151
|
Aylon Y, Michael D, Shmueli A, Yabuta N, Nojima H, Oren M. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev 2007; 20:2687-700. [PMID: 17015431 PMCID: PMC1578695 DOI: 10.1101/gad.1447006] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Damage to the mitotic spindle and centrosome dysfunction can lead to cancer. To prevent this, cells trigger a succession of checkpoint responses, where an initial mitotic delay is followed by slippage without cytokinesis, spawning tetraploid G1 cells that undergo a p53-dependent G1/S arrest. We describe the importance of Lats2 (Large Tumor Suppressor 2) in this checkpoint response. Lats2 binds Mdm2, inhibits its E3 ligase activity, and activates p53. Nocodazole, a microtubule poison that provokes centrosome/mitotic apparatus dysfunction, induces Lats2 translocation from centrosomes to the nucleus and p53 accumulation. In turn, p53 rapidly and selectively up-regulates Lats2 expression in G2/M cells, thereby defining a positive feedback loop. Abrogation of Lats2 promotes accumulation of polyploid cells upon exposure to nocodazole, which can be prevented by direct activation of p53. The Lats2-Mdm2-p53 axis thus constitutes a novel checkpoint pathway critical for the maintenance of proper chromosome number.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
152
|
Kuninaka S, Iida SI, Hara T, Nomura M, Naoe H, Morisaki T, Nitta M, Arima Y, Mimori T, Yonehara S, Saya H. Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation. Oncogene 2006; 26:2395-406. [PMID: 17130845 DOI: 10.1038/sj.onc.1210042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The serine protease Omi/HtrA2 was initially regarded as a proapoptotic molecule that proteolyses several proteins to induce cell death. Recent studies, however, indicate that loss of Omi protease activity increases susceptibility to stress-induced cell death. These complicated findings suggest that the protease activity of Omi is involved not only in apoptosis but also in cellular homeostasis. However, the targets which Omi uses to mediate this novel process are unknown. Previously, we showed that WARTS (WTS)/large tumor-suppressor 1 mitotic kinase interacts with the protein/discs-large protein/zonula (PDZ) domain of Omi and promotes its protease activity. We now report that WTS is a substrate for Omi protease activity, thus it is not only a regulator but also a downstream target of this protease. Interaction with Omi PDZ domain is required for WTS to be proteolysed. When caspase-9-deficient mouse embryonic fibroblasts (MEFs) were treated with staurosporine, WTS was proteolysed by activated endogenous Omi without induction of cell death. Therefore, protease activity of Omi and proteolysis of WTS are not necessarily required for cell death. We found that depletion of Omi from HeLa cells results in accelerated cell proliferation despite no significant change in the duration of mitosis. The depletion of WTS showed the same effect on S phase progression. Therefore, WTS proteolytic fragment(s) generated by Omi may act as an inhibitor of G1/S progression. Our data reveal a role for Omi-mediated processing of WTS in negative regulation of cell cycle progression at interphase, suggesting a novel function of Omi other than apoptosis.
Collapse
Affiliation(s)
- S Kuninaka
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Mrkobrada S, Boucher L, Ceccarelli DFJ, Tyers M, Sicheri F. Structural and Functional Analysis of Saccharomyces cerevisiae Mob1. J Mol Biol 2006; 362:430-40. [PMID: 16934835 DOI: 10.1016/j.jmb.2006.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/01/2006] [Accepted: 07/06/2006] [Indexed: 01/11/2023]
Abstract
The Mob proteins function as activator subunits for the Dbf2/Dbf20 family of protein kinases. Human and Xenopus Mob1 protein structures corresponding to the most conserved C-terminal core, but lacking the variable N-terminal region, have been reported and provide a framework for understanding the mechanism of Dbf2/Dbf20 regulation. Here, we report the 2.0 A X-ray crystal structure of Saccharomyces cerevisiae Mob1 containing both the conserved C-terminal core and the variable N-terminal region. Within the N-terminal region, three novel structural elements are observed; namely, an alpha-helix denoted H0, a strand-like element denoted S0 and a short beta strand denoted S-1. Helix H0 associates in an intermolecular manner with a second Mob1 molecule to form a Mob1 homodimer. Strand S0 binds to the core domain in an intramolecular manner across a putative Dbf2 binding site mapped by Mob1 temperature-sensitive alleles and NMR binding experiments. In vivo functional analysis demonstrates that Mob1 mutants that target helix H0 or its reciprocal binding site are biologically compromised. The N-terminal region of Mob1 thus contains structural elements that are functionally important.
Collapse
Affiliation(s)
- Serge Mrkobrada
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario Canada M5G 1X5
| | | | | | | | | |
Collapse
|
154
|
Bhattacharya S, Macdonald ST, Farthing CR. Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature. Clin Sci (Lond) 2006; 111:35-46. [PMID: 16764556 DOI: 10.1042/cs20060003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac failure affects 1.5% of the adult population and is predominantly caused by myocardial dysfunction secondary to coronary vascular insufficiency. Current therapeutic strategies improve prognosis only modestly, as the primary cause -- loss of normally functioning cardiac myocytes -- is not being corrected. Adult cardiac myocytes are unable to divide and regenerate to any significant extent following injury. New cardiac myocytes are, however, created during embryogenesis from progenitor cells and then by cell division from existing cardiac myocytes. This process is intimately linked to the development of coronary vasculature from progenitors originating in the endothelium, the proepicardial organ and neural crest. In this review, we systematically evaluate approx. 90 mouse mutations that impair heart muscle growth during development. These studies provide genetic evidence for interactions between myocytes, endothelium and cells derived from the proepicardial organ and the neural crest that co-ordinate myocardial and coronary vascular development. Conditional knockout and transgenic rescue experiments indicate that Vegfa, Bmpr1a (ALK3), Fgfr1/2, Mapk14 (p38), Hand1, Hand2, Gata4, Zfpm2 (FOG2), Srf and Txnrd2 in cardiac myocytes, Rxra and Wt1 in the proepicardial organ, EfnB2, Tek, Mapk7, Pten, Nf1 and Casp8 in the endothelium, and Bmpr1a and Pax3 in neural crest cells are key molecules controlling myocardial development. Coupling of myocardial and coronary development is mediated by BMP (bone morphogenetic protein), FGF (fibroblast growth factor) and VEGFA (vascular endothelial growth factor A) signalling, and also probably involves hypoxia. Pharmacological targeting of these molecules and pathways could, in principle, be used to recreate the embryonic state and achieve coupled myocardial and coronary vascular regeneration in failing hearts.
Collapse
Affiliation(s)
- Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | | | |
Collapse
|
155
|
Liu T, Laurell C, Selivanova G, Lundeberg J, Nilsson P, Wiman KG. Hypoxia induces p53-dependent transactivation and Fas/CD95-dependent apoptosis. Cell Death Differ 2006; 14:411-21. [PMID: 16917513 DOI: 10.1038/sj.cdd.4402022] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
p53 triggers apoptosis in response to cellular stress. We analyzed p53-dependent gene and protein expression in response to hypoxia using wild-type p53-carrying or p53 null HCT116 colon carcinoma cells. Hypoxia induced p53 protein levels and p53-dependent apoptosis in these cells. cDNA microarray analysis revealed that only a limited number of genes were regulated by p53 upon hypoxia. Most classical p53 target genes were not upregulated. However, we found that Fas/CD95 was significantly induced in response to hypoxia in a p53-dependent manner, along with several novel p53 target genes including ANXA1, DDIT3/GADD153 (CHOP), SEL1L and SMURF1. Disruption of Fas/CD95 signalling using anti-Fas-blocking antibody or a caspase 8 inhibitor abrogated p53-induced apoptosis in response to hypoxia. We conclude that hypoxia triggers a p53-dependent gene expression pattern distinct from that induced by other stress agents and that Fas/CD95 is a critical regulator of p53-dependent apoptosis upon hypoxia.
Collapse
Affiliation(s)
- T Liu
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
156
|
Voorhoeve PM, le Sage C, Schrier M, Gillis AJM, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LHJ, Agami R. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124:1169-81. [PMID: 16564011 DOI: 10.1016/j.cell.2006.02.037] [Citation(s) in RCA: 951] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/16/2006] [Accepted: 02/15/2006] [Indexed: 12/12/2022]
Abstract
Endogenous small RNAs (miRNAs) regulate gene expression by mechanisms conserved across metazoans. While the number of verified human miRNAs is still expanding, only few have been functionally annotated. To perform genetic screens for novel functions of miRNAs, we developed a library of vectors expressing the majority of cloned human miRNAs and created corresponding DNA barcode arrays. In a screen for miRNAs that cooperate with oncogenes in cellular transformation, we identified miR-372 and miR-373, each permitting proliferation and tumorigenesis of primary human cells that harbor both oncogenic RAS and active wild-type p53. These miRNAs neutralize p53-mediated CDK inhibition, possibly through direct inhibition of the expression of the tumor-suppressor LATS2. We provide evidence that these miRNAs are potential novel oncogenes participating in the development of human testicular germ cell tumors by numbing the p53 pathway, thus allowing tumorigenic growth in the presence of wild-type p53.
Collapse
Affiliation(s)
- P Mathijs Voorhoeve
- Division of Tumour Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Hergovich A, Stegert MR, Schmitz D, Hemmings BA. NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 2006; 7:253-64. [PMID: 16607288 DOI: 10.1038/nrm1891] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Members of the NDR (nuclear Dbf2-related) protein-kinase family are essential components of pathways that control important cellular processes, such as morphological changes, mitotic exit, cytokinesis, cell proliferation and apoptosis. Recent progress has shed light on the mechanisms that underlie the regulation and function of the NDR family members. Combined data from yeast, worms, flies, mice and human cells now highlight the conserved and important roles of the different NDR kinases in distinct cellular processes.
Collapse
Affiliation(s)
- Alexander Hergovich
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
158
|
Abstract
The control of cell number during animal development is a longstanding puzzle. Recent studies in the fruit fly Drosophila melanogaster have defined a new signaling pathway that restricts cell proliferation in differentiating epithelia. The cytoskeletal proteins Merlin and Expanded, which play a role in cell adhesion and structure, control the activation of the Hippo/Salvador kinase complex, which in turn activates the Warts/Mats kinase complex. Warts/Mats kinase phosphorylates and inhibits Yorkie, a transcriptional coactivator that positively regulates cell growth, survival, and proliferation. This conserved signaling pathway contains several tumor-suppressor genes and regulates the contact inhibition of proliferation in cultured cells.
Collapse
Affiliation(s)
- Bruce A Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA.
| |
Collapse
|
159
|
Jiménez-Velasco A, Román-Gómez J, Agirre X, Barrios M, Navarro G, Vázquez I, Prósper F, Torres A, Heiniger A. Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia 2006; 19:2347-50. [PMID: 16208412 DOI: 10.1038/sj.leu.2403974] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
160
|
Abstract
Centrosomes, spindle pole bodies, and related structures in other organisms are a morphologically diverse group of organelles that share a common ability to nucleate and organize microtubules and are thus referred to as microtubule organizing centers or MTOCs. Features associated with MTOCs include organization of mitotic spindles, formation of primary cilia, progression through cytokinesis, and self-duplication once per cell cycle. Centrosomes bind more than 100 regulatory proteins, whose identities suggest roles in a multitude of cellular functions. In fact, recent work has shown that MTOCs are required for several regulatory functions including cell cycle transitions, cellular responses to stress, and organization of signal transduction pathways. These new liaisons between MTOCs and cellular regulation are the focus of this review. Elucidation of these and other previously unappreciated centrosome functions promises to yield exciting scientific discovery for some time to come.
Collapse
Affiliation(s)
- Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
161
|
Abe Y, Ohsugi M, Haraguchi K, Fujimoto J, Yamamoto T. LATS2-Ajuba complex regulates gamma-tubulin recruitment to centrosomes and spindle organization during mitosis. FEBS Lett 2006; 580:782-8. [PMID: 16413547 DOI: 10.1016/j.febslet.2005.12.096] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/27/2005] [Accepted: 12/29/2005] [Indexed: 10/25/2022]
Abstract
LATS2 is a human homolog of Drosophila tumor suppressor lats/warts, and encodes a mitotic kinase whose physiological roles remain to be elucidated. We performed yeast two-hybrid screening and identified a LIM protein Ajuba, as a binding partner of LATS2. LATS2 was localized to the centrosomes throughout the cell cycle and was associated with Ajuba during mitosis, contributing to latter's mitotic phosphorylation. Depletion of LATS2 or Ajuba impaired centrosomal accumulation of gamma-tubulin and spindle formation at the onset of mitosis, suggesting that the LATS2-Ajuba complex regulates organization of the spindle apparatus through recruitment of gamma-tubulin to the centrosome.
Collapse
Affiliation(s)
- Yoshinori Abe
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
162
|
Abstract
Cytokinesis in eukaryotes involves the regulated assembly and contraction of a ring comprising filamentous (F)-actin and myosin II. Assembly of the contractile ring occurs through the accumulation of cortical cues at the specified division plane, followed by recruitment of F-actin, myosin II and accessory proteins involved in generating the mature ring. Ring contraction is temporally regulated to occur only after chromosome segregation and, in yeast, it is controlled by a conserved signaling cascade that becomes active only after Cdk1-Cyclin-B inactivation. In this article (which is part of the Cytokinesis series), we discuss recent studies that have begun to clarify both the spatial and the temporal order of ring assembly and that have illuminated the signals that trigger ring contraction in yeast. These studies add to the growing knowledge of the processes that control eukaryotic cell division.
Collapse
Affiliation(s)
- Benjamin A Wolfe
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
163
|
Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 2005; 120:675-85. [PMID: 15766530 DOI: 10.1016/j.cell.2004.12.036] [Citation(s) in RCA: 453] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 11/24/2004] [Accepted: 12/27/2004] [Indexed: 01/11/2023]
Abstract
Appropriate cell number and organ size in a multicellular organism are determined by coordinated cell growth, proliferation, and apoptosis. Disruption of these processes can cause cancer. Recent studies have identified the Large tumor suppressor (Lats)/Warts (Wts) protein kinase as a key component of a pathway that controls the coordination between cell proliferation and apoptosis. Here we describe growth inhibitory functions for a Mob superfamily protein, termed Mats (Mob as tumor suppressor), in Drosophila. Loss of Mats function results in increased cell proliferation, defective apoptosis, and induction of tissue overgrowth. We show that mats and wts function in a common pathway. Mats physically associates with Wts to stimulate the catalytic activity of the Wts kinase. A human Mats ortholog (Mats1) can rescue the lethality associated with loss of Mats function in Drosophila. As Mats1 is mutated in human tumors, Mats-mediated growth inhibition and tumor suppression is likely conserved in humans.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis/physiology
- Cell Line
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Conserved Sequence
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Drosophila
- Drosophila Proteins/genetics
- Drosophila Proteins/isolation & purification
- Drosophila Proteins/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Developmental/genetics
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Mutation/genetics
- Neoplasms/genetics
- Neoplasms/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Protein Kinases/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transferases (Other Substituted Phosphate Groups)
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/isolation & purification
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Zhi-Chun Lai
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | |
Collapse
|