151
|
MDH2 produced OAA is a metabolic switch rewiring the fuelling of respiratory chain and TCA cycle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148532. [PMID: 35063410 DOI: 10.1016/j.bbabio.2022.148532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
The mitochondrial respiratory chain (RC) enables many metabolic processes by regenerating both mitochondrial and cytosolic NAD+ and ATP. The oxidation by the RC of the NADH metabolically produced in the cytosol involves redox shuttles as the malate-aspartate shuttle (MAS) and is of paramount importance for cell fate. However, the specific metabolic regulations allowing mitochondrial respiration to prioritize NADH oxidation in response to high NADH/NAD+ redox stress have not been elucidated. The recent discovery that complex I (NADH dehydrogenase), and not complex II (Succinate dehydrogenase), can assemble with other respiratory chain complexes to form functional entities called respirasomes, led to the assumption that this supramolecular organization would favour NADH oxidation. Unexpectedly, characterization of heart and liver mitochondria demonstrates that the RC systematically favours electrons provided by the 'respirasome free' complex II. Our results demonstrate that the preferential succinate driven respiration is tightly controlled by OAA levels, and that OAA feedback inhibition of complex II rewires RC fuelling increasing NADH oxidation capacity. This new regulatory mechanism synergistically increases RC's NADH oxidative capacity and rewires MDH2 driven anaplerosis of the TCA, preventing malate production from succinate to favour oxidation of cytosolic malate. This regulatory mechanism synergistically adjusts RC and TCA fuelling in response to extramitochondrial malate produced by the MAS.
Collapse
|
152
|
Bai L, Yang ZX, Ma PF, Liu JS, Wang DS, Yu HC. Overexpression of SLC25A51 promotes hepatocellular carcinoma progression by driving aerobic glycolysis through activation of SIRT5. Free Radic Biol Med 2022; 182:11-22. [PMID: 35182732 DOI: 10.1016/j.freeradbiomed.2022.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
Solute carrier family 25 member 20 (SLC25A51) is a newly identified mammalian mitochondrial NAD+ transporter. However, the clinicopathological and biological significance of SLC25A51 in human cancers, including hepatocellular carcinoma (HCC), remains unclear. The aim of this study was to define the role of SLC25A51 in HCC progression. Here we demonstrate that SLC25A51 is significantly overexpressed in human HCC specimens and cell lines, caused by, at least in partial, the decrease of miR-212-3p. SLC25A51 overexpression is positively correlated with the clinicopathological characteristics of vascular invasion and tumor diameter, as well as poor survival in patients with HCC. Knockdown of SLC25A51 attenuated, while overexpression of SLC25A51 enhanced the growth and metastasis of HCC cells both in vitro and in vivo. Mechanistically, glucose metabolism reprogramming from oxidative phosphorylation to glycolysis by activation of mitochondrial sirtuin 5 (SIRT5) was found to contribute to the promotion of growth and metastasis by SLC25A51 in HCC cells. Together, these findings reveal important roles of SLC25A51 in HCC tumorigenesis and suggest SLC25A51 as a promising prognostic marker and therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Lu Bai
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhao-Xu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Peng-Fei Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Shan Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - De-Sheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Heng-Chao Yu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
153
|
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab 2022; 34:355-377. [PMID: 35123658 PMCID: PMC8891094 DOI: 10.1016/j.cmet.2022.01.007] [Citation(s) in RCA: 701] [Impact Index Per Article: 233.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Metabolism of cancer cells is geared toward biomass production and proliferation. Since the metabolic resources within the local tissue are finite, this can lead to nutrient depletion and accumulation of metabolic waste. To maintain growth in these conditions, cancer cells employ a variety of metabolic adaptations, the nature of which is collectively determined by the physiology of their cell of origin, the identity of transforming lesions, and the tissue in which cancer cells reside. Furthermore, select metabolites not only serve as substrates for energy and biomass generation, but can also regulate gene and protein expression and influence the behavior of non-transformed cells in the tumor vicinity. As they grow and metastasize, tumors can also affect and be affected by the nutrient distribution within the body. In this hallmark update, recent advances are incorporated into a conceptual framework that may help guide further research efforts in exploring cancer cell metabolism.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
154
|
Chen W, Liu S, Yang Y, Zhang Z, Zhao Y. Spatiotemporal Monitoring of NAD+ Metabolism with Fluorescent Biosensors. Mech Ageing Dev 2022; 204:111657. [DOI: 10.1016/j.mad.2022.111657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023]
|
155
|
Nunn ER, Shinde AB, Zaganjor E. Weighing in on Adipogenesis. Front Physiol 2022; 13:821278. [PMID: 35283790 PMCID: PMC8914022 DOI: 10.3389/fphys.2022.821278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a growing health concern worldwide because of its contribution to metabolic syndrome, type II diabetes, insulin resistance (IR), and numerous cancers. In obesity, white adipose tissue (WAT) expands through two mechanisms: increase in adipocyte cell number by precursor cell differentiation through the process of adipogenesis (hyperplasia) and increase in existing mature adipocyte cell size (hypertrophy). While hypertrophy is associated with the negative effects of obesity on metabolic health, such as inflammation and lipotoxicity, adipogenesis prevents obesity-mediated metabolic decline. Moreover, in metabolically healthy obesity adipogenesis is increased. Thus, it is vital to understand the mechanistic basis for adipose expansion to inform novel therapeutic approaches to mitigate the dysfunction of this tissue and associated diseases. In this mini-review, we summarize recent studies on the regulation of adipogenesis and provide a perspective on targeting adipogenesis as a potential therapeutic avenue for metabolic disorders.
Collapse
|
156
|
Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 2022; 23:141-161. [PMID: 34621061 DOI: 10.1038/s41580-021-00415-0] [Citation(s) in RCA: 449] [Impact Index Per Article: 149.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
The mitochondrial oxidative phosphorylation system is central to cellular metabolism. It comprises five enzymatic complexes and two mobile electron carriers that work in a mitochondrial respiratory chain. By coupling the oxidation of reducing equivalents coming into mitochondria to the generation and subsequent dissipation of a proton gradient across the inner mitochondrial membrane, this electron transport chain drives the production of ATP, which is then used as a primary energy carrier in virtually all cellular processes. Minimal perturbations of the respiratory chain activity are linked to diseases; therefore, it is necessary to understand how these complexes are assembled and regulated and how they function. In this Review, we outline the latest assembly models for each individual complex, and we also highlight the recent discoveries indicating that the formation of larger assemblies, known as respiratory supercomplexes, originates from the association of the intermediates of individual complexes. We then discuss how recent cryo-electron microscopy structures have been key to answering open questions on the function of the electron transport chain in mitochondrial respiration and how supercomplexes and other factors, including metabolites, can regulate the activity of the single complexes. When relevant, we discuss how these mechanisms contribute to physiology and outline their deregulation in human diseases.
Collapse
Affiliation(s)
- Irene Vercellino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
157
|
Meron E, Thaysen M, Angeli S, Antebi A, Barzilai N, Baur JA, Bekker-Jensen S, Birkisdottir M, Bischof E, Bruening J, Brunet A, Buchwalter A, Cabreiro F, Cai S, Chen BH, Ermolaeva M, Ewald CY, Ferrucci L, Florian MC, Fortney K, Freund A, Georgievskaya A, Gladyshev VN, Glass D, Golato T, Gorbunova V, Hoejimakers J, Houtkooper RH, Jager S, Jaksch F, Janssens G, Jensen MB, Kaeberlein M, Karsenty G, de Keizer P, Kennedy B, Kirkland JL, Kjaer M, Kroemer G, Lee KF, Lemaitre JM, Liaskos D, Longo VD, Lu YX, MacArthur MR, Maier AB, Manakanatas C, Mitchell SJ, Moskalev A, Niedernhofer L, Ozerov I, Partridge L, Passegué E, Petr MA, Peyer J, Radenkovic D, Rando TA, Rattan S, Riedel CG, Rudolph L, Ai R, Serrano M, Schumacher B, Sinclair DA, Smith R, Suh Y, Taub P, Trapp A, Trendelenburg AU, Valenzano DR, Verburgh K, Verdin E, Vijg J, Westendorp RGJ, Zonari A, Bakula D, Zhavoronkov A, Scheibye-Knudsen M. Meeting Report: Aging Research and Drug Discovery. Aging (Albany NY) 2022. [PMID: 35089871 PMCID: PMC8833115 DOI: 10.18632/aging.203859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aging is the single largest risk factor for most chronic diseases, and thus possesses large socioeconomic interest to continuously aging societies. Consequently, the field of aging research is expanding alongside a growing focus from the industry and investors in aging research. This year’s 8th Annual Aging Research and Drug Discovery (ARDD) meeting was organized as a hybrid meeting from August 30th to September 3rd 2021 with more than 130 attendees participating on-site at the Ceremonial Hall at University of Copenhagen, Denmark, and 1800 engaging online. The conference comprised of presentations from 75 speakers focusing on new research in topics including mechanisms of aging and how these can be modulated as well as the use of AI and new standards of practices within aging research. This year, a longevity workshop was included to build stronger connections with the clinical community.
Collapse
Affiliation(s)
- Esther Meron
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Thaysen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne Angeli
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joseph A Baur
- Smilow Center for Translational Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Birkisdottir
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Evelyne Bischof
- Shanghai University of Medicine and Health Sciences, College of Clinical Medicine, Shanghai, China
| | - Jens Bruening
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Anne Brunet
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Filipe Cabreiro
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.,CECAD Research Center, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Shiqing Cai
- Institute of Neuroscience, Chinese Academy of Science, Shanghai, China
| | - Brian H Chen
- FOXO Technologies Inc, Minneapolis, MN 55402, USA.,The Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA 92093, USA
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | - Adam Freund
- Arda Therapeutics, San Carlos, CA 94070, USA
| | | | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Glass
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Jan Hoejimakers
- Department of Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sibylle Jager
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Georges Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Matt Kaeberlein
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter de Keizer
- Department of Molecular Cancer Research, Center for Molecular Medicine, Division of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Brian Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore.,Center for Healthy Longevity, National University Health System, Singapore
| | - James L Kirkland
- Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Kjaer
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France
| | - Kai-Fu Lee
- Sinovation Ventures and Sinovation AI Institute, Beijing, China
| | - Jean-Marc Lemaitre
- Institute for Regenerative Medicine and Biotherapies, INSERM UMR 1183, Montpellier, France
| | | | - Valter D Longo
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michael R MacArthur
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrea B Maier
- Center for Healthy Longevity, National University Health System, Singapore.,Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | | | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Alexey Moskalev
- Institute of Biology of FRC Komi Science Center of Ural Division of RAS, Syktyvkar, Russia.,Russian Clinical and Research Center of Gerontology, Moscow, Russia
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ivan Ozerov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Michael A Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Tracked.bio, Copenhagen, Denmark
| | | | - Dina Radenkovic
- Hooke London by Health and Longevity Optimisation, London, UK
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences and Paul F. Glenn Center for Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suresh Rattan
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | | | - Ruixue Ai
- Department of Clinical Molecular Biology
- UiO, University of Oslo and Akershus University Hospital, Norway
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Björn Schumacher
- CECAD Research Center, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 94107, USA
| | | | - Yousin Suh
- Departments of Obstetrics and Gynecology, Genetics and Development, Columbia University, New York, NY 10027, USA
| | - Pam Taub
- Division of Cardiovascular Medicine, University of California, San Diego, CA 92093, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Leibniz Institute on Aging, Jena, Germany
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
158
|
Pardo B, Herrada-Soler E, Satrústegui J, Contreras L, del Arco A. AGC1 Deficiency: Pathology and Molecular and Cellular Mechanisms of the Disease. Int J Mol Sci 2022; 23:528. [PMID: 35008954 PMCID: PMC8745132 DOI: 10.3390/ijms23010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.
Collapse
Affiliation(s)
- Beatriz Pardo
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Herrada-Soler
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Araceli del Arco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro Regional de Investigaciones Biomédicas, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La Mancha, 45071 Toledo, Spain
| |
Collapse
|
159
|
Dierickx P, Zhu K, Carpenter BJ, Jiang C, Vermunt MW, Xiao Y, Luongo TS, Yamamoto T, Martí-Pàmies Í, Mia S, Latimer M, Diwan A, Zhao J, Hauck AK, Krusen B, Nguyen HC, Blobel GA, Kelly DP, Pei L, Baur JA, Young ME, Lazar MA. Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD + biosynthesis and sustain cardiac function. NATURE CARDIOVASCULAR RESEARCH 2022; 1:45-58. [PMID: 35036997 PMCID: PMC8754391 DOI: 10.1038/s44161-021-00001-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022]
Abstract
The heart is a highly metabolic organ that uses multiple energy sources to meet its demand for ATP production. Diurnal feeding-fasting cycles result in substrate availability fluctuations which, together with increased energetic demand during the active period, impose a need for rhythmic cardiac metabolism. The nuclear receptors REV-ERBα and β are essential repressive components of the molecular circadian clock and major regulators of metabolism. To investigate their role in the heart, here we generated mice with cardiomyocyte (CM)-specific deletion of both Rev-erbs, which died prematurely due to dilated cardiomyopathy. Loss of Rev-erbs markedly downregulated fatty acid oxidation genes prior to overt pathology, which was mediated by induction of the transcriptional repressor E4BP4, a direct target of cardiac REV-ERBs. E4BP4 directly controls circadian expression of Nampt and its biosynthetic product NAD+ via distal cis-regulatory elements. Thus, REV-ERB-mediated E4BP4 repression is required for Nampt expression and NAD+ production by the salvage pathway. Together, these results highlight the indispensable role of circadian REV-ERBs in cardiac gene expression, metabolic homeostasis and function.
Collapse
Affiliation(s)
- Pieterjan Dierickx
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryce J. Carpenter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marit W. Vermunt
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy S. Luongo
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tsunehisa Yamamoto
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Íngrid Martí-Pàmies
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sobuj Mia
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35226, United States
| | - Mary Latimer
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35226, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Juanjuan Zhao
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Amy K. Hauck
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brianna Krusen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hoang C.B. Nguyen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Daniel P. Kelly
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liming Pei
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Joseph A. Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35226, United States
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
160
|
Banerjee P, Olmsted-Davis EA, Deswal A, Nguyen MTH, Koutroumpakis E, Palaskas NL, Lin SH, Kotla S, Reyes-Gibby C, Yeung SCJ, Yusuf SW, Yoshimoto M, Kobayashi M, Yu B, Schadler K, Herrmann J, Cooke JP, Jain A, Chini E, Le NT, Abe JI. Cancer treatment-induced NAD+ depletion in premature senescence and late cardiovascular complications. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:28. [PMID: 35801078 PMCID: PMC9258520 DOI: 10.20517/jca.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD+ depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Elizabeth A. Olmsted-Davis
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minh TH. Nguyen
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.,University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi 122100, Vietnam
| | - Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Michihiro Kobayashi
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences School of Public Health, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Keri Schadler
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - John P. Cooke
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M, College Station, TX 77843, USA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nhat-Tu Le
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
161
|
Zhang HY, Fan ZL, Wang TY. Advances of Glycometabolism Engineering in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2021; 9:774175. [PMID: 34926421 PMCID: PMC8675083 DOI: 10.3389/fbioe.2021.774175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can express various recombinant proteins with a post translational modification pattern similar to that of the proteins from human cells. During industrial production, cells need large amounts of ATP to support growth and protein expression, and since glycometabolism is the main source of ATP for cells, protein production partly depends on the efficiency of glycometabolism. And efficient glycometabolism allows less glucose uptake by cells, reducing production costs, and providing a better mammalian production platform for recombinant protein expression. In the present study, a series of progresses on the comprehensive optimization in CHO cells by glycometabolism strategy were reviewed, including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We analyzed the effects of gene regulation in the upstream and downstream of the glucose metabolism pathway on cell’s growth and protein expression. And we also pointed out the latest metabolic studies that are potentially applicable on CHO cells. In the end, we elaborated the application of metabolic models in the study of CHO cell metabolism.
Collapse
Affiliation(s)
- Huan-Yu Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China.,Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| |
Collapse
|
162
|
The role of protein acetylation in regulating mitochondrial fusion and fission. Biochem Soc Trans 2021; 49:2807-2819. [PMID: 34812890 DOI: 10.1042/bst20210798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
The dynamic processes of mitochondrial fusion and fission determine the shape of mitochondria, which can range from individual fragments to a hyperfused network, and influence mitochondrial function. Changes in mitochondrial shape can occur rapidly, allowing mitochondria to adapt to specific cues and changing cellular demands. Here, we will review what is known about how key proteins required for mitochondrial fusion and fission are regulated by their acetylation status, with acetylation promoting fission and deacetylation enhancing fusion. In particular, we will examine the roles of NAD+ dependant sirtuin deacetylases, which mediate mitochondrial acetylation, and how this post-translational modification provides an exquisite regulatory mechanism to co-ordinate mitochondrial function with metabolic demands of the cell.
Collapse
|
163
|
Gorbunova V, Buschbeck M, Cambronne XA, Chellappa K, Corda D, Du J, Freichel M, Gigas J, Green AE, Gu F, Guberovic I, Jayabalan A, Khansahib I, Mukherjee S, Seluanov A, Simon MA, Sverkeli LJ, Kory N, Levine DC, Matic I, Nikiforov A, Rack JG, Imai SI, Sinclair DA, Toiber D, Zhao Y, Mostoslavsky R, Kraus L, Guse AH. The 2021 FASEB science research conference on NAD metabolism and signaling. Aging (Albany NY) 2021. [PMCID: PMC8714140 DOI: 10.18632/aging.203766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Catalonia 08916, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Catalonia 08916, Spain
| | - Xiaolu A. Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78705, USA
| | - Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Daniela Corda
- Department of Biomedical Sciences, National Research Council, Rome 00185, Italy
| | - Juan Du
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Baden-Württemberg 69117, Germany
| | - Jonathan Gigas
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alexander E. Green
- Ottawa Institute of Systems Biology, Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Éric Poulin Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Feng Gu
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Iva Guberovic
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-GTP-UAB, Badalona, Catalonia 08916, Spain
| | - Aravinthkumar Jayabalan
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Imrankhan Khansahib
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Matthew A. Simon
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Lars J. Sverkeli
- Department of Biological Sciences, University of Bergen, Bergen, Vestland 5007, Norway
| | - Nora Kory
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel C. Levine
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Cologne, Nordrhein-Westfalen 50931, Germany
| | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 199178, Russia
| | - Johannes G.M. Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Kobe, Hyogo 650-0047, Japan
| | - David A. Sinclair
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yongjuan Zhao
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02115, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02114, USA
| | - Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
164
|
Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. Cell Metab 2021; 33:2367-2379.e4. [PMID: 34767745 DOI: 10.1016/j.cmet.2021.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Nutrient sensing pathways influence metabolic health and aging, offering the possibility that diet might be used therapeutically, alone or with drugs targeting these pathways. We used the Geometric Framework for Nutrition to study interactive and comparative effects of diet and drugs on the hepatic proteome in mice across 40 dietary treatments differing in macronutrient ratios, energy density, and drug treatment (metformin, rapamycin, resveratrol). There was a strong negative correlation between dietary energy and the spliceosome and a strong positive correlation between dietary protein and mitochondria, generating oxidative stress at high protein intake. Metformin, rapamycin, and resveratrol had lesser effects than and dampened responses to diet. Rapamycin and metformin reduced mitochondrial responses to dietary protein while the effects of carbohydrates and fat were downregulated by resveratrol. Dietary composition has a powerful impact on the hepatic proteome, not just on metabolic pathways but fundamental processes such as mitochondrial function and RNA splicing.
Collapse
|
165
|
She J, Sheng R, Qin ZH. Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging Dis 2021; 12:1879-1897. [PMID: 34881075 PMCID: PMC8612620 DOI: 10.14336/ad.2021.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme I (nicotinamide adenine dinucleotide, NAD+/NADH) and coenzyme II (nicotinamide adenine dinucleotide phosphate, NADP+/NADPH) are involved in various biological processes in mammalian cells. NAD+ is synthesised through the de novo and salvage pathways, whereas coenzyme II cannot be synthesised de novo. NAD+ is a precursor of coenzyme II. Although NAD+ is synthesised in sufficient amounts under normal conditions, shortage in its supply due to over consumption and its decreased synthesis has been observed with increasing age and under certain disease conditions. Several studies have proved that in a wide range of tissues, such as liver, skin, muscle, pancreas, and fat, the level of NAD+ decreases with age. However, in the brain tissue, the level of NADH gradually increases and that of NAD+ decreases in aged people. The ratio of NAD+/NADH indicates the cellular redox state. A decrease in this ratio affects the cellular anaerobic glycolysis and oxidative phosphorylation functions, which reduces the ability of cells to produce ATP. Therefore, increasing the exogenous NAD+ supply under certain disease conditions or in elderly people may be beneficial. Precursors of NAD+ have been extensively explored and have been reported to effectively increase NAD+ levels and possess a broad range of functions. In this review article, we discuss the pharmacokinetics and pharmacodynamics of NAD+ precursors.
Collapse
Affiliation(s)
- Jing She
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
166
|
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central metabolite involved in energy and redox homeostasis as well as in DNA repair and protein deacetylation reactions. Pharmacological or genetic inhibition of NAD+-degrading enzymes, external supplementation of NAD+ precursors, and transgenic overexpression of NAD+-generating enzymes have wide positive effects on metabolic health and age-associated diseases. NAD+ pools tend to decline with normal aging, obesity, and hypertension, which are all major risk factors for cardiovascular disease, and NAD+ replenishment extends healthspan, avoids metabolic syndrome, and reduces blood pressure in preclinical models. In addition, experimental elevation of NAD+ improves atherosclerosis, ischemic, diabetic, arrhythmogenic, hypertrophic, or dilated cardiomyopathies, as well as different modalities of heart failure. Here, we critically discuss cardiomyocyte-specific circuitries of NAD+ metabolism, comparatively evaluate distinct NAD+ precursors for their preclinical efficacy, and raise outstanding questions on the optimal design of clinical trials in which NAD+ replenishment or supraphysiological NAD+ elevations are assessed for the prevention or treatment of major cardiac diseases. We surmise that patients with hitherto intractable cardiac diseases such as heart failure with preserved ejection fraction may profit from the administration of NAD+ precursors. The development of such NAD+-centered treatments will rely on technological and conceptual progress on the fine regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Austria (M.A., S.S.).,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France (M.A., G.K.).,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Institut national de la santé et de la recherche médicale (INSERM) U1138, Institut Universitaire de France (M.A., G.K.)
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Austria (M.A., S.S.).,Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia (S.S.)
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France (M.A., G.K.).,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Institut national de la santé et de la recherche médicale (INSERM) U1138, Institut Universitaire de France (M.A., G.K.).,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris 7015, France (G.K.)
| |
Collapse
|
167
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
168
|
Trzeciak A, Wang YT, Perry JSA. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab 2021; 33:2126-2141. [PMID: 34433074 PMCID: PMC8568659 DOI: 10.1016/j.cmet.2021.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Clearance of apoptotic cells, or "efferocytosis," is essential for diverse processes including embryonic development, tissue turnover, organ regeneration, and immune cell development. The human body is estimated to remove approximately 1% of its body mass via apoptotic cell clearance daily. This poses several intriguing cell metabolism problems. For instance, phagocytes such as macrophages must induce or suppress metabolic pathways to find, engulf, and digest apoptotic cells. Then, phagocytes must manage the potentially burdensome biomass of the engulfed apoptotic cell. Finally, phagocytes reside in complex tissue architectures that vary in nutrient availability, the types of dying cells or debris that require clearance, and the neighboring cells they interact with. Here, we review advances in our understanding of these three key areas of phagocyte metabolism. We end by proposing a model of efferocytosis that integrates recent findings and establishes a new paradigm for testing how efferocytosis prevents chronic inflammatory disease and autoimmunity.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Justin Shaun Arnold Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 417 E 68th Street, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 417 E 68th Street, New York, NY 10065, USA.
| |
Collapse
|
169
|
Guerrero‐Castillo S, van Strien J, Brandt U, Arnold S. Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome. EMBO J 2021; 40:e108648. [PMID: 34542926 PMCID: PMC8561636 DOI: 10.15252/embj.2021108648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.
Collapse
Affiliation(s)
- Sergio Guerrero‐Castillo
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Joeri van Strien
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Center for Molecular and Biomolecular InformaticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Susanne Arnold
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
170
|
Learning from Yeast about Mitochondrial Carriers. Microorganisms 2021; 9:microorganisms9102044. [PMID: 34683364 PMCID: PMC8539049 DOI: 10.3390/microorganisms9102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.
Collapse
|
171
|
Bock KW. Aryl hydrocarbon receptor (AHR) functions in infectious and sterile inflammation and NAD +-dependent metabolic adaptation. Arch Toxicol 2021; 95:3449-3458. [PMID: 34559251 PMCID: PMC8461142 DOI: 10.1007/s00204-021-03134-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023]
Abstract
Aryl hydrocarbon receptor (AHR) research has shifted from exploring dioxin toxicity to elucidation of various physiologic AHR functions. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert cellular stress-mediated sterile inflammatory responses in exposed human tissues but may be lethal in sensitive species. Inflammation can be thought of as the extreme end of a spectrum ranging from homeostasis to stress responses (sterile inflammation) and to defense against infection (infectious inflammation). Defense against bacterial infection by generation of reactive oxygen species has to be strictly controlled and may use up a considerable amount of energy. NAD+-mediated energy metabolism adapts to various inflammatory responses. As examples, the present commentary tries to integrate responses of AHR and NAD+-consuming enzymes (PARP7/TiPARP, CD38 and sirtuins) into infectious and stress-induced inflammatory responses, the latter exemplified by nonalcoholic fatty liver disease (NAFLD). TCDD toxicity models in sensitive species provide hints to molecular AHR targets of energy metabolism including gluconeogenesis and glycolysis. AHR research remains challenging and promising.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, 72074, Tübingen, Germany.
| |
Collapse
|
172
|
McReynolds MR, Chellappa K, Chiles E, Jankowski C, Shen Y, Chen L, Descamps HC, Mukherjee S, Bhat YR, Lingala SR, Chu Q, Botolin P, Hayat F, Doke T, Susztak K, Thaiss CA, Lu W, Migaud ME, Su X, Rabinowitz JD, Baur JA. NAD + flux is maintained in aged mice despite lower tissue concentrations. Cell Syst 2021; 12:1160-1172.e4. [PMID: 34559996 DOI: 10.1016/j.cels.2021.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
NAD+ is an essential coenzyme for all living cells. NAD+ concentrations decline with age, but whether this reflects impaired production or accelerated consumption remains unclear. We employed isotope tracing and mass spectrometry to probe age-related changes in NAD+ metabolism across tissues. In aged mice, we observed modest tissue NAD+ depletion (median decrease ∼30%). Circulating NAD+ precursors were not significantly changed, and isotope tracing showed the unimpaired synthesis of nicotinamide from tryptophan. In most tissues of aged mice, turnover of the smaller tissue NAD+ pool was modestly faster such that absolute NAD+ biosynthetic flux was maintained, consistent with more active NAD+-consuming enzymes. Calorie restriction partially mitigated age-associated NAD+ decline by decreasing consumption. Acute inflammatory stress induced by LPS decreased NAD+ by impairing synthesis in both young and aged mice. Thus, the decline in NAD+ with normal aging is relatively subtle and occurs despite maintained NAD+ production, likely due to increased consumption.
Collapse
Affiliation(s)
- Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Chiles
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Connor Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yihui Shen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Li Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yashaswini R Bhat
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth R Lingala
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingwei Chu
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Botolin
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faisal Hayat
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Tomohito Doke
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Chemistry, Princeton University, Princeton, NJ, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
173
|
Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD + precursors in health, disease, and ageing. Mech Ageing Dev 2021; 199:111567. [PMID: 34517020 DOI: 10.1016/j.mad.2021.111567] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
NAD+ is a fundamental molecule in human life and health as it participates in energy metabolism, cell signalling, mitochondrial homeostasis, and in dictating cell survival or death. Emerging evidence from preclinical and human studies indicates an age-dependent reduction of cellular NAD+, possibly due to reduced synthesis and increased consumption. In preclinical models, NAD+ repletion extends healthspan and / or lifespan and mitigates several conditions, such as premature ageing diseases and neurodegenerative diseases. These findings suggest that NAD+ replenishment through NAD+ precursors has great potential as a therapeutic target for ageing and age-predisposed diseases, such as Alzheimer's disease. Here, we provide an updated review on the biological activity, safety, and possible side effects of NAD+ precursors in preclinical and clinical studies. Major NAD+ precursors focused on by this review are nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and the new discovered dihydronicotinamide riboside (NRH). In summary, NAD+ precursors have an exciting therapeutic potential for ageing, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ole Kristian Reiten
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Martin Andreas Wilvang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
174
|
Tan A, Doig CL. NAD + Degrading Enzymes, Evidence for Roles During Infection. Front Mol Biosci 2021; 8:697359. [PMID: 34485381 PMCID: PMC8415550 DOI: 10.3389/fmolb.2021.697359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Declines in cellular nicotinamide adenine dinucleotide (NAD) contribute to metabolic dysfunction, increase susceptibility to disease, and occur as a result of pathogenic infection. The enzymatic cleavage of NAD+ transfers ADP-ribose (ADPr) to substrate proteins generating mono-ADP-ribose (MAR), poly-ADP-ribose (PAR) or O-acetyl-ADP-ribose (OAADPr). These important post-translational modifications have roles in both immune response activation and the advancement of infection. In particular, emergent data show viral infection stimulates activation of poly (ADP-ribose) polymerase (PARP) mediated NAD+ depletion and stimulates hydrolysis of existing ADP-ribosylation modifications. These studies are important for us to better understand the value of NAD+ maintenance upon the biology of infection. This review focuses specifically upon the NAD+ utilising enzymes, discusses existing knowledge surrounding their roles in infection, their NAD+ depletion capability and their influence within pathogenic infection.
Collapse
Affiliation(s)
- Arnold Tan
- Interdisciplinary Science and Technology Centre, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig L Doig
- Interdisciplinary Science and Technology Centre, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
175
|
Wang X, He HJ, Xiong X, Zhou S, Wang WW, Feng L, Han R, Xie CL. NAD + in Alzheimer's Disease: Molecular Mechanisms and Systematic Therapeutic Evidence Obtained in vivo. Front Cell Dev Biol 2021; 9:668491. [PMID: 34414179 PMCID: PMC8369418 DOI: 10.3389/fcell.2021.668491] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023] Open
Abstract
Mitochondria in neurons generate adenosine triphosphate (ATP) to provide the necessary energy required for constant activity. Nicotinamide adenine dinucleotide (NAD+) is a vital intermediate metabolite involved in cellular bioenergetics, ATP production, mitochondrial homeostasis, and adaptive stress responses. Exploration of the biological functions of NAD+ has been gaining momentum, providing many crucial insights into the pathophysiology of age-associated functional decline and diseases, such as Alzheimer’s disease (AD). Here, we systematically review the key roles of NAD+ precursors and related metabolites in AD models and show how NAD+ affects the pathological hallmarks of AD and the potential mechanisms of action. Advances in understanding the molecular roles of NAD+-based neuronal resilience will result in novel approaches for the treatment of AD and set the stage for determining whether the results of exciting preclinical trials can be translated into the clinic to improve AD patients’ phenotypes.
Collapse
Affiliation(s)
- Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Jun He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Xiong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuoting Zhou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Wen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Feng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruiyu Han
- National Health Commission (NHC) Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Research Institute for Family Planning Science and Technology, Shijiazhuang, China
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou, China.,Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory, Wenzhou, China
| |
Collapse
|
176
|
Carron J, Della Coletta R, Lourenço GJ. Pseudogene Transcripts in Head and Neck Cancer: Literature Review and In Silico Analysis. Genes (Basel) 2021; 12:genes12081254. [PMID: 34440428 PMCID: PMC8391979 DOI: 10.3390/genes12081254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Once considered nonfunctional, pseudogene transcripts are now known to provide valuable information for cancer susceptibility, including head and neck cancer (HNC), a serious health problem worldwide, with about 50% unimproved overall survival over the last decades. The present review focuses on the role of pseudogene transcripts involved in HNC risk and prognosis. We combined current literature and in silico analyses from The Cancer Genome Atlas (TCGA) database to identify the most deregulated pseudogene transcripts in HNC and their genetic variations. We then built a co-expression network and performed gene ontology enrichment analysis to better understand the pseudogenes’ interactions and pathways in HNC. In the literature, few pseudogenes have been studied in HNC. Our in silico analysis identified 370 pseudogene transcripts associated with HNC, where SPATA31D5P, HERC2P3, SPATA31C2, MAGEB6P1, SLC25A51P1, BAGE2, DNM1P47, SPATA31C1, ZNF733P and OR2W5 were found to be the most deregulated and presented several genetic alterations. NBPF25P, HSP90AB2P, ZNF658B and DPY19L2P3 pseudogenes were predicted to interact with 12 genes known to participate in HNC, DNM1P47 was predicted to interact with the TP53 gene, and HLA-H pseudogene was predicted to interact with HLA-A and HLA-B genes. The identified pseudogenes were associated with cancer biology pathways involving cell communication, response to stress, cell death, regulation of the immune system, regulation of gene expression, and Wnt signaling. Finally, we assessed the prognostic values of the pseudogenes with the Kaplan–Meier Plotter database, and found that expression of SPATA31D5P, SPATA31C2, BAGE2, SPATA31C1, ZNF733P and OR2W5 pseudogenes were associated with patients’ survival. Due to pseudogene transcripts’ potential for cancer diagnosis, progression, and as therapeutic targets, our study can guide new research to HNC understanding and development of new target therapies.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, São Paulo, Brazil;
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, São Paulo, Brazil;
- Correspondence: ; Tel.: +55-19-3521-9120
| |
Collapse
|
177
|
Transcriptomic Analysis of Long Noncoding RNA and mRNA Expression Profiles in the Amygdala of Rats with Bone Cancer Pain-Depression Comorbidity. Life (Basel) 2021; 11:life11080834. [PMID: 34440578 PMCID: PMC8400935 DOI: 10.3390/life11080834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
Bone cancer pain (BCP)–depression comorbidity has become a complex clinical problem during cancer treatment; however, its underlying molecular mechanisms have not been clarified. Several long noncoding RNAs (lncRNAs) have been demonstrated to be promising therapeutic targets in depression, but research on the role of lncRNAs in BCP–depression comorbidity has been limited. Therefore, high-throughput RNA sequencing was performed to detect differentially expressed profiles in the amygdala of a BCP–depression rat model in this study. We detected 330 differentially expressed mRNAs (DEmRNAs) and 78 differentially expressed lncRNAs (DElncRNAs) in the BCP–depression comorbidity model and then verified the expression of six DEmRNAs and six DElncRNAs with the greatest degrees of difference by RT-qPCR. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that differentially expressed genes were strongly enriched in inflammatory and immunologic systemic responses. Then the nuclear factor kappa B (NF-κB) signaling pathway and the Th17 differentiation pathway showed significant differences, as determined by Western blot analysis. Finally, we constructed a protein–protein interaction (PPI) network to explore the potential regulatory mechanism of DEmRNAs. In conclusion, our study reveals a new resource for the understanding of dysregulated lncRNAs and mRNAs in BCP–depression comorbidity and provides novel potential therapeutic targets for further approaches.
Collapse
|
178
|
Murali Mahadevan H, Hashemiaghdam A, Ashrafi G, Harbauer AB. Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson's Disease. Adv Biol (Weinh) 2021; 5:e2100663. [PMID: 34382382 DOI: 10.1002/adbi.202100663] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are the main suppliers of neuronal adenosine triphosphate and play a critical role in brain energy metabolism. Mitochondria also serve as Ca2+ sinks and anabolic factories and are therefore essential for neuronal function and survival. Dysregulation of neuronal bioenergetics is increasingly implicated in neurodegenerative disorders, particularly Parkinson's disease. This review describes the role of mitochondria in energy metabolism under resting conditions and during synaptic transmission, and presents evidence for the contribution of neuronal mitochondrial dysfunction to Parkinson's disease.
Collapse
Affiliation(s)
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Angelika Bettina Harbauer
- Max-Planck-Institute for Neurobiology, 82152, Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, 80333, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
179
|
Shen JX, Couchet M, Dufau J, de Castro Barbosa T, Ulbrich MH, Helmstädter M, Kemas AM, Zandi Shafagh R, Marques M, Hansen JB, Mejhert N, Langin D, Rydén M, Lauschke VM. 3D Adipose Tissue Culture Links the Organotypic Microenvironment to Improved Adipogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100106. [PMID: 34165908 PMCID: PMC8373086 DOI: 10.1002/advs.202100106] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Indexed: 05/15/2023]
Abstract
Obesity and type 2 diabetes are strongly associated with adipose tissue dysfunction and impaired adipogenesis. Understanding the molecular underpinnings that control adipogenesis is thus of fundamental importance for the development of novel therapeutics against metabolic disorders. However, translational approaches are hampered as current models do not accurately recapitulate adipogenesis. Here, a scaffold-free versatile 3D adipocyte culture platform with chemically defined conditions is presented in which primary human preadipocytes accurately recapitulate adipogenesis. Following differentiation, multi-omics profiling and functional tests demonstrate that 3D adipocyte cultures feature mature molecular and cellular phenotypes similar to freshly isolated mature adipocytes. Spheroids exhibit physiologically relevant gene expression signatures with 4704 differentially expressed genes compared to conventional 2D cultures (false discovery rate < 0.05), including the concerted expression of factors shaping the adipogenic niche. Furthermore, lipid profiles of >1000 lipid species closely resemble patterns of the corresponding isogenic mature adipocytes in vivo (R2 = 0.97). Integration of multi-omics signatures with analyses of the activity profiles of 503 transcription factors using global promoter motif inference reveals a complex signaling network, involving YAP, Hedgehog, and TGFβ signaling, that links the organotypic microenvironment in 3D culture to the activation and reinforcement of PPARγ and CEBP activity resulting in improved adipogenesis.
Collapse
Affiliation(s)
- Joanne X. Shen
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Morgane Couchet
- Department of MedicineHuddingeKarolinska InstitutetKarolinska University HospitalStockholm141 86Sweden
| | - Jérémy Dufau
- InsermInstitute of Metabolic and Cardiovascular Diseases (I2MC)UMR1297Toulouse31432France
- Université de ToulouseUniversité Paul SabatierFaculté de Médecine, I2MCUMR1297Toulouse31432France
| | - Thais de Castro Barbosa
- Department of MedicineHuddingeKarolinska InstitutetKarolinska University HospitalStockholm141 86Sweden
| | - Maximilian H. Ulbrich
- Renal DivisionDepartment of MedicineUniversity Hospital Freiburg and Faculty of MedicineUniversity of FreiburgFreiburg79106Germany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburg79104Germany
| | - Martin Helmstädter
- Renal DivisionDepartment of MedicineUniversity Hospital Freiburg and Faculty of MedicineUniversity of FreiburgFreiburg79106Germany
| | - Aurino M. Kemas
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Division of Micro‐ and NanosystemsKTH Royal Institute of TechnologyStockholm100 44Sweden
| | - Marie‐Adeline Marques
- InsermInstitute of Metabolic and Cardiovascular Diseases (I2MC)UMR1297Toulouse31432France
- Université de ToulouseUniversité Paul SabatierFaculté de Médecine, I2MCUMR1297Toulouse31432France
| | - Jacob B. Hansen
- Department of BiologyUniversity of CopenhagenCopenhagen2100Denmark
| | - Niklas Mejhert
- Department of MedicineHuddingeKarolinska InstitutetKarolinska University HospitalStockholm141 86Sweden
| | - Dominique Langin
- InsermInstitute of Metabolic and Cardiovascular Diseases (I2MC)UMR1297Toulouse31432France
- Université de ToulouseUniversité Paul SabatierFaculté de Médecine, I2MCUMR1297Toulouse31432France
- Toulouse University HospitalsDepartment of BiochemistryToulouse31079France
| | - Mikael Rydén
- Department of MedicineHuddingeKarolinska InstitutetKarolinska University HospitalStockholm141 86Sweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| |
Collapse
|
180
|
Luna-Yolba R, Marmoiton J, Gigo V, Marechal X, Boet E, Sahal A, Alet N, Abramovich I, Gottlieb E, Visentin V, Paillasse MR, Sarry JE. Disrupting Mitochondrial Electron Transfer Chain Complex I Decreases Immune Checkpoints in Murine and Human Acute Myeloid Leukemic Cells. Cancers (Basel) 2021; 13:3499. [PMID: 34298712 PMCID: PMC8306173 DOI: 10.3390/cancers13143499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/05/2022] Open
Abstract
Oxidative metabolism is crucial for leukemic stem cell (LSC) function and drug resistance in acute myeloid leukemia (AML). Mitochondrial metabolism also affects the immune system and therefore the anti-tumor response. The modulation of oxidative phosphorylation (OxPHOS) has emerged as a promising approach to improve the therapy outcome for AML patients. However, the effect of mitochondrial inhibitors on the immune compartment in the context of AML is yet to be explored. Immune checkpoints such as ectonucleotidase CD39 and programmed dead ligand 1 (PD-L1) have been reported to be expressed in AML and linked to chemo-resistance and a poor prognosis. In the present study, we first demonstrated that a novel selective electron transfer chain complex (ETC) I inhibitor, EVT-701, decreased the OxPHOS metabolism of murine and human cytarabine (AraC)-resistant leukemic cell lines. Furthermore, we showed that while AraC induced an immune response regulation by increasing CD39 expression and by reinforcing the interferon-γ/PD-L1 axis, EVT-701 reduced CD39 and PD-L1 expression in vitro in a panel of both murine and human AML cell lines, especially upon AraC treatment. Altogether, this work uncovers a non-canonical function of ETCI in controlling CD39 and PD-L1 immune checkpoints, thereby improving the anti-tumor response in AML.
Collapse
Affiliation(s)
- Raquel Luna-Yolba
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, 31100 Toulouse, France; (E.B.); (A.S.)
- LabEx Toucan, 31100 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31100 Toulouse, France
| | - Justine Marmoiton
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Véronique Gigo
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Xavier Marechal
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, 31100 Toulouse, France; (E.B.); (A.S.)
- LabEx Toucan, 31100 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31100 Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, 31100 Toulouse, France; (E.B.); (A.S.)
- LabEx Toucan, 31100 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31100 Toulouse, France
| | - Nathalie Alet
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Ifat Abramovich
- Technion—Israel Institute of Technology, Haifa 32000, Israel; (I.A.); (E.G.)
| | - Eyal Gottlieb
- Technion—Israel Institute of Technology, Haifa 32000, Israel; (I.A.); (E.G.)
| | - Virgile Visentin
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Michael R. Paillasse
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, 31100 Toulouse, France; (E.B.); (A.S.)
- LabEx Toucan, 31100 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31100 Toulouse, France
| |
Collapse
|
181
|
Zapata‐Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD + homeostasis in human health and disease. EMBO Mol Med 2021; 13:e13943. [PMID: 34041853 PMCID: PMC8261484 DOI: 10.15252/emmm.202113943] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+ ), a central redox cofactor and the substrate of key metabolic enzymes, is the causative factor of a number of inherited and acquired diseases in humans. Primary deficiencies of NAD+ homeostasis are the result of impaired biosynthesis, while secondary deficiencies can arise due to other factors affecting NAD+ homeostasis, such as increased NAD+ consumption or dietary deficiency of its vitamin B3 precursors. NAD+ depletion can manifest in a wide variety of pathological phenotypes, ranging from rare inherited defects, characterized by congenital malformations, retinal degeneration, and/or encephalopathy, to more common multifactorial, often age-related, diseases. Here, we discuss NAD+ biochemistry and metabolism and provide an overview of the etiology and pathological consequences of alterations of the NAD+ metabolism in humans. Finally, we discuss the state of the art of the potential therapeutic implications of NAD+ repletion for boosting health as well as treating rare and common diseases, and the possibilities to achieve this by means of the different NAD+ -enhancing agents.
Collapse
Affiliation(s)
- Rubén Zapata‐Pérez
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Clara D M van Karnebeek
- Department of PediatricsAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Pediatrics (Metabolic Diseases)Radboud Centre for Mitochondrial MedicineAmalia Children’s HospitalRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of ‘United for Metabolic Diseases’AmsterdamThe Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic DiseasesAmsterdam Gastroenterology, Endocrinology, and Metabolism (AGEM)Amsterdam Cardiovascular Sciences (ACS)Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
182
|
Welcome to the Family: Identification of the NAD + Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25. Biomolecules 2021; 11:biom11060880. [PMID: 34198503 PMCID: PMC8231866 DOI: 10.3390/biom11060880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Subcellular compartmentation is a fundamental property of eukaryotic cells. Communication and metabolic and regulatory interconnectivity between organelles require that solutes can be transported across their surrounding membranes. Indeed, in mammals, there are hundreds of genes encoding solute carriers (SLCs) which mediate the selective transport of molecules such as nucleotides, amino acids, and sugars across biological membranes. Research over many years has identified the localization and preferred substrates of a large variety of SLCs. Of particular interest has been the SLC25 family, which includes carriers embedded in the inner membrane of mitochondria to secure the supply of these organelles with major metabolic intermediates and coenzymes. The substrate specificity of many of these carriers has been established in the past. However, the route by which animal mitochondria are supplied with NAD+ had long remained obscure. Only just recently, the existence of a human mitochondrial NAD+ carrier was firmly established. With the realization that SLC25A51 (or MCART1) represents the major mitochondrial NAD+ carrier in mammals, a long-standing mystery in NAD+ biology has been resolved. Here, we summarize the functional importance and structural features of this carrier as well as the key observations leading to its discovery.
Collapse
|
183
|
Buonvicino D, Ranieri G, Pittelli M, Lapucci A, Bragliola S, Chiarugi A. SIRT1-dependent restoration of NAD+ homeostasis after increased extracellular NAD+ exposure. J Biol Chem 2021; 297:100855. [PMID: 34097876 PMCID: PMC8233143 DOI: 10.1016/j.jbc.2021.100855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
In the last several years, NAD+ supplementation has emerged as an innovative and safe therapeutic strategy for a wide spectrum of disorders, including diabetes and neuropathy. However, critical questions remain as to how NAD+ and its precursors are taken up by cells, as well as the effects of long-lasting intracellular NAD+ (iNAD+) increases. Here, we investigated the kinetics of iNAD+ levels in different cell types challenged with prolonged exposure to extracellular NAD+ (eNAD+). Surprisingly, we found that after the initial increase, iNAD+ contents decreased back to control levels (iNAD+ resetting). Focusing our attention on HeLa cells, we found that oxygen and ATP consumption occurred with similar temporal kinetics after eNAD+ exposure. Using [3H]NAD+ and [14C]NAD+, we determined that NAD+ resetting was not due to increased dinucleotide extrusion but rather due to reduced uptake of cleaved NAD+ products. Indeed, eNAD+ exposure reduced the expression of the ecto-5′-nucleotidase CD73, the nicotinamide adenine mononucleotide transporter solute carrier family 12 member 8, and the nicotinamide riboside kinase. Interestingly, silencing the NAD+-sensor enzyme sirtuin 1 prevented eNAD+-dependent transcriptional repression of ecto-5′-nucleotidase, solute carrier family 12 member 8, and nicotinamide riboside kinase, as well as iNAD+ resetting. Our findings provide the first evidence for a sirtuin 1–mediated homeostatic response aimed at maintaining physiological iNAD+ levels in conditions of excess eNAD+ availability. These data may be of relevance for therapies designed to support the NAD+ metabolome via extracellular supplementation of the dinucleotide or its precursors.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Maria Pittelli
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Stefania Bragliola
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
184
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
185
|
Chini CCS, Zeidler JD, Kashyap S, Warner G, Chini EN. Evolving concepts in NAD + metabolism. Cell Metab 2021; 33:1076-1087. [PMID: 33930322 PMCID: PMC8172449 DOI: 10.1016/j.cmet.2021.04.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
NAD(H) and NADP(H) have traditionally been viewed as co-factors (or co-enzymes) involved in a myriad of oxidation-reduction reactions including the electron transport in the mitochondria. However, NAD pathway metabolites have many other important functions, including roles in signaling pathways, post-translational modifications, epigenetic changes, and regulation of RNA stability and function via NAD-capping of RNA. Non-oxidative reactions ultimately lead to the net catabolism of these nucleotides, indicating that NAD metabolism is an extremely dynamic process. In fact, recent studies have clearly demonstrated that NAD has a half-life in the order of minutes in some tissues. Several evolving concepts on the metabolism, transport, and roles of these NAD pathway metabolites in disease states such as cancer, neurodegeneration, and aging have emerged in just the last few years. In this perspective, we discuss key recent discoveries and changing concepts in NAD metabolism and biology that are reshaping the field. In addition, we will pose some open questions in NAD biology, including why NAD metabolism is so fast and dynamic in some tissues, how NAD and its precursors are transported to cells and organelles, and how NAD metabolism is integrated with inflammation and senescence. Resolving these questions will lead to significant advancements in the field.
Collapse
Affiliation(s)
- Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Julianna D Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Gina Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
186
|
Li Z, Zhao H, Wang J. Metabolism and Chronic Inflammation: The Links Between Chronic Heart Failure and Comorbidities. Front Cardiovasc Med 2021; 8:650278. [PMID: 34026868 PMCID: PMC8131678 DOI: 10.3389/fcvm.2021.650278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes, atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney disease. The coexistance of comorbidities usually leads to multi morbidity and poor prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical need, and finding an effective therapy strategy is of great value. HF can lead to comorbidity, and in return, comorbidity may promote the progression of HF, creating a vicious cycle. This reciprocal correlation indicates there may be some common causes and biological mechanisms. Metabolism remodeling and chronic inflammation play a vital role in the pathophysiological processes of HF and comorbidities, indicating metabolism and inflammation may be the links between HF and comorbidities. In this review, we comprehensively discuss the major underlying mechanisms and therapeutic implications for comorbidities of HF. We first summarize the potential role of metabolism and inflammation in HF. Then, we give an overview of the linkage between common comorbidities and HF, from the perspective of epidemiological evidence to the underlying metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we summarize the shared risk factors, signal pathways, and therapeutic targets between HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF and comorbidities are all associated with common mechanisms. Impaired mitochondrial biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major mechanisms of both HF and comorbidities. Gene enrichment analysis showed the PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally, drug targets common to HF and several common comorbidities were found by network analysis. Such analysis has already been instrumental in drug repurposing to treat HF and comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors, IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi morbidity. We propose that targeting the metabolic and inflammatory pathways that are common to HF and comorbidities may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
187
|
Dall M, Hassing AS, Treebak JT. NAD + and NAFLD - caution, causality and careful optimism. J Physiol 2021; 600:1135-1154. [PMID: 33932956 DOI: 10.1113/jp280908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide, and new treatments are sorely needed. Nicotinamide adenine dinucleotide (NAD+ ) has been proposed as a potential target to prevent and reverse NAFLD. NAD+ is an important redox factor for energy metabolism and is used as a substrate by a range of enzymes, including sirtuins (SIRT), which regulates histone acetylation, transcription factor activity and mitochondrial function. NAD+ is also a precursor for reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is an important component of the antioxidant defense system. NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) are available as over-the-counter dietary supplements, and oral supplementation with these precursors increases hepatic NAD+ levels and prevents hepatic lipid accumulation in pre-clinical models of NAFLD. NAD+ precursors have also been found to improve hepatic mitochondrial function and decrease oxidative stress in pre-clinical NAFLD models. NAD+ repletion also prevents NAFLD progression to non-alcoholic steatohepatitis (NASH), as NAD+ precursor supplementation is associated with decreased hepatic stellate cell activation, and decreased fibrosis. However, initial clinical trials have only shown modest effects when NAD+ precursors were administrated to people with obesity. We review the available pre-clinical investigations of NAD+ supplementation for targeting NAFLD, and discuss how data from the first clinical trials can be reconciled with observations from preclinical research.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
188
|
Hosseini L, Mahmoudi J, Pashazadeh F, Salehi-Pourmehr H, Sadigh-Eteghad S. Protective Effects of Nicotinamide Adenine Dinucleotide and Related Precursors in Alzheimer's Disease: A Systematic Review of Preclinical Studies. J Mol Neurosci 2021; 71:1425-1435. [PMID: 33907963 DOI: 10.1007/s12031-021-01842-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022]
Abstract
Data from preclinical studies propose nicotinamide adenine dinucleotide (NAD+) as a neuroprotective and bioenergetics stimulant agent to treat Alzheimer's disease (AD); however, there seems to be inconsistency between behavioral and molecular outcomes. We performed this systematic review to provide a better understanding of the effects of NAD+ in rodent AD models and to summarize the literature.Studies were identified by searching PubMed, EMBASE, Scopus, Google Scholar, and the reference lists of relevant review articles published through December 2020. The search strategy was restricted to articles about NAD+, its derivatives, and their association with cognitive function in AD rodent models. The initial search yielded 320 articles, of which 11 publications were included in our systematic review.Based on the primary outcomes, it was revealed that NAD+ improves learning and memory. The secondary endpoints also showed neuroprotective effects of NAD+ on different AD models. The proposed neuroprotective mechanisms included, but were not limited to, the attenuation of the oxidative stress, inflammation, and apoptosis, while enhancing the mitochondrial function.The current systematic review summarizes the preclinical studies on NAD+ precursors and provides evidence favoring the pro-cognitive effects of such components in rodent models of AD.
Collapse
Affiliation(s)
- Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
189
|
Pasquadibisceglie A, Polticelli F. Computational studies of the mitochondrial carrier family SLC25. Present status and future perspectives. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The members of the mitochondrial carrier family, also known as solute carrier family 25 (SLC25), are transmembrane proteins involved in the translocation of a plethora of small molecules between the mitochondrial intermembrane space and the matrix. These transporters are characterized by three homologous domains structure and a transport mechanism that involves the transition between different conformations. Mutations in regions critical for these transporters’ function often cause several diseases, given the crucial role of these proteins in the mitochondrial homeostasis. Experimental studies can be problematic in the case of membrane proteins, in particular concerning the characterization of the structure–function relationships. For this reason, computational methods are often applied in order to develop new hypotheses or to support/explain experimental evidence. Here the computational analyses carried out on the SLC25 members are reviewed, describing the main techniques used and the outcome in terms of improved knowledge of the transport mechanism. Potential future applications on this protein family of more recent and advanced in silico methods are also suggested.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences , Roma Tre University , Rome , Italy
- National Institute of Nuclear Physics, Roma Tre Section , Rome , Italy
| |
Collapse
|
190
|
Liu X, Feng W, Yao F, Zhang J, Ayesha R, Chen T, Shi X, Qiao X, Ma L, Yu S, Kang XF. Biomimetic Molecular Clamp Nanopores for Simultaneous Quantifications of NAD + and NADH. Anal Chem 2021; 93:7118-7124. [PMID: 33905222 DOI: 10.1021/acs.analchem.1c00986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NADH/NAD+ is pivotal to fundamental biochemistry research and molecular diagnosis, but recognition and detection for them are a big challenge at the single-molecule level. Inspired by the biological system, here, we designed and synthesized a biomimetic NAD+/NADH molecular clamp (MC), octakis-(6-amino-6-deoxy)-γ-cyclomaltooctaose, and harbored in the engineered α-HL(M113R)7 nanopore, forming a novel single-molecule biosensor. The single-molecule measurement possesses high selectivity and a high signal-to-noise ratio, allowing to simultaneously recognize and detect for sensing NADH/NAD+ and their transformations.
Collapse
Affiliation(s)
- Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wanyue Feng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jinlei Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rauf Ayesha
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Tingting Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiaoyu Shi
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xixi Qiao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Luping Ma
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Sha Yu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
191
|
Navarro MN, Gómez de Las Heras MM, Mittelbrunn M. Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing. Br J Pharmacol 2021; 179:1839-1856. [PMID: 33817782 PMCID: PMC9292562 DOI: 10.1111/bph.15477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolism is dynamically regulated to accompany immune cell function, and altered immunometabolism can result in impaired immune responses. Concomitantly, the pharmacological manipulation of metabolic processes offers an opportunity for therapeutic intervention in inflammatory disorders. The nicotinamide adenine dinucleotide (NAD+) is a critical metabolic intermediate that serves as enzyme cofactor in redox reactions, and is also used as a co‐substrate by many enzymes such as sirtuins, adenosine diphosphate ribose transferases and synthases. Through these activities, NAD+ metabolism regulates a broad spectrum of cellular functions such as energy metabolism, DNA repair, regulation of the epigenetic landscape and inflammation. Thus, the manipulation of NAD+ availability using pharmacological compounds such as NAD+ precursors can have immune‐modulatory properties in inflammation. Here, we discuss how the NAD+ metabolism contributes to the immune response and inflammatory conditions, with a special focus on multiple sclerosis, inflammatory bowel diseases and inflammageing.
Collapse
Affiliation(s)
- Maria N Navarro
- Interactions With The Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Maria Mittelbrunn
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
192
|
Hopp AK, Hottiger MO. Uncovering the Invisible: Mono-ADP-ribosylation Moved into the Spotlight. Cells 2021; 10:680. [PMID: 33808662 PMCID: PMC8003356 DOI: 10.3390/cells10030680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD+)-dependent post-translational modification that is found on proteins as well as on nucleic acids. While ARTD1/PARP1-mediated poly-ADP-ribosylation has extensively been studied in the past 60 years, comparably little is known about the physiological function of mono-ADP-ribosylation and the enzymes involved in its turnover. Promising technological advances have enabled the development of innovative tools to detect NAD+ and NAD+/NADH (H for hydrogen) ratios as well as ADP-ribosylation. These tools have significantly enhanced our current understanding of how intracellular NAD dynamics contribute to the regulation of ADP-ribosylation as well as to how mono-ADP-ribosylation integrates into various cellular processes. Here, we discuss the recent technological advances, as well as associated new biological findings and concepts.
Collapse
Affiliation(s)
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
193
|
Ouyang Y, Bott AJ, Rutter J. Maestro of the SereNADe: SLC25A51 Orchestrates Mitochondrial NAD . Trends Biochem Sci 2021; 46:348-350. [PMID: 33618948 PMCID: PMC8344040 DOI: 10.1016/j.tibs.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/19/2022]
Abstract
Recently, three groups, Girardi et al., Kory et al., and Luongo et al., independently identified solute carrier (SLC) 25A51 as the long-sought, major mitochondrial NAD+ transporter in mammalian cells. These studies not only deorphan an uncharacterized transporter of the SLC25A family, but also shed light on other aspects of NAD+ biology.
Collapse
Affiliation(s)
- Yeyun Ouyang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
194
|
Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021; 11:metabo11020112. [PMID: 33669382 PMCID: PMC7920303 DOI: 10.3390/metabo11020112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
Collapse
Affiliation(s)
- Keeley G. Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Amritpal S. Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Seth J. Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V6H 0B3, Canada
- Correspondence: ; Tel.: +1-604-875-3121
| |
Collapse
|
195
|
Hopp AK, Teloni F, Bisceglie L, Gondrand C, Raith F, Nowak K, Muskalla L, Howald A, Pedrioli PGA, Johnsson K, Altmeyer M, Pedrioli DML, Hottiger MO. Mitochondrial NAD + Controls Nuclear ARTD1-Induced ADP-Ribosylation. Mol Cell 2021; 81:340-354.e5. [PMID: 33450210 PMCID: PMC7837215 DOI: 10.1016/j.molcel.2020.12.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Science Ph.D. Program, University of Zurich, 8057 Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Science Ph.D. Program, University of Zurich, 8057 Zurich, Switzerland
| | - Lavinia Bisceglie
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Science Ph.D. Program, University of Zurich, 8057 Zurich, Switzerland
| | - Corentin Gondrand
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Fabio Raith
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany; Faculty of Chemistry and Earth Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Science Ph.D. Program, University of Zurich, 8057 Zurich, Switzerland
| | - Lukas Muskalla
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, Cancer Biology Ph.D. Program, University of Zurich, 8057 Zurich
| | - Anna Howald
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland
| | - Patrick G A Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PHRT-CPAC, ETH Zurich, 8093 Zurich, Switzerland
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland
| | - Deena M Leslie Pedrioli
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
196
|
MURATA K. Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:479-498. [PMID: 34629356 PMCID: PMC8553519 DOI: 10.2183/pjab.97.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Polyphosphate [poly(P)] is described as a homopolymer of inorganic phosphates. Nicotinamide adenine dinucleotide kinase (NAD kinase) catalyzes the phosphorylation of NAD+ to NADP+ in the presence of ATP (ATP-NAD kinase). Novel NAD kinase that explicitly phosphorylates NAD+ to NADP+ using poly(P), besides ATP [ATP/poly(P)-NAD kinase], was found in bacteria, in particular, Gram-positive bacteria, and the gene encoding ATP/poly(P)-NAD kinase was also newly identified in Mycobacterium tuberculosis H37Rv. Both NAD kinases required multi-homopolymeric structures for activity expression. The enzymatic and genetic results, combined with their primary and tertiary structures, have led to the discovery of a long-awaited human mitochondrial NAD kinase. This discovery showed that the NAD kinase is a bacterial type of ATP/poly(P)-NAD kinase. These pioneering findings, i.e., ATP/poly(P)-NAD kinase, NAD kinase gene, and human mitochondrial NAD kinase, have significantly enhanced research on the biochemistry, molecular biology, and evolutionary biology of NAD kinase, mitochondria, and poly(P), including some biotechnological knowledge applicable to NADP+ production.
Collapse
|
197
|
Girardi E, Agrimi G, Goldmann U, Fiume G, Lindinger S, Sedlyarov V, Srndic I, Gürtl B, Agerer B, Kartnig F, Scarcia P, Di Noia MA, Liñeiro E, Rebsamen M, Wiedmer T, Bergthaler A, Palmieri L, Superti-Furga G. Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nat Commun 2020; 11:6145. [PMID: 33262325 PMCID: PMC7708531 DOI: 10.1038/s41467-020-19871-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction-driven functional gene deorphanization.
Collapse
Affiliation(s)
- Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gennaro Agrimi
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giuseppe Fiume
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sabrina Lindinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ismet Srndic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Gürtl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Antonietta Di Noia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Eva Liñeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Luigi Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
198
|
Quinn WJ, Jiao J, TeSlaa T, Stadanlick J, Wang Z, Wang L, Akimova T, Angelin A, Schäfer PM, Cully MD, Perry C, Kopinski PK, Guo L, Blair IA, Ghanem LR, Leibowitz MS, Hancock WW, Moon EK, Levine MH, Eruslanov EB, Wallace DC, Baur JA, Beier UH. Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Rep 2020; 33:108500. [PMID: 33326785 PMCID: PMC7830708 DOI: 10.1016/j.celrep.2020.108500] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleotide (NAD+), which is reduced to NADH by lactate dehydrogenase in lactate-rich conditions, is a key point of metabolic control in T cells. Reduced NADH is not available for NAD+-dependent enzymatic reactions involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate dehydrogenase (PGDH). We show that increased lactate leads to a block at GAPDH and PGDH, leading to the depletion of post-GAPDH glycolytic intermediates, as well as the 3-phosphoglycerate derivative serine that is known to be important for T cell proliferation. Supplementing serine rescues the ability of T cells to proliferate in the presence of lactate-induced reductive stress. Directly targeting the redox state may be a useful approach for developing novel immunotherapies in cancer and therapeutic immunosuppression. Quinn et al. report that lactate has an acidity-independent suppressive effect on effector T cell proliferation mediated through a shift from NAD+ to NADH (lactate-induced reductive stress). This impairs glycolysis and glucose-derived serine production, which is required for effector T cell proliferation.
Collapse
Affiliation(s)
- William J Quinn
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jing Jiao
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara TeSlaa
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Jason Stadanlick
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhonglin Wang
- Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Patrick M Schäfer
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michelle D Cully
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caroline Perry
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Piotr K Kopinski
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lili Guo
- Penn SRP Center, Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Penn SRP Center, Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Louis R Ghanem
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Leibowitz
- Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine and Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew H Levine
- Department of Surgery, Penn Transplant Institute, Perelman School of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joseph A Baur
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ulf H Beier
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|