151
|
Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 2018; 7:8. [PMID: 29362397 PMCID: PMC5833873 DOI: 10.1038/s41389-017-0025-3] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Glutathione transferase classical GSH conjugation activity plays a critical role in cellular detoxification against xenobiotics and noxious compounds as well as against oxidative stress. However, this feature is also exploited by cancer cells to acquire drug resistance and improve their survival. As a result, various members of the family were found overexpressed in a number of different cancers. Moreover several GST polymorphisms, ranging from null phenotypes to point mutations, were detected in members of the family and found to correlate with the onset of neuro-degenerative diseases. In the last decades, a great deal of research aimed at clarifying the role played by GSTs in drug resistance, at developing inhibitors to counteract this activity but also at exploiting GSTs for prodrugs specific activation in cancer cells. Here we summarize some of the most important achievements reached in this lively area of research.
Collapse
Affiliation(s)
- Nerino Allocati
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy.
| | - Michele Masulli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Carmine Di Ilio
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy.,CESI-MET, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
152
|
Ye BH, Zhang YB, Shu JP, Wu H, Wang HJ. RNA-sequencing analysis of fungi-induced transcripts from the bamboo wireworm Melanotus cribricollis (Coleoptera: Elateridae) larvae. PLoS One 2018; 13:e0191187. [PMID: 29338057 PMCID: PMC5770045 DOI: 10.1371/journal.pone.0191187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022] Open
Abstract
Larvae of Melanotus cribricollis, feed on bamboo shoots and roots, causing serious damage to bamboo in Southern China. However, there is currently no effective control measure to limit the population of this underground pest. Previously, a new entomopathogenic fungal strain isolated from M. cribricollis larvae cadavers named Metarhizium pingshaense WP08 showed high pathogenic efficacy indoors, indicated that the fungus could be used as a bio-control measure. So far, the genetic backgrounds of both M. cribricollis and M. pingshaense WP08 were blank. Here, we analyzed the whole transcriptome of M. cribricollis larvae, infected with M. pingshaense WP08 or not, using high-throughput next generation sequencing technology. In addition, the transcriptome sequencing of M. pingshaense WP08 was also performed for data separation of those two non-model species. The reliability of the RNA-Seq data was also validated through qRT-PCR experiment. The de novo assembly, functional annotation, sequence comparison of four insect species, and analysis of DEGs, enriched pathways, GO terms and immune related candidate genes were operated. The results indicated that, multiple defense mechanisms of M. cribricollis larvae are initiated to protect against the more serious negative effects caused by fungal infection. To our knowledge, this was the first report of transcriptome analysis of Melanotus spp. infected with a fungus, and it could provide insights to further explore insect-fungi interaction mechanisms.
Collapse
Affiliation(s)
- Bi-huan Ye
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Ya-bo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Jin-ping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- * E-mail: (JPS); (HW)
| | - Hong Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- * E-mail: (JPS); (HW)
| | - Hao-jie Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
153
|
Lin TJ, Karmaus WJJ, Chen ML, Hsu JC, Wang IJ. Interactions Between Bisphenol A Exposure and GSTP1 Polymorphisms in Childhood Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:172-179. [PMID: 29411558 PMCID: PMC5809766 DOI: 10.4168/aair.2018.10.2.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 12/25/2022]
Abstract
Purpose Bisphenol A (BPA) exposure may increase the risk of asthma. Genetic polymorphisms of oxidative stress-related genes, glutathione S-transferases (GSTM1, GSTP1), manganese superoxide dismutase, catalase, myeloperoxidase, and microsomal epoxide hydrolase may be related to BPA exposure. The aim is to evaluate whether oxidative stress genes modulates associations of BPA exposure with asthma. Methods We conducted a case-control study comprised of 126 asthmatic children and 327 controls. Urine Bisphenol A glucuronide (BPAG) levels were measured by ultra-performance liquid chromatography/tandem mass spectrometry, and genetic variants were analyzed by a TaqMan assay. Information on asthma and environmental exposure was collected. Analyses of variance and logistic regressions were performed to determine the association of genotypes and urine BPAG levels with asthma. Results BPAG levels were significantly associated with asthma (adjusted odds ratio [aOR], 1.29 per log unit increase in concentration; 95% confidence interval [CI], 1.081.55). Compared to the GG genotype, children with a GSTP1 AA genotype had higher urine BPAG concentrations (geometric mean [standard error], 12.72 [4.16] vs 11.42 [2.82]; P=0.036). In children with high BPAG, the GSTP1 AA genotype was related to a higher odds of asthma than the GG genotype (aOR, 4.84; 95% CI, 1.0223.06). Conclusions GSTP1 variants are associated with urine BPA metabolite levels. Oxidative stress genes may modulate the effect of BPA exposure on asthma.
Collapse
Affiliation(s)
- Tien Jen Lin
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Sports Science, College of Exercise and Health Sciences, National Taiwan Sport University, Taoyuan City, Taiwan.,Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Wilfried J J Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Mei Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Jiin Chyr Hsu
- Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan
| | - I Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan.,College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
154
|
Dehghan E, Zhang Y, Saremi B, Yadavali S, Hakimi A, Dehghani M, Goodarzi M, Tu X, Robertson S, Lin R, Chudhuri A, Mirzaei H. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat Commun 2017; 8:2223. [PMID: 29263362 PMCID: PMC5738364 DOI: 10.1038/s41467-017-02394-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 and its Caenorhabditis elegans ortholog, SKN-1, are transcription factors that have a pivotal role in the oxidative stress response, cellular homeostasis, and organismal lifespan. Similar to other defense systems, the NRF2-mediated stress response is compromised in aging and neurodegenerative diseases. Here, we report that the FDA approved drug hydralazine is a bona fide activator of the NRF2/SKN-1 signaling pathway. We demonstrate that hydralazine extends healthy lifespan (~25%) in wild type and tauopathy model C. elegans at least as effectively as other anti-aging compounds, such as curcumin and metformin. We show that hydralazine-mediated lifespan extension is SKN-1 dependent, with a mechanism most likely mimicking calorie restriction. Using both in vitro and in vivo models, we go on to demonstrate that hydralazine has neuroprotective properties against endogenous and exogenous stressors. Our data suggest that hydralazine may be a viable candidate for the treatment of age-related disorders.
Collapse
Affiliation(s)
- Esmaeil Dehghan
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, UT Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bahar Saremi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Amirmansoor Hakimi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maryam Dehghani
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mohammad Goodarzi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaoqin Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Scott Robertson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rueyling Lin
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Asish Chudhuri
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hamid Mirzaei
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
155
|
Kalita J, Shukla R, Shukla H, Gadhave K, Giri R, Tripathi T. Comprehensive analysis of the catalytic and structural properties of a mu-class glutathione s-transferase from Fasciola gigantica. Sci Rep 2017; 7:17547. [PMID: 29235505 PMCID: PMC5727538 DOI: 10.1038/s41598-017-17678-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023] Open
Abstract
Glutathione S‒transferases (GSTs) play an important role in the detoxification of xenobiotics. They catalyze the nucleophilic addition of glutathione (GSH) to nonpolar compounds, rendering the products water-soluble. In the present study, we investigated the catalytic and structural properties of a mu-class GST from Fasciola gigantica (FgGST1). The purified recombinant FgGST1 formed a homodimer composed of 25 kDa subunit. Kinetic analysis revealed that FgGST1 displays broad substrate specificity and shows high GSH conjugation activity toward 1-chloro-2,4-dinitrobenzene, 4-nitroquinoline-1-oxide, and trans-4-phenyl-3-butene-2-one and peroxidase activity towards trans-2-nonenal and hexa-2,4-dienal. The FgGST1 was highly sensitive to inhibition by cibacron blue. The cofactor (GSH) and inhibitor (cibacron blue) were docked, and binding sites were identified. The molecular dynamics studies and principal component analysis indicated the stability of the systems and the collective motions, respectively. Unfolding studies suggest that FgGST1 is a highly cooperative molecule because, during GdnHCl-induced denaturation, a simultaneous unfolding of the protein without stabilization of any partially folded intermediate is observed. The protein is stabilized with a conformational free energy of about 10 ± 0.3 kcal mol-1. Additionally, the presence of conserved Pro-53 and structural motifs such as N-capping box and hydrophobic staple, further aided in the stability and proper folding of FgGST1.
Collapse
Affiliation(s)
- Jupitara Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
156
|
Hamed HS, Osman AGM. Modulatory effect of lycopene against carbofuran toxicity in African catfish, Clarias gariepinus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1721-1731. [PMID: 28721486 DOI: 10.1007/s10695-017-0404-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In the current study, African catfish, Clarias gariepinus, was exposed to a sublethal concentration of carbofuran (CF) to investigate its negative effects on biochemical and oxidative stress biomarkers. Also, the putative role of lycopene (LYC) administration in alleviating these negative effects was evaluated. Fish were divided into six groups in triplicates as follows: group I was without treatment, group II was orally administered corn oil, group III was orally administered 18 mg LYC/kg body weight, group IV was exposed to 0.121 mg CF/L, group V was orally administered 9 mg LYC/kg body weight and exposed to 0.121 mg CF/L, and group VI was orally administered 18 mg LYC/kg body weight and exposed to 0.121 mg CF/L for 4 weeks. At the end of this period, blood and tissue (liver and kidney) samples were collected and biochemical and oxidative stress biomarkers were analysed. Also, histopathological changes were determined. Carbofuran caused significant increments of glucose, cortisol, aspartic amino transferase, alanine amino transferase, cholesterol, urea, and creatinine; meanwhile, serum acetylcholinesterase, total protein, albumin, and total lipids were significantly reduced. Significant increments in hepatic and renal malondialdehyde (MDA) and superoxide dismutase (SOD) levels and marked reduction in hepatic and renal catalase (CAT), glutathione (GSH), and total antioxidant capacity (TAC) levels were observed in CF-exposed fish comparing to the control group. Treatment with LYC attenuated the CF-induced oxidative stress, and this improvement was more pronounced in fish received the high LYC dose (18 mg/kg body weight). Further, congestion of the central vein with infiltration of mononuclear inflammatory cells, vacuolar necrosis, and haemorrhage was observed in the livers of CF-exposed fish. Oral administration of LYC reduced behavioural changes and histopathological alterations. All the altered biochemical parameters and antioxidant biomarkers were also restored to be near the normal levels. The obtained results evoked that LYC administration alleviated the destructive effects of carbofuran and reduced its toxicity effect on African catfish.
Collapse
Affiliation(s)
- Heba S Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo, 11757, Egypt.
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
157
|
Ahmed S, Sohail A, Khatoon S, Khan S, Saifullah MK. Partial purification and characterization of glutathione S-transferase from the somatic tissue of Gastrothylax crumenifer (Trematoda: Digenea). Vet World 2017; 10:1493-1500. [PMID: 29391692 PMCID: PMC5771176 DOI: 10.14202/vetworld.2017.1493-1500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022] Open
Abstract
AIM Aim of the present study was to carry out the partial purification and biochemical characterization of glutathione S-transferase (GST) from the somatic tissue of ruminal amphistome parasite, Gastrothylax crumenifer (Gc) infecting Indian water buffalo (Bubalus bubalis). MATERIALS AND METHODS The crude somatic homogenate of Gc was subjected to progressive ammonium sulfate precipitation followed by size exclusion chromatography in a Sephacryl S 100-HR column. The partially purified GST was assayed spectrophotometrically, and the corresponding enzyme activity was also recorded in polyacrylamide gel. GST isolated from the amphistome parasite was also exposed to variable changes in temperature and the pH gradient of the assay mixture. RESULTS The precipitated amphistome GST molecules showed maximum activity in the sixth elution fraction. The GST subunit appeared as a single band in the reducing polyacrylamide gel electrophoresis with an apparent molecular weight of 26 kDa. The GST proteins were found to be fairly stable up to 37°C, beyond this the activity got heavily impaired. Further, the GST obtained showed a pH optima of 7.5. CONCLUSION Present findings showed that GST from Gc could be conveniently purified using gel filtration chromatography. The purified enzyme showed maximum stability and activity at 4°C.
Collapse
Affiliation(s)
- Sakil Ahmed
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Aamir Sohail
- Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sabiha Khatoon
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shabnam Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Khalid Saifullah
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
158
|
Sharath Babu GR, Anand T, Ilaiyaraja N, Khanum F, Gopalan N. Pelargonidin Modulates Keap1/Nrf2 Pathway Gene Expression and Ameliorates Citrinin-Induced Oxidative Stress in HepG2 Cells. Front Pharmacol 2017; 8:868. [PMID: 29230174 PMCID: PMC5711834 DOI: 10.3389/fphar.2017.00868] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/10/2017] [Indexed: 01/11/2023] Open
Abstract
Pelargonidin chloride (PC) is one of the major anthocyanin found in berries, radish and other natural foods. Many natural chemopreventive compounds have been shown to be potent inducers of phase II detoxification genes and its up-regulation is important for oxidative stress related disorders. In the present study, we investigated the effect of PC in ameliorating citrinin (CTN) induced cytotoxicity and oxidative stress. The cytotoxicity of CTN was evaluated by treating HepG2 (Human hepatocellular carcinoma) cells with CTN (0–150 μM) in a dose dependent manner for 24 h, and the IC50 was determined to be 96.16 μM. CTN increased lactate dehydrogenase leakage (59%), elevated reactive oxygen species (2.5-fold), depolarized mitochondrial membrane potential as confirmed by JC-1 monomers and arrested cell cycle at G2/M phase. Further, apoptotic and necrotic analysis revealed significant changes followed by DNA damage. To overcome these toxicological effects, PC was pretreated for 2 h followed by CTN exposure for 24 h. Pretreatment with PC resulted in significant increase in cell viability (84.5%), restored membrane integrity, reactive oxygen species level were maintained and cell cycle phases were normal. PC significantly up-regulated the activity of detoxification enzymes: heme oxygenase 1 (HO-1), glutathione transferase, glutathione peroxidase, superoxide dismutase and quinone reductase. Nrf2 translocation into the nucleus was also observed by immunocytochemistry analysis. These data demonstrate the protective effect of PC against CTN-induced oxidative stress in HepG2 cells and up-regulated the activity of detoxification enzyme levels through Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- G R Sharath Babu
- Biochemistry and Nano Sciences Division, Defence Food Research Laboratory, Mysore, India
| | - Tamatam Anand
- Biochemistry and Nano Sciences Division, Defence Food Research Laboratory, Mysore, India
| | - N Ilaiyaraja
- Biochemistry and Nano Sciences Division, Defence Food Research Laboratory, Mysore, India
| | - Farhath Khanum
- Biochemistry and Nano Sciences Division, Defence Food Research Laboratory, Mysore, India
| | - N Gopalan
- Food Biotechnology Division, Defence Food Research Laboratory, Mysore, India
| |
Collapse
|
159
|
Wang D, Li L, Wu G, Vasseur L, Yang G, Huang P. De novo transcriptome sequencing of Isaria cateniannulata and comparative analysis of gene expression in response to heat and cold stresses. PLoS One 2017; 12:e0186040. [PMID: 29023475 PMCID: PMC5638334 DOI: 10.1371/journal.pone.0186040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/22/2017] [Indexed: 11/19/2022] Open
Abstract
Isaria cateniannulata is a very important and virulent entomopathogenic fungus that infects many insect pest species. Although I. cateniannulata is commonly exposed to extreme environmental temperature conditions, little is known about its molecular response mechanism to temperature stress. Here, we sequenced and de novo assembled the transcriptome of I. cateniannulata in response to high and low temperature stresses using Illumina RNA-Seq technology. Our assembly encompassed 17,514 unigenes (mean length = 1,197 bp), in which 11,445 unigenes (65.34%) showed significant similarities to known sequences in NCBI non-redundant protein sequences (Nr) database. Using digital gene expression analysis, 4,483 differentially expressed genes (DEGs) were identified after heat treatment, including 2,905 up-regulated genes and 1,578 down-regulated genes. Under cold stress, 1,927 DEGs were identified, including 1,245 up-regulated genes and 682 down-regulated genes. The expression patterns of 18 randomly selected candidate DEGs resulting from quantitative real-time PCR (qRT-PCR) were consistent with their transcriptome analysis results. Although DEGs were involved in many pathways, we focused on the genes that were involved in endocytosis: In heat stress, the pathway of clathrin-dependent endocytosis (CDE) was active; however at low temperature stresses, the pathway of clathrin-independent endocytosis (CIE) was active. Besides, four categories of DEGs acting as temperature sensors were observed, including cell-wall-major-components-metabolism-related (CWMCMR) genes, heat shock protein (Hsp) genes, intracellular-compatible-solutes-metabolism-related (ICSMR) genes and glutathione S-transferase (GST). These results enhance our understanding of the molecular mechanisms of I. cateniannulata in response to temperature stresses and provide a valuable resource for the future investigations.
Collapse
Affiliation(s)
- Dingfeng Wang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, Fujian, China
| | - Liangde Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, Fujian, China
| | - Guangyuan Wu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, Fujian, China
- * E-mail: (GYW); (GY)
| | - Liette Vasseur
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Guang Yang
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (GYW); (GY)
| | - Pengrong Huang
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
160
|
Cong Q, Shen J, Li W, Borek D, Otwinowski Z, Grishin NV. The first complete genomes of Metalmarks and the classification of butterfly families. Genomics 2017; 109:485-493. [PMID: 28757157 PMCID: PMC5747260 DOI: 10.1016/j.ygeno.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/23/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Sequencing complete genomes of all major phylogenetic groups of organisms opens unprecedented opportunities to study evolution and genetics. We report draft genomes of Calephelis nemesis and Calephelis virginiensis, representatives of the family Riodinidae. They complete the genomic coverage of butterflies at the family level. At 809 and 855 Mbp, respectively, they become the largest available Lepidoptera genomes. Comparison of butterfly genomes shows that the divergence between Riodinidae and Lycaenidae dates to the time when other families started to diverge into subfamilies. Thus, Riodinidae may be considered a subfamily of Lycaenidae. Calephelis species exhibit unique gene expansions in actin-disassembling factor, cofilin, and chitinase. The functional implications of these gene expansions are not clear, but they may aid molting of caterpillars covered in extensive setae. The two Calephelis species diverged about 5 million years ago and they differ in proteins involved in metabolism, circadian clock, regulation of development, and immune responses.
Collapse
Affiliation(s)
- Qian Cong
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | - Jinhui Shen
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | - Wenlin Li
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | - Dominika Borek
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | - Zbyszek Otwinowski
- Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA; Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| |
Collapse
|
161
|
Zhao Y, Li G, Qi D, Sun L, Wen C, Yin S. Biomarker responses of earthworms (Eisenia fetida) to soils contaminated with perfluorooctanoic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22073-22081. [PMID: 28791554 DOI: 10.1007/s11356-017-9776-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is considered a persistent environmental pollutant. The aim of this study was to assess the potential toxicity of PFOA to earthworms (Eisenia fetida) in artificial soil. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST) as well as the contents of malondialdehyde (MDA) were measured after exposure to 0, 5, 10, 20, and 40 mg kg-1 PFOA in soils for 7, 14, 21, and 28 days. The results showed that SOD activity increased at 14 days and decreased from 21 to 28 days; MDA levels were highest in the treatment with 40 mg kg-1 PFOA after 28 days of exposure. In contrast, CAT and POD activities increased after 14-21 days of exposure and significantly decreased with long-term exposure (28 days). GST activity increased significantly from 14 to 28 days. Our results indicate that PFOA has biochemical effects on E. fetida, thereby contributing to our understanding of the ecological toxicity of PFOA on soil invertebrates.
Collapse
Affiliation(s)
- Yiyi Zhao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Taian, 271018, China
| | - Guangde Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Daqian Qi
- The Fifth Prospecting Team of Shandong Coal Geology Bureau, Taian, 271010, China
| | - Liangqi Sun
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Taian, 271018, China
| | - Changlei Wen
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Taian, 271018, China
| | - Suzhen Yin
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
162
|
Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions. Blood Adv 2017; 1:1440-1451. [PMID: 29296785 DOI: 10.1182/bloodadvances.2017007591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Besides being a classical tumor suppressor, runt-related transcription factor 1 (RUNX1) is now widely recognized for its oncogenic role in the development of acute myeloid leukemia (AML). Here we report that this bidirectional function of RUNX1 possibly arises from the total level of RUNX family expressions. Indeed, analysis of clinical data revealed that intermediate-level gene expression of RUNX1 marked the poorest-prognostic cohort in relation to AML patients with high- or low-level RUNX1 expressions. Through a series of RUNX1 knockdown experiments with various RUNX1 attenuation potentials, we found that moderate attenuation of RUNX1 contributed to the enhanced propagation of AML cells through accelerated cell-cycle progression, whereas profound RUNX1 depletion led to cell-cycle arrest and apoptosis. In these RUNX1-silenced tumors, amounts of compensative upregulation of RUNX2 and RUNX3 expressions were roughly equivalent and created an absolute elevation of total RUNX (RUNX1 + RUNX2 + RUNX3) expression levels in RUNX1 moderately attenuated AML cells. This elevation resulted in enhanced transactivation of glutathione S-transferase α 2 (GSTA2) expression, a vital enzyme handling the catabolization of intracellular reactive oxygen species (ROS) as well as advancing the cell-cycle progressions, and thus ultimately led to the acquisition of proliferative advantage in RUNX1 moderately attenuated AML cells. Besides, treatment with ethacrynic acid, which is known for its GSTA inhibiting property, actually prolonged the survival of AML mice in vivo. Collectively, our findings indicate that moderately attenuated RUNX1 expressions paradoxically enhance leukemogenesis in AML cells through intracellular environmental change via GSTA2, which could be a novel therapeutic target in antileukemia strategy.
Collapse
|
163
|
Jiang X, Tang T, Zhao H, Song Q, Zhou H, Han Q, Diao X. Differential gene responses in the embryo of the green mussel Perna viridis exposed to dichlorodiphenyltrichloroethane (DDT). Toxicol Res (Camb) 2017; 6:477-486. [PMID: 30090516 PMCID: PMC6062083 DOI: 10.1039/c7tx00087a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023] Open
Abstract
The green-lipped mussel, Perna viridis, is considered to be an ideal indicator for marine environmental pollution. Dichlorodiphenyltrichloroethane (DDT), a typical persistent organic pollutant, is extensively distributed in marine environments. However, little is known about the toxic effects of DDT on the embryo of marine animals, particularly in marine bivalves. Using next-generation sequencing technology, we studied P. viridis embryo after DDT stress at the transcriptome level. A total of 99 202 unigenes were obtained based on the 2383 bp of unigene N50. These differentially expressed genes (DEGs) participated in the various molecular pathways of biological effects, including oxidative stress, detoxification, innate immunity and neurobehavioral disease. Quantitative real-time PCR was performed to verify the mRNA expression of several genes identified by differential gene expression (DGE) analysis. The results indicated that DDT was in induced a dose-dependent manner in the embryo of P. viridis, and most genes involved in oxidative stress and detoxification were up-regulated by DDT exposure; however, the immunity-related genes were down-regulated, except the genes involved in phagocytosis. Gene expression changes in embryo from P. viridis provide a preliminary basis to better understand the molecular toxic response mechanisms of embryo to DDT.
Collapse
Affiliation(s)
- Xiu Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| | - Tianle Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- School of Tropical and Laboratory Medicine , Hainan Medical University , Haikou , 571199 , China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- School of Tropical and Laboratory Medicine , Hainan Medical University , Haikou , 571199 , China
| | - Qinqin Song
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea , Hainan University , Haikou 570228 , China
- Institute of Tropical Agriculture and Forestry , Hainan University , Haikou 570228 , China .
| |
Collapse
|
164
|
Interaction of Ferulic Acid with Glutathione S-Transferase and Carboxylesterase Genes in the Brown Planthopper, Nilaparvata lugens. J Chem Ecol 2017. [PMID: 28647840 DOI: 10.1007/s10886-017-0859-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Plant phenolics are crucial defense phytochemicals against herbivores and glutathione S-transferase (GST) and carboxylesterase (CarE) in herbivorous insects are well-known detoxification enzymes for such xenobiotics. To understand relationship between a plant phenolic and herbivore GST or CarE genes, we evaluated the relationship between a rice phenolic ferulic acid and resistance to brown planthopper (BPH, Nilaparvata lugens), and investigated the interaction of ferulic acid with GST or CarE genes in BPH. The results indicate that ferulic acid content in tested rice varieties was highly associated with resistance to BPH. Bioassays using artificial diets show that the phenolic acid toxicity to BPH was dose dependent and the LC25 and LC50 were 5.81 and 23.30 μg/ml at 72 hr, respectively. Activities of the enzymes BPH GST and CarE were increased at concentrations below the LC50 of ferulic acid. Moreover, low ferulic acid concentrations (< LC25) upregulated the transcriptional levels of NlGSTD1 and NlGSTE1 of the GST family and NlCE of the CarE family. By using dsRNA-induced gene silencing (DIGS) of GST or CarE, it was shown that suppressed expression levels of NlGSTD1, NlGSTE1 and NlCE were 14.6%-21.2%, 27.8%-34.2%, and 10.5%-19.8%, respectively. Combination of NlGSTD1, NlGSTE1 or NlCE knockdown with ferulic acid increased nymph mortality by 92.9%, 119.9%, or 124.6%, respectively. These results suggest that depletion of detoxification genes in herbivorous insects by plant-mediated RNAi technology might be a new potential resource for improving rice resistance to BPH.
Collapse
|
165
|
Del Re M, Latiano T, Fidilio L, Restante G, Morelli F, Maiello E, Danesi R. Unusual gastrointestinal and cutaneous toxicities by bleomycin, etoposide, and cisplatin: a case report with pharmacogenetic analysis to personalize treatment. EPMA J 2017; 8:69-73. [PMID: 28620445 DOI: 10.1007/s13167-017-0080-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
The standard treatment of testicular germ cell tumors is based on the combination of bleomycin, etoposide, and cisplatin (PEB). However, this treatment may be associated with severe adverse reactions, such as hematological and non-hematological toxicities. Here, we report a case of a patient suffering from severe PEB-related toxicities, to whom pharmacogenetic analyses were performed, comprising a panel of genes involved in PEB metabolism. The analysis revealed the presence of a complex pattern of polymorphisms in GSTP1, UGT1A1 (TA)6/7, UGT1A7, and ABCB1. The present case shows that a pharmacogenetic approach can help in the management of adverse drug reactions in order to predict, prevent, and personalize treatments.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Tiziana Latiano
- Medical Oncology Unit, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia Italy
| | - Leonardo Fidilio
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Giuliana Restante
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Franco Morelli
- Medical Oncology Unit, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia Italy
| | - Evaristo Maiello
- Medical Oncology Unit, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| |
Collapse
|
166
|
Fernando DD, Marr EJ, Zakrzewski M, Reynolds SL, Burgess STG, Fischer K. Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets. Parasit Vectors 2017; 10:289. [PMID: 28601087 PMCID: PMC5466799 DOI: 10.1186/s13071-017-2226-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/01/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Scabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools. METHODS We performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi). RESULTS We provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls. CONCLUSIONS A series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes.
Collapse
Affiliation(s)
- Deepani D. Fernando
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, 300 Herston Road, Herston, Brisbane, 4006 Australia
- School of Veterinary Sciences, University of Queensland, Gatton, QLD 4343 Australia
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Edward J. Marr
- Parasitology Division, Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, Scotland EH26 0PZ UK
| | - Martha Zakrzewski
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, 300 Herston Road, Herston, Brisbane, 4006 Australia
| | - Simone L. Reynolds
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, 300 Herston Road, Herston, Brisbane, 4006 Australia
| | - Stewart T. G. Burgess
- Parasitology Division, Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, Scotland EH26 0PZ UK
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, 300 Herston Road, Herston, Brisbane, 4006 Australia
| |
Collapse
|
167
|
Dos Santos Moysés F, Bertoldi K, Elsner VR, Cechinel LR, Basso C, Stülp S, Rodrigues MAS, Siqueira IR. Effect of tannery effluent on oxidative status of brain structures and liver of rodents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15689-15699. [PMID: 28527140 DOI: 10.1007/s11356-017-9149-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Oxidative stress has been considered as a central mechanism of toxicity induced by xenobiotics. Previously, it was demonstrated that mice exposed to tannery effluent showed an anxiety-like behavior, without any comparable behavioral effects in rats. The aim of the present study was to investigate the impact of tannery wastewater on oxidative status in in vitro and in vivo assays with two mammal species, mice and rats. Specifically, homogenates of two brain areas and the liver were incubated with tannery wastewater; reactive species and lipid peroxidation levels and antioxidant enzyme activities were detected. In addition, the effects of in vivo exposure of mice to tannery effluents on and lipid peroxidation levels and the total reactive antioxidant capacity in brain areas and liver. Brain areas, the hippocampus and frontal cortex, and the liver of mice exposed to tannery wastewater showed oxidative stress. Our data suggest that divergent species-dependent hepatic enzymes adaptations, such as glutathione peroxidase and glutathione S-transferase activities, induced by tannery effluent could explain previous behavioral findings.
Collapse
Affiliation(s)
- Felipe Dos Santos Moysés
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Karine Bertoldi
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Basso
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Stülp
- Programa de Pós-Graduação em Ambiente e Desenvolvimento, Univates, Lajeado, RS, Brazil
| | | | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500 sala 202, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
168
|
Ge Y, Zhang J, Shi X, Lu C, Yang L, Li Y, Chen Y, Cheng D, Bai J, Lv Z, Liu L. Differential expression and miRNA regulation of the GSTP1 gene in the regenerating liver of Chiloscyllium plagiosum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:791-802. [PMID: 28054243 DOI: 10.1007/s10695-016-0332-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/18/2016] [Indexed: 06/06/2023]
Abstract
Liver regeneration is a complicated process, and understanding the regulatory mechanism will be helpful in the treatment of diseases associated with liver. In this study, the one-third liver resection model was established in Chiloscyllium plagiosum, and the whole transcriptome of the C. plagiosum was generated using the Illumina-Solexa sequencing platform. Differentially expressed genes were analyzed using bioinformatics methods and verified using quantitative real-time PCR (qRT-PCR). Using miRanda and TargetScan, we screened the microRNA library for miRNAs that target the glutathione S-transferase P1(GSTP1) gene. Dual-luciferase reporter assays were used to confirm binding between the miRNA and GSTP1. Finally, we used western blotting analysis to determine expression of the GSTP1 protein. As a result, 65,356 unigenes were obtained in normal and damaged liver tissues, with mean length of 955 bp. A total of 359 differentially expressed genes were acquired; 217 of which were upregulated, and 142 were downregulated, including the GSTP1 gene, following liver resection. The presence of the GSTP1 protein in C. plagiosum was shown for the first time. Luciferase reporter assay revealed that GSTP1 messenger RNA was targeted by ipu-miR-143. The discovery and differential expression analysis of GSTP1 in C. plagiosum will be a valuable resource to explain the molecular mechanism of GSTP1 regulation of liver repair.
Collapse
Affiliation(s)
- Yinghua Ge
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Jiewen Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Xinyi Shi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Conger Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Lingrong Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Yuanyuan Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Yanna Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Dandan Cheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Jing Bai
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Zhengbing Lv
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| | - Lili Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| |
Collapse
|
169
|
Valenzuela-Chavira I, Contreras-Vergara CA, Arvizu-Flores AA, Serrano-Posada H, Lopez-Zavala AA, García-Orozco KD, Hernandez-Paredes J, Rudiño-Piñera E, Stojanoff V, Sotelo-Mundo RR, Islas-Osuna MA. Insights into ligand binding to a glutathione S-transferase from mango: Structure, thermodynamics and kinetics. Biochimie 2017; 135:35-45. [PMID: 28104507 PMCID: PMC5346462 DOI: 10.1016/j.biochi.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/08/2016] [Accepted: 01/01/2017] [Indexed: 02/08/2023]
Abstract
We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM min-1 and 68.49 s-1 respectively and 0.693 mM, 105.32 mM min-1 and 89.57 s-1, for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes.
Collapse
Affiliation(s)
- Ignacio Valenzuela-Chavira
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico; Laboratorio de Genética Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico
| | - Carmen A Contreras-Vergara
- Laboratorio de Genética Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico.
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - Hugo Serrano-Posada
- CONACyT, Laboratorio de Bioingeniería, Universidad de Colima, Coquimatlán, Colima 28629, Mexico
| | - Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - Karina D García-Orozco
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico
| | | | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Vivian Stojanoff
- Brookhaven National Laboratory, Photon Science Directorate, Upton, NY 11973, USA
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico.
| | - Maria A Islas-Osuna
- Laboratorio de Genética Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora 83304, Mexico
| |
Collapse
|
170
|
Knutson ST, Westwood BM, Leuthaeuser JB, Turner BE, Nguyendac D, Shea G, Kumar K, Hayden JD, Harper AF, Brown SD, Morris JH, Ferrin TE, Babbitt PC, Fetrow JS. An approach to functionally relevant clustering of the protein universe: Active site profile-based clustering of protein structures and sequences. Protein Sci 2017; 26:677-699. [PMID: 28054422 PMCID: PMC5368075 DOI: 10.1002/pro.3112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023]
Abstract
Protein function identification remains a significant problem. Solving this problem at the molecular functional level would allow mechanistic determinant identification-amino acids that distinguish details between functional families within a superfamily. Active site profiling was developed to identify mechanistic determinants. DASP and DASP2 were developed as tools to search sequence databases using active site profiling. Here, TuLIP (Two-Level Iterative clustering Process) is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate structurally characterized superfamily members into functionally relevant clusters. Underlying TuLIP is the observation that functionally relevant families (curated by Structure-Function Linkage Database, SFLD) self-identify in DASP2 searches; clusters containing multiple functional families do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self-identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering continues until each structure is either a functionally relevant group member or a singlet. TuLIP is validated on enolase and glutathione transferase structures, superfamilies well-curated by SFLD. Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP-identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and maximum false positive rate of 4%. F-measure and performance analysis on the enolase search results and comparison to GEMMA and SCI-PHY demonstrate that TuLIP avoids the over-division problem of these methods. Mechanistic determinants for enolase families are evaluated and shown to correlate well with literature results.
Collapse
Affiliation(s)
- Stacy T. Knutson
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
- Department of Computer ScienceWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Brian M. Westwood
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
- Department of Computer ScienceWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Janelle B. Leuthaeuser
- Molecular Genetics and Genomics ProgramWake Forest School of MedicineWinston‐SalemNorth Carolina27157
| | - Brandon E. Turner
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Don Nguyendac
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Gabrielle Shea
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Kiran Kumar
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Julia D. Hayden
- Biochemistry Program, Dickinson CollegeCarlislePennsylvania17013
| | - Angela F. Harper
- Department of PhysicsWake Forest UniversityWinston‐SalemNorth Carolina27106
| | - Shoshana D. Brown
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia94158
| | - John H. Morris
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia94158
| | - Thomas E. Ferrin
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia94158
| | - Patricia C. Babbitt
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCalifornia94158
| | | |
Collapse
|
171
|
Wang IJ, Karmaus WJJ. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020162. [PMID: 28208751 PMCID: PMC5334716 DOI: 10.3390/ijerph14020162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
Background: Phthalate exposure may increase the risk of asthma. Little is known about whether oxidative-stress related genes may alter this association. First, this motivated us to investigate whether genetic polymorphisms of the oxidative-stress related genes glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase pi 1 (GSTP1), superoxide dismutase 2 (SOD2), catalase (CAT), myeloperoxidase (MPO), and EPHX1 in children are associated with phthalate urine concentrations. Second, we addressed the question whether these genes may affect the influence of phthalates on asthma. Methods: In a case-control study composed of 126 asthmatic children and 327 controls, urine phthalate metabolites (monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono(2-ethyl-5-hydroxyhexyl)phthalate (MEHHP) were measured by UPLC-MS/MS at age 3. Genetic variants were analyzed by TaqMan assay. Information on asthma and environmental exposures was also collected. Analyses of variance and logistic regressions were performed. Results: Urine MEHHP levels were associated with asthma (adjusted OR 1.33, 95% CI (1.11–1.60). Children with the GSTP1 (rs1695) AA and SOD2 (rs5746136) TT genotypes had higher MEHHP levels as compared to GG and CC types, respectively. Since only SOD2 TT genotype was significantly associated with asthma (adjusted OR (95% CI): 2.78 (1.54–5.02)), we estimated whether SOD2 variants modify the association of MEHHP levels and asthma. As MEHHP concentrations were dependent on GSTP1 and SOD2, but the assessment of interaction requires independent variables, we estimated MEHHP residuals and assessed their interaction, showing that the OR for SOD2 TT was further elevated to 3.32 (1.75–6.32) when the residuals of MEHHP were high. Conclusions: Urine phthalate metabolite concentrations are associated with oxidative-stress related genetic variants. Genetic variants of SOD2, considered to be reflect oxidative stress metabolisms, might modify the association of phthalate exposure with asthma.
Collapse
Affiliation(s)
- I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 11267, Taiwan.
- Institute of Environmental & Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei 100044, Taiwan.
- Department of Health Risk Management, China Medical University, Taichung 110001, Taiwan.
| | - Wilfried J J Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
172
|
The effects of clove oil on the enzyme activity of Varroa destructor Anderson and Trueman (Arachnida: Acari: Varroidae). Saudi J Biol Sci 2017; 24:996-1000. [PMID: 28663694 PMCID: PMC5478387 DOI: 10.1016/j.sjbs.2017.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/12/2016] [Accepted: 01/17/2017] [Indexed: 11/23/2022] Open
Abstract
Varroa destructor, a key biotic threat to the Western honey bee, has played a major role in colony losses over the past few years worldwide. Overuse of traditional acaricides, such as tau-fluvalinate and flumethrin, on V. destructor has only increased its tolerance to them. Therefore, the application of essential oils in place of traditional pesticides is an attractive alternative, as demonstrated by its high efficiency, lack of residue and tolerance resistance. To study the acaricidal activity of essential oils, we used clove oil (Syzygium aromaticum L.), a typical essential oil with a wide range of field applications, and examined its effects on the enzyme activities of Ca2+-Mg2+-ATPase, glutathione-S-transferase (GST) and superoxide dismutase (SOD) and its effects on the water-soluble protein content of V. destructor body extracts after exposure to 0.1 μl and 1.0 μl of clove oil for 30 min. Our results showed that the water-soluble protein content significantly decreased after the treatments, indicating that the metabolism of the mites was adversely affected. The bioactivity of GSTs increased significantly after a low dosage (0.1 μl) exposure but decreased at a higher dosage (1.0 μl), while the activities of SOD and Ca2+-Mg2+-ATPase were significantly elevated after treatments. These results suggest that the protective enzyme SOD and detoxifying enzymes Ca2+-Mg2+-ATPase and GST contributed to the stress reaction of V. destructor to the essential oils and that the detoxification ability of V. destructor via GST was inhibited at higher dosages. Our findings are conducive to understanding the physiological reactions of V. destructor to treatment with essential oils and the underlying mechanisms behind the acaricidal activities of these natural products.
Collapse
|
173
|
Sohn EJ, Shin MJ, Kim DW, Son O, Jo HS, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Yu YH, Kim DS, Cho SW, Kwon OS, Cho YJ, Park J, Eum WS, Choi SY. PEP-1-GSTpi protein enhanced hippocampal neuronal cell survival after oxidative damage. BMB Rep 2017; 49:382-7. [PMID: 27049109 PMCID: PMC5032006 DOI: 10.5483/bmbrep.2016.49.7.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/02/2022] Open
Abstract
Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stress-induced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases. [BMB Reports 2016; 49(7): 382-387]
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31538, 4Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31538, 4Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Oh Shin Kwon
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| |
Collapse
|
174
|
Cui L, Rui C, Yang D, Wang Z, Yuan H. De novo transcriptome and expression profile analyses of the Asian corn borer (Ostrinia furnacalis) reveals relevant flubendiamide response genes. BMC Genomics 2017; 18:20. [PMID: 28056803 PMCID: PMC5217215 DOI: 10.1186/s12864-016-3431-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Background The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), has become the most damaging insect pest of corn in Asia. However, the lack of genome or transcriptome information heavily hinders our further understanding of ACB in every aspect at a molecular level and on a genome-wide scale. Here, we used the Ion Torrent Personal Genome Machine (PGM) Sequencer to explore the ACB transcriptome and to identify relevant genes in response to flubendiamide, showing high selective activity against ACB. Results We obtained 35,430 unigenes, with an average length of 716 bp, representing a dramatic expansion of existing cDNA sequences available for ACB. These sequences were annotated with Non-redundant Protein (Nr), Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to better understand their functions. A total of 31 cytochrome P450 monooxygenases (P450s), 27 carboxyl/cholinesterases (CCEs) and 19 glutathione S-transferases (GSTs) were manually curated to construct phylogenetic trees, and 25 unigenes encoding target proteins (acetylcholinesterase, nicotinic acetylcholine receptor, gamma-aminobutyric acid receptor, glutamate-gated chloride channel, voltage-gated sodium channel and ryanodine receptor) were identified. In addition, we compared and validated the differentially expressed unigenes upon flubendiamide treatment, revealing that the genes for detoxification enzymes (P450s and esterase), calcium signaling pathways and muscle control pathways (twitchin and tropomyosin), immunoglobulin (hemolin), chemosensory protein and heat shock protein 70 were significantly overexpressed in response to flubendiamide, while the genes for cuticular protein, protease and oxidoreductase showed much lower expression levels. Conclusion The obtained transcriptome information provides large genomic resources available for further studies of ACB. The differentially expressed gene data will elucidate the molecular mechanisms of ACB in response to the novel diamide insecticide, flubendiamide. In particular, these findings will facilitate the identification of the genes involved in insecticide resistance and the development of new compounds to control the ACB. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3431-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Daibin Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
175
|
Ahmad L, Rylott EL, Bruce NC, Edwards R, Grogan G. Structural evidence for Arabidopsis glutathione transferase AtGSTF2 functioning as a transporter of small organic ligands. FEBS Open Bio 2016; 7:122-132. [PMID: 28174680 PMCID: PMC5292665 DOI: 10.1002/2211-5463.12168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 02/02/2023] Open
Abstract
Glutathione transferases (GSTs) are involved in many processes in plant biochemistry, with their best characterised role being the detoxification of xenobiotics through their conjugation with glutathione. GSTs have also been implicated in noncatalytic roles, including the binding and transport of small heterocyclic ligands such as indole hormones, phytoalexins and flavonoids. Although evidence for ligand binding and transport has been obtained using gene deletions and ligand binding studies on purified GSTs, there has been no structural evidence for the binding of relevant ligands in noncatalytic sites. Here we provide evidence of noncatalytic ligand‐binding sites in the phi class GST from the model plant Arabidopsis thaliana, AtGSTF2, revealed by X‐ray crystallography. Complexes of the AtGSTF2 dimer were obtained with indole‐3‐aldehyde, camalexin, the flavonoid quercetrin and its non‐rhamnosylated analogue quercetin, at resolutions of 2.00, 2.77, 2.25 and 2.38 Å respectively. Two symmetry‐equivalent‐binding sites (L1) were identified at the periphery of the dimer, and one more (L2) at the dimer interface. In the complexes, indole‐3‐aldehyde and quercetrin were found at both L1 and L2 sites, but camalexin was found only at the L1 sites and quercetin only at the L2 site. Ligand binding at each site appeared to be largely determined through hydrophobic interactions. The crystallographic studies support previous conclusions made on ligand binding in noncatalytic sites by AtGSTF2 based on isothermal calorimetry experiments (Dixon et al. (2011) Biochem J 438, 63–70) and suggest a mode of ligand binding in GSTs commensurate with a possible role in ligand transport.
Collapse
Affiliation(s)
- Laziana Ahmad
- York Structural Biology Laboratory Department of Chemistry University of York UK; Department of Biology Centre for Novel Agricultural Products University of York UK
| | - Elizabeth L Rylott
- Department of Biology Centre for Novel Agricultural Products University of York UK
| | - Neil C Bruce
- Department of Biology Centre for Novel Agricultural Products University of York UK
| | - Robert Edwards
- School of Agriculture, Food & Rural Development Newcastle University UK
| | - Gideon Grogan
- York Structural Biology Laboratory Department of Chemistry University of York UK
| |
Collapse
|
176
|
Parker LJ, Bocedi A, Ascher DB, Aitken JB, Harris HH, Lo Bello M, Ricci G, Morton CJ, Parker MW. Glutathione transferase P1-1 as an arsenic drug-sequestering enzyme. Protein Sci 2016; 26:317-326. [PMID: 27863446 DOI: 10.1002/pro.3084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 11/07/2022]
Abstract
Arsenic-based compounds are paradoxically both poisons and drugs. Glutathione transferase (GSTP1-1) is a major factor in resistance to such drugs. Here we describe using crystallography, X-ray absorption spectroscopy, mutagenesis, mass spectrometry, and kinetic studies how GSTP1-1 recognizes the drug phenylarsine oxide (PAO). In conditions of cellular stress where glutathione (GSH) levels are low, PAO crosslinks C47 to C101 of the opposing monomer, a distance of 19.9 Å, and causes a dramatic widening of the dimer interface by approximately 10 Å. The GSH conjugate of PAO, which forms rapidly in cancerous cells, is a potent inhibitor (Ki = 90 nM) and binds as a di-GSH complex in the active site forming part of a continuous network of interactions from one active site to the other. In summary, GSTP1-1 can detoxify arsenic-based drugs by sequestration at the active site and at the dimer interface, in situations where there is a plentiful supply of GSH, and at the reactive cysteines in conditions of low GSH.
Collapse
Affiliation(s)
- Lorien J Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - David B Ascher
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Jade B Aitken
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Mario Lo Bello
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Craig J Morton
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
177
|
Easo SL, Mohanan PV. Toxicological evaluation of dextran stabilized iron oxide nanoparticles in human peripheral blood lymphocytes. Biointerphases 2016; 11:04B302. [PMID: 27629807 PMCID: PMC5035300 DOI: 10.1116/1.4962268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 01/15/2023] Open
Abstract
Iron oxide nanoparticles present an attractive choice for carcinogenic cell destruction via hyperthermia treatment due to its small size and magnetic susceptibility. Dextran stabilized iron oxide nanoparticles (DIONPs) synthesized and characterized for this purpose were used to evaluate its effect on cellular uptake, cytotoxicity, and oxidative stress response in human peripheral blood lymphocytes. In the absence of efficient internalization and perceptible apoptosis, DIONPs were still capable of inducing significant levels of reactive oxygen species formation shortly after exposure. Although these particles did not cause any genotoxic effect, they enhanced the expression of a few relevant oxidative stress and antioxidant defense related genes, accompanied by an increase in the glutathione peroxidase activity. These results indicate that under the tested conditions, DIONPs induced only minimal levels of oxidative stress in lymphocytes. Understanding the biological interaction of DIONPs, the consequences as well as the associated mechanisms in vitro, together with information obtained from systemic studies, could be expected to advance the use of these particles for further clinical trials.
Collapse
Affiliation(s)
- Sheeja Liza Easo
- Division of Toxicology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Thiruvananthapuram 695 012, Kerala, India
| | - Parayanthala Valappil Mohanan
- Division of Toxicology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Thiruvananthapuram 695 012, Kerala, India
| |
Collapse
|
178
|
Bahreini A, Levine K, Santana-Santos L, Benos PV, Wang P, Andersen C, Oesterreich S, Lee AV. Non-coding single nucleotide variants affecting estrogen receptor binding and activity. Genome Med 2016; 8:128. [PMID: 27964748 PMCID: PMC5154163 DOI: 10.1186/s13073-016-0382-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 11/26/2022] Open
Abstract
Background Estrogen receptor (ER) activity is critical for the development and progression of the majority of breast cancers. It is known that ER is differentially bound to DNA leading to transcriptomic and phenotypic changes in different breast cancer models. We investigated whether single nucleotide variants (SNVs) in ER binding sites (regSNVs) contribute to ER action through changes in the ER cistrome, thereby affecting disease progression. Here we developed a computational pipeline to identify SNVs in ER binding sites using chromatin immunoprecipitation sequencing (ChIP-seq) data from ER+ breast cancer models. Methods ER ChIP-seq data were downloaded from the Gene Expression Omnibus (GEO). GATK pipeline was used to identify SNVs and the MACS algorithm was employed to call DNA-binding sites. Determination of the potential effect of a given SNV in a binding site was inferred using reimplementation of the is-rSNP algorithm. The Cancer Genome Atlas (TCGA) data were integrated to correlate the regSNVs and gene expression in breast tumors. ChIP and luciferase assays were used to assess the allele-specific binding. Results Analysis of ER ChIP-seq data from MCF7 cells identified an intronic SNV in the IGF1R gene, rs62022087, predicted to increase ER binding. Functional studies confirmed that ER binds preferentially to rs62022087 versus the wild-type allele. By integrating 43 ER ChIP-seq datasets, multi-omics, and clinical data, we identified 17 regSNVs associated with altered expression of adjacent genes in ER+ disease. Of these, the top candidate was in the promoter of the GSTM1 gene and was associated with higher expression of GSTM1 in breast tumors. Survival analysis of patients with ER+ tumors revealed that higher expression of GSTM1, responsible for detoxifying carcinogens, was correlated with better outcome. Conclusions In conclusion, we have developed a computational approach that is capable of identifying putative regSNVs in ER ChIP-binding sites. These non-coding variants could potentially regulate target genes and may contribute to clinical prognosis in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0382-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amir Bahreini
- Deparmtent of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Womens Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA, USA
| | - Kevin Levine
- Womens Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucas Santana-Santos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peilu Wang
- Womens Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Courtney Andersen
- Womens Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA, USA.,AstraZeneca, Oncology iMED, 35 Gatehouse Drive, Waltham, MA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA. .,Womens Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA, USA.
| | - Adrian V Lee
- Deparmtent of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA. .,Womens Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA, USA.
| |
Collapse
|
179
|
Lok HC, Sahni S, Jansson PJ, Kovacevic Z, Hawkins CL, Richardson DR. A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous Nitric Oxide Cytotoxicity. J Biol Chem 2016; 291:27042-27061. [PMID: 27866158 DOI: 10.1074/jbc.m116.763714] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity.
Collapse
Affiliation(s)
- Hiu Chuen Lok
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Sumit Sahni
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Patric J Jansson
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Zaklina Kovacevic
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| | - Clare L Hawkins
- the Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Des R Richardson
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006 and
| |
Collapse
|
180
|
Huber N, Bieniossek C, Wagner KM, Elsässer HP, Suter U, Berger I, Niemann A. Glutathione-conjugating and membrane-remodeling activity of GDAP1 relies on amphipathic C-terminal domain. Sci Rep 2016; 6:36930. [PMID: 27841286 PMCID: PMC5107993 DOI: 10.1038/srep36930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Abstract
Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) cause severe peripheral motor and sensory neuropathies called Charcot-Marie-Tooth disease. GDAP1 expression induces fission of mitochondria and peroxisomes by a currently elusive mechanism, while disease causing mutations in GDAP1 impede the protein's role in mitochondrial dynamics. In silico analysis reveals sequence similarities of GDAP1 to glutathione S-transferases (GSTs). However, a proof of GST activity and its possible impact on membrane dynamics are lacking to date. Using recombinant protein, we demonstrate for the first time theta-class-like GST activity for GDAP1, and it's activity being regulated by the C-terminal hydrophobic domain 1 (HD1) of GDAP1 in an autoinhibitory manner. Moreover, we show that the HD1 amphipathic pattern is required to induce membrane dynamics by GDAP1. As both, fission and GST activities of GDAP1, are critically dependent on HD1, we propose that GDAP1 undergoes a molecular switch, turning from a pro-fission active to an auto-inhibited inactive conformation.
Collapse
Affiliation(s)
- Nina Huber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Bieniossek
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
- Roche Pharma Research and Early Development, Infectious Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Konstanze Marion Wagner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Hans-Peter Elsässer
- Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, 35033 Marburg, Germany
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France
- School of Biochemistry, Bristol University, Bristol BS8 1TD, United Kingdom
| | - Axel Niemann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
181
|
Sthijns MMJPE, Weseler AR, Bast A, Haenen GRMM. Time in Redox Adaptation Processes: From Evolution to Hormesis. Int J Mol Sci 2016; 17:ijms17101649. [PMID: 27690013 PMCID: PMC5085682 DOI: 10.3390/ijms17101649] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022] Open
Abstract
Life on Earth has to adapt to the ever changing environment. For example, due to introduction of oxygen in the atmosphere, an antioxidant network evolved to cope with the exposure to oxygen. The adaptive mechanisms of the antioxidant network, specifically the glutathione (GSH) system, are reviewed with a special focus on the time. The quickest adaptive response to oxidative stress is direct enzyme modification, increasing the GSH levels or activating the GSH-dependent protective enzymes. After several hours, a hormetic response is seen at the transcriptional level by up-regulating Nrf2-mediated expression of enzymes involved in GSH synthesis. In the long run, adaptations occur at the epigenetic and genomic level; for example, the ability to synthesize GSH by phototrophic bacteria. Apparently, in an adaptive hormetic response not only the dose or the compound, but also time, should be considered. This is essential for targeted interventions aimed to prevent diseases by successfully coping with changes in the environment e.g., oxidative stress.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Pharmacology and Toxicology, P.O. Box 616, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Antje R Weseler
- Department of Pharmacology and Toxicology, P.O. Box 616, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Aalt Bast
- Department of Pharmacology and Toxicology, P.O. Box 616, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Guido R M M Haenen
- Department of Pharmacology and Toxicology, P.O. Box 616, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
182
|
Glutathione S-transferase 4 is a putative DIF-binding protein that regulates the size of fruiting bodies in Dictyostelium discoideum. Biochem Biophys Rep 2016; 8:219-226. [PMID: 28955959 PMCID: PMC5613964 DOI: 10.1016/j.bbrep.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/24/2023] Open
Abstract
In the development of the cellular slime mold Dictyostelium discoideum, two chlorinated compounds, the differentiation-inducing factors DIF-1 and DIF-2, play important roles in the regulation of both cell differentiation and chemotactic cell movement. However, the receptors of DIFs and the components of DIF signaling systems have not previously been elucidated. To identify the receptors for DIF-1 and DIF-2, we here performed DIF-conjugated affinity gel chromatography and liquid chromatography-tandem mass spectrometry and identified the glutathione S-transferase GST4 as a major DIF-binding protein. Knockout and overexpression mutants of gst4 (gst4- and gst4OE, respectively) formed fruiting bodies, but the fruiting bodies of gst4- cells were smaller than those of wild-type Ax2 cells, and those of gst4OE cells were larger than those of Ax2 cells. Both chemotaxis regulation and in vitro stalk cell formation by DIFs in the gst4 mutants were similar to those of Ax2 cells. These results suggest that GST4 is a DIF-binding protein that regulates the sizes of cell aggregates and fruiting bodies in D. discoideum.
Collapse
Key Words
- Cellular slime mold
- DIF-1
- DIF-1, differentiation-inducing factor 1, 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one
- DIF-1-NH2, amino derivative of DIF-1, 6-amino-1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one
- DIF-2
- DIF-2, differentiation-inducing factor-2, 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)pentan-1-one
- Dictyostelium discoideum
- GSH, glutathione
- GST, glutathione S-transferase
- Glutathione S-transferase
- LC/MS/MS, liquid chromatography–mass-mass spectrometry (liquid chromatography–tandem mass spectrometry)
- THPH, 1-(2,4,6-trihydroxyphenyl)hexan-1-one
Collapse
|
183
|
Li X, Liu Q, Lewis EE, Tarasco E. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae). Parasitol Res 2016; 115:4485-4494. [PMID: 27637224 DOI: 10.1007/s00436-016-5235-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/24/2016] [Indexed: 11/26/2022]
Abstract
Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are lethal parasites of many insect species. To investigate defensive mechanisms towards EPNs in relation to antioxidative and detoxifying enzymes, we chose Tenebrio molitor (Coleoptera: Tenebrionidae) as experimental insect. We studied the activity changes of superoxide dismutases (SODs), peroxidases (PODs), and catalases (CATs), as well as tyrosinase (TYR), acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S-transferase (GSTs) for 40 h in T. molitor larvae infected with Heterorhabditis beicherriana infective juveniles (IJs) at 5 rates (0, 20, 40, 80, and 160 IJs/larva). We found that when T. molitor larvae infected with H. beicherriana at higher rates (80 and 160 IJs/larva), SOD activity quickly increased to more than 70 % higher than that control levels. The activities of POD and CAT increased after 24 h. TYR activity increased slowly at lower rates of infection for 16 h, followed by a slight decrease, and then increasing from 32 to 40 h. The other detoxifying enzymes (GST, CarE, and AChE) were enhanced at lower infection rates, but were inhibited at higher rates. Our results suggested that host antioxidative response and detoxification reactions played a central role in the defensive reaction to EPNs, and that this stress which was reflected by the higher level enzymes activity contributed to the death of hosts. Further study should explore the exact function of these enzymes using different species of EPNs and investigate the links between enzyme activity and host susceptibility to EPNs.
Collapse
Affiliation(s)
- Xingyue Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu, 610066, China
| | - Qizhi Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Edwin E Lewis
- Department of Entomology and Nematology, University of California-Davis, Davis, 95616, CA, USA
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, 70126, Italy
| |
Collapse
|
184
|
Shi J, Xie C, Liu H, Krausz KW, Bewley CA, Zhang S, Tang L, Zhou Z, Gonzalez FJ. Metabolism and Bioactivation of Fluorochloridone, a Novel Selective Herbicide, in Vivo and in Vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9652-60. [PMID: 27443216 PMCID: PMC6169518 DOI: 10.1021/acs.est.6b02113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fluorochloridone (FLC) is a herbicide used worldwide that is thought to be safe. However, due to its potential genotoxicity, cytotoxicity, and even systematic toxicity, there are increasing concerns about human exposure to this compound. Thus, the metabolism and bioactivation of FLC was investigated. After oral administration to mice, 27 metabolites were identified by ultrahigh performance liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry and with further structural identification by nuclear magnetic resonance spectroscopy. Hydroxylation and oxidative dechlorination were the major phase I pathways, while glutathione (GSH) and N-acetylcysteine conjugations were two major phase II pathways, indicating the formation of a reactive intermediate. In vitro microsomal and cytosolic studies revealed that a GSH conjugate (M13) was the predominant metabolite of FLC formed through a nucleophilic SN2 substitution of 3-Cl by GSH; this pathway is NADPH independent and accelerated by glutathione S-transferase (GST). Further, a kinetic study showed that M13 formation in both human liver microsomes and cytosols obeyed typical Michaelis-Menten kinetics. The maximum clearance (Vmax/Km) of GSH conjugation in human liver microsomes was approximately 5.5-fold higher than human liver cytosol, thus implying that microsomal GST was mainly responsible for M13 formation. These findings are important for understanding the potential hazard of human exposure to FLC.
Collapse
Affiliation(s)
- Jingmin Shi
- Pharmacology and Toxicology, Department/Center for Drug Safety Evaluation, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hongbing Liu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Suhui Zhang
- Pharmacology and Toxicology, Department/Center for Drug Safety Evaluation, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Liming Tang
- Pharmacology and Toxicology, Department/Center for Drug Safety Evaluation, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
- Corresponding Authors: (F.J.G.)., (L.T.)
| | - Zhijun Zhou
- School of Public Health, Fudan University, Shanghai 200032, PR China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
- Corresponding Authors: (F.J.G.)., (L.T.)
| |
Collapse
|
185
|
Boubakri H, Gargouri M, Mliki A, Brini F, Chong J, Jbara M. Vitamins for enhancing plant resistance. PLANTA 2016; 244:529-43. [PMID: 27315123 DOI: 10.1007/s00425-016-2552-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/29/2016] [Indexed: 05/26/2023]
Abstract
This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors. Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.
Collapse
Affiliation(s)
- Hatem Boubakri
- Laboratory of Leguminous, Centre of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia.
| | - Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Route Sidi-Mansour, BP.1177, 3018, Sfax, Tunisia
| | - Julie Chong
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, EA3991), Université de Haute Alsace, 33 rue de Herrlisheim, 68000, Colmar, France
| | - Moez Jbara
- Laboratory of Leguminous, Centre of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
186
|
Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, McSorley HJ, Kengne-Ouafo JA, Chounna-Ndongmo PW, Wanji S, Enyong PA, Taylor DW, Blaxter ML, Wastling JM, Tanya VN, Makepeace BL. Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle. Mol Cell Proteomics 2016; 15:2554-75. [PMID: 27226403 PMCID: PMC4974336 DOI: 10.1074/mcp.m115.055640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.
Collapse
Affiliation(s)
- Stuart D Armstrong
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Dong Xia
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Germanus S Bah
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Ritesh Krishna
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Henrietta F Ngangyung
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - E James LaCourse
- ‖Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Henry J McSorley
- **The Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4JT
| | - Jonas A Kengne-Ouafo
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | | | - Samuel Wanji
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | - Peter A Enyong
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon; §§Tropical Medicine Research Station, Kumba, Cameroon
| | - David W Taylor
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ¶¶Division of Pathway Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- ‖‖Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jonathan M Wastling
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ‡‡‡The National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L3 5RF, UK
| | - Vincent N Tanya
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Benjamin L Makepeace
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| |
Collapse
|
187
|
Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea. Int J Mol Sci 2016; 17:ijms17081211. [PMID: 27472324 PMCID: PMC5000609 DOI: 10.3390/ijms17081211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.
Collapse
|
188
|
Geno- and seroprevalence of Felis domesticus Papillomavirus type 2 (FdPV2) in dermatologically healthy cats. BMC Vet Res 2016; 12:147. [PMID: 27449225 PMCID: PMC4957317 DOI: 10.1186/s12917-016-0776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/16/2016] [Indexed: 11/25/2022] Open
Abstract
Background Papillomaviruses can cause proliferative skin lesions ranging from benign hyperplasia to squamous cell carcinoma (SCC). However, asymptomatic infection is also possible. Several groups have detected Felis domesticus Papillomavirus type 2 (FdPV2) DNA in association with feline Bowenoid in situ carcinoma (BISC). Therefore, a causative connection has been suggested. However, the knowledge about FdPV2 epidemiology is limited. The aim of this study was to describe the genoprevalence and seroprevalence of FdPV2 in healthy cats. For this purpose an FdPV2-specific quantitative (q)PCR assay was developed and used to analyse Cytobrush samples collected from 100 dermatologically healthy cats. Moreover, an ELISA was established to test the sera obtained from the same cats for antibodies against the major capsid protein (L1) of FdPV2. Results The genoprevalence of FdPV2 was to 98 %. Surprisingly, the quantities of viral DNA detected in some samples from the healthy cats exceeded the amounts detected in control samples from feline BISC lesions. The seroprevalence was much lower, amounting to 22 %. The concentrations of antibodies against FdPV2 were relatively low in healthy cats, whereas they were very high in control cats with BISC. Conclusion These observations suggest that FdPV2 is highly prevalent, even among healthy cats. However, cats that carry it on their skin mount in most instances no antibody response. It might be hypothesized that FdPV2 is only rarely productively replicating or its replication is only rarely exposed to the immune system. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0776-7) contains supplementary material, which is available to authorized users.
Collapse
|
189
|
Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori. Sci Rep 2016; 6:30073. [PMID: 27440377 PMCID: PMC4954967 DOI: 10.1038/srep30073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/28/2016] [Indexed: 11/11/2022] Open
Abstract
The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides.
Collapse
|
190
|
Roncalli V, Jungbluth MJ, Lenz PH. Glutathione S-Transferase Regulation in Calanus finmarchicus Feeding on the Toxic Dinoflagellate Alexandrium fundyense. PLoS One 2016; 11:e0159563. [PMID: 27427938 PMCID: PMC4948837 DOI: 10.1371/journal.pone.0159563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
Abstract
The effect of the dinoflagellate, Alexandrium fundyense, on relative expression of glutathione S-transferase (GST) transcripts was examined in the copepod Calanus finmarchicus. Adult females were fed for 5-days on one of three experimental diets: control (100% Rhodomonas spp.), low dose of A. fundyense (25% by volume, 75% Rhodomonas spp.), and high dose (100% A. fundyense). Relative expression of three GST genes was measured using RT-qPCR on days 0.5, 1, 2 and 5 in two independent experiments. Differential regulation was found for the Delta and the Sigma GSTs between 0.5 to 2 days, but not on day 5 in both experiments. The third GST, a microsomal, was not differentially expressed in either treatment or day. RT-qPCR results from the two experiments were similar, even though experimental females were collected from the Gulf of Maine on different dates and their reproductive output differed. In the second experiment, expression of 39 GSTs was determined on days 2 and 5 using RNA-Seq. Global gene expression analyses agreed with the RT-qPCR results. Furthermore, the RNA-Seq measurements indicated that only four GSTs were differentially expressed under the experimental conditions, and the response was small in amplitude. In summary, the A. fundyense diet led to a rapid and transient response in C. finmarchicus in three cytosolic GSTs, while a fourth GST (Omega I) was significantly up-regulated on day 5. Although there was some regulation of GSTs in response the toxic dinoflagellate, the tolerance to A. fundyense by C. finmarchicus is not dependent on the long-term up-regulation of specific GSTs.
Collapse
Affiliation(s)
- Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States of America
- * E-mail:
| | - Michelle J. Jungbluth
- Department of Oceanography, 1000 Pope Rd., University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States of America
| | - Petra H. Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States of America
| |
Collapse
|
191
|
Meyer JM, Markov GV, Baskaran P, Herrmann M, Sommer RJ, Rödelsperger C. Draft Genome of the Scarab Beetle Oryctes borbonicus on La Réunion Island. Genome Biol Evol 2016; 8:2093-105. [PMID: 27289092 PMCID: PMC4987105 DOI: 10.1093/gbe/evw133] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Beetles represent the largest insect order and they display extreme morphological, ecological and behavioral diversity, which makes them ideal models for evolutionary studies. Here, we present the draft genome of the scarab beetle Oryctes borbonicus, which has a more basal phylogenetic position than the two previously sequenced pest species Tribolium castaneum and Dendroctonus ponderosae providing the potential for sequence polarization. Oryctes borbonicus is endemic to La Réunion, an island located in the Indian Ocean, and is the host of the nematode Pristionchus pacificus, a well-established model organism for integrative evolutionary biology. At 518 Mb, the O. borbonicus genome is substantially larger and encodes more genes than T. castaneum and D. ponderosae. We found that only 25% of the predicted genes of O. borbonicus are conserved as single copy genes across the nine investigated insect genomes, suggesting substantial gene turnover within insects. Even within beetles, up to 21% of genes are restricted to only one species, whereas most other genes have undergone lineage-specific duplications and losses. We illustrate lineage-specific duplications using detailed phylogenetic analysis of two gene families. This study serves as a reference point for insect/coleopteran genomics, although its original motivation was to find evidence for potential horizontal gene transfer (HGT) between O. borbonicus and P. pacificus. The latter was previously shown to be the recipient of multiple horizontally transferred genes including some genes from insect donors. However, our study failed to provide any clear evidence for additional HGTs between the two species.
Collapse
Affiliation(s)
- Jan M Meyer
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Gabriel V Markov
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany Present address: Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff Cedex, France
| | - Praveen Baskaran
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Matthias Herrmann
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
192
|
Durrieu G, Pham QK, Foltête AS, Maxime V, Grama I, Tilly VL, Duval H, Tricot JM, Naceur CB, Sire O. Dynamic extreme values modeling and monitoring by means of sea shores water quality biomarkers and valvometry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:401. [PMID: 27286974 DOI: 10.1007/s10661-016-5403-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Water quality can be evaluated using biomarkers such as tissular enzymatic activities of endemic species. Measurement of molluscs bivalves activity at high frequency (e.g., valvometry) during a long time period is another way to record the animal behavior and to evaluate perturbations of the water quality in real time. As the pollution affects the activity of oysters, we consider the valves opening and closing velocities to monitor the water quality assessment. We propose to model the huge volume of velocity data collected in the framework of valvometry using a new nonparametric extreme values statistical model. The objective is to estimate the tail probabilities and the extreme quantiles of the distribution of valve closing velocity. The tail of the distribution function of valve closing velocity is modeled by a Pareto distribution with parameter 𝜃 t,τ , beyond a threshold τ according to the time t of the experiment. Our modeling approach reveals the dependence between the specific activity of two enzymatic biomarkers (Glutathione-S-transferase and acetylcholinesterase) and the continuous recording of oyster valve velocity, proving the suitability of this tool for water quality assessment. Thus, valvometry allows in real-time in situ analysis of the bivalves behavior and appears as an effective early warning tool in ecological risk assessment and marine environment monitoring.
Collapse
Affiliation(s)
- Gilles Durrieu
- Laboratoire de Mathématiques de Bretagne Atlantique LMBA, Université Bretagne Sud, UMR CNRS 6205, 56000, Vannes, France.
| | - Quang-Khoai Pham
- Department of Mathematics, Forestry University of Hanoi, Hanoi, Vietnam
| | - Anne-Sophie Foltête
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Valérie Maxime
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Ion Grama
- Laboratoire de Mathématiques de Bretagne Atlantique LMBA, Université Bretagne Sud, UMR CNRS 6205, 56000, Vannes, France
| | - Véronique Le Tilly
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Hélène Duval
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Jean-Marie Tricot
- Laboratoire de Mathématiques de Bretagne Atlantique LMBA, Université Bretagne Sud, UMR CNRS 6205, 56000, Vannes, France
| | - Chiraz Ben Naceur
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| | - Olivier Sire
- Institut de Recherche Dupuy de Lôme IRDL, Université Bretagne Sud, FRE CNRS 3744, 56000, Vannes, France
| |
Collapse
|
193
|
Moschino V, Da Ros L. Biochemical and lysosomal biomarkers in the mussel Mytilus galloprovincialis from the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12770-12776. [PMID: 26160119 DOI: 10.1007/s11356-015-4929-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Biomarkers are internationally recognized as useful tools in marine coastal biomonitoring, in particular, as early-warning signals at the level of individual organisms to assess biological effects of pollutants and other stressors. In the present study, Mytilus galloprovincialis has been employed as a sentinel organism to assess biological pollution effects in the Mar Piccolo of Taranto (Southern Italy), a coastal lagoon divided into two small inlets, connected to the open sea through one natural and one artificial narrow openings. Mussels were collected in June 2013 at three sites located within each of the two inlets of the Mar Piccolo. Biological effects were investigated through a suite of biomarkers suitable to reflect effects and/or exposure to contaminants at biochemical and cellular levels. Biochemical biomarkers included glutathione-S-transferase (GST) and acetylcholinesterase (AChE) enzyme activities; as histochemical biomarkers, lysosomal membrane stability, lipofuscin and neutral lipid accumulation, and lysosomal structural changes were considered. As a whole, results highlighted differences among the three study sites, particularly for GST, AChE, and lipofuscins, which are consistent with the variations of the chemical pollutants in sediments. The applied biomarkers showed that a stress syndrome likely to be ascribed to environmental pollutants is occurring in mussels living in the Mar Piccolo of Taranto, in particular, the ones inhabiting the first inlet.
Collapse
Affiliation(s)
- Vanessa Moschino
- Institute of Marine Sciences (ISMAR), CNR, Arsenale-Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| | - Luisa Da Ros
- Institute of Marine Sciences (ISMAR), CNR, Arsenale-Tesa 104, Castello 2737/F, 30122, Venice, Italy
- Institute for the Dynamics of Environmental Processes (IDPA), CNR, Padua, Italy
| |
Collapse
|
194
|
Wang Y, Liu L, Huang J, Duan Y, Wang J, Fu M, Lin H. Response of a Mu-class glutathione S-transferase from black tiger shrimp Penaeus monodon to aflatoxin B1 exposure. SPRINGERPLUS 2016; 5:825. [PMID: 27386274 PMCID: PMC4917504 DOI: 10.1186/s40064-016-2381-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/20/2016] [Indexed: 11/16/2022]
Abstract
Glutathione S-transferases (GSTs) are a family of multifunctional phase II enzymes that are involved in the detoxification of exogenous and endogenous compounds. In this study, a full-length cDNA of Mu-class GST (PmMuGST) was isolated from the hepatopancreas of Penaeus monodon using rapid amplification of cDNA ends method. The full length cDNA of PmMuGST is 867 bp, contains an open read frame of 660 bp, and encodes a polypeptide of 219 amino acids with a molecular mass of 25.61 kDa and pI of 6.15. Sequence analysis indicated that the predicted protein sequence of PmMuGST was very similar to (86 %) that of Litopenaeus vannamei. A conserved domain of GST_N_Mu_like (PSSM: cd03075) and GST_C_family_superfamily_like (PSSM: cl02776) was indentified in PmMuGST. Real time quantitative RT-PCR analysis indicated that PmMuGST was present in all of the tested tissues. PmMuGST transcripts both in the hepatopancreas and in the muscle were significantly induced after 14 days of treatment with a low dosage of AFB1 (50 μg/kg) exposure and were significantly inhibited after 42 and 56 days of a high dosage of AFB1 (1000, 2500 μg/kg AFB1) exposure. Taken together, the Mu-class GST from P. monodon was inducible and was involved in the response to AFB1 exposure.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 People's Republic of China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380 Guangdong Province People's Republic of China
| | - Jianhua Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 People's Republic of China
| | - Yafei Duan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 People's Republic of China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 People's Republic of China
| | - Mingjun Fu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 People's Republic of China
| | - Heizhao Lin
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300 People's Republic of China
| |
Collapse
|
195
|
Kim JG, Ahn CS, Kim SH, Bae YA, Kwon NY, Kang I, Yang HJ, Sohn WM, Kong Y. Clonorchis sinensis omega-class glutathione transferases play major roles in the protection of the reproductive system during maturation and the response to oxidative stress. Parasit Vectors 2016; 9:337. [PMID: 27296469 PMCID: PMC4906895 DOI: 10.1186/s13071-016-1622-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clonorchis sinensis causes a major food-borne helminthic infection. This species locates in mammalian hepatobiliary ducts, where oxidative stressors and hydrophobic substances are profuse. To adapt to the hostile micromilieu and to ensure its long-term survival, the parasite continuously produces a diverse repertoire of antioxidant enzymes including several species of glutathione transferases (GSTs). Helminth GSTs play pertinent roles during sequestration of harmful xenobiotics since most helminths lack the cytochrome P-450 detoxifying enzyme. METHODS We isolated and analyzed the biochemical properties of two omega-class GSTs of C. sinensis (CsGSTo1 and CsGSTo2). We observed spatiotemporal expression patterns in accordance with the maturation of the worm's reproductive system. Possible biological protective roles of CsGSTos in these organs under oxidative stress were investigated. RESULTS The full-length cDNAs of CsGSTo1 and 2 constituted 965 bp and 1,061 bp with open reading frames of 737 bp (246 amino acids) and 669 bp (223 amino acids). They harbored characteristic N-terminal thioredoxin-like and C-terminal α-helical domains. A cysteine residue, which constituted omega-class specific active site, and the glutathione-binding amino acids, were recognized in appropriate positions. They shared 44 % sequence identity with each other and 14.8-44.8 % with orthologues/homologues from other organisms. Bacterially expressed recombinant proteins (rCsGSTo1 and 2) exhibited dehydroascorbate reductase (DHAR) and thioltransferase activities. DHAR activity was higher than thioltransferase activity. They showed weak canonical GST activity toward 1-chloro-2,4-dinitrobenzene. S-hexylglutathione potently and competitively inhibited the active-site at nanomolar concentrations (0.63 and 0.58 nM for rCsGSTo1 and 2). Interestingly, rCsGSTos exhibited high enzyme activity toward mu- and theta-class GST specific substrate, 4-nitrobenzyl chloride. Expression of CsGSTo transcripts and proteins increased beginning in 2-week-old juveniles and reached their highest levels in 4-week-old adults. The proteins were mainly expressed in the elements of the reproductive system, such as vitelline follicles, testes, seminal receptacle, sperm and eggs. Oxidative stressors induced upregulated expression of CsGSTos in these organs. Regardless of oxidative stresses, CsGSTos continued to be highly expressed in eggs. CsGSTo1 or 2 overexpressing bacteria demonstrated high resistance under oxidative killing. CONCLUSIONS CsGSTos might be critically involved in protection of the reproductive system during maturation of C. sinensis worms and in response to oxidative conditions, thereby contributing to maintenance of parasite fecundity.
Collapse
Affiliation(s)
- Jeong-Geun Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Chun-Seob Ahn
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Seon-Hee Kim
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Young-An Bae
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Na-Young Kwon
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Jong Yang
- Department of Parasitology, Ewha Womans University, School of Medicine, Seoul, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea.
| |
Collapse
|
196
|
McMillan DH, van der Velden JL, Lahue KG, Qian X, Schneider RW, Iberg MS, Nolin JD, Abdalla S, Casey DT, Tew KD, Townsend DM, Henderson CJ, Wolf CR, Butnor KJ, Taatjes DJ, Budd RC, Irvin CG, van der Vliet A, Flemer S, Anathy V, Janssen-Heininger YM. Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione- S-transferase π. JCI Insight 2016; 1:85717. [PMID: 27358914 PMCID: PMC4922427 DOI: 10.1172/jci.insight.85717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp-/- mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF.
Collapse
Affiliation(s)
- David H. McMillan
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jos L.J. van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Karolyn G. Lahue
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Xi Qian
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Robert W. Schneider
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Martina S. Iberg
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - James D. Nolin
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sarah Abdalla
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dylan T. Casey
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Kenneth D. Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Danyelle M. Townsend
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Colin J. Henderson
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - C. Roland Wolf
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Kelly J. Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Douglas J. Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Stevenson Flemer
- Department of Chemistry, University of Vermont, Burlington, Vermont, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | |
Collapse
|
197
|
Yamamoto T, Tsunematsu Y, Hara K, Suzuki T, Kishimoto S, Kawagishi H, Noguchi H, Hashimoto H, Tang Y, Hotta K, Watanabe K. Oxidative trans to cis Isomerization of Olefins in Polyketide Biosynthesis. Angew Chem Int Ed Engl 2016; 55:6207-10. [PMID: 27072782 DOI: 10.1002/anie.201600940] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/28/2016] [Indexed: 01/06/2023]
Abstract
Geometric isomerization can expand the scope of biological activities of natural products. The observed chemical diversity among the pseurotin-type fungal secondary metabolites is in part generated by a trans to cis isomerization of an olefin. In vitro characterizations of pseurotin biosynthetic enzymes revealed that the glutathione S-transferase PsoE requires participation of the bifunctional C-methyltransferase/epoxidase PsoF to complete the trans to cis isomerization of the pathway intermediate presynerazol. The crystal structure of the PsoE/glutathione/presynerazol complex indicated stereospecific glutathione-presynerazol conjugate formation is the principal function of PsoE. Moreover, PsoF was identified to have an additional, unexpected oxidative isomerase activity, thus making it a trifunctional enzyme which is key to the complexity generation in pseurotin biosynthesis. Through the study, we identified a novel mechanism of accomplishing a seemingly simple trans to cis isomerization reaction.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kodai Hara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tomohiro Suzuki
- Research Institute of Green Science and Technology, Graduate School of Agriculture, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.,Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Graduate School of Agriculture, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroshi Noguchi
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroshi Hashimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Kinya Hotta
- School of Biosciences, The University of Nottingham Malaysia Campus, Selangor, 43500, Malaysia
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
198
|
Freitas JS, Almeida EA. Antioxidant Defense System of Tadpoles (Eupemphix nattereri) Exposed to Changes in Temperature and pH. Zoolog Sci 2016; 33:186-94. [DOI: 10.2108/zs150075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
199
|
Zhu Q, Zhang L, Li L, Que H, Zhang G. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:176-188. [PMID: 26746430 DOI: 10.1007/s10126-015-9678-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.
Collapse
Affiliation(s)
- Qihui Zhu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Huayong Que
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
200
|
Yan X, Kang H, Feng J, Yang Y, Tang K, Zhu R, Yang L, Wang Z, Cao Z. Identification of Toxic Pyrrolizidine Alkaloids and Their Common Hepatotoxicity Mechanism. Int J Mol Sci 2016; 17:318. [PMID: 26959016 PMCID: PMC4813181 DOI: 10.3390/ijms17030318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 12/26/2022] Open
Abstract
Pyrrolizidine Alkaloids (PAs) are currently one of the most important botanical hepatotoxic ingredients. Glutathion (GSH) metabolism is the most reported pathway involved in hepatotoxicity mechanism of PAs. We speculate that, for different PAs, there should be a common mechanism underlying their hepatotoxicity in GSH metabolism. Computational methods were adopted to test our hypothesis in consideration of the limitations of current experimental approaches. Firstly, the potential targets of 22 PAs (from three major PA types) in GSH metabolism were identified by reverse docking; Secondly, glutathione S-transferase A1 (GSTA1) and glutathione peroxidase 1 (GPX1) targets pattern was found to be a special characteristic of toxic PAs with stepwise multiple linear regressions; Furthermore, the molecular mechanism underlying the interactions within toxic PAs and these two targets was demonstrated with the ligand-protein interaction analysis; Finally, GSTA1 and GPX1 were proved to be significant nodes in GSH metabolism. Overall, toxic PAs could be identified by GSTA1 and GPX1 targets pattern, which suggests their common hepatotoxicity mechanism: the interfering of detoxication in GSH metabolism. In addition, all the strategies developed here could be extended to studies on toxicity mechanism of other toxins.
Collapse
Affiliation(s)
- Xinmiao Yan
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Hong Kang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Jun Feng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yiyan Yang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Kailin Tang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Ruixin Zhu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhiwei Cao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|