151
|
De Lima ME, Figueiredo SG, Pimenta AMC, Santos DM, Borges MH, Cordeiro MN, Richardson M, Oliveira LC, Stankiewicz M, Pelhate M. Peptides of arachnid venoms with insecticidal activity targeting sodium channels. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:264-279. [PMID: 17218159 DOI: 10.1016/j.cbpc.2006.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/19/2006] [Accepted: 10/21/2006] [Indexed: 12/18/2022]
Abstract
Arachnids have a venom apparatus and secrete a complex chemical mixture of low molecular mass organic molecules, enzymes and polypeptide neurotoxins designed to paralyze or kill their prey. Most of these toxins are specific for membrane voltage-gated sodium channels, although some may also target calcium or potassium channels and other membrane receptors. Scorpions and spiders have provided the greatest number of the neurotoxins studied so far, for which, a good number of primary and 3D structures have been obtained. Structural features, comprising a folding that determines a similar spatial distribution of charged and hydrophobic side chains of specific amino acids, are strikingly common among the toxins from spider and scorpion venoms. Such similarities are, in turn, the key feature to target and bind these proteins to ionic channels. The search for new insecticidal compounds, as well as the study of their modes of action, constitutes a current approach to rationally design novel insecticides. This goal tends to be more relevant if the resistance to the conventional chemical products is considered. A promising alternative seems to be the biotechnological approach using toxin-expressing recombinant baculovirus. Spider and scorpion toxins having insecticidal activity are reviewed here considering their structures, toxicities and action mechanisms in sodium channels of excitable membranes.
Collapse
Affiliation(s)
- M E De Lima
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil.
| | - S G Figueiredo
- Centro de Ciências Fisiológicas, CBM - Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - A M C Pimenta
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - D M Santos
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - M H Borges
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M N Cordeiro
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M Richardson
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - L C Oliveira
- Departamento de Farmácia Bioquímica - Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, MG, Brasil
| | - M Stankiewicz
- Laboratory of Biophysics - Institute of General and Molecular Biology, N. Copernicus University, 87-100, Torun, Poland
| | - M Pelhate
- Lab. Récepteurs et Canaux Ioniques Membranaires, Université d'Angers, 49045, Angers, France
| |
Collapse
|
152
|
Kubista H, Mafra RA, Chong Y, Nicholson GM, Beirão PSL, Cruz JS, Boehm S, Nentwig W, Kuhn-Nentwig L. CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons. Neuropharmacology 2007; 52:1650-62. [PMID: 17517422 DOI: 10.1016/j.neuropharm.2007.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/28/2007] [Accepted: 03/21/2007] [Indexed: 12/01/2022]
Abstract
The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch-clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage-independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Ca(v) channels. Since C. salei venom affects both insect as well as rodent species, we investigated whether Ca(v) channel currents of rat neurons are also inhibited by CSTX-1. CSTX-1 blocked rat neuronal L-type, but no other types of HVA Ca(v) channels, and failed to modulate LVA Ca(v) channel currents. Using neuroendocrine GH3 and GH4 cells, CSTX-1 produced a rapid voltage-independent block of L-type Ca(v) channel currents. The concentration-response curve was biphasic in GH4 neurons and the subnanomolar IC(50) values were at least 1000-fold lower than in GH3 cells. L-type Ca(v) channel currents of skeletal muscle myoballs and other voltage-gated ion currents of rat neurons, such as I(Na(v)) or I(K(v)) were not affected by CSTX-1. The high potency and selectivity of CSTX-1 for a subset of L-type channels in mammalian neurons may enable the toxin to be used as a molecular tool for the investigation of this family of Ca(v) channels.
Collapse
Affiliation(s)
- Helmut Kubista
- Center for Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Kaplan N, Morpurgo N, Linial M. Novel families of toxin-like peptides in insects and mammals: a computational approach. J Mol Biol 2007; 369:553-66. [PMID: 17433819 DOI: 10.1016/j.jmb.2007.02.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Revised: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 11/19/2022]
Abstract
Most animal toxins are short proteins that appear in venom and vary in sequence, structure and function. A common characteristic of many such toxins is their apparent structural stability. Sporadic instances of endogenous toxin-like proteins that function in non-venom context have been reported. We have utilized machine learning methodology, based on sequence-derived features and guided by the notion of structural stability, in order to conduct a large-scale search for toxin and toxin-like proteins. Application of the method to insect and mammalian sequences revealed novel families of toxin-like proteins. One of these proteins shows significant similarity to ion channel inhibitors that are expressed in cone snail and assassin bug venom, and is surprisingly expressed in the bee brain. A toxicity assay in which the protein was injected to fish induced a strong yet reversible paralytic effect. We suggest that the protein may function as an endogenous modulator of voltage-gated Ca(2+) channels. Additionally, we have identified a novel mammalian cluster of toxin-like proteins that are expressed in the testis. We suggest that these proteins might be involved in regulation of nicotinic acetylcholine receptors that affect the acrosome reaction and sperm motility. Finally, we highlight a possible evolutionary link between venom toxins and antibacterial proteins. We expect our methodology to enhance the discovery of additional novel protein families.
Collapse
Affiliation(s)
- Noam Kaplan
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| | | | | |
Collapse
|
154
|
Abstract
Voltage-gated Na(+) channels are integral membrane proteins that function as a gateway for a selective permeation of sodium ions across biological membranes. In this way, they are crucial players for the generation of action potentials in excitable cells. Voltage-gated Na(+) channels are encoded by at least nine genes in mammals. The different isoforms have remarkably similar functional properties, but small changes in function and pharmacology are biologically well-defined, as underscored by mutations that cause several diseases and by modulation of a myriad of compounds, respectively. This review will stress on the modulation of voltage-gated Na(+) channels by scorpion alpha-toxins. Nature has designed these two classes of molecules as if they were predestined to each other: an inevitable 'encounter' between a voltage-gated Na(+) channel isoform and an alpha-toxin from scorpion venom indeed results in a dramatically changed Na(+) current phenotype with clear-cut consequences on electrical excitability and sometimes life or death. This fascinating aspect justifies an overview on scorpion venoms, their alpha-toxins and the Na(+) channel targets they are built for, as well as on the molecular determinants that govern the selectivity and affinity of this 'inseparable duo'.
Collapse
Affiliation(s)
- Frank Bosmans
- Laboratory of Toxicology, University of Leuven, O and N 2, Postbus 922, Herestraat 49, 3000 Leuven, Belgium
| | | |
Collapse
|
155
|
Huang PT, Shiau YS, Lou KL. The interaction of spider gating modifier peptides with voltage-gated potassium channels. Toxicon 2007; 49:285-92. [PMID: 17113615 DOI: 10.1016/j.toxicon.2006.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gating modifier peptides bind to ion channels and alter the gating process of these molecules. One of the most extensively studied peptides, Hanatoxin (HaTx), isolated from a Chilean tarantula, has been used to characterize the blocking properties of the voltage-gated potassium channel Kv2.1. These studies have provided some insight into the gating mechanism in Kv channels. In this review we will discuss the interaction of HaTx and related spider peptides with Kv channels illustrating the properties of the binding surface of these peptides, their membrane partitioning characteristics, and will provide a working hypothesis for how the peptides inhibit gating of Kv channels. Advanced simulation results support the concept of mutual conformational changes upon peptide binding to the S3b region of the channel which will restrict movement of S4 and compromise coupling of the gating machinery to opening of the pore.
Collapse
Affiliation(s)
- Po-Tsang Huang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taiwan
| | | | | |
Collapse
|
156
|
Lin H, Li QZ. Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 2007; 354:548-51. [PMID: 17239817 DOI: 10.1016/j.bbrc.2007.01.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 01/04/2007] [Indexed: 11/26/2022]
Abstract
The conotoxin proteins are disulfide rich small peptides that target ion channels and G protein coupled receptors. And they provide promising application in treating some chronic pain, epilepsy, cardiovascular diseases, and so on. Conotoxins may be classified into 11 superfamilies: A, D, I1, I2, J, L, M, O, P, S, and T according to the disulfide connectivity, highly conserved N-terminal precursor sequence and similar mode of actions. Successful prediction mature conotoxin superfamily peptide has important signification for the biological and pharmacological functions of the toxins. In this study, a new algorithm of increment of diversity combined with modified Mahalanobis discriminant is presented to predict five superfamilies by using the pseudo amino acid composition. The results of jackknife cross-validation test show that the overall prediction sensitivity and specificity are 88% and 91%, respectively. The predictive algorithm is also used to predict three O-conotoxin families. The 72% sensitivity and 78% specificity are obtained. These results indicate that the conotoxin superfamily peptides correlate with their amino acid compositions.
Collapse
Affiliation(s)
- Hao Lin
- Laboratory of Theoretical Biophysics, Department of Physics, College of Sciences and Technology, Inner Mongolia University, Hohhot 010021, PR China
| | | |
Collapse
|
157
|
Pimenta DC, Prezoto BC, Konno K, Melo RL, Furtado MF, Camargo ACM, Serrano SMT. Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:1034-42. [PMID: 17315274 DOI: 10.1002/rcm.2931] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Variation in the snake venom proteome is well documented and it is a ubiquitous phenomenon at all taxonomical levels. However, variation in the snake venom peptidome is so far not described. In this work we used mass spectrometry [liquid chromatography/mass spectrometry (LC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOFMS)] to explore sex-based differences among the venom peptides of eighteen sibling specimens of Bothrops jararaca of a single litter born and raised in the laboratory. MALDI-TOFMS analyses showed individual variability among the bradykinin-potentiating peptides (BPPs), and, interestingly, four new peptides were detected only in female venoms and identified by de novo sequencing as cleaved BPPs lacking the C-terminal Q-I-P-P sequence. Similar results were obtained with venom from wild-caught adult non-sibling specimens of B. jararaca and in this case we were able to identify the gender of the specimen by analyzing the MALDI-TOF profile of the peptide fraction and finding the cleaved peptides only in female venoms. Synthetic replicates of the cleaved BPPs were less potent than the full-length BPP-10c in potentiating the bradykinin hypotensive effect, suggesting that the C-terminus is critical for the interaction of the BPPs with their mammalian molecular targets. This work represents a comprehensive mass spectrometric analysis of the peptide fraction of B. jararaca venom and shows for the first time sex-based differences in the snake venom peptidome of sibling and non-sibling snakes and suggests that the BPPs may follow distinct processing pathways in female and male individuals.
Collapse
Affiliation(s)
- Daniel C Pimenta
- Laboratório Especial de Toxinologia Aplicada/CAT-CEPID, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo-SP 05503-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
158
|
Diego-García E, Schwartz EF, D'Suze G, González SAR, Batista CVF, García BI, de la Vega RCR, Possani LD. Wide phylogenetic distribution of Scorpine and long-chain beta-KTx-like peptides in scorpion venoms: identification of "orphan" components. Peptides 2007; 28:31-7. [PMID: 17141373 DOI: 10.1016/j.peptides.2006.06.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/27/2006] [Accepted: 06/27/2006] [Indexed: 11/15/2022]
Abstract
Scorpine and toxins specific for potassium channels of the family beta (beta-Ktx) are two types of structurally related scorpion venom components, characterized by an unusually long extended N-terminal segment, followed by a Cys-rich domain with some resemblance to other scorpion toxins. In this communication, we report evidence supporting the ubiquitous presence of Scorpine and beta-KTx-like polypeptides and their precursors in scorpions of the genus Tityus of the family Buthidae, but also included is the first example of such peptides in scorpions from the family Iuridae. Seven new beta-KTxs or Scorpine-like peptides and precursors are reported: five from the genus Tityus (T. costatus, T. discrepans and T. trivittatus) and two from Hadrurus gertschi. The cDNA precursors for all of these peptides were obtained by molecular cloning and their presence in the venoms were confirmed for various peptides. Analysis of the sequences revealed the existence of at least three distinct groups: (1) beta-KTx-like peptides from buthids; (2) Scorpine-like peptides from scorpionid and iurid scorpions; (3) heterogeneous peptides similar to BmTXKbeta of buthids and iurids. The biological function for most of these peptides is not well known; that is why they are here considered "orphan" peptides.
Collapse
Affiliation(s)
- Elia Diego-García
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Avenida Universidad, 2001, Cuernavaca 62210, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Abdel-Mottaleb Y, Clynen E, Jalali A, Bosmans F, Vatanpour H, Schoofs L, Tytgat J. The first potassium channel toxin from the venom of the Iranian scorpion Odonthobuthus doriae. FEBS Lett 2006; 580:6254-8. [PMID: 17070524 DOI: 10.1016/j.febslet.2006.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/09/2006] [Accepted: 10/12/2006] [Indexed: 11/25/2022]
Abstract
The very first member of K(+) channels toxins from the venom of the Iranian scorpion Odonthobuthus doriae (OdK1) was purified, sequenced and characterized physiologically. OdK1 has 29 amino acids, six conserved cysteines and a pI value of 4.95. Based on multiple sequence alignments, OdK1 was classified as alpha-KTx 8.5. The pharmacological effects of OdK1 were studied on six different cloned K(+) channels (vertebrate Kv1.1-Kv1.5 and Shaker IR) expressed in Xenopus laevis oocytes. Interestingly, OdK1 selectively inhibited the currents through Kv1.2 channels with an IC50 value of 183+/-3 nM but did not affect any of the other channels.
Collapse
Affiliation(s)
- Yousra Abdel-Mottaleb
- Laboratory of Toxicology, University of Leuven, Onderwijs and Navorsing II, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
160
|
Oliveira JS, Zaharenko AJ, Ferreira WA, Konno K, Shida CS, Richardson M, Lúcio AD, Beirão PSL, de Freitas JC. BcIV, a new paralyzing peptide obtained from the venom of the sea anemone Bunodosoma caissarum. A comparison with the Na+ channel toxin BcIII. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1592-600. [PMID: 17015047 DOI: 10.1016/j.bbapap.2006.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 11/24/2022]
Abstract
Sea anemones produce a wide variety of biologically active compounds, such as the proteinaceous neurotoxins and cytolysins. Herein we report a new peptide, purified to homogeneity from the neurotoxic fraction of B. caissarum venom, by using gel filtration followed by rp-HPLC, naming it as BcIV. BcIV is a 41 amino acid peptide (molecular mass of 4669 amu) possessing 6 cysteines covalently linked by three disulfide bonds. This toxin has 45 and 48% of identity when compared to APETx1 and APETx2 from Anthopleura elegantissima, respectively, and 42% of identity with Am-II and BDS-I and-II obtained from Antheopsis maculata and Anemonia sulcata, respectively. This neurotoxin presents only a weak-paralyzing action (minimal Lethal Dose close to 2000 microg/kg) in swimming crabs Callinectes danae. This appears to be a different effect to that caused by the type 1 sea anemone toxin BcIII that is lethal to the same animals at lower doses (LD50=219 microg/kg). Circular dichroism spectra of BcIII and BcIV show a high content of beta-strand secondary structure in both peptides, very similar to type 1 sodium channel toxins from various sea anemones, and to APETx1 and APETx2 from A. elegantissima, a HERG channel modulator and an ASIC3 inhibitor, respectively. Interestingly, BcIII and BcIV have similar effects on the action potential of the crab leg nerves, suggesting the same target in this tissue. As BcIII was previously reported as a Na+ channel effector and BcIV is inactive over Na+ currents of mammalian GH3 cells, we propose a species-specific action for this new molecule. A molecular model of BcIV was constructed using the structure of the APETx1 as template and putative key residues are discussed.
Collapse
Affiliation(s)
- Joacir Stolarz Oliveira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 101, Travessa 14, 05508-900 São Paulo-SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Dy CY, Buczek P, Imperial JS, Bulaj G, Horvath MP. Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 62:980-90. [PMID: 16929098 PMCID: PMC2924234 DOI: 10.1107/s0907444906021123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/02/2006] [Indexed: 05/11/2023]
Abstract
Most Kunitz proteins like BPTI and α-dendrotoxin are stabilized by three disulfide bonds. The crystal structure shows how subtle repacking of non-covalent interactions may compensate for disulfide bond loss in a naturally occurring two-disulfide variant, conkunitzin-S1, the first discovered member of a new conotoxin family. Cone snails (Conus) are predatory marine mollusks that immobilize prey with venom containing 50–200 neurotoxic polypeptides. Most of these polypeptides are small disulfide-rich conotoxins that can be classified into families according to their respective ion-channel targets and patterns of cysteine–cysteine disulfides. Conkunitzin-S1, a potassium-channel pore-blocking toxin isolated from C. striatus venom, is a member of a newly defined conotoxin family with sequence homology to Kunitz-fold proteins such as α-dendrotoxin and bovine pancreatic trypsin inhibitor (BPTI). While conkunitzin-S1 and α-dendrotoxin are 42% identical in amino-acid sequence, conkunitzin-S1 has only four of the six cysteines normally found in Kunitz proteins. Here, the crystal structure of conkunitzin-S1 is reported. Conkunitzin-S1 adopts the canonical 310–β–β–α Kunitz fold complete with additional distinguishing structural features including two completely buried water molecules. The crystal structure, although completely consistent with previously reported NMR distance restraints, provides a greater degree of precision for atomic coordinates, especially for S atoms and buried solvent molecules. The region normally cross-linked by cysteines II and IV in other Kunitz proteins retains a network of hydrogen bonds and van der Waals interactions comparable to those found in α-dendrotoxin and BPTI. In conkunitzin-S1, glycine occupies the sequence position normally reserved for cysteine II and the special steric properties of glycine allow additional van der Waals contacts with the glutamine residue substituting for cysteine IV. Evolution has thus defrayed the cost of losing a disulfide bond by augmenting and optimizing weaker yet nonetheless effective non-covalent interactions.
Collapse
Affiliation(s)
- Catherine Y. Dy
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
| | - Pawel Buczek
- Cognetix Inc., 421 Wakara Way, Suite 201, Salt Lake City, Utah 84108, USA
| | - Julita S. Imperial
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
| | - Grzegorz Bulaj
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
- Cognetix Inc., 421 Wakara Way, Suite 201, Salt Lake City, Utah 84108, USA
| | - Martin P. Horvath
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
- Correspondence e-mail:
| |
Collapse
|
162
|
Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED, Men'shenin AV, Kokryakov VN. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun 2006; 348:514-23. [PMID: 16890198 DOI: 10.1016/j.bbrc.2006.07.078] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 07/15/2006] [Indexed: 10/24/2022]
Abstract
A novel 40-residue antimicrobial peptide, aurelin, exhibiting activity against Gram-positive and Gram-negative bacteria, was purified from the mesoglea of a scyphoid jellyfish Aurelia aurita by preparative gel electrophoresis and RP-HPLC. Molecular mass (4296.95 Da) and complete amino acid sequence of aurelin (AACSDRAHGHICESFKSFCKDSGRNGVKLRANCKKTCGLC) were determined. Aurelin has six cysteines forming three disulfide bonds. The total RNA was isolated from the jellyfish mesoglea, RT-PCR and cloning were performed, and cDNA was sequenced. A 84-residue preproaurelin contains a putative signal peptide (22 amino acids) and a propiece of the same size (22 amino acids). Aurelin has no structural homology with any previously identified antimicrobial peptides but reveals partial similarity both with defensins and K+ channel-blocking toxins of sea anemones and belongs to ShKT domain family.
Collapse
Affiliation(s)
- Tatiana V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Judge SIV, Bever CT. Potassium channel blockers in multiple sclerosis: Neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 2006; 111:224-59. [PMID: 16472864 DOI: 10.1016/j.pharmthera.2005.10.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by demyelination, with a relative sparing of axons. In MS patients, many neurologic signs and symptoms have been attributed to the underlying conduction deficits. The idea that neurologic function might be improved if conduction could be restored in CNS demyelinated axons led to the testing of potassium (K(+)) channel blockers as a symptomatic treatment. To date, only 2 broad-spectrum K(+) channel blockers, 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP), have been tested in MS patients. Although both 4-AP and 3,4-DAP produce clear neurologic benefits, their use has been limited by toxicity. Here we review the current status of basic science and clinical research related to the therapeutic targeting of voltage-gated K(+) channels (K(v)) in MS. By bringing together 3 distinct but interrelated disciplines, we aim to provide perspective on a vast body of work highlighting the lengthy and ongoing process entailed in translating fundamental K(v) channel knowledge into new clinical treatments for patients with MS and other demyelinating diseases. Covered are (1) K(v) channel nomenclature, structure, function, and pharmacology; (2) classic and current experimental morphology and neurophysiology studies of demyelination and conduction deficits; and (3) a comprehensive overview of clinical trials utilizing 4-AP and 3,4-DAP in MS patients.
Collapse
Affiliation(s)
- Susan I V Judge
- MS Center of Excellence-East, Research and Neurology Services, VA Maryland Health Care System, USA.
| | | |
Collapse
|
164
|
Wang Y, Chen X, Zhang N, Wu G, Wu H. The solution structure of BmTx3B, a member of the scorpion toxin subfamily alpha-KTx 16. Proteins 2006; 58:489-97. [PMID: 15558557 DOI: 10.1002/prot.20322] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article reports the solution structure of BmTx3B (alpha-KTx16.2), a potassium channel blocker belonging to the subfamily alpha-KTx16, purified from the venom of the Chinese scorpion Buthus martensi Karsch. In solution, BmTx3B assumes a typical CSalphabeta motif, with an alpha-helix connected to a triple-stranded beta-sheet by 3 disulfide bridges, which belongs to the first structural group of short-chain scorpion toxins. On the other hand, BmTx3B is quite different from other toxins (such as ChTx and AgTx2) of this group in terms of the electrostatic and hydrophobic surface distribution. The functional surface (beta-face) of the molecule is characterized by less basic residues (only 2: Lys28 and Arg35) and extra aromatic residues (Phe1, Phe9, Trp15, and Tyr37). The peptide shows a great preference for the Kca1.1 channel over the Kv channel (about a 10(3)-fold difference). The model of BmTx3B/Kca1.1 channel complex generated by docking and dynamic simulation reveals that the stable binding between the BmTx3B and Kca1.1 channel is favored by a number of aromatic pi-pi stacking interactions. The influences of these structural features on the kinetic behavior of the toxin binding to Kca1.1 channel are also discussed.
Collapse
Affiliation(s)
- Yuefeng Wang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | |
Collapse
|
165
|
Zhijian C, Yun X, Chao D, Shunyi Z, Shijin Y, Yingliang W, Wenxin L. Cloning and characterization of a novel calcium channel toxin-like gene BmCa1 from Chinese scorpion Mesobuthus martensii Karsch. Peptides 2006; 27:1235-40. [PMID: 16298458 DOI: 10.1016/j.peptides.2005.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 10/08/2005] [Accepted: 10/10/2005] [Indexed: 11/25/2022]
Abstract
Many studies have been carried on peptides and genes encoding scorpion toxins from the venom of Mesobuthus martensii Karsch (synonym: Buthus martensii Karsch, BmK), such as Na+, K+ and Cl- channel modulators. In this study, a novel calcium channel toxin-like gene BmCa1 was isolated and characterized from the venom of Mesobuthus martensii Karsch. First, a partial cDNA sequence of the Ca2+ channel toxin-like gene was identified by random sequencing method from a venomous gland cDNA library of Mesobuthus martensii Karsch. The full-length sequence of BmCa1 was then obtained by 5'RACE technique. The peptide deduced from BmCa1 precursor nucleotide sequence contains a 27-residue signal peptide and a 37-residue mature peptide. Although BmCa1 and other scorpion toxins are different at the gene and protein primary structure levels, BmCa1 has the same precursor nucleotide organization and cysteine arrangement as that of the first subfamily members of calcium channel scorpion toxins. Genomic DNA sequence of BmCa1 was also cloned by PCR. Sequence analysis showed that BmCa1 gene consists of three exons separated by two introns of 72 bp and 1076 bp in length, respectively. BmCa1 is the first calcium channel toxin-like gene cloned from the venom of Mesobuthus martensii Karsch and potentially represents a novel class of calcium channel toxins in scorpion venoms.
Collapse
Affiliation(s)
- Cao Zhijian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| | | | | | | | | | | | | |
Collapse
|
166
|
Khan SA, Zafar Y, Briddon RW, Malik KA, Mukhtar Z. Spider venom toxin protects plants from insect attack. Transgenic Res 2006; 15:349-57. [PMID: 16779650 DOI: 10.1007/s11248-006-0007-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
Many of the toxin proteins, that have been heterogeneously expressed in agricultural crops to provide resistance to insect pests, are too specific or are only mildly effective against the major insect pests. Spider venoms are a complex cocktail of toxins that have evolved specifically to kill insects. Here we show that the omega-ACTX-Hv1a toxin (Hvt), a component of the venom of the Australian funnel web spider (Hadronyche versuta) that is a calcium channel antagonist, retains its biological activity when expressed in a heterologous system. Expressed as a fusion protein in E. coli, the purified toxin fusion immobilized and killed Helicoverpa armigera and Spodoptera littoralis caterpillars when applied topically. Transgenic expression of Hvt in tobacco effectively protected the plants from H. armigera and S. littoralis larvae, with 100% mortality within 48 h. We conclude that the Hvt is an attractive and effective molecule for the transgenic protection of plants from herbivorous insects which should be evaluated further for possible application in agriculture.
Collapse
Affiliation(s)
- Sher Afzal Khan
- Plant Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
167
|
M'Barek S, Chagot B, Andreotti N, Visan V, Mansuelle P, Grissmer S, Marrakchi M, El Ayeb M, Sampieri F, Darbon H, Fajloun Z, De Waard M, Sabatier JM. Increasing the molecular contacts between maurotoxin and Kv1.2 channel augments ligand affinity. Proteins 2006; 60:401-11. [PMID: 15971207 DOI: 10.1002/prot.20509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Scorpion toxins interact with their target ion channels through multiple molecular contacts. Because a "gain of function" approach has never been described to evaluate the importance of the molecular contacts in defining toxin affinity, we experimentally examined whether increasing the molecular contacts between a toxin and an ion channel directly impacts toxin affinity. For this purpose, we focused on two scorpion peptides, the well-characterized maurotoxin with its variant Pi1-like disulfide bridging (MTX(Pi1)), used as a molecular template, and butantoxin (BuTX), used as an N-terminal domain provider. BuTX is found to be 60-fold less potent than MTX(Pi1) in blocking Kv1.2 (IC(50) values of 165 nM for BuTX versus 2.8 nM for MTX(Pi1)). Removal of its N-terminal domain (nine residues) further decreases BuTX affinity for Kv1.2 by 5.6-fold, which is in agreement with docking simulation data showing the importance of this domain in BuTX-Kv1.2 interaction. Transfer of the BuTX N-terminal domain to MTX(Pi1) results in a chimera with five disulfide bridges (BuTX-MTX(Pi1)) that exhibits 22-fold greater affinity for Kv1.2 than MTX(Pi1) itself, in spite of the lower affinity of BuTX as compared to MTX(Pi1). Docking experiments performed with the 3-D structure of BuTX-MTX(Pi1) in solution, as solved by (1)H-NMR, reveal that the N-terminal domain of BuTX participates in the increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicate that acting on molecular contacts between a toxin and a channel is an efficient strategy to modulate toxin affinity.
Collapse
Affiliation(s)
- Sarrah M'Barek
- Laboratoire d'Ingénierie des Protéines, CNRS FRE 2738, IFR Jean Roche, Faculté de Médecine Nord, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Carrega L, Mosbah A, Ferrat G, Beeton C, Andreotti N, Mansuelle P, Darbon H, De Waard M, Sabatier JM. The impact of the fourth disulfide bridge in scorpion toxins of the alpha-KTx6 subfamily. Proteins 2006; 61:1010-23. [PMID: 16247791 DOI: 10.1002/prot.20681] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Animal toxins are highly reticulated and structured polypeptides that adopt a limited number of folds. In scorpion species, the most represented fold is the alpha/beta scaffold in which an helical structure is connected to an antiparallel beta-sheet by two disulfide bridges. The intimate relationship existing between peptide reticulation and folding remains poorly understood. Here, we investigated the role of disulfide bridging on the 3D structure of HsTx1, a scorpion toxin potently active on Kv1.1 and Kv1.3 channels. This toxin folds along the classical alpha/beta scaffold but belongs to a unique family of short-chain, four disulfide-bridged toxins. Removal of the fourth disulfide bridge of HsTx1 does not affect its helical structure, whereas its two-stranded beta-sheet is altered from a twisted to a nontwisted configuration. This structural change in HsTx1 is accompanied by a marked decrease in Kv1.1 and Kv1.3 current blockage, and by alterations in the toxin to channel molecular contacts. In contrast, a similar removal of the fourth disulfide bridge of Pi1, another scorpion toxin from the same structural family, has no impact on its 3D structure, pharmacology, or channel interaction. These data highlight the importance of disulfide bridging in reaching the correct bioactive conformation of some toxins.
Collapse
Affiliation(s)
- Louis Carrega
- Laboratoire d'Ingénierie des Protéines, CNRS FRE 2738, IFR Jean Roche, Faculté de Médecine Nord, Marseille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Zhijian C, Feng L, Yingliang W, Xin M, Wenxin L. Genetic mechanisms of scorpion venom peptide diversification. Toxicon 2006; 47:348-55. [PMID: 16387337 DOI: 10.1016/j.toxicon.2005.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/15/2022]
Abstract
The diversity of scorpion venom peptides is well shown by the presence of about 400 such polypeptides with or without disulfide bonds. Scorpion toxins with disulfide bonds present a variety of sequence features and pharmacological functions by affecting different ion channels, while the venom peptides without disulfide bonds represent a new subfamily, having much lower sequence homology among each other and different functions (e.g. bradykinin-potentiating, antimicrobial, molecular cell signal initiating and immune modulating). Interestingly, all scorpion venom peptides with divergent functions may have evolved from a common ancestor gene. Over the lengthy evolutionary time, the diversification of scorpion venom peptides evolved through polymorphism, duplication, trans-splicing, or alternative splicing at the gene level. In order to completely clarify the diversity of scorpion toxins and toxin-like peptides, toxinomics (genomics and proteomics of scorpion toxins and toxin-like peptides) are expected to greatly advance in the near future.
Collapse
Affiliation(s)
- Cao Zhijian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan Uiniversity, Wuhan 430072, People's Republic of China.
| | | | | | | | | |
Collapse
|
170
|
Abdel-Mottaleb Y, Coronas FV, de Roodt AR, Possani LD, Tytgat J. A novel toxin from the venom of the scorpionTityus trivittatus, is the first member of a new α-KTX subfamily. FEBS Lett 2006; 580:592-6. [PMID: 16405970 DOI: 10.1016/j.febslet.2005.12.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 12/17/2005] [Indexed: 11/27/2022]
Abstract
The first example of a new sub-family of toxins (alpha-KTx20.1) from the scorpion Tityus trivittatus was purified, sequenced and characterized physiologically. It has 29 amino acid residues, three disulfide bridges assumed to adopt the cysteine-stabilized alpha/beta scaffold with a pI value of 8.98. The sequence identities with all the other known alpha-KTx are less than 40%. Its effects were verified using seven different cloned K(+) channels (vertebrate Kv1.1-1.5, Shaker IR and hERG) expressed in Xenopus leavis oocytes. The toxin-induced effects show large differences among the different K(+) channels and a preference towards Kv1.3 (EC50=7.9+/-1.4 nM).
Collapse
Affiliation(s)
- Yousra Abdel-Mottaleb
- Laboratory of Toxicology, University of Leuven, Onderwijs and Navorsing II, Herestraat 49, Postbus 922, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
171
|
Honma T, Shiomi K. Peptide toxins in sea anemones: structural and functional aspects. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:1-10. [PMID: 16372161 PMCID: PMC4271777 DOI: 10.1007/s10126-005-5093-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 08/15/2005] [Indexed: 05/05/2023]
Abstract
Sea anemones are a rich source of two classes of peptide toxins, sodium channel toxins and potassium channel toxins, which have been or will be useful tools for studying the structure and function of specific ion channels. Most of the known sodium channel toxins delay channel inactivation by binding to the receptor site 3 and most of the known potassium channel toxins selectively inhibit Kv1 channels. The following peptide toxins are functionally unique among the known sodium or potassium channel toxins: APETx2, which inhibits acid-sensing ion channels in sensory neurons; BDS-I and II, which show selectivity for Kv3.4 channels and APETx1, which inhibits human ether-a-go-go-related gene potassium channels. In addition, structurally novel peptide toxins, such as an epidermal growth factor (EGF)-like toxin (gigantoxin I), have also been isolated from some sea anemones although their functions remain to be clarified.
Collapse
Affiliation(s)
- Tomohiro Honma
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo, 108-8477 Japan
| | - Kazuo Shiomi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo, 108-8477 Japan
| |
Collapse
|
172
|
Abstract
The I-conotoxin superfamily (I-Ctx) is known to have four disulfide bonds with the cysteine arrangement C-C-CC-CC-C-C, and the members inhibit or modify ion channels of nerve cells. Recently, Olivera and co-workers (FEBS J. 2005; 272: 4178-4188) have suggested that the previously described I-Ctx should now be divided into two different gene superfamilies, namely, I1 and I2, in view of their having two different types of signal peptides and exhibiting distinct functions. We have revisited the 28 entries presently grouped as I-Ctx in UniProt Swiss-Prot knowledgebase, and on the basis of in silico analysis have divided them into I1 and I2 superfamilies. The sequence analysis has provided a framework for in silico annotation enabling us to carry out computer-based functional characterization of the UniProtKB/TrEMBL entry Q59AA4 from Conus miles and to predict it as a member of the I2 superfamily. Furthermore, we have predicted the mature toxin of this entry and have proposed that it may be an inhibitor of voltage-gated potassium channels.
Collapse
Affiliation(s)
- Sukanta Mondal
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
173
|
Mouhat S, Teodorescu G, Homerick D, Visan V, Wulff H, Wu Y, Grissmer S, Darbon H, De Waard M, Sabatier JM. Pharmacological profiling of Orthochirus scrobiculosus toxin 1 analogs with a trimmed N-terminal domain. Mol Pharmacol 2006; 69:354-62. [PMID: 16234482 DOI: 10.1124/mol.105.017210] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OSK1, a toxin from the venom of the Asian scorpion Orthochirus scrobiculosus, is a 38-residue peptide cross-linked by three disulfide bridges. A structural analog of OSK1, [Lys(16),Asp(20)]-OSK1, was found previously to be one of the most potent blockers of the voltage-gated K(+) channel Kv1.3 hitherto characterized. Here, we demonstrate that progressive trimming of the N-terminal domain of [Lys(16),Asp(20)]-OSK1 results in marked changes in its pharmacological profile, in terms of both K(+) channel affinity and selectivity. Whereas the affinity to Kv1.1 and Kv1.3 did not change significantly, the affinity to Kv1.2 and K(Ca)3.1 was drastically reduced with the truncations. It is surprising that a striking gain in potency was observed for Kv3.2. In contrast, a truncation of the C-terminal domain, expected to partially disrupt the toxin beta-sheet structure, resulted in a significant decrease or a complete loss of activity on all channel types tested. These data highlight the value of structure-function studies on the extended N-terminal domain of [Lys(16),Asp(20)]-OSK1 to identify new analogs with unique pharmacological properties.
Collapse
|
174
|
Tan PTJ, Ranganathan S, Brusic V. Deduction of functional peptide motifs in scorpion toxins. J Pept Sci 2006; 12:420-7. [PMID: 16432807 DOI: 10.1002/psc.744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Scorpion toxins are important physiological probes for characterizing ion channels. Molecular databases have limited functional annotation of scorpion toxins. Their function can be inferred by searching for conserved motifs in sequence signature databases that are derived statistically but are not necessarily biologically relevant. Mutation studies provide biological information on residues and positions important for structure-function relationship but are not normally used for extraction of binding motifs. 3D structure analyses also aid in the extraction of peptide motifs in which non-contiguous residues are clustered spatially. Here we present new, functionally relevant peptide motifs for ion channels, derived from the analyses of scorpion toxin native and mutant peptides.
Collapse
Affiliation(s)
- Paul T J Tan
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613
| | | | | |
Collapse
|
175
|
Rodríguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005; 46:831-44. [PMID: 16274721 DOI: 10.1016/j.toxicon.2005.09.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scorpion venoms contain a large number of bioactive components. Several of the long-chain peptides were shown to be responsible for neurotoxic effects, due to their ability to recognize Na(+) channels and to cause impairment of channel functions. Here, we revisited the basic paradigms in the study of these peptides in the light of recent data concerning their structure-function relationships, their functional divergence and extant biodiversity. The reviewed topics include: the criteria for classification of long-chain peptides according to their function, and a revision of the state-of-the-art knowledge concerning the surface areas of contact of these peptides with known Na(+) channels. Additionally, we compiled a comprehensive list encompassing 191 different amino acid sequences from long-chain peptides purified from scorpion venoms. With this dataset, a phylogenetic tree was constructed and discussed taking into consideration their documented functional divergence. A critical view on problems associated with the study of these scorpion peptides is presented, drawing special attention to the points that need revision and to the subjects under intensive research at this moment, regarding scorpion toxins specific for Na(+) channels and the other related long-chain peptides recently described.
Collapse
Affiliation(s)
- Ricardo C Rodríguez de la Vega
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Av. Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| | | |
Collapse
|
176
|
Srairi-Abid N, Guijarro JI, Benkhalifa R, Mantegazza M, Cheikh A, Ben Aissa M, Haumont PY, Delepierre M, El Ayeb M. A new type of scorpion Na+-channel-toxin-like polypeptide active on K+ channels. Biochem J 2005; 388:455-64. [PMID: 15656785 PMCID: PMC1138952 DOI: 10.1042/bj20041407] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have purified and characterized two peptides, named KAaH1 and KAaH2 (AaH polypeptides 1 and 2 active on K+ channels, where AaH stands for Androctonus australis Hector), from the venom of A. australis Hector scorpions. Their sequences contain 58 amino acids including six half-cysteines and differ only at positions 26 (Phe/Ser) and 29 (Lys/Gln). Although KAaH1 and KAaH2 show important sequence similarity with anti-mammal beta toxins specific for voltage-gated Na+ channels, only weak beta-like effects were observed when KAaH1 or KAaH2 (1 microM) were tested on brain Nav1.2 channels. In contrast, KAaH1 blocks Kv1.1 and Kv1.3 channels expressed in Xenopus oocytes with IC50 values of 5 and 50 nM respectively, whereas KAaH2 blocks only 20% of the current on Kv1.1 and is not active on Kv1.3 channels at a 100 nM concentration. KAaH1 is thus the first member of a new subfamily of long-chain toxins mainly active on voltage-gated K+ channels. NMR spectra of KAaH1 and KAaH2 show good dispersion of signals but broad lines and poor quality. Self-diffusion NMR experiments indicate that lines are broadened due to a conformational exchange on the millisecond time scale. NMR and CD indicate that both polypeptides adopt a similar fold with alpha-helical and b-sheet structures. Homology-based molecular models generated for KAaH1 and KAaH2 are in accordance with CD and NMR data. In the model of KAaH1, the functionally important residues Phe26 and Lys29 are close to each other and are located in the alpha-helix. These residues may constitute the so-called functional dyad observed for short alpha-KTx scorpion toxins in the beta-sheet.
Collapse
Affiliation(s)
- Najet Srairi-Abid
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13, place Pasteur, BP-74 Tunis 1002, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Oguiura N, Boni-Mitake M, Rádis-Baptista G. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon 2005; 46:363-70. [PMID: 16115660 DOI: 10.1016/j.toxicon.2005.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/10/2005] [Accepted: 06/08/2005] [Indexed: 11/21/2022]
Abstract
Crotamine is a toxin from the Crotalus durissus terrificus venom, composed of 42 amino acid residues and three disulfide bridges. It belongs to a toxin family previously called Small Basic Polypeptide Myotoxins (SBPM) whose members are widely distributed through the Crotalus snake venoms. Comparison of SBPM amino acid sequences shows high similarities. Crotamine induces skeletal muscle spasms, leading to spastic paralysis of the hind limbs of mice, by interacting with sodium channels on muscle cells. The crotamine gene with 1.8 kbp is organized into three exons, which are separated by a long phase-1 and short phase-2 introns and mapped to chromosome 2. The three-dimensional structure of crotamine was recently solved and shares a structural topology with other three disulfide bond-containing peptide similar to human beta-defensins and scorpion Na+ channel toxin. Novel biological activities have been reported, such as the capacity to penetrate undifferentiated cells, to localize in the nucleus, and to serve as a marker of actively proliferating living cells.
Collapse
Affiliation(s)
- N Oguiura
- Laboratório de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP-Brazil.
| | | | | |
Collapse
|
178
|
Andreotti N, di Luccio E, Sampieri F, De Waard M, Sabatier JM. Molecular modeling and docking simulations of scorpion toxins and related analogs on human SKCa2 and SKCa3 channels. Peptides 2005; 26:1095-108. [PMID: 15949626 DOI: 10.1016/j.peptides.2005.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 01/20/2005] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
The small-conductance Ca2+-activated K+ (SKCa) channels modulate cytosolic Ca2+ concentration in excitable and non-excitable tissues by regulating the membrane potential and are responsible of slow action potential after hyperpolarization that inhibits cell firing. Among these, human SKCa2 and SKCa3 channels differ in the pore region by only two residues: Ala331 and Asn367 (human small-conductance calcium-activated potassium channel, hSKCa2) instead of Val485 and His521 (hSKCa3). To design highly selective blockers of hSKCa channels, a number of known hSKCa2 and/or hSKCa3-active peptides (i.e. scorpion toxins and analogs thereof) were analyzed for their interactions and selectivities toward these channels. Molecular models of hSKCa2 and hSKCa3 channels (S5-H5-S6 portion) were generated, and scorpion toxins/peptides of unsolved three-dimensional (3D) structures were modeled. Models of toxin-channel complexes were generated by the bimolecular complex generation with global evaluation, and ranking (BiGGER) docking software and selected by using a screening method of the docking solutions. A high degree of correlation was found to exist between docking energies and experimental Kd values of peptides that blocked hSKCa2 and/or hSKCa3 channels, suggesting it could be appropriate to predict Kd values of other bioactive peptides. The best scoring complexes were also used to identify key residues of both interacting partners, indicating that such an approach should help the design of more active and/or selective peptide blockers of targeted ion channels.
Collapse
Affiliation(s)
- Nicolas Andreotti
- Laboratoire Cellpep S.A., 13-15 Rue Ledru-Rollin, 13015 Marseille, France
| | | | | | | | | |
Collapse
|
179
|
Mouhat S, Visan V, Ananthakrishnan S, Wulff H, Andreotti N, Grissmer S, Darbon H, De Waard M, Sabatier JM. K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochem J 2005; 385:95-104. [PMID: 15588251 PMCID: PMC1134677 DOI: 10.1042/bj20041379] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OSK1 (alpha-KTx3.7) is a 38-residue toxin cross-linked by three disulphide bridges that was initially isolated from the venom of the Asian scorpion Orthochirus scrobiculosus. OSK1 and several structural analogues were produced by solid-phase chemical synthesis, and were tested for lethality in mice and for their efficacy in blocking a series of 14 voltage-gated and Ca2+-activated K+ channels in vitro. In the present paper, we report that OSK1 is lethal in mice by intracerebroventricular injection, with a LD50 (50% lethal dose) value of 2 microg/kg. OSK1 blocks K(v)1.1, K(v)1.2, K(v)1.3 channels potently and K(Ca)3.1 channel moderately, with IC50 values of 0.6, 5.4, 0.014 and 225 nM respectively. Structural analogues of OSK1, in which we mutated positions 16 (Glu16-->Lys) and/or 20 (Lys20-->Asp) to amino acid residues that are conserved in all other members of the alpha-KTx3 toxin family except OSK1, were also produced and tested. Among the OSK1 analogues, [K16,D20]-OSK1 (OSK1 with Glu16-->Lys and Lys20-->Asp mutations) shows an increased potency on K(v)1.3 channel, with an IC50 value of 0.003 nM, without loss of activity on K(Ca)3.1 channel. These data suggest that OSK1 or [K16,D20]-OSK1 could serve as leads for the design and production of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Stéphanie Mouhat
- *Laboratoire Cellpep S.A., 13-15 Rue Ledru-Rollin, 13015 Marseille, France
| | - Violeta Visan
- †Universität Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany
| | - S. Ananthakrishnan
- ‡Department of Medical Pharmacology and Toxicology, University of California, Davis, CA 95616, U.S.A
| | - Heike Wulff
- ‡Department of Medical Pharmacology and Toxicology, University of California, Davis, CA 95616, U.S.A
| | - Nicolas Andreotti
- *Laboratoire Cellpep S.A., 13-15 Rue Ledru-Rollin, 13015 Marseille, France
| | | | - Hervé Darbon
- §AFMB, CNRS UPR 9039, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Michel De Waard
- ∥INSERM U607, CEA, 17 Rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Jean-Marc Sabatier
- *Laboratoire Cellpep S.A., 13-15 Rue Ledru-Rollin, 13015 Marseille, France
- ¶CNRS FRE 2738, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
180
|
Mouhat S, De Waard M, Sabatier JM. Contribution of the functional dyad of animal toxins acting on voltage-gated Kv1-type channels. J Pept Sci 2005; 11:65-8. [PMID: 15635666 DOI: 10.1002/psc.630] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 'functional dyad', a well-defined pair of amino acid residues (basic and hydrophobic residues), is a key molecular determinant present in most animal toxins acting on voltage-gated Kv1 channels. It is increasingly used as a working concept to explain how toxins are able to recognize and block their specific ion channel targets. However, other crucial toxin determinants are emerging and the actual role of this 'functional dyad' ought to be clarified, which is the object of the present mini-review.
Collapse
Affiliation(s)
- Stephanie Mouhat
- Laboratoire Cellpep S.A., 13-15 Rue Ledru-Rollin, 13015 Marseille, France
| | | | | |
Collapse
|
181
|
Yao J, Chen X, Li H, Zhou Y, Yao L, Wu G, Chen X, Zhang N, Zhou Z, Xu T, Wu H, Ding J. BmP09, a “Long Chain” Scorpion Peptide Blocker of BK Channels. J Biol Chem 2005; 280:14819-28. [PMID: 15695820 DOI: 10.1074/jbc.m412735200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel "long chain" toxin BmP09 has been purified and characterized from the venom of the Chinese scorpion Buthus martensi Karsch. The toxin BmP09 is composed of 66 amino acid residues, including eight cysteines, with a mass of 7721.0 Da. Compared with the B. martensi Karsch AS-1 as a Na(+) channel blocker (7704.8 Da), the BmP09 has an exclusive difference in sequence by an oxidative modification at the C terminus. The sulfoxide Met-66 at the C terminus brought the peptide a dramatic switch from a Na(+) channel blocker toaK(+) channel blocker. Upon probing the targets of the toxin BmP09 on the isolated mouse adrenal medulla chromaffin cells, where a variety of ion channels coexists, we found that the toxin BmP09 specifically blocked large conductance Ca(2+)- and voltage-dependent K(+) channels (BK) but not Na(+) channels at a range of 100 nm concentration. This was further confirmed by blocking directly the BK channels encoded with mSlo1 alpha-subunits in Xenopus oocytes. The half-maximum concentration EC(50) of BmP09 was 27 nm, and the Hill coefficient was 1.8. In outside-out patches, the 100 nm BmP09 reduced approximately 70% currents of BK channels without affecting the single-channel conductance. In comparison with the "short chain" scorpion peptide toxins such as Charybdotoxin, the toxin BmP09 behaves much better in specificity and reversibility, and thus it will be a more efficient tool for studying BK channels. A three-dimensional simulation between a BmP09 toxin and an mSlo channel shows that the Lys-41 in BmP09 lies at the center of the interface and plugs into the entrance of the channel pore. The stable binding between the toxin BmP09 and the BK channel is favored by aromatic pi -pi interactions around the center.
Collapse
Affiliation(s)
- Jing Yao
- Institute of Biochemistry and Biophysics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Bosmans F, Martin-Eauclaire MF, Tytgat J. The depressant scorpion neurotoxin LqqIT2 selectively modulates the insect voltage-gated sodium channel. Toxicon 2005; 45:501-7. [PMID: 15733572 DOI: 10.1016/j.toxicon.2004.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 12/09/2004] [Accepted: 12/10/2004] [Indexed: 11/30/2022]
Abstract
LqqIT2 is a depressant neurotoxin present in the venom of the Leiurus quinquestriatus quinquestriatus scorpion, one of the world's most dangerous scorpions endemic to dry habitats in Africa and Asia. In order to determine its efficacy, potency and selectivity, LqqIT2 was subjected for the first time to an electrophysiological and pharmacological comparison between two different cloned sodium channels expressed in Xenopus laevis oocytes. Aside from typical beta-toxin effects, LqqIT2 also affected the inactivation process and ion selectivity of the insect voltage-gated sodium channel. The most interesting feature of LqqIT2 is its total insect-selectivity. At a concentration of 1 microM, the insect-voltage-gated sodium channel, para, was profoundly modulated while its mammalian counterpart, the rat brain Na(v)1.2 channel, was not affected. This trait offers excellent prospects for the development of novel insecticides.
Collapse
Affiliation(s)
- Frank Bosmans
- Laboratory of Toxicology, Faculty of Pharmacy, University of Leuven, E. Van Evenstraat 4, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
183
|
Chagot B, Diochot S, Pimentel C, Lazdunski M, Darbon H. Solution structure of APETx1 from the sea anemone Anthopleura elegantissima: A new fold for an HERG toxin. Proteins 2005; 59:380-6. [PMID: 15726634 DOI: 10.1002/prot.20425] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
APETx1 is a 42-amino acid toxin purified from the venom of the sea anemone Anthopleura elegantissima. This cysteine-rich peptide possesses three disulfide bridges (C4-C37, C6-C30, and C20-C38). Its pharmacological target is the Ether-a-gogo potassium channel. We herein determine the solution structure of APETx1 by use of conventional two-dimensional 1H-NMR techniques followed by torsion angle dynamics and refinement protocols. The calculated structure of APETx1 belongs to the disulfide-rich all-beta structural family, in which a three-stranded anti-parallel beta-sheet is the only secondary structure. APETx1 is the first Ether-a-gogo effector discovered to fold in this way. We therefore compare the structure of APETx1 to those of the two other known effectors of the Ether-a-gogo potassium channel, CnErg1 and BeKm-1, and analyze the topological disposition of key functional residues proposed by analysis of the electrostatic anisotropy. The interacting surface is made of a patch of aromatic residues (Y5, Y32, and F33) together with two basic residues (K8 and K18) at the periphery of the surface. We pinpoint the absence of the central lysine present in the functional surface of the two other Ether-a-gogo effectors.
Collapse
Affiliation(s)
- Benjamin Chagot
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6098 and Universités d'Aix-Marseille I and II, Marseille, France
| | | | | | | | | |
Collapse
|
184
|
Regaya I, Beeton C, Ferrat G, Andreotti N, Darbon H, De Waard M, Sabatier JM. Evidence for Domain-specific Recognition of SK and Kv Channels by MTX and HsTx1 Scorpion Toxins. J Biol Chem 2004; 279:55690-6. [PMID: 15498765 DOI: 10.1074/jbc.m410055200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maurotoxin (MTX) and HsTx1 are two scorpion toxins belonging to the alpha-KTx6 structural family. These 34-residue toxins, cross-linked by four disulfide bridges, share 59% sequence identity and fold along the classical alpha/beta scaffold. Despite these structural similarities, they fully differ in their pharmacological profiles. MTX is highly active on small (SK) and intermediate (IK) conductance Ca(2+)-activated (K(+)) channels and on voltage-gated Kv1.2 channel, whereas HsTx1 potently blocks voltage-gated Kv1.1 and Kv1.3 channels only. Here, we designed and chemically produced MTX-HsTx1, a chimera of both toxins that contains the N-terminal helical region of MTX (sequence 1-16) and the C-terminal beta-sheet region of HsTx1 (sequence 17-34). The three-dimensional structure of the peptide in solution was solved by (1)H NMR. MTX-HsTx1 displays the activity of MTX on SK channel, whereas it exhibits the pharmacological profile of HsTx1 on Kv1.1, Kv1.2, Kv1.3, and IK channels. These data demonstrate that the helical region of MTX exerts a key role in SK channel recognition, whereas the beta-sheet region of HsTx1 is crucial for activity on all other channel types tested.
Collapse
Affiliation(s)
- Imed Regaya
- CNRS Formation de Recherche Expérimentale 2738, Laboratoire de Biochimie, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
185
|
Zhang N, Chen X, Li M, Cao C, Wang Y, Wu G, Hu G, Wu H. Solution Structure of BmKK4, the First Member of Subfamily α-KTx 17 of Scorpion Toxins,. Biochemistry 2004; 43:12469-76. [PMID: 15449936 DOI: 10.1021/bi0490643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BmKK4 is a 30 amino acid peptide purified from the venom of the Chinese scorpion Buthus martensi Karsch. It has been classified as the first member of scorpion toxin subfamily alpha-KTx 17. The 3D structure of BmKK4 in solution has been determined by 2D NMR spectroscopy. This toxin adopts a common alpha/beta-motif, but shows a distinctive local conformation. The most novel feature is that the regular arrangements of the side chains of the residues involved in the beta-sheet of BmKK4 are distorted by a classic beta-bulge structure, which involves two residues (Asp18 and Arg19) in the first strand opposite a single residue (Tyr26) in the second strand. The bulge produces two main changes in the structure of the antiparallel beta-sheet: (1) It disrupts the normal alteration of the side chain direction; the side chain of Asp18 turns over to form a salt bridge with that of Arg19. (2) It accentuates the twist of the sheet, and alters the direction of the antiparallel beta-sheet. The unusual structural feature of the toxin is attributed to the shorter peptide segment (Leu15-Arg19) between the third and fourth Cys residues and two unique residues (Asp18 and Arg19) at the position preceding the fourth Cys. In addition, the lower affinity of the peptide for the Kv channel is correlated to the structural features: residue Arg19 instead of a Lys residue at the critical position for binding and the salt bridge formed between residues Arg19 and Asp18.
Collapse
Affiliation(s)
- Naixia Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Jouirou B, Mouhat S, Andreotti N, De Waard M, Sabatier JM. Toxin determinants required for interaction with voltage-gated K+ channels. Toxicon 2004; 43:909-14. [PMID: 15208024 DOI: 10.1016/j.toxicon.2004.03.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ion channel-acting toxins are mainly short peptides generally present in minute amounts in the venoms of diverse animal species such as scorpions, snakes, spiders, marine cone snails and sea anemones. Interestingly, these peptides have evolved over time on the basis of clearly distinct architectural motifs present throughout the animal kingdom, but display convergent molecular determinants and functional homologies. As a consequence of this conservation of some key determinants, it has also been evidenced that toxin targets display some common evolutionary origins. Indeed, these peptides often target ion channels and ligand-gated receptors, though other interacting molecules such as enzymes have been further evidenced. In this review, we provide an overview of some selected peptides from various animal species that act on specific K+ conducting voltage-gated ion channels. In particular, we emphasize our global analysis on the structural determinants of these molecules that are required for the recognition of a particular ion channel pore structure, a property that should be correlated to the blocking efficacy of the K+ efflux out of the cell during channel opening. A better understanding of these molecular determinants is valuable to better specify and derive useful peptide pharmacological properties.
Collapse
Affiliation(s)
- Besma Jouirou
- Laboratoire d'Ingénierie des Protéines, Faculte de Medecine Secteur Nord, CNRS FRE 2738, Bd Pierre Dramard, 13916 Marseille, France
| | | | | | | | | |
Collapse
|
187
|
Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC, Freitas JC, Clare JJ, Wanke E. Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels: unexpected contributions from differences in the IV/S3-S4 outer loop. J Biol Chem 2004; 279:33323-35. [PMID: 15169781 DOI: 10.1074/jbc.m404344200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sea anemones are an important source of various biologically active peptides, and it is known that ATX-II from Anemonia sulcata slows sodium current inactivation. Using six different sodium channel genes (from Nav1.1 to Nav1.6), we investigated the differential selectivity of the toxins AFT-II (purified from Anthopleura fuscoviridis) and Bc-III (purified from Bunodosoma caissarum) and compared their effects with those recorded in the presence of ATX-II. Interestingly, ATX-II and AFT-II differ by only one amino acid (L36A) and Bc-III has 70% similarity. The three toxins induced a low voltage-activated persistent component primarily in the Nav1.3 and Nav1.6 channels. An analysis showed that the 18 dose-response curves only partially fit the hypothesized binding of Lys-37 (sea anemone toxin Anthopleurin B) to the Asp (or Glu) residue of the extracellular IV/S3-S4 loop in cardiac (or nervous) Na+ channels, thus suggesting the substantial contribution of some nearby amino acids that are different in the various channels. As these channels are atypically expressed in mammalian tissues, the data not only suggest that the toxicity is highly dependent on the channel type but also that these toxins and their various physiological effects should be considered prototype models for the design of new and specific pharmacological tools.
Collapse
Affiliation(s)
- Joacir Stolarz Oliveira
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza, 2, Milan 20126, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|