival. This is most evident in low- to middle-income countries which lack suitably equipped diagnostic facilities for rapid identification of the infecting pathogens. Rapid antigen testing using point-of-care lateral-flow assays could potentially have aided in the quick and accurate diagnosis of the disease, allowing earlier intervention with surgery and Mucorales-active antifungal drugs.
Collapse
|
169
|
Grebely J, Matthews S, Causer LM, Feld JJ, Cunningham P, Dore GJ, Applegate TL. We have reached single-visit testing, diagnosis, and treatment for hepatitis C infection, now what? Expert Rev Mol Diagn 2024; 24:177-191. [PMID: 38173401 DOI: 10.1080/14737159.2023.2292645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Progress toward hepatitis C virus (HCV) elimination is impeded by low testing and treatment due to the current diagnostic pathway requiring multiple visits leading to loss to follow-up. Point-of-care testing technologies capable of detecting current HCV infection in one hour are a 'game-changer.' These tests enable diagnosis and treatment in a single visit, overcoming the barrier of multiple visits that frequently leads to loss to follow-up. Combining point-of-care HCV antibody and RNA tests should improve cost-effectiveness, patient/provider acceptability, and testing efficiency. However, implementing HCV point-of-care testing programs at scale requires multiple considerations. AREAS COVERED This commentary explores the need for point-of-care HCV tests, diagnostic strategies to improve HCV testing, key considerations for implementing point-of-care HCV testing programs, and remaining challenges for point-of-care testing (including operator training, quality management, connectivity and reporting systems, regulatory approval processes, and the need for more efficient tests). EXPERT OPINION It is exciting that single-visit testing, diagnosis, and treatment for HCV infection have been achieved. Innovations afforded through COVID-19 should facilitate the accelerated development of low-cost, rapid, and accurate tests to improve HCV testing. The next challenge will be to address barriers and facilitators for implementing point-of-care testing to deliver them at scale.
Collapse
Affiliation(s)
- Jason Grebely
- The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Susan Matthews
- Flinders University International Centre for Point-of-Care Testing, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Louise M Causer
- The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Canada
| | - Philip Cunningham
- Flinders University International Centre for Point-of-Care Testing, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Gregory J Dore
- The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Tanya L Applegate
- The Kirby Institute, UNSW, Sydney, New South Wales, Australia
- NSW State Reference Laboratory for HIV, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
170
|
Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, Bollella P, Catacchio M, Piscitelli M, Di Franco C, Scamarcio G, Torsi L. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309705. [PMID: 38108547 DOI: 10.1002/adma.202309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Michele Catacchio
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
171
|
Gradisteanu Pircalabioru G, Raileanu M, Dionisie MV, Lixandru-Petre IO, Iliescu C. Fast detection of bacterial gut pathogens on miniaturized devices: an overview. Expert Rev Mol Diagn 2024; 24:201-218. [PMID: 38347807 DOI: 10.1080/14737159.2024.2316756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation. AREAS COVERED Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges. EXPERT OPINION Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Division of Earth, Environmental and Life Sciences, The Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Mina Raileanu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania
| | - Mihai Viorel Dionisie
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Irina-Oana Lixandru-Petre
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Microsystems in Biomedical and Environmental Applications, National Research and Development Institute for Microtechnology, Bucharest, Romania
| |
Collapse
|
172
|
Aydın M, Aydın EB, Sezgintürk MK. Ultrasensitive detection of NSE employing a novel electrochemical immunosensor based on a conjugated copolymer. Analyst 2024; 149:1632-1644. [PMID: 38305417 DOI: 10.1039/d3an01602a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In the current study a simple and highly specific label-free impedimetric neuron specific enolase (NSE) immunosensor based on a copolymer matrix-coated disposable electrode was designed and tested. The copolymer matrix was prepared using a very conductive EDOT monomer and semi-conductive thiophene-bearing epoxy groups (ThEp), and the combination of the two monomers enhanced the conductivity and protein loading capacity of the electrode surface. The P(ThEp-co-EDOT) copolymer matrix was prepared via a drop-casting process and anti-NSE recognition biomolecules were immobilized directly on the epoxy groups of the copolymer. After the coupling of NSE molecules on the P(ThEp-co-EDOT) copolymer matrix-coated electrode surface, the charge transfer resistance (Rct) of the biosensor changed dramatically. These changes in Rct were proportional to the NSE molecule amounts captured by anti-NSE molecules. Under optimized experimental conditions, the increment in the Rct value was proportional to the NSE concentration over a range of 0.01 to 25 pg mL-1 with a detection limit (LOD) of 2.98 × 10-3 pg mL-1. This copolymer-coated electrode provided a lower LOD than the other biosensors. In addition, the suggested electrochemical immuno-platform showed good selectivity, superior reproducibility, long-term stability, and high recovery of NSE in real serum (95.64-102.20%) and saliva (95.28-105.35%) samples. These results showed that the present system had great potential for electrochemical biosensing applications.
Collapse
Affiliation(s)
- Muhammet Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
173
|
Lee S, Park JS, Woo H, Yoo YK, Lee D, Chung S, Yoon DS, Lee KB, Lee JH. Rapid deep learning-assisted predictive diagnostics for point-of-care testing. Nat Commun 2024; 15:1695. [PMID: 38402240 PMCID: PMC10894262 DOI: 10.1038/s41467-024-46069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Prominent techniques such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and rapid kits are currently being explored to both enhance sensitivity and reduce assay time for diagnostic tests. Existing commercial molecular methods typically take several hours, while immunoassays can range from several hours to tens of minutes. Rapid diagnostics are crucial in Point-of-Care Testing (POCT). We propose an approach that integrates a time-series deep learning architecture and AI-based verification, for the enhanced result analysis of lateral flow assays. This approach is applicable to both infectious diseases and non-infectious biomarkers. In blind tests using clinical samples, our method achieved diagnostic times as short as 2 minutes, exceeding the accuracy of human analysis at 15 minutes. Furthermore, our technique significantly reduces assay time to just 1-2 minutes in the POCT setting. This advancement has the potential to greatly enhance POCT diagnostics, enabling both healthcare professionals and non-experts to make rapid, accurate decisions.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Jeong Soo Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyowon Woo
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, 24, Beomil-ro 579 beon-gil, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | - Dongho Lee
- CALTH Inc., Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- Astrion Inc, Seoul, 02841, Republic of Korea
| | - Ki-Baek Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea.
- CALTH Inc., Changeop-ro 54, Seongnam, Gyeonggi, 13449, Republic of Korea.
| |
Collapse
|
174
|
Márquez A, Santiago S, dos Santos M, Aznar-Cervantes SD, Domínguez C, Omenetto FG, Guirado G, Muñoz-Berbel X. Reusable Colorimetric Biosensors on Sustainable Silk-Based Platforms. ACS APPLIED BIO MATERIALS 2024; 7:853-862. [PMID: 38270977 PMCID: PMC10880051 DOI: 10.1021/acsabm.3c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024]
Abstract
In biosensor development, silk fibroin is advantageous for providing transparent, flexible, chemically/mechanically stable, biocompatible, and sustainable substrates, where the biorecognition element remains functional for long time periods. These properties are employed here in the production of point-of-care biosensors for resource-limited regions, which are able to display glucose levels without the need for external instrumentation. These biosensors are produced by photopatterning silk films doped with the enzymes glucose oxidase and peroxidase and photoelectrochromic molecules from the dithienylethene family acting as colorimetric mediators of the enzymatic reaction. The photopatterning results from the photoisomerization of dithienylethene molecules in the silk film from its initial uncolored opened form to its pink closed one. The photoisomerization is dose-dependent, and colored patterns with increasing color intensities are obtained by increasing either the irradiation time or the light intensity. In the presence of glucose, the enzymatic cascade reaction is activated, and peroxidase selectively returns closed dithienylethene molecules to their initial uncolored state. Color disappearance in the silk film is proportional to glucose concentration and used to distinguish between hypoglycemic (below 4 mM), normoglycemic (4-6 mM), and hyperglycemic levels (above 6 mM) by visual inspection. After the measurement, the biosensor can be regenerated by irradiation with UV light, enabling up to five measurement cycles. The coupling of peroxidase activity to other oxidoreductases opens the possibility to produce long-life reusable smart biosensors for other analytes such as lactate, cholesterol, or ethanol.
Collapse
Affiliation(s)
- Augusto Márquez
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain
| | - Sara Santiago
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | | | - Salvador D. Aznar-Cervantes
- Departamento
de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo
Agrario y Ambiental (IMIDA), 30150 La Alberca, Murcia, Spain
| | - Carlos Domínguez
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain
| | - Fiorenzo G. Omenetto
- Silklab, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Gonzalo Guirado
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Xavier Muñoz-Berbel
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain
- CIBER de
Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
175
|
Pai NP, Dillon JAR. A lateral flow assay for Neisseria gonorrhoeae: a step forward for an inexpensive biomarker-based diagnosis of N gonorrhoeae at the point of care? Lancet 2024; 403:594-595. [PMID: 38335981 DOI: 10.1016/s0140-6736(23)02569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024]
Affiliation(s)
- Nitika Pant Pai
- Department of Medicine, McGill University, Montreal, QC, H4A 3S5 Canada.
| | - Jo-Anne R Dillon
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine and Research Scientist, Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
176
|
Safary E, Beran D, Vetter B, Lepeska M, Abdraimova A, Dunganova A, Besançon S, Lazo-Porras M, Portocarrero Mazanett J, Pérez-León S, Maixenchs M, Nchimbi H, Ramaiya K, Munishi C, Martínez-Pérez GZ. User requirements for non-invasive and minimally invasive glucose self-monitoring devices in low-income and middle-income countries: a qualitative study in Kyrgyzstan, Mali, Peru and Tanzania. BMJ Open 2024; 14:e076685. [PMID: 38367964 PMCID: PMC10875487 DOI: 10.1136/bmjopen-2023-076685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 02/19/2024] Open
Abstract
AIMS Development of non-invasive and minimally invasive glucose monitoring devices (NI-MI-GMDs) generally takes place in high-income countries (HICs), with HIC's attributes guiding product characteristics. However, people living with diabetes (PLWD) in low-income and middle-income countries (LMICs) encounter different challenges to those in HICs. This study aimed to define requirements for NI-MI-GMDs in LMICs to inform a target product profile to guide development and selection of suitable devices. METHODS This was a multiple-methods, exploratory, qualitative study conducted in Kyrgyzstan, Mali, Peru and Tanzania. Interviews and group discussions/activities were conducted with healthcare workers (HCWs), adults living with type 1 (PLWD1) or type 2 diabetes (PLWD2), adolescents living with diabetes and caregivers. RESULTS Among 383 informants (90 HCW, 100 PLWD1, 92 PLWD2, 24 adolescents, 77 caregivers), a range of differing user requirements were reported, including preferences for area of glucose measurement, device attachment, data display, alert type and temperature sensitivity. Willingness to pay varied across countries; common requirements included ease of use, a range of guiding functions, the possibility to attach to a body part of choice and a cost lower than or equal to current glucose self-monitoring. CONCLUSIONS Ease-of-use and affordability were consistently prioritised, with broad functionality required for alarms, measurements and attachment possibilities. Perspectives of PLWD are crucial in developing a target product profile to inform characteristics of NI-MI-GMDs in LMICs. Stakeholders must consider these requirements to guide development and selection of NI-MI-GMDs at country level, so that devices are fit for purpose and encourage frequent glucose monitoring among PLWD in these settings.
Collapse
Affiliation(s)
- Elvis Safary
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - David Beran
- Division of Tropical and Humanitarian Medicine, University of Geneva, Geneva, Switzerland
- Geneva University Hospitals, Geneva, Switzerland
| | - Beatrice Vetter
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Molly Lepeska
- Health Action International, Amsterdam, The Netherlands
| | | | | | | | - Maria Lazo-Porras
- Division of Tropical and Humanitarian Medicine, University of Geneva, Geneva, Switzerland
- CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Silvana Pérez-León
- CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Maixenchs
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Happy Nchimbi
- Tanzania NCD Alliance, Dar es Salaam, Tanzania, United Republic of
| | - Kaushik Ramaiya
- Tanzania NCD Alliance, Dar es Salaam, Tanzania, United Republic of
| | - Castory Munishi
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania, United Republic of
| | | |
Collapse
|
177
|
Peters RPH, Klausner JD, Mazzola L, Mdingi MM, Jung H, Gigi RMS, Piton J, Daniels J, de Vos L, Adamson PC, Gleeson B, Ferreyra C. Novel lateral flow assay for point-of-care detection of Neisseria gonorrhoeae infection in syndromic management settings: a cross-sectional performance evaluation. Lancet 2024; 403:657-664. [PMID: 38335982 PMCID: PMC11246789 DOI: 10.1016/s0140-6736(23)02240-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND A rapid and affordable point-of-care test is a priority for Neisseria gonorrhoeae control. WHO and Foundation for Innovative New Diagnostics (FIND) have a target product profile for a non-molecular N gonorrhoeae rapid point-of-care test that requires a clinical sensitivity of greater than 80% and a specificity over 95% to be considered useful in syndromic management; test turnaround time should be 30 min or under, and the test should cost less than US$3. A novel lateral flow assay (LFA) was developed to achieve that profile. METHODS In this cross-sectional study we evaluated the performance of the novel N gonorrhoeae lateral flow assay (NG-LFA) at the primary health-care level in South Africa. Male patients with urethral discharge syndrome and female patients with vaginal discharge syndrome were recruited from five primary health-care facilities in the Buffalo City Metropolitan Municipality health district of South Africa. First-void urine specimens and nurse-collected vaginal swabs were tested in-facility with the NG-LFA and Xpert CT/NG PCR assay. N gonorrhoeae multi-antigen sequence typing (NG-MAST) was performed on all LFA positive specimens. FINDINGS Between March 7, and Sept 19, 2022, we enrolled 200 male patients with urethral discharge and 200 female patients with vaginal discharge. The median age of male patients was 24 years (IQR 21-31 years), and the median age of female patients was 25 years (IQR 21-32 years). In addition, 23 male patients and 12 female patients who presented at the facility with a partner notification slip were enrolled of whom one (4%) and five (42%) were symptomatic, respectively. NG-LFA and Xpert results were available for all participants. In urine specimens, NG-LFA sensitivity was 96·1% (Wilson 95% CI 91·2-98·3; 123 LFA-positive among 128 PCR-positive specimens) and 91·7% in vaginal swab specimens (78·2-97·1; 33 LFA-positive among 36 PCR-positive). The specificity was 97·2% in urine specimens (90·4-99·2; 70 LFA-negative among 72 PCR-negative) and 96·3% in vaginal specimens (92·2-98·3; 158 LFA-negative among 164 PCR-negative). In 156 LFA-positive specimens, NG-MAST showed 93 different sequence types. INTERPRETATION The novel NG-LFA had excellent clinical sensitivity and specificity in symptomatic male and female patients. The test met the optimal requirement for sensitivity and the minimal requirement for specificity specified in the target product profile. NG-LFA could provide an important tool to optimise clinical management and reduce excess antibiotic use in settings without direct access to laboratory testing. FUNDING Global Antimicrobial Resistance Innovation Fund (GAMRIF) via FIND and National Institutes of Health.
Collapse
Affiliation(s)
- Remco P H Peters
- Foundation for Professional Development, Research Unit, East London, South Africa; Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa; Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.
| | - Jeffrey D Klausner
- Keck School of Medicine, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Laura Mazzola
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Mandisa M Mdingi
- Foundation for Professional Development, Research Unit, East London, South Africa
| | - Hyunsul Jung
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Ranjana M S Gigi
- Foundation for Professional Development, Research Unit, East London, South Africa; Department of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jeremie Piton
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Joseph Daniels
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Lindsey de Vos
- Foundation for Professional Development, Research Unit, East London, South Africa
| | - Paul C Adamson
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Birgitta Gleeson
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Cecilia Ferreyra
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| |
Collapse
|
178
|
Prat-Trunas J, Arias-Alpizar K, Álvarez-Carulla A, Orio-Tejada J, Molina I, Sánchez-Montalvá A, Colomer-Farrarons J, Del Campo FJ, Miribel-Català PL, Baldrich E. Paper-based microfluidic electro-analytical device (PMED) for magneto-assay automation: Towards generic point-of-care diagnostic devices. Biosens Bioelectron 2024; 246:115875. [PMID: 38039728 DOI: 10.1016/j.bios.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Rapid diagnostic tests (RDTs) for point-of-care (POC) testing of infectious diseases are popular because they are easy to use. However, RDTs have limitations such as low sensitivity and qualitative responses that rely on subjective visual interpretation. Additionally, RDTs are made using paper-bound reagents, which leads to batch-to-batch variability, limited storage stability and detection of only the analytes they were designed for. This work presents the development of a versatile technology, based on short magneto-assays and inexpensive paper-based microfluidic electro-analytical devices (PMEDs). PMEDs were produced locally using low-cost equipment, they were stable at room temperature, easy to use, and provided quantitative and objective results. The devices served to detect alternatively a variety of magneto-assays, granting quantitation of streptavidin-HRP, biotinylated HRP and Pasmodium falciparum lactate dehydrogenase (Pf-LDH) in less than 25 min, using either commercial or customized screen-printed electrodes and measurement equipment. Furthermore, Pf-LDH detection in diluted lysed whole blood displayed a linear response between 3 and 25 ng mL-1, detection and quantification limits ranging between 1 and 3 ng mL-1 and 6-12 ng mL-1, respectively, and provided results that correlated with those of the reference ELISA. In short, this technology is versatile, simple, and highly cost-effective, making it perfect for POC testing.
Collapse
Affiliation(s)
- J Prat-Trunas
- Diagnostic Nanotools Group, Vall d'Hebron Hospital Institut de Recerca (VHIR), Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - K Arias-Alpizar
- Diagnostic Nanotools Group, Vall d'Hebron Hospital Institut de Recerca (VHIR), Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - A Álvarez-Carulla
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona (UB), Barcelona, Spain
| | - J Orio-Tejada
- Diagnostic Nanotools Group, Vall d'Hebron Hospital Institut de Recerca (VHIR), Barcelona, Spain
| | - I Molina
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - A Sánchez-Montalvá
- Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - J Colomer-Farrarons
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona (UB), Barcelona, Spain
| | - F J Del Campo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Vizcaya, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - P Ll Miribel-Català
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona (UB), Barcelona, Spain
| | - E Baldrich
- Diagnostic Nanotools Group, Vall d'Hebron Hospital Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
179
|
Miglione A, Di Nardo F, Cavalera S, Serra T, Baggiani C, Cinti S, Anfossi L. Merging Lateral Flow Immunoassay with Electroanalysis as a Novel Sensing Platform: Prostate Specific Antigen Detection as Case of Study. Anal Chem 2024; 96:2297-2302. [PMID: 38289028 DOI: 10.1021/acs.analchem.3c04078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The COVID-19 pandemic highlighted lateral flow immunoassay (LFIA) strips as the most known point-of-care (POC) devices enabling rapid and easy detection of relevant biomarkers by nonspecialists. However, these diagnostic tests are usually associated with the qualitative detection of the biomarker of interest. Alternatively, electrochemical-based diagnostics, especially known for diabetes care, enable quantitative determination of biomarkers. From an analytical point perspective, the combination of the two approaches might represent a step forward for the POC world: in fact, electrochemical transduction is attractive to be integrated into LFIA strips due to its simplicity, high sensitivity, fast signal generation, and cost effectiveness. In this work, a LFIA strip has been combined with an electrochemical transduction, yielding an electrochemical LFIA (eLFIA). As a proof-of-concept method, the detection of prostate-specific antigen has been carried out by combining a printed-electrochemical strip with the traditional LFIA tests. The electrochemical detection has been based on the measurement of Au ions produced from the dissolution of the gold nanoparticles previously captured on the test line. The analytical performances obtained at LFIA and eLFIA were compared, highlighting how the use of differential pulse voltammetry allowed for a lower detection limit (2.5-fold), respectively, 0.38 and 0.15 ng/mL, but increasing the time of analysis. Although the correlation between the two architectures confirmed the satisfactory agreement of outputs, this technical note has been thought to provide the reader a fair statement with regard to the strength and drawbacks about combining the two (apparently) competitor devices in a diagnostics field, namely, LFIA and electrochemical strips.
Collapse
Affiliation(s)
- Antonella Miglione
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Fabio Di Nardo
- Department of Chemistry, Università degli Studi di Torino, 10124 Turin, Italy
| | - Simone Cavalera
- Department of Chemistry, Università degli Studi di Torino, 10124 Turin, Italy
| | - Thea Serra
- Department of Chemistry, Università degli Studi di Torino, 10124 Turin, Italy
| | - Claudio Baggiani
- Department of Chemistry, Università degli Studi di Torino, 10124 Turin, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Laura Anfossi
- Department of Chemistry, Università degli Studi di Torino, 10124 Turin, Italy
| |
Collapse
|
180
|
Wongphutorn P, Noordin R, Anuar NS, Worasith C, Kopolrat KY, Homwong C, Tippayawat P, Techasen A, Pitaksakurat O, Sithithaworn J, Eamudomkarn C, Sithithaworn P. Examination of Diagnostic Performance of New IgG4 Rapid Test Compared with IgG- and IgG4-ELISAs to Investigate Epidemiology of Strongyloidiasis in Northeast Thailand. Am J Trop Med Hyg 2024; 110:254-262. [PMID: 38190756 PMCID: PMC10859814 DOI: 10.4269/ajtmh.23-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/16/2023] [Indexed: 01/10/2024] Open
Abstract
Strongyloidiasis, caused by Strongyloides stercoralis, is a neglected tropical disease with a global distribution. The infection can be fatal in immunocompromised individuals, and accurate diagnosis leading to timely treatment can save lives. Serodiagnosis is a sensitive method for diagnosis and is recommended for screening high-risk individuals. A point-of-care rapid test will facilitate the screening activities, especially in low-resource settings. This study aims to apply a new IgG4 immunochromatographic test using S. stercoralis recombinant antigen (SsRapid® cassette test) and to compare it with in-house IgG and IgG4 enzyme-linked immunosorbent assays (IgG- and IgG4-ELISAs) using native Strongyloides ratti antigen to investigate the epidemiology of strongyloidiasis in northeast Thailand. A total of 300 people participated, with 136 males and 164 females of a similar mean age. The reference tests were fecal examinations using the formalin-ethyl acetate concentration technique and an agar plate culture technique. The prevalence of S. stercoralis determined by SsRapid (81.7%) was significantly higher than that by fecal examinations (43.3%) or by antibody detection by IgG-ELISA (53.0%) or IgG4-ELISA (44.0%). The diagnostic sensitivities of SsRapid, IgG-ELISA, and IgG4-ELISA were found to be 93.9%, 77.7%, and 63.1%, respectively. The rate of positive tests by the SsRapid was significantly correlated to the levels of Strongyloides-specific IgG4 and IgG antibodies. By all diagnostic methods, male participants had a significantly higher prevalence of strongyloidiasis than females. Age was significantly associated with the concentration of specific serum IgG but not with the SsRapid grading score. In conclusion, SsRapid was shown to be a sensitive and valuable diagnostic test for the epidemiology study of strongyloidiasis.
Collapse
Affiliation(s)
| | - Rahmah Noordin
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Nor Suhada Anuar
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Chanika Worasith
- Department of Adult Nursing, Faculty of Nursing, Khon Kaen University, Khon Kaen, Thailand
| | - Kulthida Y. Kopolrat
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Chutima Homwong
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Anchalee Techasen
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Opal Pitaksakurat
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Chatanun Eamudomkarn
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
181
|
Burrows LL. It's uncomplicated: Prevention of urinary tract infections in an era of increasing antibiotic resistance. PLoS Pathog 2024; 20:e1011930. [PMID: 38300901 PMCID: PMC10833504 DOI: 10.1371/journal.ppat.1011930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
182
|
Sehgal IS, Muthu V, Dhooria S, Prasad KT, Rudramurthy SM, Aggarwal AN, Garg M, Gangneux JP, Chakrabarti A, Agarwal R. Sensitivity and specificity of LDBio Aspergillus ICT lateral flow assay for diagnosing allergic bronchopulmonary aspergillosis in adult asthmatics. Mycoses 2024; 67:e13700. [PMID: 38369615 DOI: 10.1111/myc.13700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Aspergillus fumigatus-specific IgG estimation is crucial for diagnosing allergic bronchopulmonary aspergillosis (ABPA). A point-of-care LDBio immunochromatographic lateral flow assay (LFA) had 0%-90% sensitivity to detect IgG/IgM antibodies against A. fumigatus. OBJECTIVE To assess the accuracy of LDBio-LFA in diagnosing ABPA, using the modified ISHAM-ABPA working group criteria as the reference standard. The secondary objective was to compare the diagnostic performance between LDBio-LFA and A. fumigatus-specific IgG (cut-offs, 27 and 40 mgA/L), using a multidisciplinary team (blinded to A. fumigatus-IgG and LDBio-LFA results) diagnosis of ABPA as the reference standard. METHODS We prospectively enrolled adult subjects with asthma and ABPA. We performed the LDBio-LFA per the manufacturer's recommendations. We used the commercially available automated fluorescent enzyme immunoassay for measuring serum A. fumigatus-specific IgG. We used the same serum sample to perform both index tests. The tests were performed by technicians blinded to the results of other tests and clinical diagnoses. RESULTS We included 123 asthmatic and 166 ABPA subjects, with a mean ± SD age of 37.4 ± 14.4 years. Bronchiectasis and high-attenuation mucus were seen in 93.6% (146/156) and 24.3% (38/156) of the ABPA subjects. The sensitivity and specificity of LDBio-LFA in diagnosing ABPA were 84.9% and 82.9%, respectively. The sensitivity of serum A. fumigatus-specific IgG ≥27 mgA/L was 13% better than LDBio-LFA, with no difference in specificity. There was no significant difference in sensitivity and specificity between LDBio-LFA and serum A. fumigatus-IgG ≥40 mgA/L. CONCLUSION LDBio-LFA is a valuable test for diagnosing ABPA. However, a negative test should be confirmed using an enzyme immunoassay.
Collapse
Affiliation(s)
- Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Nath Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Garg
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jean-Pierre Gangneux
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Univ Rennes, Rennes, France
- Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, French National Reference Center on Mycoses and Antifungals (CNRMA LA-Asp C), Centre Hospitalier Universitaire de Rennes, Rennes, France
| | | | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
183
|
Tariq A, Arif A, Akram M, Latif U, Nawaz MH, Andreescu S, Zhang H, Hayat A. Tailoring molecular recognition in predesigned multifunctional enzyme mimicking porphyrin imprinted interface for high affinity and differential selectivity; sensing etoposide in lung cancer patients. Biosens Bioelectron 2024; 245:115833. [PMID: 37984317 DOI: 10.1016/j.bios.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes are cost-effective and robust but they lack specificity and selectivity, limiting their potential practical applications. Herein, molecularly imprinted polymers (MIPs) were grown in combination with multifunctional 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (THPP) oxidase-like nanozyme to engineer THPP@MIP interface with high affinities and differential selectivity for structurally related target analytes. THPP nanozyme displayed a high level of predefined binding affinity for etoposide (ETO), and served as a predesigned functional monomer to rationally tailor the selectivity of THPP@MIP surface in the presence of different guest molecules. THPP nanozyme in combination with conventional monomers was imprinted on a portable and disposable cellulose paper matrix under UV light to create a UV-cured imprinted interface for optical detection of ETO. The THPP@MIP enzyme mimicking interface, having ETO specific and selective target recognition pockets, catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to generate visible blue oxidized TMB (oxTMB) without exogenous hydrogen peroxide (H2O2). The ETO binding on the THPP@MIP surface blocked the channels for TMB access to THPP cavities. The THPP@MIP sensor permitted to detect ETO in the linear range of 0.005-10 μg mL-1, with a limit of detection (LoD) of 0.002 μg mL-1, and showed a remarkable specificity and selectivity against other drug molecules. Furthermore, the THPP@MIP sensor successfully differentiated the serum samples of lung cancer patients and healthy volunteers. The obtained results were validated with standard High performance liquid chromatography-mass spectrometry (HPLC/MS) analysis of the serum samples. Additionally, ETO injection/infusion solutions and ETO-free serum samples were used to perform the matrix effect and recovery studies. This work demonstrates that molecular imprinting with predesigned, enzyme mimicking, high-affinity functional monomer can serve as a highly selective and specific universal interface for broad spectrum sensing applications in various analytical domains.
Collapse
Affiliation(s)
- Aqsa Tariq
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, PO Box 250353, Jinan, Shandong, China; Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore, 54000, Pakistan; Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Amina Arif
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Akram
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore, 54000, Pakistan
| | - Usman Latif
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore, 54000, Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore, 54000, Pakistan
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, 13699-5810, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, PO Box 250353, Jinan, Shandong, China.
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, PO Box 250353, Jinan, Shandong, China; Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore, 54000, Pakistan.
| |
Collapse
|
184
|
Coppola A, Pozzi D, Caputo D. Novel Biomarkers in Pancreatic Cancer. Cancers (Basel) 2024; 16:628. [PMID: 38339379 PMCID: PMC10854494 DOI: 10.3390/cancers16030628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents a neoplasm with an increasing incidence in both sexes [...].
Collapse
Affiliation(s)
- Alessandro Coppola
- Department of Surgery, Sapienza University of Rome, Via Giovanni Maria Lancisi 2, 00161 Rome, Italy;
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Damiano Caputo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy;
- Research Unit of Surgery, Department of Medicine and Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
185
|
de Araujo WR, Lukas H, Torres MDT, Gao W, de la Fuente-Nunez C. Low-Cost Biosensor Technologies for Rapid Detection of COVID-19 and Future Pandemics. ACS NANO 2024; 18:1757-1777. [PMID: 38189684 PMCID: PMC11537281 DOI: 10.1021/acsnano.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Many systems have been designed for the detection of SARS-CoV-2, which is the virus that causes COVID-19. SARS-CoV-2 is readily transmitted, resulting in the rapid spread of disease in human populations. Frequent testing at the point of care (POC) is a key aspect for controlling outbreaks caused by SARS-CoV-2 and other emerging pathogens, as the early identification of infected individuals can then be followed by appropriate measures of isolation or treatment, maximizing the chances of recovery and preventing infectious spread. Diagnostic tools used for high-frequency testing should be inexpensive, provide a rapid diagnostic response without sophisticated equipment, and be amenable to manufacturing on a large scale. The application of these devices should enable large-scale data collection, help control viral transmission, and prevent disease propagation. Here we review functional nanomaterial-based optical and electrochemical biosensors for accessible POC testing for COVID-19. These biosensors incorporate nanomaterials coupled with paper-based analytical devices and other inexpensive substrates, traditional lateral flow technology (antigen and antibody immunoassays), and innovative biosensing methods. We critically discuss the advantages and disadvantages of nanobiosensor-based approaches compared to widely used technologies such as PCR, ELISA, and LAMP. Moreover, we delineate the main technological, (bio)chemical, translational, and regulatory challenges associated with developing functional and reliable biosensors, which have prevented their translation into the clinic. Finally, we highlight how nanobiosensors, given their unique advantages over existing diagnostic tests, may help in future pandemics.
Collapse
Affiliation(s)
- William Reis de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP 13083-970, Brazil
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
186
|
Cennamo N, Bencivenga D, Annunziata M, Arcadio F, Stampone E, Piccirillo A, Della Ragione F, Zeni L, Guida L, Borriello A. Plasmon resonance biosensor for interleukin-1β point-of-care determination: A tool for early periodontitis diagnosis. iScience 2024; 27:108741. [PMID: 38269096 PMCID: PMC10805648 DOI: 10.1016/j.isci.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Among pro-inflammatory cytokines, Interleukin-1β is crucially involved in several inflammatory-based diseases and even cancer. Increased Interleukin-1β levels in oral fluids have been proposed as an early marker of periodontitis, a broadly diffused chronic inflammatory condition of periodontal-supporting tissues, leading eventually to tooth loss. We describe the development of a portable surface-plasmon-resonance-based optical fiber probe suitably coated with an anti-Interleukin-1β antibody monolayer. A pico-nanomolar linear range of determination was obtained in both buffer solution and saliva with a rapid (3 min) incubation and high selectivity in presence of interferents. Higher Interleukin-1β concentration in the saliva of a periodontitis patient compared to a healthy control was determined. These measurements were validated by an automated ELISA system. Our results sustain the potential applicability of the proposed SPR-POF as diagnostic point-of-care device for real-time monitoring of salivary Interleukin-1β, that can support early detection of oral inflammatory-based pathologies and rapid and timely therapeutic decisions.
Collapse
Affiliation(s)
- Nunzio Cennamo
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Angelantonio Piccirillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Luigi Guida
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| |
Collapse
|
187
|
Klebes A, Ates HC, Verboket RD, Urban GA, von Stetten F, Dincer C, Früh SM. Emerging multianalyte biosensors for the simultaneous detection of protein and nucleic acid biomarkers. Biosens Bioelectron 2024; 244:115800. [PMID: 37925943 DOI: 10.1016/j.bios.2023.115800] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Traditionally, biosensors are designed to detect one specific analyte. Nevertheless, disease progression is regulated in a highly interactive way by different classes of biomolecules like proteins and nucleic acids. Therefore, a more comprehensive analysis of biomarkers from a single sample is of utmost importance to further improve both, the accuracy of diagnosis as well as the therapeutic success. This review summarizes fundamentals like biorecognition and sensing strategies for the simultaneous detection of proteins and nucleic acids and discusses challenges related to multianalyte biosensor development. We present an overview of the current state of biosensors for the combined detection of protein and nucleic acid biomarkers associated with widespread diseases, among them cancer and infectious diseases. Furthermore, we outline the multianalyte analysis in the rapidly evolving field of single-cell multiomics, to stress its significance for the future discovery and validation of biomarkers. Finally, we provide a critical perspective on the performance and translation potential of multianalyte biosensors for medical diagnostics.
Collapse
Affiliation(s)
- Anna Klebes
- Hahn-Schickard, 79110, Freiburg, Germany; University of Freiburg, IMTEK - Department of Microsystems Engineering, Laboratory for MEMS Applications, 79110, Freiburg, Germany
| | - H Ceren Ates
- University of Freiburg, IMTEK - Department of Microsystems Engineering, Disposable Microsystems Group, 79110, Freiburg, Germany; University of Freiburg, FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, 79110, Freiburg, Germany
| | - René D Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, 60590, Frankfurt am Main, Germany
| | - Gerald A Urban
- University of Freiburg, IMTEK - Department of Microsystems Engineering, Laboratory for Sensors, 79110, Freiburg, Germany; University of Freiburg, Freiburg Materials Research Centre - FMF, 79104, Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, 79110, Freiburg, Germany; University of Freiburg, IMTEK - Department of Microsystems Engineering, Laboratory for MEMS Applications, 79110, Freiburg, Germany
| | - Can Dincer
- University of Freiburg, IMTEK - Department of Microsystems Engineering, Disposable Microsystems Group, 79110, Freiburg, Germany; University of Freiburg, FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, 79110, Freiburg, Germany
| | - Susanna M Früh
- Hahn-Schickard, 79110, Freiburg, Germany; University of Freiburg, IMTEK - Department of Microsystems Engineering, Laboratory for MEMS Applications, 79110, Freiburg, Germany
| |
Collapse
|
188
|
Sapna K, Shim YB, Arun AB, Prasad KS. Diagnosis of Neglected Tropical Zoonotic Disease, Leptospirosis in a Clinical Sample Using a Photothermal Immunosensor. Anal Chem 2024; 96:409-418. [PMID: 38112052 DOI: 10.1021/acs.analchem.3c04447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Photothermal biosensing based on nanomaterials has gained increasing attention because of its universality and simplicity. Diagnostics of neglected tropical diseases (NTDs) in low-resource settings are challenging in terms of speed, accuracy, and cost-effectiveness. By exploiting the photothermal property of carbon nanotubes (CNTs), simple thermometric measurements can be used to generate quantitative biochemical readouts. Herein, a photothermal immunosensor for leptospirosis detection based on a CNT-labeled monoclonal antibody is established through the sensitive monitoring of the target biomarker LipL32 with a simple thermometer. Under optimum conditions, a linear range up to 106 pg/mL with a limit of detection (LOD) of 300 fg/mL was obtained. Overall, the proposed immunoassay exhibited good precision, selectivity, and acceptable stability. Clinical patient sample analysis with the photothermal sensor proved the differential diagnosis of leptospirosis along with other febrile illnesses. On the other hand, we have also characterized the photothermal sensor platform with surface morphological and spectral techniques to confirm the robust and successful fabrication of the immunosensor. The fabricated photothermal sensor could be used as a potential diagnostic tool for the early detection of NTDs in patients from resource-limited settings, as it does not require sample pretreatment, sophisticated equipment, or skilled labor. Moreover, the developed photothermal assay follows ASSURED criteria, very crucial for diagnosis in resource-limited settings.
Collapse
Affiliation(s)
- Kannan Sapna
- Nanomaterial Research Laboratory (NMRL), Smart Materials and Devices, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of Biophysio Sensor Technology, Pusan National University, Busan 46241, Republic of Korea
| | | | - Kariate Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Smart Materials and Devices, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
- Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| |
Collapse
|
189
|
Díaz-Fernández A, Ranallo S, Ricci F. Enzyme-Linked DNA Displacement (ELIDIS) Assay for Ultrasensitive Electrochemical Detection of Antibodies. Angew Chem Int Ed Engl 2024; 63:e202314818. [PMID: 37994381 DOI: 10.1002/anie.202314818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Here we report the development of a method for the electrochemical ultrasensitive detection of antibodies that couples the programmability and versatility of DNA-based systems with the sensitivity provided by enzymatic amplification. The platform, termed Enzyme-Linked DNA Displacement (ELIDIS), is based on the use of antigen-DNA conjugates that, upon the bivalent binding of a specific target antibody, induce the release of an enzyme-DNA hybrid strand from a preformed duplex. Such enzyme-DNA hybrid strand can then be electrochemically detected with a disposable electrode with high sensitivity. We applied ELIDIS to demonstrate the sensitive (limit of detection in the picomolar range), specific and multiplexed detection of five different antibodies including three clinically relevant ones. ELIDIS is also rapid (it only requires two reaction steps), works well in complex media (serum) and is cost-effective. A direct comparison with a commercial ELISA kit for the detection of Cetuximab demonstrates the promising features of ELIDIS as a point-of-care platform for antibodies detection.
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Simona Ranallo
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
190
|
Horta-Velázquez A, Mota-Morales JD, Morales-Narváez E. Next-generation of smart dressings: Integrating multiplexed sensors and theranostic functions. Int J Biol Macromol 2024; 254:127737. [PMID: 38287589 DOI: 10.1016/j.ijbiomac.2023.127737] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Non-healing wounds represent a significant burden for healthcare systems and society, giving rise to severe economic and human issues. Currently, the use of dressings and visual assessment represent the primary and standard care for wounds. Conventional dressings, like cotton gauze, provide only passive physical protection. Besides, they end up paradoxically hampering the wound-healing process by producing tissue damage and pain when removed during routine check-ups. In response to these limitations, researchers, engineers, and technologists are developing innovative dressings that incorporate advanced diagnostic and therapeutic functionalities, coined as "smart dressings". Now, the maturation of smart dressing is bringing them closer to real-life applications, leading to an exciting new generation of these devices. The next generation of smart dressings is capable of monitoring in real-time multiple biomarkers while including pro-healing capabilities in a single platform. Such multiplexed and theranostic smart dressings are expected to offer a timely biomarker-directed diagnosis of non-healing wounds while enabling rapid, automated, and personalized treatments of infection and chronicity. Herein, we provide an insightful overview of these advantageous devices, delving into the diverse spectrum of possible engineering strategies. This encompasses the use of electrochemical and optical platforms with diverse multiplexing architectures, such as multi-zone sensing arrays and multi-layered devices. Open or closed-loop theranostic mechanisms using various stimuli-responsive materials that could be internally or externally controlled are also included. Finally, a critical discussion on the main challenges and future directions of smart dressings is also offered.
Collapse
Affiliation(s)
| | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Eden Morales-Narváez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico.
| |
Collapse
|
191
|
Rivera J, Mu Y, Gordon CA, Jones MK, Cheng G, Cai P. Current and upcoming point-of-care diagnostics for schistosomiasis. Trends Parasitol 2024; 40:60-74. [PMID: 38000956 DOI: 10.1016/j.pt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Point-of-care (POC) diagnostics are simple and effective portable tools that can be used for fast mapping of helminthic diseases and monitoring control programs. Most POC tests (POCTs) available for schistosomiasis diagnosis are lateral flow immunoassays (LFIAs). The emergence of simple and rapid DNA isolation methods, along with isothermal nucleic acid amplification strategies - for example, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) - and recent clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic methods facilitate the development of molecular-based POC diagnostics for schistosomiasis. Furthermore, smartphone-based techniques increase real-time connectivity and readout accuracy of POCTs. This review discusses the recent advances in immunological-, molecular-based POCTs and mobile phone microscopes for the diagnosis/screening of schistosomiasis.
Collapse
Affiliation(s)
- Jonas Rivera
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Malcolm K Jones
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Guofeng Cheng
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
192
|
Sailapu SK, Liébana S, Merino-Jimenez I, Esquivel JP, Sabaté N. Towards a REASSURED reality: A less-is-more electronic design strategy for self-powered glucose test. Biosens Bioelectron 2024; 243:115708. [PMID: 37862757 DOI: 10.1016/j.bios.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
Sensing strategies adopting minimal electronic systems help in realizing REASSURED diagnostic tests. However, the challenge in developing such strategies escalates with demand in power and electronics during pursuit of reliable and accurate sensing. Herein, we present an electronic design strategy using a smart strip, operating with power generated from 3.5 μL of serum sample, to reveal glucose concentration through a response preserved in a capacitor. Further, by integrating an NFC tag alongside the strip, we devised a self-powered glucose measuring card, mobile-glucocard (or mGlucocard) for retrieving this stored digital response using smartphone, enabling 'connected mobile-health diagnostics'. The response from our device relates linearly to glucose concentration offering a sensitivity of 11.3 mV/mM and good correlation (R = 0.974) with colorimetric reference method. Interestingly, the design strategy uses only four components - two resistors, diode, and capacitor - of simple architecture likely transferable to printed technologies to deliver advanced self-powered sustainable devices.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Susana Liébana
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Irene Merino-Jimenez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
193
|
Louw CJ, de Haan P, Verpoorte E, Baker P. Efficient Electrochemiluminescence Sensing in Microfluidic Biosensors: A Review. Crit Rev Biomed Eng 2024; 52:41-62. [PMID: 38523440 DOI: 10.1615/critrevbiomedeng.2023049565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Microfluidic devices are capable of handling 10-9 L to 10-18 L of fluids by incorporating tiny channels with dimensions of ten to hundreds of micrometers, and they can be fabricated using a wide range of materials including glass, silicon, polymers, paper, and cloth for tailored sensing applications. Microfluidic biosensors integrated with detection methods such as electrochemiluminescence (ECL) can be used for the diagnosis and prognosis of diseases. Coupled with ECL, these tandem devices are capable of sensing biomarkers at nanomolar to picomolar concentrations, reproducibly. Measurement at this low level of concentration makes microfluidic electrochemiluminescence (MF-ECL) devices ideal for biomarker detection in the context of early warning systems for diseases such as myocardial infarction, cancer, and others. However, the technology relies on the nature and inherent characteristics of an efficient luminophore. The luminophore typically undergoes a redox process to generate excited species which emit energy in the form of light upon relaxation to lower energy states. Therefore, in biosensor design the efficiency of the luminophore is critical. This review is focused on the integration of microfluidic devices with biosensors and using electrochemiluminescence as a detection method. We highlight the dual role of carbon quantum dots as a luminophore and co-reactant in electrochemiluminescence analysis, drawing on their unique properties that include large specific surface area, easy functionalization, and unique luminescent properties.
Collapse
Affiliation(s)
- Clementine Juliat Louw
- SensorLab, Chemistry Department, University of the Western Cape, Cape Town, South Africa; Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Pim de Haan
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Elisabeth Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Priscilla Baker
- Department of Chemistry, University of the Western Cape Bellville, 7535, Republic of South Africa
| |
Collapse
|
194
|
Vloemans D, Van Hileghem L, Ordutowski H, Dal Dosso F, Spasic D, Lammertyn J. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids. Methods Mol Biol 2024; 2804:3-50. [PMID: 38753138 DOI: 10.1007/978-1-0716-3850-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Self-powered microfluidics presents a revolutionary approach to address the challenges of healthcare in decentralized and point-of-care settings where limited access to resources and infrastructure prevails or rapid clinical decision-making is critical. These microfluidic systems exploit physical and chemical phenomena, such as capillary forces and surface tension, to manipulate tiny volumes of fluids without the need for external power sources, making them cost-effective and highly portable. Recent technological advancements have demonstrated the ability to preprogram complex multistep liquid operations within the microfluidic circuit of these standalone systems, which enabled the integration of sensitive detection and readout principles. This chapter first addresses how the accessibility to in vitro diagnostics can be improved by shifting toward decentralized approaches like remote microsampling and point-of-care testing. Next, the crucial role of self-powered microfluidic technologies to enable this patient-centric healthcare transition is emphasized using various state-of-the-art examples, with a primary focus on applications related to biofluid collection and the detection of either proteins or nucleic acids. This chapter concludes with a summary of the main findings and our vision of the future perspectives in the field of self-powered microfluidic technologies and their use for in vitro diagnostics applications.
Collapse
Affiliation(s)
- Dries Vloemans
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Henry Ordutowski
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | | | - Dragana Spasic
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
195
|
Richards-Kortum R, Lorenzoni C, Bagnato VS, Schmeler K. Optical imaging for screening and early cancer diagnosis in low-resource settings. NATURE REVIEWS BIOENGINEERING 2024; 2:25-43. [PMID: 39301200 PMCID: PMC11412616 DOI: 10.1038/s44222-023-00135-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 09/22/2024]
Abstract
Low-cost optical imaging technologies have the potential to reduce inequalities in healthcare by improving the detection of pre-cancer or early cancer and enabling more effective and less invasive treatment. In this Review, we summarise technologies for in vivo widefield, multi-spectral, endoscopic, and high-resolution optical imaging that could offer affordable approaches to improve cancer screening and early detection at the point-of-care. Additionally, we discuss approaches to slide-free microscopy, including confocal imaging, lightsheet microscopy, and phase modulation techniques that can reduce the infrastructure and expertise needed for definitive cancer diagnosis. We also evaluate how machine learning-based algorithms can improve the accuracy and accessibility of optical imaging systems and provide real-time image analysis. To achieve the potential of optical technologies, developers must ensure that devices are easy to use; the optical technologies must be evaluated in multi-institutional, prospective clinical tests in the intended setting; and the barriers to commercial scale-up in under-resourced markets must be overcome. Therefore, test developers should view the production of simple and effective diagnostic tools that are accessible and affordable for all countries and settings as a central goal of their profession.
Collapse
Affiliation(s)
- Rebecca Richards-Kortum
- Department of Bioengineering, Rice University, Houston, TX, USA
- Institute for Global Health Technologies, Rice University, Houston, TX, USA
| | - Cesaltina Lorenzoni
- National Cancer Control Program, Ministry of Health, Maputo, Mozambique
- Department of Pathology, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
- Maputo Central Hospital, Maputo, Mozambique
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kathleen Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
196
|
Moro G, Fratte CD, Normanno N, Polo F, Cinti S. Point-of-Care Testing for the Detection of MicroRNAs: Towards Liquid Biopsy on a Chip. Angew Chem Int Ed Engl 2023; 62:e202309135. [PMID: 37672490 DOI: 10.1002/anie.202309135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Point-of-care (PoC) testing is revolutionizing the healthcare sector improving patient care in daily hospital practice and allowing reaching even remote geographical areas. In the frame of cancer management, the design and validation of PoC enabling the non-invasive, rapid detection of cancer markers is urgently required to implement liquid biopsy in clinical practice. Therefore, focusing on stable blood-based markers with high-specificity, such as microRNAs, is of crucial importance. In this work, we highlight the potential impact of circulating microRNAs detection on cancer management and the crucial role of PoC testing devices, especially for low-income countries. A detailed discussion about the challenges that should be faced to promote the technological transfer and clinical use of these tools has been added, to provide the readers with a complete overview of potentialities and current limitations.
Collapse
Affiliation(s)
- Giulia Moro
- Department of Pharmacy, University of Naples Federico II, Via Montesano 9, 80131, Naples, Italy
| | - Chiara Dalle Fratte
- Department of Medical Biotechnology and Translational Medicine, Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan "Statale", Via Vanvitelli 32, 20133, Milan, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori (IRCCS), Fondazione Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
- European Centre for Living Technology (ECLT), Ca' Foscari University of Venice Ca' Bottacin, 30124, Venice, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via Montesano 9, 80131, Naples, Italy
| |
Collapse
|
197
|
Pandey N, Mandal M, Samanta D, Mukherjee G, Dutta G. A nanobody based ultrasensitive electrochemical biosensor for the detection of soluble CTLA-4 -A candidate biomarker for cancer development and progression. Biosens Bioelectron 2023; 242:115733. [PMID: 37820555 DOI: 10.1016/j.bios.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
A soluble isoform of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has been found in the serum of healthy individuals and alterations in its expression level have been linked with the development and progression of various cancers. Conventionally, soluble CTLA-4 (sCTLA-4) has been quantified by techniques such as ELISA, western blot, and flow cytometry, which however are time-consuming, highly expensive and require large sample volumes. Therefore, rapid, cost-effective and real-time monitoring of soluble CTLA-4 levels is much needed to facilitate timely diagnosis of a worsening disease and help patient selection for immunotherapeutic interventions in cancer. Here, for the first time, we report an ultrasensitive, highly selective electrochemical nanobody (NAb) based biosensor for the quantitative detection of soluble CTLA-4 employing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and gold nanoparticles modified electrode with attomole sensitivity. Incorporating nanomaterials with conductive polymers enhances the sensitivity of the electrochemical biosensor, while the nanobody's stability, specificity and ease of production make it a suitable choice as a bioreceptor. The proposed NAb-based sensor can detect sCTLA-4 from pure recombinant protein in a wide concentration range of 100 ag mL-1- 500 μg mL-1, with a limit of detection of 1.19 ag mL-1 (+3σ of the blank signal). The sensor's relative standard deviation for reproducibility is less than 0.4% and has effective real sample analytics for cell culture supernatant with no significant difference with pure recombinant protein (p < 0.05). Our proposed nanobody based sensor exhibits stability for up to 2 weeks (<3% variation). Moreover, this nanobody-based sensor presents a future opportunity for quantitative, ultrasensitive, and economical biosensor development that can be adapted to monitor the immune landscape of cancer patients to provide a larger therapeutic window.
Collapse
Affiliation(s)
- Nidhi Pandey
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Mukti Mandal
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Dibyendu Samanta
- School of Bio Science, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Gayatri Mukherjee
- Immunology and Inflammation Research Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
198
|
Xia J, Bo B, Yang S, Cao Y, Cao Y, Cui H. Interfacial reactivity-modulated fluorescent metal-organic frameworks for sensitive detection of interferon-γ towards tuberculosis diagnosis. Mikrochim Acta 2023; 191:6. [PMID: 38051387 DOI: 10.1007/s00604-023-06088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
A new aptamer-based method has been developed for interferon-γ (IFN-γ) detection by utilizing interface reactivity-modulated fluorescent metal-organic frameworks (MOFs). Specifically, the binding of IFN-γ to its aptamer decreases the interface reactivity between the biotin-labeled aptamer and the streptavidin-functionalized magnetic beads by generating significant steric effects. As a result, several biotin-labeled aptamers escape from the enrichment of magnetic beads and remain in the supernatant, which subsequently undergo the terminal deoxynucleotidyl transferase-catalyzed polymerization elongation. Along with the elongation, pyrophosphate is continuously produced as the by-product, triggering the decomposition of fluorescent MOFs to generate a remarkable fluorescent response with the excitation/emission wavelength of 610 nm/685 nm. Experimental results show that the method enables the detection of IFN-γ in the range 0.06 fM to 6 pM with a detection limit of 0.057 fM. The method also displays high specificity and repeatability with an average relative standard deviation of 2.04%. Moreover, the method demonstrates satisfactory recoveries from 96.3 to 105.5% in serum samples and excellent utility in clinical blood samples. Therefore, this work may provide a valuable tool for IFN-γ detection and is expected to be of high potential in tuberculosis diagnosis in the future.
Collapse
Affiliation(s)
- Jianan Xia
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bing Bo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China
| | - Shuang Yang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Haiyan Cui
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
199
|
Dighe K, Moitra P, Gunaseelan N, Alafeef M, Jensen T, Rafferty C, Pan D. Highly-Specific Single-Stranded Oligonucleotides and Functional Nanoprobes for Clinical Determination of Chlamydia Trachomatis and Neisseria Gonorrhoeae Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304009. [PMID: 37870167 PMCID: PMC10754082 DOI: 10.1002/advs.202304009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Early detection of Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) is the key to controlling the spread of these bacterial infections. An important step in developing biosensors involves identifying reliable sensing probes against specific genetic targets for CT and NG. Here, the authors have designed single-stranded oligonucleotides (ssDNAs) targeting mutually conserved genetic regions of cryptic plasmid and chromosomal DNA of both CT and NG. The 5'- and 3'- ends of these ssDNAs are differentially functionalized with thiol groups and coupled with gold nanoparticles (AuNP) to develop absorbance-based assay. The AuNPs agglomerate selectively in the presence of its target DNA sequence and demonstrate a change in their surface plasmon resonance. The optimized assay is then used to detect both CT and NG DNA extracted from 60 anonymized clinical samples with a clinical sensitivity of ∼100%. The limit of detection of the assays are found to be 7 and 5 copies/µL for CT and NG respectively. Furthermore, it can successfully detect the DNA levels of these two bacteria without the need for DNA extraction and via a lateral flow-based platform. These assays thus hold the potential to be employed in clinics for rapid and efficient monitoring of sexually transmitted infections.
Collapse
Affiliation(s)
- Ketan Dighe
- Department of PediatricsCentre of Blood Oxygen Transport & HemostasisUniversity of Maryland Baltimore School of MedicineBaltimoreMaryland21201USA
- Department of Chemical & Biochemical EngineeringUniversity of Maryland Baltimore CountyBaltimore CountyMaryland21250USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Parikshit Moitra
- Department of PediatricsCentre of Blood Oxygen Transport & HemostasisUniversity of Maryland Baltimore School of MedicineBaltimoreMaryland21201USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nivetha Gunaseelan
- Department of PediatricsCentre of Blood Oxygen Transport & HemostasisUniversity of Maryland Baltimore School of MedicineBaltimoreMaryland21201USA
- Department of Chemical & Biochemical EngineeringUniversity of Maryland Baltimore CountyBaltimore CountyMaryland21250USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Maha Alafeef
- Department of PediatricsCentre of Blood Oxygen Transport & HemostasisUniversity of Maryland Baltimore School of MedicineBaltimoreMaryland21201USA
- Department of Chemical & Biochemical EngineeringUniversity of Maryland Baltimore CountyBaltimore CountyMaryland21250USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tor Jensen
- Cancer Center at IllinoisUniversity of Illinois Urbana‐Champaign405 N. Mathews Ave.UrbanaIL61801‐2325USA
| | - Carla Rafferty
- Department of Family MedicineCarle Health1818 E Windsor Rd.UrbanaIL61802USA
| | - Dipanjan Pan
- Department of PediatricsCentre of Blood Oxygen Transport & HemostasisUniversity of Maryland Baltimore School of MedicineBaltimoreMaryland21201USA
- Department of Chemical & Biochemical EngineeringUniversity of Maryland Baltimore CountyBaltimore CountyMaryland21250USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Huck Institutes of the Life Sciences101 Huck Life Sciences BuildingUniversity ParkPA16802USA
| |
Collapse
|
200
|
Delprat N, Martins LO, Blum LJ, Aymard CMG, Leca-Bouvier B, Octobre G, Doumèche B. User-friendly one-step disposable signal-on bioassay for glyphosate detection in water samples. Biosens Bioelectron 2023; 241:115689. [PMID: 37716158 DOI: 10.1016/j.bios.2023.115689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The onsite detection of glyphosate requires an easy-to-handle, low-cost and disposable assay for untrained users as requested by the ASSURED guidelines. A new strategy based on the expression of fusion proteins is proposed here. A glyphosate oxidase derived from Bacillus subtilis and the 6E10 variant of the dye peroxidase from Pseudomonas putida, both fused with the carbohydrate binding module (CBM) 3a from Clostridium thermocellum, were designed and expressed, leading to GlyphOx-CBM and 6E10-CBM. Cell lysates were used to immobilise both enzymes on cotton buds' heads without any purification. The cotton buds exhibit glyphosate oxidase activity when dipped into a glyphosate-contaminated water sample containing the 6E10-CBM chromogenic substrates. The chromophore could be quantified both in the solution and on the cotton buds' heads. Photography followed by image analysis allows to detect glyphosate with a linear range of 0.25-2.5 mM and a limit of detection (LoD) of 0.12 mM. When the chromogenic substrates are replaced by luminol, the chemiluminescence reaction allows the detection of glyphosate with a linear range of 2-500 μM and a LoD of 0.45 μM. No interference was observed using glyphosate analogues (glycine, sarcosine, aminomethylphosphonic acid) or other herbicides used in a mixture. Only cysteine was found to inhibit 6E10-CBM. Two river waters spiked with glyphosate lead to recoveries of 64-131%. This work describes a very easy-to-handle and inexpensive signal-on bioassay for glyphosate detection in real surface water samples.
Collapse
Affiliation(s)
- N Delprat
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - L O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - L J Blum
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - C M G Aymard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - B Leca-Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - G Octobre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - B Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| |
Collapse
|