151
|
Suominen K, Mantere O, Valtonen H, Arvilommi P, Leppämäki S, Paunio T, Isometsä E. Early age at onset of bipolar disorder is associated with more severe clinical features but delayed treatment seeking. Bipolar Disord 2007; 9:698-705. [PMID: 17988359 DOI: 10.1111/j.1399-5618.2007.00388.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Our aim was to obtain a comprehensive view of differences between bipolar disorder (BD) patients with onset at early versus adult age in a representative study cohort. METHODS In the Jorvi Bipolar Study (JoBS), 1,630 psychiatric in- and outpatients were systematically screened for BD using the Mood Disorder Questionnaire (MDQ). A total of 191 bipolar I and II patients with a current DSM-IV episode were interviewed to obtain information about age at onset of mood symptoms, clinical course, treatment, comorbidity, and functional status. The patients were classified as either early onset (<18 years) or adult onset. RESULTS One-third of subjects with BD (58/191, 30%) had early onset. This was associated with female gender, more lifetime psychotic symptoms, greater overall comorbidity, and a greater length of time from first episode to treatment. CONCLUSIONS Although BD patients with early age at onset have more severe clinical features and illness course, the delays from first episode to treatment and to correct diagnosis are longer than for those with adult onset disorder. To reduce morbidity rates related to the most severe forms of BD, the recognition and diagnosis of BD during adolescence needs to be improved.
Collapse
Affiliation(s)
- Kirsi Suominen
- Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
152
|
McQuillin A, Rizig M, Gurling HMD. A microarray gene expression study of the molecular pharmacology of lithium carbonate on mouse brain mRNA to understand the neurobiology of mood stabilization and treatment of bipolar affective disorder. Pharmacogenet Genomics 2007; 17:605-17. [PMID: 17622937 DOI: 10.1097/fpc.0b013e328011b5b2] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Lithium is the most widely prescribed and effective mood-stabilizing drug used for the treatment of bipolar affective disorder. To understand how lithium produces changes in the brain, we studied brain mRNA from 10 mice after treatment with lithium and compared them with 10 untreated controls. METHODS We used the MAS 5.0, Smudge miner, GC-RMA and FDR-AME packages of software (Bioconductor, Seattle, Washington, USA) to determine gene expression changes using Affymetrix MOE430E 2.0 microarrays after 2 weeks of lithium treatment. RESULTS We used both a false discovery rate (FDR-AME) assessment of significance and the Bonferroni method to correct for the possibility of false-positive changes in gene expression among the 39,000 genes present in each array. Our primary method of analysis was to use t-tests on normalized gene expression intensities. By using a Bonferroni correction of P<1.28x10(-6), we found that 121 genes showed significant changes in expression. The three genes with the most changed mRNA expression were alanine-glyoxylate aminotransferase 2-like 1 (Agxt2l1), c-mer proto-oncogene tyrosine kinase (Mertk) and sulfotransferase family 1A phenol-preferring member 1 (Sult1a1). Also among the group of 121 genes with significant changes in gene expression that survived Bonferroni correction () were the genes encoding the Per2 period gene (Per2 P=1.33x10(-8), 2.47-fold change), the metabotropic glutamate receptor (Grm3, P=9.48x10(-7), 0.7-fold change) and secretogranin II (Scg2, P=9.48x10(-7), 1.28-fold change) as well as several myelin-related genes and protein phosphatases. By taking a significance value of P<0.05 without Bonferroni or FDR-AME correction, we identified a total of 4474 genes showing changed mRNA expression in response to lithium. FDR-AME analysis showed that 1027 out of these 4474 genes were significantly changed in expression. Among the mRNAs that were significantly changed with t-tests and FDR-AME were several that had already been implicated in response to lithium such as increased brain-derived neurotrophic factor mRNA ( t-test P=0.0008-0.0005, FDR-AME P=0.0396-0.0393, 1.44-fold change) beta-phosphatidylinositol transfer protein (Pitpnb, t-test P<0.0000, FDR-AME P=0.003, 1.26-fold change) and inositol (myo)-1(or 4)-monophosphatase 1(Impa1, t test P<0.0000, FDR-AME P=0.004, 1.22-fold change). Of interest in relation to the side effect of hypothyroidism, which is caused by long-term lithium treatment was the fact that we observed changes in mRNA expression in five genes related to thyroxine metabolism. These included deiodinase (Dio2 t-test P=0.000003-0.004, FDR-AME P=0.0048-0.061, 1.53-fold change) and thyroid hormone receptor interactor 12 (Trip12, t-test P=0.003, FDR-AME P=0.075, 1.19-fold change). Of relevance to multiple sclerosis was the observed upregulation of the long isoform of myelin basic protein (t-test P=0.00013, FDR-AME P=0.0169). Changes in mRNA expression were found in 45 genes related to phosphatidylinositol metabolism using uncorrected t-tests but only 13 genes after FDR-AME. Thus, our work confirms the considerable previous research implicating this system. Gene ontology analysis showed that lithium significantly affected a cluster of processes associated with nucleotide and nucleoside metabolism. The analysis showed that there were 170 genes expressing RNA described as having ATP-binding or ATPase activity that had changed mRNA expression. The changes found have been discussed in relation to previous experimental work on the pharmacology of lithium.
Collapse
Affiliation(s)
- Andrew McQuillin
- Molecular Psychiatry Laboratory, Department of Mental Health Sciences, Windeyer Institute of Medical Sciences, Royal Free and University College Medical School, London, UK
| | | | | |
Collapse
|
153
|
Agren H, Backlund L. Bipolar disorder: Balancing mood states early in course of illness effects long-term prognosis. Physiol Behav 2007; 92:199-202. [PMID: 17631368 DOI: 10.1016/j.physbeh.2007.05.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The importance of observing swings above euthymic normality in patients with affective disorders has been emphasized by many research groups. The concept of mood bipolarity has not only established a Bipolar II disorder (with only hypomania, not mania, but also opened up for discussion of a Bipolar Spectrum, that would necessitate treatment with a broader range of agents, i.e., not only antidepressants. In order to understand the determinants of the patterns of mood swings in individuals with bipolar disorder we have used a computerized life-charting technique to analyze a large amount of clinical information in 100 patients with bipolar mood swings. In a cross-sectional set-up, we demonstrate clear evidence of achieving a better long-term stabilization when starting patients on mood stabilizer early after the first evidence of the mood disorder.
Collapse
Affiliation(s)
- Hans Agren
- Karolinska Institutet, Department of Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
154
|
Gratacòs M, Sahún I, Gallego X, Amador-Arjona A, Estivill X, Dierssen M. Candidate genes for panic disorder: insight from human and mouse genetic studies. GENES BRAIN AND BEHAVIOR 2007; 6 Suppl 1:2-23. [PMID: 17543035 DOI: 10.1111/j.1601-183x.2007.00318.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Panic disorder is a major cause of medical attention with substantial social and health service cost. Based on pharmacological studies, research on its etiopathogenesis has been focused on the possible dysfunction of specific neurotransmitter systems. However, recent work has related the genes involved in development, synaptic plasticity and synaptic remodeling to anxiety disorders. This implies that learning processes and changes in perception, interpretation and behavioral responses to environmental stimuli are essential for development of complex anxiety responses secondary to the building of specific brain neural circuits and to adult plasticity. The focus of this review is on progress achieved in identifying genes that confer increased risk for panic disorder through genetic epidemiology and the use of genetically modified mouse models. The integration of human and animal studies targeting behavioral, systems-level, cellular and molecular levels will most probably help identify new molecules with potential impact on the pathogenetic aspects of the disease.
Collapse
Affiliation(s)
- M Gratacòs
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona Biomedical Research Park, Barcelona, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
155
|
Bachmann RF, Schloesser RJ, Gould TD, Manji HK. Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol Neurobiol 2007; 32:173-202. [PMID: 16215281 DOI: 10.1385/mn:32:2:173] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder is a devastating disease with a lifetime incidence of about 1% in the general population. Suicide is the cause of death in 10 to 15% of patients and in addition to suicide, mood disorders are associated with many other harmful health effects. Mood stabilizers are medications used to treat bipolar disorder. In addition to their therapeutic effects for the treatment of acute manic episodes, mood stabilizers are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. The most established and investigated mood-stabilizing drugs are lithium and valproate but other anticonvulsants (such as carbamazepine and lamotrigine) and antipsychotics are also considered as mood stabilizers. Despite the efficacy of these diverse medications, their mechanisms of action remain, to a great extent, unknown. Lithium's inhibition of some enzymes, such as inositol monophosphatase and glycogen synthase kinase-3, probably results in its mood-stabilizing effects. Valproate may share its anticonvulsant target with its mood-stabilizing target or may act through other mechanisms. It has been shown that lithium, valproate, and/or carbamazepine regulate numerous factors involved in cell survival pathways, including cyclic adenine monophospate response element-binding protein, brain-derived neurotrophic factor, bcl-2, and mitogen-activated protein kinases. These drugs have been suggested to have neurotrophic and neuroprotective properties that ameliorate impairments of cellular plasticity and resilience underlying the pathophysiology of mood disorders. This article also discusses approaches to develop novel treatments specifically for bipolar disorder.
Collapse
Affiliation(s)
- Rosilla F Bachmann
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
156
|
Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V, da Silva Vargas R, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: A possible role for lithium antioxidant effects. Neurosci Lett 2007; 421:33-6. [PMID: 17548157 DOI: 10.1016/j.neulet.2007.05.016] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/07/2007] [Accepted: 05/09/2007] [Indexed: 01/13/2023]
Abstract
Studies have proposed the involvement of oxidative stress and neuronal energy dysfunctions in the pathophysiology of bipolar disorder (BD). This study evaluates plasma levels of the oxidative/energy metabolism markers, thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), and neuron-specific enolase (NSE) during initial episodes of mania compared to controls in 75 subjects. Two groups of manic subjects (unmedicated n=30, and lithium-treated n=15) were age/gender matched with healthy controls (n=30). TBARS and antioxidant enzymes activity (SOD and CAT) were increased in unmedicated manic patients compared to controls. Conversely, plasma NSE levels were lower during mania than in the controls. In contrast, acute treatment with lithium showed a significant reduction in both SOD/CAT ratio and TBARS levels. These results suggest that initial manic episodes are associated with both increased oxidative stress parameters and activated antioxidant defenses, which may be related to dysfunctions on energy metabolism and neuroplasticity pathways. Antioxidant effects using lithium in mania were shown, and further studies are necessary to evaluate the potential role of these effects in the pathophysiology and therapeutics of BD.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Mood Disorders Program, HMIPV, Fundacao Faculdade Federal Ciencias Medicas de Porto Alegre and Bipolar Disorder Research Program, Espirita Hospital of Porto Alegre, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Attentional control and brain metabolite levels in methamphetamine abusers. Biol Psychiatry 2007; 61:1272-80. [PMID: 17097074 DOI: 10.1016/j.biopsych.2006.07.031] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/11/2006] [Accepted: 07/13/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND Methamphetamine abuse is associated with neurotoxicity to frontostriatal brain regions with concomitant deleterious effects on cognitive processes. METHODS By using a computerized measure of selective attention and single-voxel proton magnetic resonance spectroscopy, we examined the relationship between attentional control and brain metabolite levels in the anterior cingulate cortex (ACC) and primary visual cortex (PVC) in 36 currently abstinent methamphetamine abusers and 16 non-substance-using controls. RESULTS The methamphetamine abusers exhibited reduced attentional control (i.e., increased Stroop interference) compared with the controls (p = .04). Bonferroni-adjusted comparisons revealed that ACC levels of N-acetyl aspartate (NAA)-creatine and phosphocreatine (Cr) were lower and that levels of choline (Cho)-NAA were higher in the methamphetamine abusers compared with the controls, at the adjusted p value of .0125. Levels of NAA-Cr, but not of Cho-NAA, within the ACC correlated with measures of attentional control in the methamphetamine abusers (r = -.41; p = .01) but not in controls (r = .22; p = .42). No significant correlations were observed in the PVC (methamphetamine abusers, r = .19; p = .28, controls, r = .38; p = .15). CONCLUSIONS Changes in neurochemicals within frontostriatal brain regions including ACC may contribute to deficits in attentional control among chronic methamphetamine abusers.
Collapse
|
158
|
Varea E, Blasco-Ibáñez JM, Gómez-Climent MA, Castillo-Gómez E, Crespo C, Martínez-Guijarro FJ, Nácher J. Chronic fluoxetine treatment increases the expression of PSA-NCAM in the medial prefrontal cortex. Neuropsychopharmacology 2007; 32:803-12. [PMID: 16900104 DOI: 10.1038/sj.npp.1301183] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent hypotheses suggest that changes in neuronal structure and connectivity may underlie the etiology of depression. The medial prefrontal cortex (mPFC) is affected by depression and shows neuronal remodeling during adulthood. This plasticity may be mediated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), which is intensely expressed in the adult mPFC. As the expression of PSA-NCAM is increased by serotonin in other cerebral regions, antidepressants acting on serotonin reuptake may influence PSA-NCAM expression and thus counteract the effects of depression by modulating neuronal structural plasticity. Using immunohistochemistry, we have studied the relationship between serotoninergic fibers and PSA-NCAM expressing neurons in the adult rat mPFC and the expression of serotonin receptors in these cells. The effects of fluoxetine treatment for 14 days on mPFC PSA-NCAM expression have also been analyzed. Although serotoninergic fibers usually do not contact PSA-NCAM immunoreactive neurons, most of these cells express 5-HT3 receptors. In general, chronic fluoxetine treatment induces significant increases in the number of PSA-NCAM immunoreactive neurons and in neuropil immunostaining and coadministration of the 5-HT3 antagonist ondansetron blocks the effects of fluoxetine on PSA-NCAM expression. These results indicate that fluoxetine, acting through 5-HT3 receptors, can modulate PSA-NCAM expression in the mPFC. This modulation may mediate the structural plasticity of this cortical region and opens new perspectives on the study of the molecular bases of depression.
Collapse
Affiliation(s)
- Emilio Varea
- Cell Biology Department, Neurobiology Unit, Program in Basic and Applied Neurosciences, Universitat de València, Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|
159
|
Yang MS, Gill M. A review of gene linkage, association and expression studies in autism and an assessment of convergent evidence. Int J Dev Neurosci 2007; 25:69-85. [PMID: 17236739 DOI: 10.1016/j.ijdevneu.2006.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 01/01/2023] Open
Abstract
Autism is a neurodevelopmental disorder with high heritability and a likely complex genetic architecture. Much genetic evidence has accumulated in the last 20 years but no gene has been unequivocally identified as containing risk variants for autism. In this article we review the past and present literature on neuro-pathological, genetic linkage, genetic association, and gene expression studies in this disorder. We sought convergent evidence to support particular genes or chromosomal regions that might be likely to contain risk DNA variants. The convergent evidence from these studies supports the current hypotheses that there are multiple genetic loci predisposing to autism, and that genes involved in neurodevelopment are especially important for future genetic studies. Convergent evidence suggests the chromosome regions 7q21.2-q36.2, 16p12.1-p13.3, 6q14.3-q23.2, 2q24.1-q33.1, 17q11.1-q21.2, 1q21-q44 and 3q21.3-q29, are likely to contain risk genes for autism. Taken together with results from neuro-pathological studies, genes involved in brain development located at the above regions should be prioritized for future genetic research.
Collapse
Affiliation(s)
- Mao Sheng Yang
- Department of Psychiatry, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| | | |
Collapse
|
160
|
Harris L, Swatton J, Wengenroth M, Wayland M, Lockstone H, Holland A, Faull R, Lilley K, Bahn S. Differences in Protein Profiles in Schizophrenia Prefrontal Cortex Compared to Other Major Brain Disorders. ACTA ACUST UNITED AC 2007. [DOI: 10.3371/csrp.1.1.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
161
|
Chiou SH, Kao CL, Chang YL, Ku HH, Tsai YJ, Lin HT, Yen CJ, Peng CH, Chiu JH, Tsai TH. Evaluation of anti-Fas ligand-induced apoptosis and neural differentiation of PC12 cells treated with nerve growth factor using small interfering RNA method and sampling by microdialysis. Anal Biochem 2007; 363:46-57. [PMID: 17306206 DOI: 10.1016/j.ab.2007.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 12/16/2006] [Accepted: 01/12/2007] [Indexed: 10/23/2022]
Abstract
The small interfering RNA (siRNA) method is an effective technique for silencing gene expression and is a useful tool for screening the gene functions in drug discovery. Our study found that nerve growth factor (NGF) can increase the cell viability of PC12 cells and that NGF induction up-regulates the expression of Bcl-2 detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). To further investigate the role of Bcl-2 expression in NGF-treated PC12 cells, the plasmid of Bcl-2 siRNA was then transfected into PC12 cells. Moreover, to investigate and continuously monitor the real-time dynamic neurotransmitter release, and to compare with the time course of Bcl-2 expression, a liquid chromatography coupled with electrochemical detection (LC-ED) and with a microdialysis device was used. After 6h of NGF being added to the PC12 cell culture medium, the dopamine (DA) concentrations were significantly increased (P<0.05). This result is simultaneously compatible with the up-regulated messenger RNA (mRNA) expressions of tyrosine hydroxylase (TH), aromatic acid decarboxylase (AADC), and Bcl-2 by RT-PCR. Using the Bcl-2 siRNA method, our data revealed that NGF can inhibit Fas ligand (FasL)-induced apoptosis in PC12 cells through the activation of Bcl-2. The in vitro observation further demonstrated that NGF can stimulate the neurite development in PC12 cells through the activation of Bcl-2. Moreover, the DA concentrations of NGF induction were decreased specifically by Bcl-2 siRNA (P<0.05). In sum, our data support that NGF prevents Fas-induced apoptosis, facilitates neural differentiation, promotes dendritic formation, and increases DA release in PC12 cells through activation of Bcl-2.
Collapse
Affiliation(s)
- Shih-Hwa Chiou
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Strategies for improving sensitivity of gene expression profiling: regulation of apoptosis in the limbic lobe of schizophrenics and bipolars. PROGRESS IN BRAIN RESEARCH 2007. [PMID: 17027696 DOI: 10.1016/s0079-6123(06)58008-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
163
|
Gianaros PJ, Jennings JR, Sheu LK, Greer PJ, Kuller LH, Matthews KA. Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. Neuroimage 2007; 35:795-803. [PMID: 17275340 PMCID: PMC1868546 DOI: 10.1016/j.neuroimage.2006.10.045] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/13/2006] [Accepted: 10/20/2006] [Indexed: 11/21/2022] Open
Abstract
Chronic stress in non-human animals decreases the volume of the hippocampus, a brain region that supports learning and memory and that regulates neuroendocrine activity. In humans with stress-related psychiatric syndromes characterized by impaired learning and memory and dysregulated neuroendocrine activity, surrogate and retrospective indicators of chronic stress are also associated with decreased hippocampal volume. However, it is unknown whether chronic stress is associated with decreased hippocampal volume in those without a clinical syndrome. We tested whether reports of life stress obtained prospectively over an approximate 20-year period predicted later hippocampal grey matter volume in 48 healthy postmenopausal women. Women completed the Perceived Stress Scale repeatedly from 1985 to 2004; in 2005 and 2006, their hippocampal grey matter volume was quantified by voxel-based morphometry. Higher Perceived Stress Scale scores from 1985 to 2004 - an indicator of more chronic life stress - predicted decreased grey matter volume in the right orbitofrontal cortex and right hippocampus. These relationships persisted after accounting for age, total grey matter volume, time since menopause, use of hormone therapy, subclinical depressive symptoms, and other potentially confounding behavioral and age-related cerebrovascular risk factors. The relationship between chronic life stress and regional grey matter volume - particularly in the hippocampus and orbitofrontal cortex - appears to span a continuum that extends to otherwise healthy individuals. Consistent with animal and human clinical evidence, we speculate that chronic-stress-related variations in brain morphology are reciprocally and functionally related to adaptive and maladaptive changes in cognition, neuroendocrine activity, and psychiatric vulnerability.
Collapse
Affiliation(s)
- Peter J Gianaros
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
164
|
Machado-Vieira R, Dietrich MO, Leke R, Cereser VH, Zanatto V, Kapczinski F, Souza DO, Portela LV, Gentil V. Decreased plasma brain derived neurotrophic factor levels in unmedicated bipolar patients during manic episode. Biol Psychiatry 2007; 61:142-4. [PMID: 16893527 DOI: 10.1016/j.biopsych.2006.03.070] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 03/17/2006] [Accepted: 03/22/2006] [Indexed: 11/17/2022]
Abstract
BACKGROUND Bipolar disorder (BD) has been increasingly associated with abnormalities in neuroplasticity and cellular resilience. Brain Derived Neurotrophic Factor (BDNF) gene has been considered an important candidate marker for the development of bipolar disorder and this neurotrophin seems involved in intracellular pathways modulated by mood stabilizers. Also, previous studies demonstrated a role for BDNF in the pathophysiology and clinical presentation of mood disorders. METHODS We investigated whether BDNF levels are altered during mania. Sixty subjects (14 M and 46 F) were selected and included in the study. Thirty patients meeting SCID-I criteria for manic episode were age and gender matched with thirty healthy controls. Young Mania Rating Scale (YMRS) evaluated the severity of manic episode and its possible association with the neurotrophin levels. RESULTS Mean BDNF levels were significantly decreased in drug free/naive (224.8 +/- 76.5 pg/ml) compared to healthy controls (318.5 +/- 114.2), p < .001]. Severity of the manic episode presented a significant negatively correlation to plasma BDNF levels (r= .78; p < .001; Pearson test). CONCLUSIONS Overall, these results suggest that the decreased plasma BDNF levels may be directly associated with the pathophysiology and severity of manic symptoms in BD. Further studies are necessary to clarify the role of BDNF as a putative biological marker in BD.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Mood Disorders Program, Fundação Faculdade Federal Ciências Medicas de Porto Alegre, Bipolar Disorder Research Program, Espírita Hospital of Porto Alegre, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Rao JS, Ertley RN, Lee HJ, DeMar JC, Arnold JT, Rapoport SI, Bazinet RP. n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 2007; 12:36-46. [PMID: 16983391 DOI: 10.1038/sj.mp.4001888] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/13/2006] [Accepted: 07/24/2006] [Indexed: 11/08/2022]
Abstract
Decreased docosahexaenoic acid (DHA) and brain-derived neurotrophic factor (BDNF) have been implicated in bipolar disorder. It also has been reported that dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) for 15 weeks in rats, increased their depression and aggression scores. Here, we show that n-3 PUFA deprivation for 15 weeks decreased the frontal cortex DHA level and reduced frontal cortex BDNF expression, cAMP response element binding protein (CREB) transcription factor activity and p38 mitogen-activated protein kinase (MAPK) activity. Activities of other CREB activating protein kinases were not significantly changed. The addition of DHA to rat primary cortical astrocytes in vitro, induced BDNF protein expression and this was blocked by a p38 MAPK inhibitor. DHA's ability to regulate BDNF via a p38 MAPK-dependent mechanism may contribute to its therapeutic efficacy in brain diseases having disordered cell survival and neuroplasticity.
Collapse
Affiliation(s)
- J S Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
166
|
Huang YY, Peng CH, Yang YP, Wu CC, Hsu WM, Wang HJ, Chan KH, Chou YP, Chen SJ, Chang YL. Desipramine Activated Bcl-2 Expression and Inhibited Lipopolysaccharide-Induced Apoptosis in Hippocampus-Derived Adult Neural Stem Cells. J Pharmacol Sci 2007; 104:61-72. [PMID: 17510525 DOI: 10.1254/jphs.fp0061255] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Desipramine (DP) is a tricyclic antidepressant used for treating depression and numerous other psychiatric disorders. Recent studies have shown that DP can promote neurogenesis and improve the survival rate of hippocampal neurons. However, whether DP induces neuroprotection or promotes the differentiation of neural stem cells (NSCs) needs to be elucidated. In this study, we cultured NSCs derived from the hippocampal tissues of adult rats as an in vitro model to evaluate the modulation effect of DP on NSCs. First, we demonstrated that the expression of Bcl-2 mRNA and nestin in 2 microM DP-treated NSCs were up-regulated and detected by real-time reverse transcriptase polymerase chain reaction (RT-PCR). The results of Western blotting and immunofluorescent study confirmed that Bcl-2 protein expression was significantly increased in Day 3 DP-treated NSCs. Using the Bcl-2 small interfering RNA (siRNA) method, our results further showed that DP protects the lipopolysaccharide (LPS)-induced apoptosis in NSCs, in part by activating the expression of Bcl-2. Furthermore, DP treatment significantly inhibited the induction of proinflammatory factor interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha in the culture medium of LPS-treated NSCs mediated by Bcl-2 modulation. The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that DP significantly increased the functional production of serotonin (26+/-3.5 microM, DP-treated 96 h) and noradrenaline (50+/-8.9 microM, DP-treated 96 h) in NSCs through activation of the MAPK/ERK pathway and partially mediated by Bcl-2. In conclusion, the present results indicate that DP can increase neuroprotection ability by inhibiting the LPS-induced inflammatory process in NSCs via the modulation of Bcl-2 expression, as confirmed by the siRNA method.
Collapse
Affiliation(s)
- Yu-Yin Huang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Tian SY, Wang JF, Bezchlibnyk YB, Young LT. Immunoreactivity of 43kDa growth-associated protein is decreased in post mortem hippocampus of bipolar disorder and schizophrenia. Neurosci Lett 2007; 411:123-7. [PMID: 17095155 DOI: 10.1016/j.neulet.2006.10.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/27/2006] [Accepted: 10/18/2006] [Indexed: 12/21/2022]
Abstract
Impairment of neuroplasticity is considered to play a role in the pathogenesis of psychiatric disorders. To further characterize the impairment of neuroplasticity in psychiatric disorders, expression of the neuronal plasticity marker 43 kDa growth-associated protein (GAP-43) was detected in postmortem hippocampal sub-regions from psychiatric patients including major depressive disorder, bipolar disorder and schizophrenia subjects, and matched control subjects. We found that GAP-43 protein levels in the hippocampal hilar region were significantly lower in bipolar disorder and schizophrenia subjects than in control subjects. We also found that GAP-43 protein levels in the inner molecular layer of the dentate gyrus and the stratum radiatum of CA2 region were reduced in a trend in bipolar disorder and schizophrenia subjects when compared with control subjects. These results suggest that impairment of neuroplasticity may occur in the hippocampus of bipolar disorder and schizophrenia patients.
Collapse
Affiliation(s)
- Simon Y Tian
- The Vivian Rakoff Mood Disorders Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
168
|
Gilad GM, Gilad VH. Astroglia growth retardation and increased microglia proliferation by lithium and ornithine decarboxylase inhibitor in rat cerebellar cultures: Cytotoxicity by combined lithium and polyamine inhibition. J Neurosci Res 2007; 85:594-601. [PMID: 17171700 DOI: 10.1002/jnr.21152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lithium, the most prevalent treatment for manic-depressive illness, might have a neuroprotective effect after brain injury. In culture, lithium can exert neurotoxic effects associated with reduction in polyamine synthesis but neuroprotective effects as cultured neurons mature. Cumulative evidence suggests that lithium may exert some of its effects on neurons indirectly, by initially acting on glial cells. We used rat cerebellar cultures to ascertain the effects of lithium on ornithine decarboxylase (ODC) activity, the enzyme catalyzing the first step in polyamine synthesis, and to compare effects of lithium with those of the ODC inhibitor alpha-difluoromethylornithine (DFMO) on neuron survival and glial growth. Switching cultures from high (25 mM) to low (5 mM) KCl concentrations served as the traumatic neuronal insult. The results indicate the following. 1) Whereas high depolarizing KCl concentration enhances neuron survival, it inhibits astroglial growth. 2) Lithium (LiCl; 1-5 mM) enhances neuronal survival but inhibits astroglial growth. 3) Lithium treatment leads to reduced ODC activity. 4) DFMO enhances neuron survival but inhibits astroglial growth. 5) Lithium and DFMO lead to transformation of astroglia from epithelioid (flat) to process-bearing morphology and to increased numbers of microglia. 6) Combined lithium plus DFMO treatment is cytolethal to both neurons and glia in culture. In conclusion, lithium treatment results in growth retardation and altered cell morphology of cultured astroglia and increased microglia proliferation, and these effects may be associated with inhibition of polyamine synthesis. This implies that direct effects on astrocytes and microglia may contribute to the effects of lithium on neurons.
Collapse
|
169
|
Abstract
Sleep disturbances are among the most common symptoms in patients who have acute episodes of mood disorders, and patients who have mood disorders exhibit higher rates of sleep disturbances than the general population, even during periods of remission. Insomnia and hypersomnia are associated with an increased risk for the development or recurrence of mood disorders and increased severity of psychiatric symptoms. Sleep electroencephalogram recordings have identified objective abnormalities associated with mood disorders, providing insight into the neurobiologic relationships between mood and sleep. Future studies will continue to investigate this association and potentially improve treatment of sleep and mood disorders.
Collapse
Affiliation(s)
- Michael J Peterson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | | |
Collapse
|
170
|
Hihn H, Baune BT, Michael N, Markowitsch H, Arolt V, Pfleiderer B. Memory performance in severely depressed patients treated by electroconvulsive therapy. J ECT 2006; 22:189-95. [PMID: 16957535 DOI: 10.1097/01.yct.0000235512.75568.43] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Depression is accompanied by disturbed implicit (unconscious) and explicit (conscious) memory functions. The aim was the assessment of immediate and delayed verbal and visual memory functions, concentration/attention during the course of electroconvulsive therapy (ECT) treatment. METHODS Twenty severely depressed, drug-treatment resistant, elderly patients were assessed with the Wechsler Memory Scale-Revised (WMS-R) before and at the end of the ECT series. RESULTS Patients revealed deficits in acquisition (immediate verbal and visual memory), attention/concentration, and retrieval of information (delayed memory) before ECT. After ECT, significant improvements were observed in immediate memory but not in delayed memory. Although higher total stimulation levels (millicoulombs) (P = 0.015) were associated with improvements in immediate visual memory, we found that longer duration of convulsions (P = 0.016) as well as lower levels of stimulation at last ECT (P = 0.036) were associated with improvements in immediate verbal memory. Moreover, we found that stimulation energy (millicoulombs) in total and at last ECT was the best predictor among several clinical and ECT parameters of improved visual memory and concentration and decreased verbal and general memory. CONCLUSIONS Prefrontal cortex-related memory processes, especially immediate memory encoding, improved after ECT, whereas long-term memory remained impaired, indicating that severely depressed patients remain cognitively inferior to normal subjects despite clinically successful treatment. This study may yield a better understanding of the time course of memory alterations in severely depressed patients receiving ECT. Improvement of immediate memory may be essential for establishing normal daily activities of life in the recovery phase of depression.
Collapse
Affiliation(s)
- Hermina Hihn
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
171
|
Gould TD. Targeting glycogen synthase kinase-3 as an approach to develop novel mood-stabilising medications. Expert Opin Ther Targets 2006; 10:377-92. [PMID: 16706678 DOI: 10.1517/14728222.10.3.377] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Historically, success in the pharmacological treatment of bipolar disorder has arisen either from serendipitous findings or from studies with drugs (antipsychotics and anticonvulsants) developed for other indications (schizophrenia and epilepsy, respectively). Lithium has been in widespread clinical use in the treatment of bipolar disorder for > 30 years. Development of lithium-mimetic compounds has the potential to result in a more specific medication, with fewer side effects and a less narrow dose range. However, novel medications based upon a known mechanism of action of this drug are yet to be developed. Increasing evidence suggests that a next-generation lithium compound may derive from knowledge of a direct target of lithium, glycogen synthase kinase-3 (GSK-3). GSK-3 is an intracellular enzyme implicated as a critical component in many neuronal signalling pathways. However, despite the large body of preclinical data discussed in this review, definitive validation of GSK-3 as therapeutically relevant target of lithium will require clinical trials with novel GSK-3 inhibitors. A number of recent reports suggest that it is possible to develop selective, small-molecule GSK-3 inhibitors.
Collapse
Affiliation(s)
- Todd D Gould
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-3711, USA.
| |
Collapse
|
172
|
Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 2006; 31:1616-26. [PMID: 16395301 DOI: 10.1038/sj.npp.1300982] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analysis of post-mortem tissue from patients with affective disorders has revealed a decreased number of glial cells in several brain areas. Here, we examined whether long-term psychosocial stress influences the number and morphology of hippocampal astrocytes in an animal model with high validity for research on the pathophysiology of major depression. Adult male tree shrews were submitted to 5 weeks of psychosocial stress, after which immunocytochemical and quantitative stereological techniques were used to estimate the total number and somal volume of glial fibrillary acidic protein-positive astrocytes in the hippocampal formation. Stress significantly decreased both the number (-25%) and somal volume (-25%) of astroglia, effects that correlated notably with the stress-induced hippocampal volume reduction. Additionally, we examined whether antidepressant treatment with fluoxetine, a selective serotonin reuptake inhibitor, offered protection from these stress-induced effects. Animals were subjected to 7 days of psychosocial stress before the onset of daily oral administration of fluoxetine (15 mg/kg per day), with stress continued throughout the 28-day treatment period. Fluoxetine treatment prevented the stress-induced numerical decrease of astrocytes, but had no counteracting effect on somal volume shrinkage. In nonstressed animals, fluoxetine treatment had no effect on the number of astrocytes, but stress exposure significantly reduced their somal volumes (-20%). These notable changes of astroglial structural plasticity in response to stress and antidepressant treatment support the notion that glial changes may contribute to the pathophysiology of affective disorders as well as to the cellular actions of antidepressants.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
173
|
Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK. Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006; 60:93-105. [PMID: 16406007 DOI: 10.1016/j.biopsych.2005.11.006] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 11/14/2005] [Accepted: 11/18/2005] [Indexed: 12/11/2022]
Abstract
Research aimed at elucidating the underlying neurobiology and genetics of bipolar disorder, and factors associated with treatment response, have been limited by a heterogeneous clinical phenotype and lack of knowledge about its underlying diathesis. We used a survey of clinical, epidemiological, neurobiological, and genetic studies to select and evaluate candidate endophenotypes for bipolar disorder. Numerous findings regarding brain function, brain structure, and response to pharmacological challenge in bipolar patients and their relatives deserve further investigation. Candidate brain function endophenotypes include attention deficits, deficits in verbal learning and memory, cognitive deficits after tryptophan depletion, circadian rhythm instability, and dysmodulation of motivation and reward. We selected reduced anterior cingulate volume and early-onset white matter abnormalities as candidate brain structure endophenotypes. Symptom provocation endophenotypes might be based on bipolar patients' sensitivity to sleep deprivation, psychostimulants, and cholinergic drugs. Phenotypic heterogeneity is a major impediment to the elucidation of the neurobiology and genetics of bipolar disorder. We present a strategy constructed to improve the phenotypic definition of bipolar disorder by elucidating candidate endophenotypes. Studies to evaluate candidate endophenotypes with respect to specificity, heritability, temporal stability, and prevalence in unaffected relatives are encouraged.
Collapse
Affiliation(s)
- Gregor Hasler
- Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
174
|
Brunello N, Alboni S, Capone G, Benatti C, Blom JMC, Tascedda F, Kriwin P, Mendlewicz J. Acetylsalicylic acid accelerates the antidepressant effect of fluoxetine in the chronic escape deficit model of depression. Int Clin Psychopharmacol 2006; 21:219-25. [PMID: 16687993 DOI: 10.1097/00004850-200607000-00004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Evidence has accumulated suggesting that major depression is associated with dysfunction of inflammatory mediators. Moreover, antidepressants show an anti-inflammatory action possibly related to their clinical efficacy. An improvement in psychiatric symptoms has been recently reported in patients treated with anti-inflammatory drugs for other indications. These data imply that inflammation may be involved in the pathogenesis of depression and that anti-inflammatory drugs may be used as an adjunctive therapy. The aim of the present study was to evaluate the behavioural effect of the co-administration of acetylsalicylic acid (ASA, 45 mg/kg or 22.5 mg/kg) and fluoxetine (FLX, 5 mg/kg) in the chronic escape deficit model of depression. The chronic escape deficit model is based on the modified reactivity of rats to external stimuli induced by exposure to unavoidable stress and allows evaluation of the capacity of a treatment to revert the condition of escape deficit. In this model, FLX alone needs to be administered for at least 3 weeks to revert this condition. Our results show that combined treatment of fluoxetine and ASA completely reverted the condition of escape deficit by as early as 7 days, the effect being already partially present after 4 days. The effect was maintained after 14 and 21 days of treatment. ASA alone was ineffective at any time tested and the effect of fluoxetine was significant only at 21 days. These results, together with clinical data from preliminary results, suggest that ASA might accelerate the onset of action of selective serotonin reuptake inhibitor antidepressants.
Collapse
Affiliation(s)
- Nicoletta Brunello
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Zarate CA, Singh J, Manji HK. Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 2006; 59:1006-20. [PMID: 16487491 DOI: 10.1016/j.biopsych.2005.10.021] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/06/2005] [Accepted: 10/19/2005] [Indexed: 01/23/2023]
Abstract
For a number of patients with bipolar disorder, current pharmacotherapy is generally insufficient. Despite adequate treatment, patients continue to have recurrent mood episodes, residual symptoms, functional impairment, psychosocial disability, and significant medical and psychiatric comorbidity. Drug development for bipolar disorder may occur through one of two approaches: the first is by understanding the therapeutically relevant biochemical targets of currently effective medications. Two promising direct targets of lithium and valproate are glycogen synthase kinase-3 and histone deacetylase. The second path results from our understanding that severe mood disorders, although not classical neurodegenerative disorders, are associated with regional impairments of structural plasticity and cellular resilience. This suggests that effective treatments will need to provide both trophic and neurochemical support, which serves to enhance and maintain normal synaptic connectivity, thereby allowing the chemical signal to reinstate the optimal functioning of critical circuits necessary for normal affective functioning. For many refractory patients, drugs mimicking "traditional" strategies, which directly or indirectly alter monoaminergic levels, may be of limited benefit. Newer "plasticity enhancing" strategies that may have utility in the treatment of mood disorders include inhibitors of glutamate release, N-methyl-D-aspartate antagonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid potentiators, cyclic adenosine monophosphate phosphodiesterase inhibitors, and glucocorticoid receptor antagonists.
Collapse
Affiliation(s)
- Carlos A Zarate
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
176
|
Lai JS, Zhao C, Warsh JJ, Li PP. Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol 2006; 539:18-26. [PMID: 16678157 DOI: 10.1016/j.ejphar.2006.03.076] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 03/27/2006] [Accepted: 03/30/2006] [Indexed: 01/06/2023]
Abstract
Despite much evidence that lithium and valproate, two commonly used mood stabilizers, exhibit neuroprotective properties against an array of insults, the pharmacological relevance of such effects is not clear because most of these studies examined the acute effect of these drugs in supratherapeutic doses against insults which were of limited disease relevance to bipolar disorder. In the present study, we investigated whether lithium and valproate, at clinically relevant doses, protects human neuroblastoma (SH-SY5Y) and glioma (SVG and U87) cells against oxidative stress and endoplasmic reticulum stress in a time-dependent manner. Pretreatment of SH-SY5Y cells for 7 days, but not 1 day, with 1 mM of lithium or 0.6 mM of valproate significantly reduced rotenone and H2O2-induced cytotoxicity, cytochrome c release and caspase-3 activation, and increased Bcl-2 levels. Conversely, neither acute nor chronic treatment of SH-SY5Y cells with lithium or valproate elicited cytoprotective responses against thapsigargin-evoked cell death and caspase-3 activation. Moreover, inhibitors of glycogen synthase kinase-3 (GSK-3), kenpaullone and SB216763, abrogated rotenone-induced, but not H2O2-induced, cytotoxicity. Thus the cytoprotective effects of lithium and valproate against H2O2-induced cell death is likely independent of GSK-3 inhibition. On the other hand, chronic lithium or valproate treatment did not ameliorate cytotoxicity induced by rotenone, H2O2, and thapsigargin in SVG astroglial and U87 MG glioma cell lines. Our results suggest that lithium and valproate may decrease vulnerability of human neural, but not glial, cells to cellular injury evoked by oxidative stress possibly arising from putative mitochondrial disturbances implicated in bipolar disorder.
Collapse
Affiliation(s)
- Justin S Lai
- Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
177
|
Zhou R, Gray NA, Yuan P, Li X, Chen J, Chen G, Damschroder-Williams P, Du J, Zhang L, Manji HK. The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J Neurosci 2006; 25:4493-502. [PMID: 15872096 PMCID: PMC6725025 DOI: 10.1523/jneurosci.4530-04.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing data suggest that impairments of cellular plasticity/resilience underlie the pathophysiology of bipolar disorder. A series of microarray studies with validating criteria have recently revealed a common, novel target for the long-term actions of the structurally highly dissimilar mood stabilizers lithium and valproate: BAG-1 [BCL-2 (B-cell CLL/lymphoma 2)-associated athanogene]. Because BAG-1 attenuates glucocorticoid receptor (GR) nuclear translocation, activates ERK (extracellular signal-regulated kinase) MAP (mitogen-activated protein) kinases, and potentiates anti-apoptotic functions of BCL-2, extensive additional studies were undertaken. Chronic administration of both agents at therapeutic doses increased the expression of BAG-1 in rat hippocampus. Furthermore, these findings were validated at the protein level, and the effects were seen in a time frame consistent with therapeutic effects and were specific for mood stabilizers. Functional studies showed that either lithium or valproate, at therapeutically relevant levels, inhibited dexamethasone-induced GR nuclear translocation and inhibited GR transcriptional activity. Furthermore, small interfering RNA studies showed that these inhibitory effects on GR activity were mediated, at least in part, through BAG-1. The observation that BAG-1 inhibits glucocorticoid activation suggests that mood stabilizers may counteract the deleterious effects of hypercortisolemia seen in bipolar disorder by upregulating BAG-1. Additionally, these studies suggest that regulation of GR-mediated plasticity may play a role in the treatment of bipolar disorder and raise the possibility that agents affecting BAG-1 more directly may represent novel therapies for this devastating illness.
Collapse
Affiliation(s)
- Rulun Zhou
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006; 11:241-51. [PMID: 16288314 DOI: 10.1038/sj.mp.4001758] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Post-mortem studies conducted over the past 15 years suggest that apoptosis could play a role in the pathophysiology of bipolar disorder (BD) and, to a lesser degree, schizophrenia (SZ). To test this hypothesis, we have performed a post hoc analysis of an extant gene expression profiling database obtained from the hippocampus using a novel methodology with improved sensitivity. Consistent with the working hypothesis, BDs showed a marked upregulation of 19 out of 44 apoptosis genes; however, contrary to the hypothesis, the SZ group showed a downregulation of genes associated with apoptotic injury and death. These changes in the regulation of apoptosis genes were validated using quantitative RT-PCR. Additionally, antioxidant genes showed a marked downregulation in BDs, suggesting that accumulation of free radicals might occur in the setting of a previously reported decrease of the electron transport chain in this disorder. Overall, the changes seen in BDs and SZs do not appear to be related to exposure to either neuroleptics or mood stabilizers. We conclude that fundamental differences in the genetic regulation of apoptosis and antioxidant genes may help discriminate between the pathophysiology of BD and SZ and potentially point to new treatment strategies that are specific for each disorder.
Collapse
Affiliation(s)
- F M Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
179
|
Lim KY, Yang JJ, Lee DS, Noh JS, Jung MW, Chung YK. Lithium attenuates stress-induced impairment of long-term potentiation induction. Neuroreport 2005; 16:1605-8. [PMID: 16148754 DOI: 10.1097/01.wnr.0000179078.54906.52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stress impairs the induction of long-term potentiation in the hippocampus as well as hippocampus-dependent memory. Lithium, a classical mood stabilizer, is known to have beneficial effects on stress-induced impairment of spatial memory. In the present study, we investigated lithium effects on the impairment of long-term potentiation induction after exposure to acute immobilization stress. As previously reported, immobilization stress impaired long-term potentiation induction in the CA1 region of rat hippocampal slices. Treating the slices with 0.6 or 1 mM lithium attenuated impaired long-term potentiation induction in stressed animals. Lithium was without effect on long-term potentiation induction in unstressed animals or baseline synaptic responses in unstressed or stressed animals. These results demonstrate a protective effect of lithium against stress-induced impairment of long-term potentiation induction.
Collapse
Affiliation(s)
- Ki-Young Lim
- Department of Psychiatry, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
180
|
Abstract
Despite many decades of clinical use, the therapeutic target of lithium remains uncertain. It is recognized that therapeutic concentrations of lithium, through competition with the similarly sized magnesium cation, inhibit the activity of select enzymes. Among these is glycogen synthase kinase-3 (GSK-3). Recent preclinical evidence, including biochemical, pharmacological, genetic, and rodent behavioral models, supports the hypothesis that inhibition of GSK-3 may represent a target for lithium's mood-stabilizing properties. Specifically, it has been demonstrated that lithium administration regulates multiple GSK-3 targets in vivo and that multiple additional classes of mood-stabilizing and antidepressant drugs regulate GSK-3 signaling. Pharmacological or genetic inhibition of GSK-3 results in mood stabilizer-like behavior in rodent models, and genetic association studies implicate GSK-3 as a possible modulator of particular aspects of bipolar disorder including response to lithium. Furthermore, numerous recent studies have provided a more complete understanding of GSK-3's role in diverse neurological processes strengthening the hypothesis that GSK-3 may represent a therapeutically relevant target of lithium. For example, GSK-3 is a primary regulator of neuronal survival, and cellular responses to glucocorticoids and estrogen may involve GSK-3-regulated pathways. While the preclinical evidence discussed in this review is encouraging, ultimate validation of GSK-3 as a therapeutically relevant target will require clinical trials of selective novel inhibitors. In this regard, as is discussed, there is a major effort underway to develop novel, specific, GSK-3 inhibitors.
Collapse
Affiliation(s)
- Todd D Gould
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
181
|
Matrisciano F, Scaccianoce S, Del Bianco P, Panaccione I, Canudas AM, Battaglia G, Riozzi B, Ngomba RT, Molinaro G, Tatarelli R, Melchiorri D, Nicoletti F. Metabotropic glutamate receptors and neuroadaptation to antidepressants: imipramine-induced down-regulation of beta-adrenergic receptors in mice treated with metabotropic glutamate 2/3 receptor ligands. J Neurochem 2005; 93:1345-52. [PMID: 15934953 DOI: 10.1111/j.1471-4159.2005.03141.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antidepressant drugs have a clinical latency that correlates with the development of neuroadaptive changes, including down-regulation of beta-adrenergic receptors in different brain regions. The identification of drugs that shorten this latency will have a great impact on the treatment of major depressive disorders. We report that the time required for the antidepressant imipramine to reduce the expression of beta-adrenergic receptors in the hippocampus is reduced by a co-administration with centrally active ligands of type 2/3 metabotropic glutamate (mGlu2/3) receptors. Daily treatment of mice with imipramine alone (10 mg/kg, i.p.) reduced the expression of beta-adrenergic receptors in the hippocampus after 21 days, but not at shorter times, as assessed by western blot analysis of beta1-adrenergic receptors and by the amount of specifically bound [3H]CGP-12177, a selective beta-adrenergic receptor ligand. Down-regulation of beta-adrenergic receptors occurred at shorter times (i.e. after 14 days) when imipramine was combined with low doses (0.5 mg/kg, i.p.) of the selective mGlu2/3 receptor agonist LY379268, or with the preferential mGlu2/3 receptor antagonist LY341495 (1 mg/kg, i.p.). Higher doses of LY379268 (2 mg/kg, i.p.) were inactive. This intriguing finding suggests that neuroadaptation to imipramine--at least as assessed by changes in the expression of beta1-adrenergic receptors--is influenced by drugs that interact with mGlu2/3 receptors and stimulates further research aimed at establishing whether any of these drugs can shorten the clinical latency of classical antidepressants.
Collapse
MESH Headings
- Adaptation, Physiological
- Amino Acids/pharmacology
- Animals
- Antidepressive Agents, Tricyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Down-Regulation
- Excitatory Amino Acid Antagonists/pharmacology
- Hippocampus/metabolism
- Imipramine/pharmacology
- Ligands
- Male
- Mice
- Mice, Inbred Strains
- Nervous System Physiological Phenomena
- Reaction Time/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Metabotropic Glutamate/administration & dosage
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/metabolism
- Xanthenes/pharmacology
Collapse
Affiliation(s)
- F Matrisciano
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
McEwen BS, Olié JP. Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine. Mol Psychiatry 2005; 10:525-37. [PMID: 15753957 DOI: 10.1038/sj.mp.4001648] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent studies have provided evidence that structural remodeling of certain brain regions is a feature of depressive illness, and the postulated underlying mechanisms contribute to the idea that there is more to antidepressant actions that can be explained exclusively by a monoaminergic hypothesis. This review summarizes recent neurobiological studies on the antidepressant, tianeptine (S-1574, [3-chloro-6-methyl-5,5-dioxo-6,11-dihydro-(c,f)-dibenzo-(1,2-thiazepine)-11-yl) amino]-7 heptanoic acid, sodium salt), a compound with structural similarities to the tricyclic antidepressant agents, the efficacy and good tolerance of which have been clearly established. These studies have revealed that the neurobiological properties of tianeptine involve the dynamic interplay between numerous neurotransmitter systems, as well as a critical role of structural and functional plasticity in the brain regions that permit the full expression of emotional learning. Although the story is far from complete, the schema underlying the effect of tianeptine on central plasticity is the most thoroughly studied of any antidepressants. Effects of tianeptine on neuronal excitability, neuroprotection, anxiety, and memory have also been found. Together with clinical data on the efficacy of tianeptine as an antidepressant, these actions offer insights into how compounds like tianeptine may be useful in the treatment of neurobiological features of depressive disorders.
Collapse
Affiliation(s)
- B S McEwen
- Harold & Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
183
|
Brambilla P, Stanley JA, Nicoletti MA, Sassi RB, Mallinger AG, Frank E, Kupfer D, Keshavan MS, Soares JC. 1H magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in bipolar disorder patients. J Affect Disord 2005; 86:61-7. [PMID: 15820271 DOI: 10.1016/j.jad.2004.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Magnetic resonance spectroscopy studies (MRS) reported abnormally low levels of N-acetylaspartate (NAA, a marker of neuronal integrity) in dorsolateral prefrontal cortex (DLPFC) of adult bipolar patients, suggesting possible neuronal dysfunction. Furthermore, recent MRS reports suggested possible lithium-induced increase in NAA levels in bipolar patients. We examined with in vivo (1)H MRS NAA levels in the DLPFC of adult bipolar patients. METHODS Ten DSM-IV bipolar disorder patients (6 lithium-treated, 4 drug-free) and 32 healthy controls underwent a short echo-time 1H MRS session, which localized an 8 cm3 single-voxel in the left DLPFC using a STEAM sequence. RESULTS No significant differences between the two groups were found for NAA, choline-containing molecules (GPC+PC), or phosphocreatine plus creatine (PCr+Cr) (Student t-test, p > 0.05). Nonetheless, NAA/PCr+Cr ratios were significantly increased in lithium-treated bipolar subjects compared to unmedicated patients and healthy controls (Mann-Whitney U-test, p < 0.05). LIMITATIONS Relatively small sample size may have reduced the statistical power of our analyses and the utilization of a single-voxel approach did not allow for the examination of other cortical brain areas. CONCLUSIONS This study did not find abnormally reduced levels of NAA in left DLPFC of adult bipolar patients, in a sample of patients who were mostly on medications. However, elevated NAA/PCr+Cr ratios were shown in lithium-treated bipolar patients. Longitudinal 1H MRS studies should further examine NAA levels in prefrontal cortex regions in untreated bipolar patients before and after mood stabilizing treatment.
Collapse
Affiliation(s)
- Paolo Brambilla
- Division of Mood and Anxiety Disorders, Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
Background and Purpose—
Although depression may affect recovery and outcome after stroke, it is often overlooked or inadequately managed, and there is uncertainty regarding the benefits of antidepressant therapy in this setting. We aimed to assess the effectiveness of antidepressants for the treatment and prevention of depression after stroke.
Methods—
We undertook a systematic review using Cochrane methods of randomized placebo-controlled trials of antidepressants for the treatment or prevention of depressive illness and “abnormal mood” after stroke. Treatment effects on physical and other outcomes were also examined.
Results—
Outcome data were available for 7 treatment trials including 615 patients and 9 prevention trials including 479 patients. Because of the considerable variation in research design, trial quality, and method of reporting across studies, we did not pool all the outcome data. In the treatment trials, antidepressants reduced mood symptoms but had no clear effect on producing a remission of diagnosable depressive illness. There was no definitive evidence that antidepressants prevent depression or improve recovery after stroke.
Conclusions—
There is insufficient randomized evidence to support the routine use of antidepressants for the prevention of depression or to improve recovery from stroke. Although antidepressants may improve mood in stroke patients with depression, it is unclear how clinically significant such modest effects are in patients other than those with major depression. There is a pressing need for further research to better define the role of antidepressants in stroke management.
Collapse
Affiliation(s)
- Maree L Hackett
- The George Institute for International Health, Neurological Diseases and Ageing Division, affiliated with the Royal Prince Alfred Hospital and the University of Sydney, Australia.
| | | | | |
Collapse
|
185
|
Andreopoulos S, Wasserman M, Woo K, Li PP, Warsh JJ. Chronic lithium treatment of B lymphoblasts from bipolar disorder patients reduces transient receptor potential channel 3 levels. THE PHARMACOGENOMICS JOURNAL 2005; 4:365-73. [PMID: 15354175 DOI: 10.1038/sj.tpj.6500266] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic lithium treatment of B-lymphoblast cell lines (BLCLs) from bipolar-I disorder (BD-I) patients and healthy subjects ex vivo attenuates agonist- and thapsigargin-stimulated intracellular calcium (Ca(2+)) responses. As these findings suggest that chronic lithium treatment modifies receptor (ROCE) and/or store-operated Ca(2+) entry (SOCE) mechanisms, we determined whether chronic lithium treatment of BLCLs modified the expression of two members of the transient receptor potential channels (TRPC1 & 3), which participate in ROCE/SOCE. Chronic lithium treatment significantly reduced BLCL TRPC3 immunoreactivity (repeated-measures ANOVA, P=0.00005), with interaction effects of diagnosis (P=0.037) and sex (P=0.040). The lithium-induced decrease was greatest in BLCLs from female BD-I patients compared with those from healthy females (-27%) and with vehicle-treated BLCLs from female BD-I patients (-33%). However, lithium treatment did not affect TRPC1 and 3 mRNA levels, and TRPC1 immunoreactivity. Downregulation of TRPC3 may be an important mechanism by which lithium ameliorates pathophysiological Ca(2+) disturbances as observed in BD.
Collapse
Affiliation(s)
- S Andreopoulos
- Laboratory of Cellular and Molecular Pathophysiology, Center for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
186
|
Todtenkopf MS, Vincent SL, Benes FM. A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 2005; 73:79-89. [PMID: 15567080 DOI: 10.1016/j.schres.2004.08.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 08/20/2004] [Accepted: 08/25/2004] [Indexed: 11/23/2022]
Abstract
Using a two-dimensional cell counting approach, a 1991 study in the anterior cingulate cortex (ACCx) detected a reduction in the density of nonpyramidal neurons in layers II-VI of schizophrenic subjects. Schizophrenics without superimposed mood disturbances showed a 16% decrease in layer II, while schizoaffectives showed a 30% decrease, suggesting that a decreased density of nonpyramidal neurons in layer II of ACCx might vary more strongly with affective disorder than with schizophrenia. Two follow-up studies from this laboratory, one a replication of that reported in 1991 and the other an analysis of tyrosine hydroxylase immunoreactive fibers, were undertaken in ACCx of normal controls and schizophrenics. These three data sets have been combined and a meta-analysis of the density of pyramidal, nonpyramidal and glial cells was performed to explore whether changes in the density of interneurons in ACCx may be a reliable finding in the major psychoses. Not all groups have reported this finding, but several had employed a different cell counting technique (i.e. three dimensional optical dissector), which could help to explain the discrepant findings in schizophrenia and affective disorder. The data from each of three different studies (now designated as studies A, B and C, respectively) have been internally normalized, combined into a single dataset and analyzed using nonparametric statistics. Tissue blocks from a subset of cases in study B (six controls, six schizophrenics and six bipolars) were embedded in celloidin and counted using an "unbiased" three dimensional counting method (study D). The data from studies A and B indicate that the density of nonpyramidal neurons in layer II of ACCx in the schizoaffective and bipolar samples was significantly decreased. In the schizophrenics, the nonpyramidal neurons were also decreased, but only by 15%. All three groups also showed a decrease of pyramidal neurons in layers IV, V and VI, but this difference was significant only in layer IV of the schizophrenics. When data from study C were added, the differences in pyramidal and nonpyramidal neurons were less striking. For study D, the pattern of findings are strikingly similar to those obtained in studies A, B and C, indicating that both 2D and 3D cell counting methodologies are capable of detecting the same differences. Taken together, these results indicate that the earlier finding of a decreased density of nonpyramidal neurons in ACCx of schizophrenics is consistent across non-overlapping subjects and/or methods in four separate studies, and is more pronounced in schizoaffective and bipolar subjects than in schizophrenics without superimposed mood disturbance.
Collapse
Affiliation(s)
- Mark S Todtenkopf
- Laboratory for Structural Neuroscience, McLean Hospital, 115 Mill Street, 333 MRC, Belmont, MA 02478, USA
| | | | | |
Collapse
|
187
|
Yildiz A, Moore CM, Sachs GS, Demopulos CM, Tunca Z, Erbayraktar Z, Renshaw PF. Lithium-induced alterations in nucleoside triphosphate levels in human brain: a proton-decoupled 31P magnetic resonance spectroscopy study. Psychiatry Res 2005; 138:51-9. [PMID: 15708301 DOI: 10.1016/j.pscychresns.2003.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 10/24/2003] [Indexed: 11/17/2022]
Abstract
We examined how lithium's demonstrated effects on various cellular processes in human brain would be reflected in the (31)P magnetic resonance spectra of living human beings with respect to brain high-energy phosphate metabolites. Eight healthy volunteers received a baseline (31)P magnetic resonance spectroscopy (MRS) scan, after which they received lithium carbonate, 900 mg/day, for 14 days. Follow-up MRS scans were obtained on day 7 and on day 14. We detected a lithium-induced decrease in alpha-, beta-, gamma- and total nucleoside triphosphate NTP levels with chronic administration of lithium. On day 7, significant decreases were noted in gamma-NTP (14%) and total NTP (11%) levels. There was a trend for a decrease in beta-NTP (11%) levels. On day 14, significant decreases were noted in alpha-NTP (7%) and total NTP (8%) levels. There was a trend for a decrease in beta-NTP (16%) levels. Lithium caused a 25% reduction in inorganic phosphate (P(i)) levels on day 14. The theoretical relevance of the lithium-induced alterations on brain high-energy phosphates to the lithium-induced modifications of neuroplasticity is discussed.
Collapse
Affiliation(s)
- Aysegul Yildiz
- Dokuz Eylul Medical School, Department of Psychiatry, Izmir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
188
|
Czeh B, Simon M, van der Hart MG, Schmelting B, Hesselink MB, Fuchs E. Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: prevention by treatment with a substance P receptor (NK1) antagonist. Neuropsychopharmacology 2005; 30:67-79. [PMID: 15470372 DOI: 10.1038/sj.npp.1300581] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have demonstrated that stress may affect the hippocampal GABAergic system. Here, we examined whether long-term psychosocial stress influenced the number of parvalbumin-containing GABAergic cells, known to provide the most powerful inhibitory input to the perisomatic region of principal cells. Adult male tree shrews were submitted to 5 weeks of stress, after which immunocytochemical and quantitative stereological techniques were used to estimate the total number of hippocampal parvalbumin-immunoreactive (PV-IR) neurons. Stress significantly decreased the number of PV-IR cells in the dentate gyrus (DG) (-33%), CA2 (-28%), and CA3 (-29%), whereas the CA1 was not affected. Additionally, we examined whether antidepressant treatment offered protection from this stress-induced effect. We administered fluoxetine (15 mg/kg per day) and SLV-323 (20 mg/kg per day), a novel neurokinin 1 receptor (NK1R) antagonist, because the NK1R has been proposed as a possible target for novel antidepressant therapies. Animals were subjected to a 7-day period of psychosocial stress before the onset of daily oral administration of the drugs, with stress continued throughout the 28-day treatment period. NK1R antagonist administration completely prevented the stress-induced reduction of the number of PV-IR interneurons, whereas fluoxetine attenuated this decrement in the DG, without affecting the CA2 and CA3. The effect of stress on interneuron numbers may reflect real cell loss; alternatively, parvalbumin concentration is diminished in the neurons, which might indicate a compensatory attempt. In either case, antidepressant treatment offered protection from the effect of stress and appears to modulate the hippocampal GABAergic system. Furthermore, the NK1R antagonist SLV-323 showed neurobiological efficacy similar to that of fluoxetine.
Collapse
Affiliation(s)
- Boldizsár Czeh
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
189
|
Chakos MH, Schobel SA, Gu H, Gerig G, Bradford D, Charles C, Lieberman JA. Duration of illness and treatment effects on hippocampal volume in male patients with schizophrenia. Br J Psychiatry 2005; 186:26-31. [PMID: 15630120 DOI: 10.1192/bjp.186.1.26] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Reduced hippocampal volume is a consistently described structural abnormality in schizophrenia but its cause and timing are not known. AIMS To examine the relationship of duration of schizophrenic illness and treatment effects with hippocampal volumes. METHOD Quantitative 1.5 T magnetic resonance imaging brain scans of young male patients in the early stage of schizophrenic illness were compared with those of chronically ill older patients. Scans were also acquired for controls matched to both patient groups for age and handedness. Duration of illness was recorded and severity of symptoms assessed with the Positive and Negative Syndrome Scale. RESULTS The patients with schizophrenia had smaller hippocampal volumes than the controls. The volume reduction was larger in older patients than in young, compared with age-matched controls. In the early illness group atypical antipsychotics rather than haloperidol were associated with larger hippocampal volumes even after controlling for differences in illness severity. CONCLUSIONS The greater reduction of hippocampal volume in people with chronic v. early illness, after controlling for illness severity and age, supports the hypothesis of progressive hippocampal reduction in males with schizophrenia. Atypical antipsychotics early in illness may protect against this.
Collapse
Affiliation(s)
- Miranda H Chakos
- University of North Carolina at Chapel Hill-CB 7160, Chapel Hill, North Carolina 27599-7160, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Morinobu S, Kawano KI, Yamawaki S. Lithium and protein phosphatases: apoptosis or neurogenesis? ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.cnr.2004.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
191
|
Vinet J, Carra S, Blom JMC, Brunello N, Barden N, Tascedda F. Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKKα and CaMKKβ mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuropharmacology 2004; 47:1062-9. [PMID: 15555640 DOI: 10.1016/j.neuropharm.2004.07.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2003] [Revised: 06/16/2004] [Accepted: 07/28/2004] [Indexed: 10/25/2022]
Abstract
Antidepressants up-regulate the cAMP response element binding protein (CREB) and the brain-derived neurotrophic factor (BDNF) in hippocampus and these effects contribute to the protection of hippocampal neurons from stressful stimuli such as high glucocorticoid levels. CREB can be activated by both protein kinase A and by Ca2+-calmodulin-dependent protein kinases (CaMKs), which are in turn phosphorylated by their upstream activators CaMKKalpha and CaMMKKbeta. Using in situ hybridization, we examined the effects of chronic treatment with fluoxetine (FLU) or desipramine (DMI) on BDNF, CaMKKalpha and CaMKKbeta mRNAs in the hippocampus of wild-type (Wt) and transgenic (TG) mice characterized by glucocorticoid receptor (GR) dysfunction. Basal levels of CaMKKbeta were down regulated in the CA3 region of TG mice. DMI decreased the expression of both CaMKKalpha and CaMMKKbeta in the CA3 region of Wt mice. FLU up-regulated BDNF mRNA levels in the CA3 of TG animals while both FLU and DMI increased BDNF gene expression in the dentate gyrus (DG) of TG animals. Our results demonstrate a different regulation of BDNF expression by antidepressant drugs in the hippocampus of Wt and TG animals. Moreover, for the first time, a role for CaMKKs in the mechanism of action of antidepressant agents, at least in the hippocampus, is reported. These data are discussed in view of interactions existing between CaMK pathway and GR-mediated gene transcription.
Collapse
Affiliation(s)
- Jonathan Vinet
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia, via Campi, 183, 41100 Modena, Italy
| | | | | | | | | | | |
Collapse
|
192
|
Fuchs E, Czéh B, Kole MHP, Michaelis T, Lucassen PJ. Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 2004; 14 Suppl 5:S481-90. [PMID: 15550346 DOI: 10.1016/j.euroneuro.2004.09.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early hypotheses on the pathophysiology of major depression were based on aberrant intrasynaptic concentrations of mainly the neurotransmitters serotonin and norepinephrine. However, recent neuroimaging studies have demonstrated selective structural changes across various limbic and nonlimbic circuits in the brains of depressed patients. In addition, postmortem morphometric studies revealed decreased glial and neuron densities in selected brain structures supporting the idea that major depression may be related to impairments of structural plasticity. Stressful life events are among the major predisposing risk factors for developing depression. Using the chronic psychosocial stress paradigm in male tree shrews, an animal model with a high validity for the pathophysiology of depressive disorders, we found that 1 month of stress reduced the in vivo concentrations of the brain metabolites N-acetyl-aspartate, choline-containing compounds, and (phospho)-creatine, as well as the proliferation rate in the dentate gyrus and the hippocampal volume. Even though long-lasting social conflict does not lead to a loss of principal cells, the hippocampal changes were accompanied by modifications in the incidence of apoptosis. Notably, these suppressive effects of social conflict on hippocampal structure could be counteracted by treatment with the antidepressant tianeptine. These findings support current theories proposing that major depressive disorders may be associated with impairment of structural plasticity and neural cellular resilience, and that antidepressants may act by correcting this dysfunction.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
193
|
Westenbroek C, Den Boer JA, Veenhuis M, Ter Horst GJ. Chronic stress and social housing differentially affect neurogenesis in male and female rats. Brain Res Bull 2004; 64:303-8. [PMID: 15561464 DOI: 10.1016/j.brainresbull.2004.08.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 07/27/2004] [Accepted: 08/03/2004] [Indexed: 11/21/2022]
Abstract
Stress plays an important role in the development of affective disorders. Women show a higher prevalence for these disorders than men. The course of a depression is thought to be positively influenced by social support. We have used a chronic stress model in which rats received foot-shocks daily for 3 weeks. Since rats are social animals we hypothesised that 'social support' might reduce the adverse effects of chronic stress. To test this hypothesis, male and female rats were housed individually or socially in unisex groups of four rats. The proliferation marker bromodeoxyuridine (BrdU) was injected 2 weeks before the sacrifice to investigate if stress and social housing influenced the survival of proliferating cells in the dentate gyrus (DG). To investigate changes in proliferation, another group of rats was sacrificed the day after the last BrdU injection. Stress significantly decreased BrdU labelling in individually housed males and not significantly in socially housed males. In individually housed females stress increased BrdU labelling, which was prevented by social housing. The increase found in females is most likely caused by differences in survival rate, since cell proliferation was not affected by stress or housing conditions. These results indicate that social support can affect neurogenesis in both female and male rats, however in a different way.
Collapse
Affiliation(s)
- Christel Westenbroek
- Department of Psychiatry, Graduate School of Behavioral and Cognitive Neurosciences, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
194
|
Bosker FJ, Westerink BHC, Cremers TIFH, Gerrits M, van der Hart MGC, Kuipers SD, van der Pompe G, ter Horst GJ, den Boer JA, Korf J. Future antidepressants: what is in the pipeline and what is missing? CNS Drugs 2004; 18:705-32. [PMID: 15330686 DOI: 10.2165/00023210-200418110-00002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monoamine reuptake inhibitors still reign in the treatment of major depression, but possibly not for long. While medicinal chemists have been able to reduce the side effects of these drugs, their delayed onset of action and considerable non-response rate remain problematic. Of late, serious questions have been raised regarding the efficacy of monoamine reuptake inhibitors. The present review presents an inventory of what is (and until recently was) in the antidepressant pipeline of pharmaceutical companies. Novel antidepressant compounds can be categorised into four groups depending on their target(s): (i) monoamine receptors; (ii) non-monoamine receptors; (iii) neuropeptide receptors; and (iv) hormone receptors. Other possible targets include components of post-receptor intracellular processes and elements of the immune system; to date, however, compounds specifically aimed at these targets have not been the subject of clinical trials. Development of several compounds targeted at monoamine receptors has recently been discontinued. At least five neurokinin-1 (NK(1)) receptor antagonists were until recently in phase II of clinical testing. However, the apparent interest in the NK(1) receptor should not be interpreted as representing a departure from the monoamine hypothesis since neurokinins also modulate monoaminergic systems. In the authors' view, development of future antidepressants will continue to rely on the serendipity-based monoamine hypothesis. However, an alternative approach, based on the hypothesis that chronic stress precipitates depressive symptoms, might be more productive. Unfortunately, clinical results using drugs targeted at components of the HPA axis have not been very encouraging to date. In the short run, the authors believe that augmentation strategies offer the best hope for improving the efficacy of antidepressant treatment. Several approaches to improve the efficacy of SSRIs are conceivable, such as concurrent blockade of monoamine autoreceptors and the addition of antipsychotics, neuromodulators or hormones (HPA axis and gender related). In the long-term, however, construction of a scientifically verified conceptual framework will be needed before more effective antidepressants can be developed. It can be argued that it is not depression itself that should be treated, but rather that its duration should be reduced by pharmacological means. Animal models that take this concept into consideration and identify mechanisms for acceleration of recovery from the effects of stress need to be developed.
Collapse
Affiliation(s)
- Fokko J Bosker
- Department of Psychiatry, University and University Hospital of Groningen, Hanzeplein 1, PO Box 30 001, Groningen, 9700 RB, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Mitchell PB, Malhi GS, Ball JR. Major advances in bipolar disorder. Med J Aust 2004; 181:207-10. [PMID: 15310256 DOI: 10.5694/j.1326-5377.2004.tb06238.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 05/20/2004] [Indexed: 11/17/2022]
Abstract
There have been major advances in clinical understanding and treatment of bipolar disorder over the past decade. Randomised controlled trials of pharmacological treatments and psychological interventions have shown that there are effective short-term and long-term treatments for the disorder. Despite advances in treatment, diagnosis is often delayed or mistaken, and many people who could benefit are not using the treatments available. Functional and symptomatic recovery from episodes of bipolar disorder is frequently less complete than previously considered, and disability is often profound. Although manic episodes are the distinguishing feature of bipolar disorder, it appears that depression is the predominant mood disturbance and that much of the functional impairment associated with bipolar disorder results from this. Comorbidity with anxiety disorders or substance misuse is common. Advances in genetics, brain imaging and basic pharmacology are starting to provide understanding of the complex causative processes.
Collapse
Affiliation(s)
- Philip B Mitchell
- School of Psychiatry, University of New South Wales, Prince of Wales Hospital, Randwick, NSW 2031, Australia.
| | | | | |
Collapse
|
196
|
Schulze TG, Buervenich S, Badner JA, Steele CJM, Detera-Wadleigh SD, Dick D, Foroud T, Cox NJ, MacKinnon DF, Potash JB, Berrettini WH, Byerley W, Coryell W, DePaulo JR, Gershon ES, Kelsoe JR, McInnis MG, Murphy DL, Reich T, Scheftner W, Nurnberger JI, McMahon FJ. Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the national institute of mental health genetics initiative pedigrees. Biol Psychiatry 2004; 56:18-23. [PMID: 15219468 DOI: 10.1016/j.biopsych.2004.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 04/13/2004] [Accepted: 04/16/2004] [Indexed: 11/23/2022]
Abstract
BACKGROUND We have reported genetic linkage between bipolar disorder and markers on chromosome 6q16.3-22.1 in the National Institute of Mental Health Genetics Initiative wave 3 pedigrees. Here we test for: 1) robustness of the linkage to differing analysis methods, genotyping error, and gender-specific maps; 2) parent-of-origin effects; and 3) interaction with markers within the schizophrenia linkage region on chromosome 6p. METHODS Members of 245 families ascertained through a sibling pair affected with bipolar I or schizoaffective-bipolar disorder were genotyped with 18 markers spanning chromosome 6. Nonparametric linkage analysis was performed. RESULTS Linkage to 6q is robust to analysis method, gender-specific map differences, and genotyping error. The locus confers a 1.4-fold increased risk. Affected siblings share the maternal more often than the paternal chromosome (p =.006), which could reflect a maternal parent-of-origin effect. There is a positive correlation between family-specific linkage scores on 6q and those on 6p22.2 (r =.26; p <.0001). Linkage analysis for each locus conditioned on evidence of linkage to the other increases the evidence for linkage at both loci (p <.0005). Logarithm of the odds (LOD) scores increased from 2.26 to 5.42 on 6q and from.35 to 2.26 on 6p22.2. CONCLUSIONS These results support linkage of bipolar disorder to 6q, uncover a maternal parent-of-origin effect, and demonstrate an interaction of this locus with one on chromosome 6p22.2, previously linked only to schizophrenia.
Collapse
Affiliation(s)
- Thomas G Schulze
- Genetic Basis of Mood and Anxiety Disorders, Mood and Anxiety Program, Bethesda, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Yick LW, So KF, Cheung PT, Wu WT. Lithium Chloride Reinforces the Regeneration-Promoting Effect of Chondroitinase ABC on Rubrospinal Neurons after Spinal Cord Injury. J Neurotrauma 2004. [DOI: 10.1089/0897715041526221] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Leung-Wah Yick
- Department of Anatomy, The University of Hong Kong, Hong Kong
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwok-Fai So
- Department of Anatomy, The University of Hong Kong, Hong Kong
| | - Pik-To Cheung
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wu-Tian Wu
- Department of Anatomy, The University of Hong Kong, Hong Kong
| |
Collapse
|
198
|
Abstract
BACKGROUND The Royal Australian and New Zealand College of Psychiatrists is co-ordinating the development of clinical practice guidelines (CPGs) in psychiatry, funded under the National Mental Health Strategy (Australia) and the New Zealand Health Funding Authority METHOD For these guidelines, the CPG team reviewed the treatment outcome literature (including meta-analyses) and consulted with practitioners and consumers. TREATMENT RECOMMENDATIONS This guideline provides evidence-based recommendations for the management of bipolar disorder by phase of illness, that is acute mania, mixed episodes and bipolar depression, and the prophylaxis of such episodes. It specifies the roles of various mood-stabilizing medications and of psychological treatments such as cognitive therapy and psycho-education.
Collapse
|
199
|
Lucassen PJ, Fuchs E, Czéh B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 2004; 55:789-96. [PMID: 15050859 DOI: 10.1016/j.biopsych.2003.12.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 11/07/2003] [Accepted: 12/16/2003] [Indexed: 01/03/2023]
Abstract
BACKGROUND Recent clinical and preclinical studies suggest that major depression may be related to impairments of structural plasticity. Consequently, antidepressants may act by restoring altered rates of cell birth or death. Here, we investigated whether the antidepressant tianeptine would affect apoptosis in an animal model of depression, the psychosocially stressed tree shrew. METHODS Animals were subjected to a 7-day period of psychosocial stress before the onset of daily administration of tianeptine. Stress continued throughout the 28-day treatment period. In situ end labeling was used to detect apoptosis in hippocampus and adjacent temporal cortex. RESULTS Both stress and tianeptine treatment had a region-specific effect. Stress increased apoptosis in the temporal cortex, while it reduced it in the Ammons Horn. No significant effect was observed in the dentate gyrus. Interestingly, tianeptine treatment significantly reduced apoptosis in the temporal cortex and dentate gyrus, both in control and stressed animals, but had no effect in the Ammons Horn. Parallel Fluoro-Jade staining indicated that this apoptosis most likely represents non-neuronal cells. CONCLUSIONS This is the first report showing an anti-apoptotic effect of tianeptine in hippocampal subfields and temporal cortex. These findings are consistent with current theories that ascribe enhanced general cell survival to antidepressant action.
Collapse
Affiliation(s)
- Paul J Lucassen
- Institute for Neurobiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands
| | | | | |
Collapse
|
200
|
Karege F, Schwald M, El Kouaissi R. Drug-induced decrease of protein kinase a activity reveals alteration in BDNF expression of bipolar affective disorder. Neuropsychopharmacology 2004; 29:805-12. [PMID: 14735135 DOI: 10.1038/sj.npp.1300384] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar affective disorder (BAD) is a severe disease whose molecular and cellular bases are not well known. The aim of the present study was to probe the cAMP signaling downstream targets by pharmacologically manipulating the protein kinase A (PKA) enzyme, along with the assessment of brain-derived neurotrophic factor (BDNF) expression in lymphoblasts. The time course of lymphoblast PKA activity (up to 72 h) revealed optimal activity at 24 h. Then, the enzyme activity and protein levels of PKA Calpha subunit and phopsho-cAMP responsive element binding (CREB) were assayed in lymphoblasts derived from 12 BAD and 12 control (CT) subjects and cultured for 24 h in the presence of cAMP analog drugs. The results indicated that basal PKA activity and PKA Calpha subunit immunolabeling are increased in cells from BAD compared with controls. Enzyme activity was increased by Sp-isomer in BAD and in CT's cells, without change in protein levels. In contrast, the Rp-isomer decreased enzyme activity and protein levels. In drug-naive conditions, there was no change in BDNF expression of BAD cells compared with CT cells. Treatment with Sp-isomer induced increased BDNF in both groups, while treatment with Rp-isomer induced a significant decrease in BDNF expression of BAD compared with CT. The p-CREB changes followed changes in BDNF levels, with increased and decreased Sp-isomer and Rp-isomer treatment, respectively. Our results suggest that mood disorder is associated with PKA upregulation and this could mask alteration in BDNF expression, because slowing down of PKA signaling results in a decrease of BDNF expression. These findings, combined with previous reports, provide a new insight to explain pharmacological features in different diagnostic groups.
Collapse
Affiliation(s)
- Félicien Karege
- Geneva University Hospitals (Belle-Idéé), Division of Neuropsychiatry, Chêne-Bourg (Geneva), Switzerland.
| | | | | |
Collapse
|