151
|
Chatzigianni M, Savvas D, Papadopoulou EA, Aliferis KA, Ntatsi G. Combined Effect of Salt Stress and Nitrogen Level on the Primary Metabolism of Two Contrasting Hydroponically Grown Cichorium spinosum L. Ecotypes. Biomolecules 2023; 13:biom13040607. [PMID: 37189356 DOI: 10.3390/biom13040607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Stamnagathi (Cichorium spinosum L.) is an indigenous plant species well-known for its health-promoting properties. Salinity is a long-term issue with devastating consequences on land and farmers. Nitrogen (N) constitutes a crucial element for plant growth and development (chlorophyll, primary metabolites, etc.). Thus, it is of paramount importance to investigate the impact of salinity and N supply on plants’ metabolism. Within this context, a study was conducted aiming to assess the impact of salinity and N stress on the primary metabolism of two contrasting ecotypes of stamnagathi (montane and seaside). Both ecotypes were exposed to three different salinity levels (0.3 mM—non-saline treatment, 20 mM—medium, and 40 mM—high salinity level) combined with two different total-N supply levels: a low-N at 4 mM and a high-N at 16 mM, respectively. The differences between the two ecotypes revealed the variable responses of the plant under the applied treatments. Fluctuations were observed at the level of TCA cycle intermediates (fumarate, malate, and succinate) of the montane ecotype, while the seaside ecotype was not affected. In addition, the results showed that proline (Pro) levels increased in both ecotypes grown under a low N-supply and high salt stress, while other osmoprotectant metabolites such as γ-aminobutyric acid (GABA) exhibited variable responses under the different N supply levels. Fatty acids such as α-linolenate and linoleate also displayed variable fluctuations following plant treatments. The carbohydrate content of the plants, as indicated by the levels of glucose, fructose, α,α-trehalose, and myo-inositol, was significantly affected by the applied treatments. These findings suggest that the different adaptation mechanisms among the two contrasting ecotypes could be strongly correlated with the observed changes in their primary metabolism. This study also suggests that the seaside ecotype may have developed unique adaptation mechanisms to cope with high N supply and salinity stress, making it a promising candidate for future breeding programs aimed at developing stress tolerant varieties of C. spinosum L.
Collapse
|
152
|
Zhang M, Lu X, Ren T, Marowa P, Meng C, Wang J, Yang H, Li C, Zhang L, Xu Z. Heterologous overexpression of Apocynum venetum flavonoids synthetase genes improves Arabidopsis thaliana salt tolerance by activating the IAA and JA biosynthesis pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1123856. [PMID: 37051078 PMCID: PMC10083295 DOI: 10.3389/fpls.2023.1123856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Salt stress is a serious abiotic stress that primarily inhibits plant growth, resulting in severe yield losses. Our previous research found that flavonoids play important roles in A. venetum salt stress tolerance. In response to salt stress, we noted that the flavonoid content was depleted in A. venetum. However, the detailed mechanism is still not clear. In this study, the expression patterns of three flavonoids synthetase genes, AvF3H, AvF3'H, and AvFLS were systemically analyzed under salt stress in A. venetum seedlings. The salt tolerance of transgenic Arabidopsis plants was improved by heterologous overexpression of these synthetase genes. The NBT and DAB staining results as well as H2O2 and O2•- content analysis revealed that under salt stress, ROS molecules were reduced in transgenic plants compared to WT plants, which corresponded to the activation of the antioxidant enzyme system and an increase in total flavonoid content, particularly rutin, eriodictyol, and naringerin in transgenic plants. External application of flavonoids reduced ROS damage in WT plants just like what we observed in the transgenic plants (without the external application). Additionally, our transcriptome analysis demonstrated that auxin and jasmonic acid biosynthesis genes, as well as signaling transduction genes, were primarily activated in transgenic plants under salt stress, leading to activation of the cell wall biosynthesis or modification genes that promote plant growth. As a result, we investigated the mechanism through flavonoids enhance the salt tolerance, offering a theoretical foundation for enhancing salt tolerance in plants.
Collapse
Affiliation(s)
- Mengchao Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xueli Lu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Tingting Ren
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Prince Marowa
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, Harare, Zimbabwe
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Juying Wang
- Service Center for Comprehensive Utilization of Saline-Alkali Land in Agricultural High-tech Industrial Demonstration Zone of the Yellow River Delta, Dongying, China
| | - Hui Yang
- Service Center for Comprehensive Utilization of Saline-Alkali Land in Agricultural High-tech Industrial Demonstration Zone of the Yellow River Delta, Dongying, China
| | - Chunhua Li
- Industry Promotion Service Center of Agricultural High-tech Industrial Demonstration Zone in the Yellow River Delta, Dongying, China
| | - Li Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
153
|
Tallarita AV, Vecchietti L, Golubkina NA, Sekara A, Cozzolino E, Mirabella M, Cuciniello A, Maiello R, Cenvinzo V, Lombardi P, Caruso G. Effects of Plant Biostimulation Time Span and Soil Electrical Conductivity on Greenhouse Tomato 'Miniplum' Yield and Quality in Diverse Crop Seasons. PLANTS (BASEL, SWITZERLAND) 2023; 12:1423. [PMID: 37050049 PMCID: PMC10097048 DOI: 10.3390/plants12071423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Biostimulants help plants cope with environmental stresses and improve vegetable yield and quality. This study was conducted to determine the protein hydrolysate (PH) effect of three different durations (weekly applications: three, six, or nine times plus an untreated control) in factorial combination with four soil electrical conductivities (EC: 1.5, 3.0, 4.5, or 6.0 mS·cm-1) on yield, fruit quality, and elemental composition of tomato 'miniplum' grown in a greenhouse. Fruit yield was best affected, during the summer, by six and nine biostimulant applications at EC 3.0 mS·cm-1, and in the same season, the six treatments led to the highest fruit number with no difference compared to nine applications; during the winter, the three and six treatments improved the mentioned variables at each EC level. Fruits' dry residue and Brixo were positively affected by biostimulation both in summer and winter. In summer, the 6.0 mS·cm-1 EC led to the highest dry residue and Brixo values, though the latter did not show any significant difference compared to 4.5 mS·cm-1; in winter, the best results corresponded to 4.5 and 6.0 mS·cm-1. A higher beneficial effect of PH on fruit antioxidant status, i.e., lycopene, polyphenols, ascorbic acid levels, and lipophilic (LAA) and hydrophilic (HAA) activity, was recorded in winter compared with summer. Positive correlations between polyphenols and LAA, as well as ascorbic acid content and HAA were found for all EC and PH treatments. Most of the mineral elements tested demonstrated concentration stability, whereas the highest EC decreased P, Mg, Cu, and Se accumulation. The opposite effect was shown by PH application on Se and Mn levels, with P tending to increase. The concentrations of Fe, Zn, and Cu were the lowest under the longest duration of PH supply. These results further confirm the essential role of plant biostimulation in enhancing tomato yield and quality, with a particular focus on the treatment duration.
Collapse
Affiliation(s)
- Alessio V. Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | | | - Nadezhda A. Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, Odintsovo District, Vniissok, Selectsionnaya 14, Moscow 143072, Russia
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Eugenio Cozzolino
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy
| | - Massimo Mirabella
- Centro Studi Isvam, Association for Innovation and Development of Sustainable Mediterranean Agriculture, 90121 Palermo, Italy
| | - Antonio Cuciniello
- Council for Agricultural Research and Economics (CREA)—Research Center for Cereal and Industrial Crops, 81100 Caserta, Italy
| | - Roberto Maiello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Vincenzo Cenvinzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Pasquale Lombardi
- Research Center for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
154
|
Li Y, Ai Z, Mu Y, Zhao T, Zhang Y, Li L, Huang Z, Nie L, Khan MN. Rice yield penalty and quality deterioration is associated with failure of nitrogen uptake from regreening to panicle initiation stage under salinity. FRONTIERS IN PLANT SCIENCE 2023; 14:1120755. [PMID: 37025146 PMCID: PMC10071828 DOI: 10.3389/fpls.2023.1120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the development and utilization of saline land for rice cultivation have effectively expanded grain productivity. Rice is a salt-sensitive crop, and the increasing salinity problem threatens rice yield and quality. Therefore, we conducted open field experiments to study the effect of salinity on different growth stages of rice. Irrigating saline treatment was conducted at three different growth stages: irrigating saline from the regreening stage to the panicle initiation stage (S1), irrigating saline from the panicle initiation stage to the flowering stage (S2), and irrigating saline from the flowering stage to the maturity stage (S3). Each treatment period lasted for about 30 days. At the same time, irrigating saline water from the regreening stage to the maturity stage (S4) treatment was added in 2022 to explore the performance of salt stress during the whole growth period of rice. Based on the treatment of these different saline irrigation growth periods, three saline concentrations were incorporated, including salinity 0‰ (T1), 3‰ (T2), and 6‰ (T3) concentrations. No irrigating saline during the whole growth period was also used as a control (CK). The results indicated that rice grain yield and quality were most sensitive to saline treatment during S1 among the three stress periods. At the S1 stage, salinity mainly reduced the nitrogen uptake, resulting in stunted plant growth, reducing tillering, yield, and yield components, and deteriorating the rice quality. Compared to the control, IEN (grain yield over the total amount of N uptake in plants at maturity) was more sensitive at the S1 stage than S2 and S3 stages under salinity. Furthermore, the findings of our study suggest that under salinity, rice growth is not only directly affected by the higher sodium (Na+) content in plants, but the higher concentration of Na+ reduced the ability of plants to uptake nitrogen. Thus, more attention should be paid to the field management of the S1 stage, the most sensitive stage during rice cultivation in salinized areas. It is necessary to avoid salt damage to rice during this period and ensure irrigation with precious freshwater resources.
Collapse
Affiliation(s)
- Yusheng Li
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhiyong Ai
- National Innovation Center of Saline−Alkali Tolerant Rice in Sanya, Sanya, China
- Hunan Hybrid Rice Research Center, Changsha, China
| | - Yixue Mu
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Tingcheng Zhao
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yicheng Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Lin Li
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zheng Huang
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Lixiao Nie
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- National Innovation Center of Saline−Alkali Tolerant Rice in Sanya, Sanya, China
| | - Mohammad Nauman Khan
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
155
|
Hannachi S, Signore A, Mechi L. Alleviation of Associated Drought and Salinity Stress' Detrimental Impacts on an Eggplant Cultivar ('Bonica F1') by Adding Biochar. PLANTS (BASEL, SWITZERLAND) 2023; 12:1399. [PMID: 36987085 PMCID: PMC10054642 DOI: 10.3390/plants12061399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
To investigate the impact of biochar on eggplant growth, physiology, and yield parameters under separate and associated drought and salt stress, a pot experiment was carried out. An eggplant variety ('Bonica F1') was exposed to one NaCl concentration (S1 = 300 mM), three irrigation regimes (FI: full irrigation; DI: deficit irrigation; ARD: alternate root-zone drying irrigation), and one dose of biochar (B1 = 6% by weight). Our findings demonstrated that associated drought and salt stress had a greater negative impact on 'Bonica F1' performance in comparison to single drought or salt stress. Whereas, adding biochar to the soil improved the ability of 'Bonica F1' to alleviate the single and associated effects of salt and drought stress. Moreover, in comparison to DI under salinity, biochar addition in ARD significantly increased plant height, aerial biomass, fruit number per plant, and mean fresh weight per fruit by 18.4%, 39.7%, 37.5%, and 36.3%, respectively. Furthermore, under limited and saline irrigation, photosynthetic rate (An), transpiration rate (E), and stomatal conductance (gs) declined. In addition, the interaction between ARD and biochar effectively restored the equilibrium between the plant chemical signal (ABA) and hydraulic signal (leaf water potential). As a result, mainly under salt stress, with ARD treatment, intrinsic water use efficiency (WUEi) and yield traits were much higher than those in DI. Overall, biochar in combination with ARD could be an efficient approach for preserving crop productivity.
Collapse
Affiliation(s)
- Sami Hannachi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Angelo Signore
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Lassaad Mechi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
156
|
Zong J, Zhang Z, Huang P, Yang Y. Arbuscular mycorrhizal fungi alleviates salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis. Front Microbiol 2023; 14:1138771. [PMID: 37007515 PMCID: PMC10061154 DOI: 10.3389/fmicb.2023.1138771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Mycorrhizal inoculation was widely reported to alleviate the damage resulting from NaCl by various physiological ways. However, the symbiotic benefit under distant NaCl concentrations and the relationship among different responsive physiological processes were elusive. In this study, saline resistant plant Xanthoceras sorbifolium was selected as the experimental material and five concentrations of NaCl in the presence or absence of Arbuscular Mycorrhiza Fungi (AMF) were conducted, in order to understand the differences and similarities on the photosynthesis, antioxidant activity, and osmotic adjustment between arbuscular mycorrhizal (AM) plants and non-arbuscular mycorrhizal (NM) plants. Under low salt stress, X. sorbifolium can adapt to salinity by accumulating osmotic adjustment substances, such as soluble protein and proline, increasing superoxide dismutase (SOD), catalase (CAT) activity, and glutathione (GSH). However, under high concentrations of NaCl [240 and 320 mM (mmol·L−1)], the resistant ability of the plants significantly decreased, as evidenced by the significant downregulation of photosynthetic capacity and biomass compared with the control plants in both AM and NM groups. This demonstrates that the regulatory capacity of X. sorbifolium was limiting, and it played a crucial role mainly under the conditions of 0–160 mM NaCl. After inoculation of AMF, the concentration of Na+ in roots was apparently lower than that of NM plants, while Gs (Stomatal conductance) and Ci (Intercellular CO2 concentration) increased, leading to increases in Pn (Net photosynthetic rate) as well. Moreover, under high salt stress, proline, soluble protein, GSH, and reduced ascorbic acid (ASA) in AM plants are higher in comparison with NM plants, revealing that mycorrhizal symbiotic benefits are more crucial against severe salinity toxicity. Meanwhile, X. sorbifolium itself has relatively high tolerance to salinity, and AMF inoculation can significantly increase the resistant ability against NaCl, whose function was more important under high concentrations.
Collapse
Affiliation(s)
- Jianwei Zong
- College of Art, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- *Correspondence: Jianwei Zong,
| | - Zhilong Zhang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Peilu Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yuhua Yang
- College of Art, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Yuhua Yang,
| |
Collapse
|
157
|
Patel JS, Selvaraj V, More P, Bahmani R, Borza T, Prithiviraj B. A Plant Biostimulant from Ascophyllum nodosum Potentiates Plant Growth Promotion and Stress Protection Activity of Pseudomonas protegens CHA0. PLANTS (BASEL, SWITZERLAND) 2023; 12:1208. [PMID: 36986897 PMCID: PMC10053968 DOI: 10.3390/plants12061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction, and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE), and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by inducing tolerance against salt stress. However, the influence of ANE on P. protegens CHA0 secretion, and the combined effects of these two biostimulants on plant growth, are not known. Fucoidan, alginate, and mannitol are abundant components of brown algae and of ANE. Reported here are the effects of a commercial formulation of ANE, fucoidan, alginate, and mannitol, on pea (Pisum sativum), and on the plant growth-promoting activity of P. protegens CHA0. In most situations, ANE and fucoidan increased indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and hydrogen cyanide (HCN) production by P. protegens CHA0. Colonization of pea roots by P. protegens CHA0 was found to be increased mostly by ANE and fucoidan in normal conditions and under salt stress. Applications of P. protegens CHA0 combined with ANE, or with fucoidan, alginate, and mannitol, generally augmented root and shoot growth in normal and salinity stress conditions. Real-time quantitative PCR analyses of P. protegens revealed that, in many instances, ANE and fucoidan enhanced the expression of several genes involved in chemotaxis (cheW and WspR), pyoverdine production (pvdS), and HCN production (hcnA), but gene expression patterns overlapped only occasionally those of growth-promoting parameters. Overall, the increased colonization and the enhanced activities of P. protegens CHA0 in the presence of ANE and its components mitigated salinity stress in pea. Among treatments, ANE and fucoidan were found responsible for most of the increased activities of P. protegens CHA0 and the improved plant growth.
Collapse
|
158
|
Shabaan M, Asghar HN, Akhtar MJ, Saleem MF. Assessment of cumulative microbial respiration and their ameliorative role in sustaining maize growth under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:33-42. [PMID: 36689831 DOI: 10.1016/j.plaphy.2023.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Cumulative microbial respiration reflects microbial activities and their potential to support plant growth, where salt tolerant rhizobacteria can optimize their respiration, and ensure plant survival under salt stress. We evaluated cumulative microbial respiration of different salt tolerant rhizobacterial strains at different salinity levels, and checked their ability to sustain plant growth under natural saline conditions by using maize as test crop. Our results revealed that at the highest EC level (10 dS m-1), strain 'SUA-14' performed significantly better, and exhibited the greatest cumulative respiration (4.2 fold) followed by SHM-13 (3.8 fold), as compared to un-inoculated control. Moreover, results of the field trial indicated a similar trend, where significant improvements in shoot fresh weight (59%), root fresh weight (80%), shoot dry weight (56%), root dry weight (1.4 fold), leaf area (1.9 fold), straw yield (41%), cob diameter (33%), SPAD value (84%), yield (99%), relative water contents (91%), flavonoid (55%), 1000 grain weight (∼100%), soluble sugars (41%) and soluble proteins (45%) were observed due to inoculation of strain 'SUA-14' as compared to un-inoculated control. Similarly, substantial decline in leaf Na+ (34%), Na+/K+ ratio (69%), electrolyte leakage (8%), catalase (54%), peroxidase (73%), and H2O2 (50%) activities were observed after inoculation of 'SUA-14' with a concomitant increment in the leaf K+ contents (70%) under salinity stress than un-inoculated control. Hence, among all the tested rhizobacterial isolates, 'SUA-14' served as the most efficient strain in alleviating the detrimental impacts of salinity on maize growth and yield. The 16S rRNA sequencing identified it as Acinetobacter johnsonii.
Collapse
Affiliation(s)
- Muhammad Shabaan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Javed Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
159
|
Shelden MC, Munns R. Crop root system plasticity for improved yields in saline soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1120583. [PMID: 36909408 PMCID: PMC9999379 DOI: 10.3389/fpls.2023.1120583] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Crop yields must increase to meet the demands of a growing world population. Soil salinization is increasing due to the impacts of climate change, reducing the area of arable land for crop production. Plant root systems are plastic, and their architecture can be modulated to (1) acquire nutrients and water for growth, and (2) respond to hostile soil environments. Saline soils inhibit primary root growth and alter root system architecture (RSA) of crop plants. In this review, we explore how crop root systems respond and adapt to salinity, focusing predominately on the staple cereal crops wheat, maize, rice, and barley, that all play a major role in global food security. Cereal crops are classified as glycophytes (salt-sensitive) however salt-tolerance can differ both between species and within a species. In the past, due to the inherent difficulties associated with visualising and measuring root traits, crop breeding strategies have tended to focus on optimising shoot traits. High-resolution phenotyping techniques now make it possible to visualise and measure root traits in soil systems. A steep, deep and cheap root ideotype has been proposed for water and nitrogen capture. Changes in RSA can be an adaptive strategy to avoid saline soils whilst optimising nutrient and water acquisition. In this review we propose a new model for designing crops with a salt-tolerant root ideotype. The proposed root ideotype would exhibit root plasticity to adapt to saline soils, root anatomical changes to conserve energy and restrict sodium (Na+) uptake, and transport mechanisms to reduce the amount of Na+ transported to leaves. In the future, combining high-resolution root phenotyping with advances in crop genetics will allow us to uncover root traits in complex crop species such as wheat, that can be incorporated into crop breeding programs for yield stability in saline soils.
Collapse
Affiliation(s)
- Megan C. Shelden
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
160
|
Meng X, Chen X, Lin Q, Liu Y, Ni Z, Sun W, Zhang E. Spatiotemporal patterns of organic carbon burial over the last century in Lake Qinghai, the largest lake on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160449. [PMID: 36427744 DOI: 10.1016/j.scitotenv.2022.160449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Lakes are important carbon sinks in terrestrial environments. However, the estimation of the global lake carbon sink has large uncertainty. Data from plateau and remote lakes are rare, and most studies of carbon sequestration in large lakes have been based on single or a few sediment cores. Here, twenty-five sediment cores were collected by grid sampling covering Lake Qinghai, the largest lake on the Tibetan Plateau. Age models were established by combining radionuclide 210Pb137Cs dating with magnetic susceptibility chronostratigraphy of sediment cores. Furthermore, the spatiotemporal variations of the organic carbon burial rate (OCBR) over the past century were investigated. The OCBR of Lake Qinghai has increased significantly since the 1990s in association with warm-humid climates, increased nutrient supply and, enhanced land-use changes. The spatial distributions of OCBR were insignificant during the 1900s-1960s and 1960s-1990s and then shifted to a pattern of high values occurring in the southwestern lake areas during the post-1990s period. The spatial distribution of OCBR was mainly determined by sediment mass accumulation rate, primary production, and potential mineralization. The average OCBR in the all sediment cores showed no correlation with water depth (12-30 m) and was within one standard deviation of the whole-lake average value for most cores. These results suggest that the average OCBR of a sediment core in a relatively flat lakebed can generally represent the whole-basin level of Lake Qinghai. The average OCBR was 22.5 ± 5.5 g m-2 yr-1, which is close to those values reported previously for lakes of boreal forest and taiga but significantly higher than those reported for tundra lakes. Our findings highlight that the remote lakes on the Tibetan Plateau have great carbon sequestration potential in sediments and may act as a significant natural carbon sink.
Collapse
Affiliation(s)
- Xianqiang Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xi Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yilan Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhenyu Ni
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Weiwei Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
161
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
162
|
Chen S, Zhao CB, Ren RM, Jiang JH. Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1141918. [PMID: 36875563 PMCID: PMC9978390 DOI: 10.3389/fpls.2023.1141918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Horticultural crops are greatly disturbed by severe abiotic stress conditions. This is considered one of the major threats to the healthy lives of the human population. Salicylic acid (SA) is famous as one of the multifunctional phytohormones that are widely found in plants. It is also an important bio-stimulator involved in the regulation of growth and the developmental stages of horticultural crops. The productivity of horticultural crops has been improved with the supplemental use of even small amounts of SA. It has good capability to reduce oxidative injuries that occur from the over-production of reactive oxygen species (ROS), potentially elevated photosynthesis, chlorophyll pigments, and stomatal regulation. Physiological and biochemical processes have revealed that SA enhances signaling molecules, enzymatic and non-enzymatic antioxidants, osmolytes, and secondary metabolites activities within the cell compartments of plants. Numerous genomic approaches have also explored that SA regulates transcriptions profiling, transcriptional apprehensions, genomic expression, and metabolism of stress-related genes. Many plant biologists have been working on SA and its functioning in plants; however, its involvement in the enhancement of tolerance against abiotic stress in horticultural crops is still unidentified and needs more attention. Therefore, the current review is focused on a detailed exploration of SA in physiological and biochemical processes in horticultural crops subjected to abiotic stress. The current information is comprehensive and aims to be more supportive of the development of higher-yielding germplasm against abiotic stress.
Collapse
|
163
|
Fan S, Amombo E, Avoga S, Li Y, Yin Y. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1141295. [PMID: 36875615 PMCID: PMC9975589 DOI: 10.3389/fpls.2023.1141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Bermudagrass (Cynodon dactylon L.) is a warm-season grass with high drought and salt tolerance. However, its cultivation as a silage crop is limited by its lower forage value when compared to other C4 crops. Because of its high genetic variability in abiotic stress tolerance, bermudagrass-mediated genetic breeding offers significant promise for introducing alternative fodder crops in saline and drought-affected regions, and improved photosynthetic capacity is one way for increasing forage yield. METHODS Here, we used RNA sequencing to profile miRNAs in two bermudagrass genotypes with contrasting salt tolerance growing under saline conditions. RESULTS Putatively, 536 miRNA variants were salt-inducible, with the majority being downregulated in salt-tolerant vs sensitive varieties. Also, seven miRNAs putatively targeted 6 genes which were significantly annotated to light reaction photosynthesis. Among the microRNAs, highly abundant miRNA171f in the salt tolerant regime targeted Pentatricopeptide repeat-containing protein and dehydrogenase family 3 member F1 both annotated to electron transport and Light harvesting protein complex 1 genes annotated to light photosynthetic reaction in salt tolerant regime vs salt sensitive counterparts. To facilitate genetic breeding for photosynthetic capacity, we overexpressed miR171f in Medicago tracantula which resulted in a substantial increase in the chlorophyll transient curve, electron transport rate, quantum yield of photosystem II non photochemical quenching, NADPH and biomass accumulation under saline conditions while its targets were downregulated. At ambient light level the electron transport was negatively correlated with all parameters while the NADPH was positively associated higher dry matter in mutants. DISCUSSION These results demonstrate that miR171f improves photosynthetic performance and dry matter accumulation via transcriptional repression of genes in the electron transport pathway under saline conditions and thus a target for breeding.
Collapse
Affiliation(s)
- Shugao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Erick Amombo
- African Sustainable Agriculture Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Sheila Avoga
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
| | - Yating Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanling Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
164
|
Zuluaga MYA, Monterisi S, Rouphael Y, Colla G, Lucini L, Cesco S, Pii Y. Different vegetal protein hydrolysates distinctively alleviate salinity stress in vegetable crops: A case study on tomato and lettuce. FRONTIERS IN PLANT SCIENCE 2023; 14:1077140. [PMID: 36875568 PMCID: PMC9975731 DOI: 10.3389/fpls.2023.1077140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Plants have evolved diverse plant-species specific tolerance mechanisms to cope with salt stress. However, these adaptive strategies often inefficiently mitigate the stress related to increasing salinity. In this respect, plant-based biostimulants have gained increasing popularity since they can alleviate deleterious effects of salinity. Hence, this study aimed to evaluate the sensitivity of tomato and lettuce plants grown under high salinity and the possible protective effects of four biostimulants based on vegetal protein hydrolysates. Plants were set in a 2 × 5 factorial experimental design completely randomized with two salt conditions, no salt (0 mM) and high salt (120 mM for tomato or 80 mM for lettuce), and five biostimulant treatments (C: Malvaceae-derived, P: Poaceae-derived, D: Legume-derived commercial 'Trainer®', H: Legume-derived commercial 'Vegamin®', and Control: distilled water). Our results showed that both salinity and biostimulant treatments affected the biomass accumulation in the two plant species, albeit to different extents. The salinity stress induced a higher activity of antioxidant enzymes (e.g., catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase) and the overaccumulation of osmolyte proline in both lettuce and tomato plants. Interestingly, salt-stressed lettuce plants showed a higher accumulation of proline as compared to tomato plants. On the other hand, the treatment with biostimulants in salt-stressed plants caused a differential induction of enzymatic activity depending on the plant and the biostimulant considered. Overall, our results suggest that tomato plants were constitutively more tolerant to salinity than lettuce plants. As a consequence, the effectiveness of biostimulants in alleviating high salt concentrations was more evident in lettuce. Among the four biostimulants tested, P and D showed to be the most promising for the amelioration of salt stress in both the plant species, thereby suggesting their possible application in the agricultural practice.
Collapse
Affiliation(s)
| | - Sonia Monterisi
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Bolzano, Italy
| |
Collapse
|
165
|
Hussain S, Nanda S, Ashraf M, Siddiqui AR, Masood S, Khaskheli MA, Suleman M, Zhu L, Zhu C, Cao X, Kong Y, Jin Q, Zhang J. Interplay Impact of Exogenous Application of Abscisic Acid (ABA) and Brassinosteroids (BRs) in Rice Growth, Physiology, and Resistance under Sodium Chloride Stress. Life (Basel) 2023; 13:life13020498. [PMID: 36836855 PMCID: PMC9965451 DOI: 10.3390/life13020498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The hormonal imbalances, including abscisic acid (ABA) and brassinosteroid (BR) levels, caused by salinity constitute a key factor in hindering spikelet development in rice and in reducing rice yield. However, the effects of ABA and BRs on spikelet development in plants subjected to salinity stress have been explored to only a limited extent. In this research, the effect of ABA and BRs on rice growth characteristics and the development of spikelets under different salinity levels were investigated. The rice seedlings were subjected to three different salt stress levels: 0.0875 dS m-1 (Control, CK), low salt stress (1.878 dS m-1, LS), and heavy salt stress (4.09 dS m-1, HS). Additionally, independent (ABA or BR) and combined (ABA+BR) exogenous treatments of ABA (at 0 and 25 μM concentration) and BR (at 0 and 5 μM concentration) onto the rice seedlings were performed. The results showed that the exogenous application of ABA, BRs, and ABA+BRs triggered changes in physiological and agronomic characteristics, including photosynthesis rate (Pn), SPAD value, pollen viability, 1000-grain weight (g), and rice grain yield per plant. In addition, spikelet sterility under different salt stress levels (CK, LS, and HS) was decreased significantly through the use of both the single phytohormone and the cocktail, as compared to the controls. The outcome of this study reveals new insights about rice spikelet development in plants subjected to salt stress and the effects on this of ABA and BR. Additionally, it provides information on the use of plant hormones to improve rice yield under salt stress and on the enhancement of effective utilization of salt-affected soils.
Collapse
Affiliation(s)
- Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Soil and Water Testing Laboratory, Marketing Division, Pak Arab Fertilizer Limited, Multan 66000, Pakistan
| | - Satyabrata Nanda
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi 761211, India
| | - Muhammad Ashraf
- Department of Soil Science, Bahauddin Zakariya University, Multan 60700, Pakistan
| | - Ali Raza Siddiqui
- Department of Soil Science, Faculty of Agricultural Sciences, Quid-E-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Sajid Masood
- Department of Soil Science, Bahauddin Zakariya University, Multan 60700, Pakistan
| | - Maqsood Ahmed Khaskheli
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang 550001, China
| | - Muhammad Suleman
- Soil and Water Testing Laboratory, Marketing Division, Pak Arab Fertilizer Limited, Multan 66000, Pakistan
| | - Lianfeng Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaochuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yali Kong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Correspondence:
| |
Collapse
|
166
|
Salinity-Induced Cytosolic Alkaline Shifts in Arabidopsis Roots Require the SOS Pathway. Int J Mol Sci 2023; 24:ijms24043549. [PMID: 36834961 PMCID: PMC9960406 DOI: 10.3390/ijms24043549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Plants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b). Salinity elicited a rapid alkalinization of cytosolic pH (pHcyt) in the meristematic and elongation zone of wild-type roots. The pH-shift near the plasma membrane preceded that at the tonoplast. In pH-maps transversal to the root axis, the epidermis and cortex had cells with a more alkaline pHcyt relative to cells in the stele in control conditions. Conversely, seedlings treated with 100 mM NaCl exhibited an increased pHcyt in cells of the vasculature relative to the external layers of the root, and this response occurred in both reporter lines. These pHcyt changes were substantially reduced in mutant roots lacking a functional SOS3/CBL4 protein, suggesting that the operation of the SOS pathway mediated the dynamics of pHcyt in response to salinity.
Collapse
|
167
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
168
|
Wang P, Zhao F, Zheng T, Liu Z, Ji X, Zhang Z, Pervaiz T, Shangguan L, Fang J. Whole-genome re-sequencing, diversity analysis, and stress-resistance analysis of 77 grape rootstock genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1102695. [PMID: 36844076 PMCID: PMC9947647 DOI: 10.3389/fpls.2023.1102695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Grape rootstocks play critical role in the development of the grape industry over the globe for their higher adaptability to various environments, and the evaluation of their genetic diversity among grape genotypes is necessary to the conservation and utility of genotypes. METHODS To analyze the genetic diversity of grape rootstocks for a better understanding multiple resistance traits, whole-genome re-sequencing of 77 common grape rootstock germplasms was conducted in the present study. RESULTS About 645 billion genome sequencing data were generated from the 77 grape rootstocks at an average depth of ~15.5×, based on which the phylogenic clusters were generated and the domestication of grapevine rootstocks was explored. The results indicated that the 77 rootstocks originated from five ancestral components. Through phylogenetic, principal components, and identity-by-descent (IBD) analyses, these 77 grape rootstocks were assembled into ten groups. It is noticed that the wild resources of V. amurensis and V. davidii, originating from China and being generally considered to have stronger resistance against biotic and abiotic stresses, were sub-divided from the other populations. Further analysis indicated that a high level of linkage disequilibrium was found among the 77 rootstock genotypes, and a total of 2,805,889 single nucleotide polymorphisms (SNPs) were excavated, GWAS analysis among the grape rootstocks located 631, 13, 9, 2, 810, and 44 SNP loci that were responsible to resistances to phylloxera, root-knot nematodes, salt, drought, cold and waterlogging traits. DISCUSSION This study generated a significant amount of genomic data from grape rootstocks, thus providing a theoretical basis for further research on the resistance mechanism of grape rootstocks and the breeding of resistant varieties. These findings also reveal that China originated V. amurensis and V. davidii could broaden the genetic background of grapevine rootstocks and be important germplasm used in breeding high stress-resistant grapevine rootstocks.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Fanggui Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinglong Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhichang Zhang
- Shandong Zhichang Agricultural Science and Technology Development Co. LTD, Rizhao, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, United States
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
169
|
Yan K, Cui J, Zhi Y, Su H, Yu S, Zhou S. Deciphering salt tolerance in tetraploid honeysuckle (Lonicera japonica Thunb.) from ion homeostasis, water balance and antioxidant defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:266-274. [PMID: 36652848 DOI: 10.1016/j.plaphy.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Polyploid plants are usually salt tolerant, but the underlying mechanisms remain fragmental. This study aimed to dissect salt resistance of tetraploid honeysuckle (Lonicera japonica Thunb.) from ion balance, osmotic adjustment and antioxidant defense by contrasting with its autodiploid through pot experiments. Less salt-induced reduction in leaf and root biomass confirmed higher tolerance in tetraploid honeysuckle, and moreover, its greater stability of photosynthetic apparatus was verified by mild influence on delayed chlorophyll fluorescence transients. Compared with the diploid, greater root Na+ exclusion helped alleviate salt-induced decrease in leaf K+/Na+ for maintaining ion balance in tetraploid honeysuckle, and relied on Na+/H+ antiporter activity, because their difference of root Na+ exclusion disappeared after applying a specific inhibitor of Na+/H+ antiporter. Lower reduction in leaf relative water content suggested higher tolerance to osmotic pressure in tetraploid honeysuckle under salt stress, which hardly resulted from osmotic adjustment given the similar decrease extent of leaf osmotic potential with that in the diploid. In contrast to significant elevated leaf lipid peroxidation and superoxide dismutase and ascorbate peroxidase activities in the diploid, no obvious changes in them suggested that tetraploid honeysuckle never suffered salt-induced oxidative stress. According to more accumulated leaf chlorogenic acid and phenolics and greater elevated leaf phenylalanine ammonia-lyase activity and transcription, leaf phenolic synthesis was enhanced greater in tetraploid honeysuckle upon salt stress, which might serve to prevent oxidative threat by consuming reducing power. In conclusion, polyploidy enhanced salt tolerance in honeysuckle by maintaining ion homeostasis and water balance and preventing oxidative stress.
Collapse
Affiliation(s)
- Kun Yan
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jinxin Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibo Zhi
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, 264025, China; The Institute of Ecological Garden, Ludong University, Yantai, 264025, China.
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, 264003, China
| | - Shiwei Zhou
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
170
|
Silva VNB, da Silva TLC, Ferreira TMM, Neto JCR, Leão AP, de Aquino Ribeiro JA, Abdelnur PV, Valadares LF, de Sousa CAF, Júnior MTS. Multi-omics Analysis of Young Portulaca oleracea L. Plants' Responses to High NaCl Doses Reveals Insights into Pathways and Genes Responsive to Salinity Stress in this Halophyte Species. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:1-21. [PMID: 36947413 PMCID: PMC9883379 DOI: 10.1007/s43657-022-00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Soil salinity is among the abiotic stressors that threaten agriculture the most, and purslane (Portulaca oleracea L.) is a dicot species adapted to inland salt desert and saline habitats that hyper accumulates salt and has high phytoremediation potential. Many researchers consider purslane a suitable model species to study the mechanisms of plant tolerance to drought and salt stresses. Here, a robust salinity stress protocol was developed and used to characterize the morphophysiological responses of young purslane plants to salinity stress; then, leaf tissue underwent characterization by distinct omics platforms to gain further insights into its response to very high salinity stress. The salinity stress protocol did generate different levels of stress by gradients of electrical conductivity at field capacity and water potential in the saturation extract of the substrate, and the morphological parameters indicated three distinct stress levels. As expected from a halophyte species, these plants remained alive under very high levels of salinity stress, showing salt crystal-like structures constituted mainly by Na+, Cl-, and K+ on and around closed stomata. A comprehensive and large-scale metabolome and transcriptome single and integrated analyses were then employed using leaf samples. The multi-omics integration (MOI) system analysis led to a data-set of 51 metabolic pathways with at least one enzyme and one metabolite differentially expressed due to salinity stress. These data sets (of genes and metabolites) are valuable for future studies aimed to deepen our knowledge on the mechanisms behind the high tolerance of this species to salinity stress. In conclusion, besides showing that this species applies salt exclusion already in young plants to support very high levels of salinity stress, the initial analysis of metabolites and transcripts data sets already give some insights into other salt tolerance mechanisms used by this species to support high levels of salinity stress. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00061-2.
Collapse
Affiliation(s)
- Vivianny Nayse Belo Silva
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
| | | | | | | | - André Pereira Leão
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | - Patrícia Verardi Abdelnur
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690‐900 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | | | - Manoel Teixeira Souza Júnior
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| |
Collapse
|
171
|
Yu Y, Guo DD, Min DH, Cao T, Ning L, Jiang QY, Sun XJ, Zhang H, Tang WS, Gao SQ, Zhou YB, Xu ZS, Chen J, Ma YZ, Chen M, Zhang XH. Foxtail millet MYB-like transcription factor SiMYB16 confers salt tolerance in transgenic rice by regulating phenylpropane pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:310-321. [PMID: 36657296 DOI: 10.1016/j.plaphy.2022.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 05/20/2023]
Abstract
R2R3-MYB transcription factors play an important role in the synthesis of phenylpropanoid-derived compounds, which in turn provide salt tolerance in plant. In this study, we found that the expression of foxtail millet R2R3-MYB factor SiMYB16 can be induced by salt and drought. SiMYB16 is localized in the nucleus and acts as a transcriptional activator. Phylogenetic analysis indicates that SiMYB16 belongs to the R2R3-MYB transcription factor family subgroup 24. Transgenic rice expressing SiMYB16 (OX16) had a higher survival rate, lower malondialdehyde content, and heavier fresh weight compared with type (WT) under salt stress conditions. The transgenic plants also had a higher germination rate in salt treatment conditions and higher yield in the field compared with wild-type plants. Transcriptome analysis revealed that the up-regulated differential expression genes in the transgenic rice were mainly involved in phenylpropanoid biosynthesis, fatty acid elongation, phenylalanine metabolism, and flavonoid biosynthesis pathways. Quantitative real-time PCR analysis also showed that the genes encoding the major enzymes in the lignin and suberin biosynthesis pathways had higher expression level in SiMYB16 transgenic plants. Correspondingly, the content of flavonoid and lignin, and the activity of fatty acid synthase increased in SiMYB16 transgenic rice compared with wild-type plants under salt stress treatment. These results indicate that SiMYB16 gene can enhance plant salt tolerance by regulating the biosynthesis of lignin and suberin.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Dong-Dong Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| | - Tao Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Lei Ning
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Qi-Yan Jiang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Xian-Jun Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Hui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Wen-Si Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Shi-Qing Gao
- Beijing Hybrid Wheat Engineering Technology Research Center, Beijing, 100097, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Xiao-Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
172
|
Lungoci C, Motrescu I, Filipov F, Rimbu CM, Jitareanu CD, Ghitau CS, Puiu I, Robu T. Salinity Stress Influences the Main Biochemical Parameters of Nepeta racemosa Lam. PLANTS (BASEL, SWITZERLAND) 2023; 12:583. [PMID: 36771667 PMCID: PMC9919807 DOI: 10.3390/plants12030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
In this work, the effects of salt stress on Nepeta racemosa Lam. were studied to analyze the possibility of using it as a potential culture for salinity-affected soils. A total of nine concentrations of salts-NaCl (18, 39, and 60 mg/100 g soil), Na2SO4 (50, 85, and 120 mg/100 g soil), and a mixture (9 g NaCl + 25 g Na2SO4, 19 g NaCl + 43 g Na2SO4, and 30 g NaCl + 60 g Na2SO4/100 g soil)-simulated real salinity conditions. Environmental electron microscopy offered information about the size and distribution of glandular trichomes, which are very important structures that contain bioactive compounds. The chlorophyll pigments, polyphenols, flavonoids, and antioxidant activity were determined based on spectrophotometric protocols. The results have shown a different impact of salinity depending on the salt type, with an increase in bioactive compound concentrations in some cases. The highest polyphenol concentrations were obtained for Na2SO4 variants (47.05 and 46.48 mg GA/g dw for the highest salt concentration in the first and second year, respectively), while the highest flavonoid content was found for the salt mixtures (42.77 and 39.89 mg QE/g dw for the highest concentrations of salt in the first and, respectively, the second year), approximately 100% higher than control. From the Pearson analysis, strong correlations were found between chlorophyll pigments (up to 0.93), antioxidant activity and yield for the first harvest (up to 0.38), and antioxidant activity and flavonoid content for the second harvest (up to 0.95). The results indicate the possibility of growing the studied plants in salt-stress soils, obtaining higher concentrations of bioactive compounds.
Collapse
Affiliation(s)
- Constantin Lungoci
- Department of Plant Science, Faculty of Agriculture, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Iuliana Motrescu
- Department of Exact Sciences, Faculty of Horticulture, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
- Research Institute for Agriculture and Environment, Iasi University of Life Sciences, 14 Sadoveanu Alley, 700490 Iasi, Romania
| | - Feodor Filipov
- Department of Pedotechnics, Faculty of Agriculture, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Cristina Mihaela Rimbu
- Department of Public Health, Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
| | - Carmenica Doina Jitareanu
- Department of Plant Science, Faculty of Agriculture, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Carmen Simona Ghitau
- Department of Plant Science, Faculty of Agriculture, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Ioan Puiu
- Department of Plant Science, Faculty of Agriculture, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Teodor Robu
- Department of Plant Science, Faculty of Agriculture, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
173
|
Hou R, Yang L, Wuyun T, Chen S, Zhang L. Genes related to osmoregulation and antioxidation play important roles in the response of Trollius chinensis seedlings to saline-alkali stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1080504. [PMID: 36778702 PMCID: PMC9911134 DOI: 10.3389/fpls.2023.1080504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Saline-alkali stress is one of the main abiotic stress factors affecting plant growth and development. Trollius chinensis is a perennial herbal medicinal plant with high values for garden application. However, its response and tolerance to saline-alkali stress is unclear. In this study, we mixed four salts (NaCl: Na2SO4: NaHCO3: Na2CO3) with a concentration ratio of 1:9:9:1, and applied low (40 and 80 mM) and high (120 and 160 mM) saline-alkali stress to analyze osmotic regulation substances, antioxidant systems and the gene expression of T. chinensis. Along with higher saline-alkali stress, the leaf relative water content (RWC) started to decrease only from high stress, while the malondialdehyde (MDA) content in leaves decreased continuously, and the contents of proline (Pro), soluble sugar (SS) and soluble protein (SP) increased compared with control. The activities of antioxidant enzymes and the contents of non-enzymatic antioxidants were increased positively with the accumulation of superoxide anion (O2 •-) and hydrogen peroxide (H2O2). For instance, the ascorbic acid-glutathione (AsA-GSH) cycle was enhanced in T. chinensis seedling leaves subject to saline-alkali stress. Principal Component Analysis (PCA) indicates that MDA, Pro, SS, SP, H2O2, O2 •-, and GSH are important indexes to evaluate the response and tolerance of T. chinensis to saline-alkali stress. Through RNA-Seq, a total of 474 differentially expressed genes (DEGs) were found in plant under low saline-alkaline stress (40 mM, MSA1) vs. control. Among them, 364 genes were up-regulated and 110 genes were down-regulated. DEGs were extensively enriched in carbohydrate transport, transferase activity, zeatin biosynthesis, ABC transporters, and spliceosome. The transcription factor family MYB, BZIP, WRKY, and NAC were related to its saline-alkali tolerance. In addition, some DEGs encode key enzymes in the processes of osmoregulation and antioxidation, including betaine aldehyde dehydrogenase (BADH), inositol monophosphatase (IMP), chloroperoxidase (CPO), thioredoxin (Trx), and germin-like protein (GLPs) were found. Overall, these findings provide new insights into the physiological changes and molecular mechanism of T. chinensis to saline-alkali stress and lay a foundation for application of T. chinensis in saline-alkali environment.
Collapse
Affiliation(s)
- Rongmiao Hou
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Lizhi Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tana Wuyun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Shiyao Chen
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
| | - Lu Zhang
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
174
|
Moreira MH, They NH, Rodrigues LR, Alvarenga-Lucius L, Pita-Barbosa A. Salty freshwater macrophytes: the effects of salinization in freshwaters upon non-halophyte aquatic plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159608. [PMID: 36280080 DOI: 10.1016/j.scitotenv.2022.159608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Salinization is a threat that affects aquatic ecosystems worldwide. As primary producers, freshwater macrophytes are of paramount importance in these ecosystems, however, information regarding the potential impacts of salinization upon these organisms is still scarce. In this review we provide a comprehensive and updated discussion of how freshwater macrophytes deal with salinity increase in freshwaters. We reviewed the salinity tolerance of widespread non-halophyte macrophytes through an overview of salinity tolerance mechanisms, their tolerance classification, and salinity effects at different levels of organization: from individuals to ecosystems. Thus, we demonstrated that widespread macrophytes that inhabit freshwaters display efficient salinity tolerance to salinity levels between 5 and 10 g L-1, and only a few species display tolerance to salinities higher than 10 g L-1. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L-1. Widespread macrophytes demonstrated salinity tolerance of approximately 5 g L-1. Emergent, floating and submerged species showed no significant difference in salinity tolerance. Salinity stress symptoms in freshwater macrophytes are somewhat similar to those of terrestrial plants and can show up even at slight salinity increases. Salinities higher than 1 g L-1 can negatively affect both physiology and diversity of non-halophyte macrophytes and cause long-term - and not well understood - changes in freshwater ecosystems. Salinization of freshwater ecosystems, among others threats, in combination with climate change, raise concerns about the future ecological status of freshwater ecosystems and the services they can provide.
Collapse
Affiliation(s)
- Mauricio Hoffmann Moreira
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Ng Haig They
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil; Departamento Interdisciplinar, Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, RS 95625-000, Brazil
| | - Lúcia Ribeiro Rodrigues
- Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande Do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Luna Alvarenga-Lucius
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock D-18059, Germany
| | - Alice Pita-Barbosa
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil; Departamento Interdisciplinar, Centro de Estudos Limnológicos, Costeiros e Marinhos, Campus Litoral Norte, Universidade Federal do Rio Grande do Sul, Imbé, RS 95625-000, Brazil.
| |
Collapse
|
175
|
Popova AV, Borisova P, Vasilev D. Response of Pea Plants ( Pisum sativum cv. Ran 1) to NaCl Treatment in Regard to Membrane Stability and Photosynthetic Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:324. [PMID: 36679037 PMCID: PMC9865415 DOI: 10.3390/plants12020324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Salinity is one of the most extreme abiotic stress factors that negatively affect the development and productivity of plants. The salt-induced injuries depend on the salt tolerance of the plant species, salt concentration, time of exposure and developmental stage. Here, we report on the response of pea plants (Pisum sativum L. cv Ran 1) to exposure to increasing salt concentrations (100, 150 and 200 mM NaCl) for a short time period (5 days) and the ability of the plants to recover after the removal of salt. The water content, membrane integrity, lipid peroxidation, pigment content and net photosynthetic rate were determined for the pea leaves of the control, treated and recovered plants. Salt-induced alterations in the primary photosynthetic reactions and energy transfer between the main pigment-protein complexes in isolated thylakoid membranes were evaluated. The pea plants were able to recover from the treatment with 100 mM NaCl, while at higher concentrations, concentration-dependent water loss, the disturbance of the membrane integrity, lipid peroxidation and an increase in the pigment content were detected. The net photosynthetic rate, electron transport through the reaction centers of PSII and PSII, activity of PSIIα centers and energy transfer between the pigment-protein complexes were negatively affected and were not restored after the removal of NaCl.
Collapse
|
176
|
Gómez-Méndez MF, Amezcua-Romero JC, Rosas-Santiago P, Hernández-Domínguez EE, de Luna-Valdez LA, Ruiz-Salas JL, Vera-Estrella R, Pantoja O. Ice plant root plasma membrane aquaporins are regulated by clathrin-coated vesicles in response to salt stress. PLANT PHYSIOLOGY 2023; 191:199-218. [PMID: 36383186 PMCID: PMC9806614 DOI: 10.1093/plphys/kiac515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The regulation of root Plasma membrane (PM) Intrinsic Protein (PIP)-type aquaporins (AQPs) is potentially important for salinity tolerance. However, the molecular and cellular details underlying this process in halophytes remain unclear. Using free-flow electrophoresis and label-free proteomics, we report that the increased abundance of PIPs at the PM of the halophyte ice plant (Mesembryanthemum crystallinum L.) roots under salinity conditions is regulated by clathrin-coated vesicles (CCV). To understand this regulation, we analyzed several components of the M. crystallinum CCV complexes: clathrin light chain (McCLC) and subunits μ1 and μ2 of the adaptor protein (AP) complex (McAP1μ and McAP2μ). Co-localization analyses revealed the association between McPIP1;4 and McAP2μ and between McPIP2;1 and McAP1μ, observations corroborated by mbSUS assays, suggesting that AQP abundance at the PM is under the control of CCV. The ability of McPIP1;4 and McPIP2;1 to form homo- and hetero-oligomers was tested and confirmed, as well as their activity as water channels. Also, we found increased phosphorylation of McPIP2;1 only at the PM in response to salt stress. Our results indicate root PIPs from halophytes might be regulated through CCV trafficking and phosphorylation, impacting their localization, transport activity, and abundance under salinity conditions.
Collapse
Affiliation(s)
| | - Julio César Amezcua-Romero
- Departamento de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, León, México
| | - Paul Rosas-Santiago
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Luis Alberto de Luna-Valdez
- Department of Microbiology & Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Jorge Luis Ruiz-Salas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
177
|
Sandoval-Gil JM, Ruiz JM, Marín-Guirao L. Advances in understanding multilevel responses of seagrasses to hypersalinity. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105809. [PMID: 36435174 DOI: 10.1016/j.marenvres.2022.105809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Human- and nature-induced hypersaline conditions in coastal systems can lead to profound alterations of the structure and vitality of seagrass meadows and their socio-ecological benefits. In the last two decades, recent research efforts (>50 publications) have contributed significantly to unravel the physiological basis underlying the seagrass-hypersalinity interactions, although most (∼70%) are limited to few species (e.g. Posidonia oceanica, Zostera marina, Thalassia testudinum, Cymodocea nodosa). Variables related to photosynthesis and carbon metabolism are among the most prevalent in the literature, although other key metabolic processes such as plant water relations and responses at molecular (i.e. gene expression) and ultrastructure level are attracting attention. This review emphasises all these latest insights, offering an integrative perspective on the interplay among biological responses across different functional levels (from molecular to clonal structure), and their interaction with biotic/abiotic factors including those related to climate change. Other issues such as the role of salinity in driving the evolutionary trajectory of seagrasses, their acclimation mechanisms to withstand salinity increases or even the adaptive properties of populations that have historically lived under hypersaline conditions are also included. The pivotal role of the costs and limits of phenotypic plasticity in the successful acclimation of marine plants to hypersalinity is also discussed. Finally, some lines of research are proposed to fill the remaining knowledge gaps.
Collapse
Affiliation(s)
- Jose Miguel Sandoval-Gil
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, 22860, Mexico
| | - Juan M Ruiz
- Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/ Varadero s/n, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Lázaro Marín-Guirao
- Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/ Varadero s/n, 30740 San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
178
|
Khan MN, Fu C, Li J, Tao Y, Li Y, Hu J, Chen L, Khan Z, Wu H, Li Z. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? CHEMOSPHERE 2023; 310:136911. [PMID: 36270526 DOI: 10.1016/j.chemosphere.2022.136911] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Salt and drought stress are major environmental issues world-widely. These stresses can result in failures of seed germination, limiting agricultural production. New approaches are needed to increase crop production, ensuring food safety, quality, and agriculture sustainability. Nanopriming (priming seeds with nanomaterials) is an emerging seed technology improving crop production under the drastic climate change associated with stress factors. The present review not only provided an overview of nanopriming achieved salt and drought tolerance but also tried to discuss the behind mechanisms. We argued that the physico-chemical properties of the nanomaterials are key factors affecting their negative or positive effects on seed germination in terms of seed nanopriming. Furthermore, we highlighted the possible critical role of seed coat anatomy in effective nanopriming, in terms of saving costs and reducing biosafety issues. This review aims to help researchers to better understand and follow this fast-developing, cost-effective, and environmentally friendly research area.
Collapse
Affiliation(s)
- Mohammad Nauman Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengcheng Fu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaqi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunpeng Tao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanhui Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingling Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaid Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hongshan Laboratory, Wuhan, Hubei, 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China.
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hongshan Laboratory, Wuhan, Hubei, 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
179
|
Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5275449. [PMID: 36619307 PMCID: PMC9815931 DOI: 10.1155/2022/5275449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Global agriculture is frequently subjected to stresses from increased salt content, drought, heavy metals, and other factors, which limit plant growth and production, deteriorate soil health, and constitute a severe danger to global food security. Development of environmentally acceptable mitigation techniques against stresses and restrictions on the use of chemical fertilizers in agricultural fields is essential. Therefore, eco-friendly practises must be kept to prevent the detrimental impacts of stress on agricultural regions. The advanced metabolic machinery needed to handle this issue is not now existent in plants to deal against the stresses. Research has shown that the key role and mechanisms of arbuscular mycorrhiza fungi (AMF) to enhance plant nutrient uptake, immobilisation and translocation of heavy metals, and plant growth-promoting attributes may be suitable agents for plant growth under diversed stressed condition. The successful symbiosis and the functional relationship between the plant and AMF may build the protective regulatory mechansm against the key challenge in particular stress. AMF's compatibility with hyperaccumulator plants has also been supported by studies on gene regulation and theoretical arguments. In order to address this account, the present review included reducing the impacts of biotic and abiotic stress through AMF, the mechanisms of AMF to improve the host plant's capacity to endure stress, and the strategies employed by AM fungus to support plant survival in stressful conditions.
Collapse
|
180
|
Alam P, Balawi TA, Faizan M. Salicylic Acid's Impact on Growth, Photosynthesis, and Antioxidant Enzyme Activity of Triticum aestivum When Exposed to Salt. Molecules 2022; 28:molecules28010100. [PMID: 36615299 PMCID: PMC9821804 DOI: 10.3390/molecules28010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, the application of salicylic acid (SA) for improving a plant's resistance to abiotic stresses has increased. A large part of the irrigated land (2.1% out of 19.5%) is severely affected by salinity stress worldwide. In 2020, total production of wheat (Triticum aestivum) was 761 million tons, representing the second most produced cereal after maize; therefore, research on its salinity tolerance is of world concern. Photosynthetic attributes such as net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E) were increased significantly by the application of SA. Salt stress increased antioxidant enzyme activity; however, SA further boosted their activity along with proline level. We conclude that SA interacts with meristematic cells, thereby triggering biochemical pathways conductive to the increment in morphological parameters. Further research is required to dissect the mechanisms of SA within the wheat plants under stress.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence:
| | - Thamer Al Balawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| |
Collapse
|
181
|
Ren H, Yu Y, Xu Y, Zhang X, Tian X, Gao T. GlPS1 overexpression accumulates coumarin secondary metabolites in transgenic Arabidopsis. PLANT CELL, TISSUE AND ORGAN CULTURE 2022; 152:539-553. [PMID: 36573085 PMCID: PMC9770567 DOI: 10.1007/s11240-022-02427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED The dried root of Glehnia littoralis is a traditional Chinese herbal medicine mainly used to treat lung diseases and plays an important role in fighting coronavirus disease 2019 pneumonia in China. This study focused on the key enzyme gene GlPS1 for furanocoumarin synthesis in G. littoralis. In the 35S:GlPS1 transgenic Arabidopsis study, the Arabidopsis thaliana-overexpressing GlPS1 gene was more salt-tolerant than Arabidopsis in the blank group. Metabolomics analysis showed 30 differential metabolites in Arabidopsis, which overexpressed the GlPS1 gene. Twelve coumarin compounds were significantly upregulated, and six of these coumarin compounds were not detected in the blank group. Among these differential coumarin metabolites, isopimpinellin and aesculetin have been annotated by the Kyoto Encyclopedia of Genes and Genomes and isopimpinellin was not detected in the blank group. Through structural comparison, imperatorin was formed by dehydration and condensation of zanthotoxol and a molecule of isoprenol, and the difference between them was only one isoprene. Results showed that the GlPS1 gene positively regulated the synthesis of coumarin metabolites in A. thaliana and at the same time improved the salt tolerance of A. thaliana. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11240-022-02427-w.
Collapse
Affiliation(s)
- Hongwei Ren
- Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yanchong Yu
- Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yao Xu
- Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Xinfang Zhang
- Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Xuemei Tian
- Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Ting Gao
- Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| |
Collapse
|
182
|
Identification of a DEAD-box RNA Helicase BnRH6 Reveals Its Involvement in Salt Stress Response in Rapeseed ( Brassica napus). Int J Mol Sci 2022; 24:ijms24010002. [PMID: 36613447 PMCID: PMC9819673 DOI: 10.3390/ijms24010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Rapeseed (Brassica napus) is one of the most important vegetable oil crops worldwide. Abiotic stresses such as salinity are great challenges for its growth and productivity. DEAD-box RNA helicase 6 (RH6) is a subfamily member of superfamily 2 (SF2), which plays crucial roles in plant growth and development. However, no report is available on RH6 in regulating plant abiotic stress response. This study investigated the function and regulatory mechanism for BnRH6. BnRH6 was targeted to the nucleus and cytoplasmic processing body (P-body), constitutively expressed throughout the lifespan, and induced by salt stress. Transgenic overexpressing BnRH6 in Brassica and Arabidopsis displayed salt hypersensitivity, manifested by lagging seed germination (decreased to 55−85% of wild-type), growth stunt, leaf chlorosis, oxidative stress, and over-accumulation of Na ions with the K+/Na+ ratio being decreased by 18.3−28.6%. Given the undesirable quality of knockout Brassica plants, we utilized an Arabidopsis T-DNA insertion mutant rh6-1 to investigate downstream genes by transcriptomics. We constructed four libraries with three biological replicates to investigate global downstream genes by RNA sequencing. Genome-wide analysis of differentially expressed genes (DEGs) (2-fold, p < 0.05) showed that 41 genes were upregulated and 66 genes were downregulated in rh6-1 relative to wild-type under salt stress. Most of them are well-identified and involved in transcription factors, ABA-responsive genes, and detoxified components or antioxidants. Our research suggests that BnRH6 can regulate a group of salt-tolerance genes to negatively promote Brassica adaptation to salt stress.
Collapse
|
183
|
Unique and Shared Proteome Responses of Rice Plants ( Oryza sativa) to Individual Abiotic Stresses. Int J Mol Sci 2022; 23:ijms232415552. [PMID: 36555193 PMCID: PMC9778788 DOI: 10.3390/ijms232415552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Food safety of staple crops such as rice is of global concern and is at the top of the policy agenda worldwide. Abiotic stresses are one of the main limitations to optimizing yields for sustainability, food security and food safety. We analyzed proteome changes in Oryza sativa cv. Nipponbare in response to five adverse abiotic treatments, including three levels of drought (mild, moderate, and severe), soil salinization, and non-optimal temperatures. All treatments had modest, negative effects on plant growth, enabling us to identify proteins that were common to all stresses, or unique to one. More than 75% of the total of differentially abundant proteins in response to abiotic stresses were specific to individual stresses, while fewer than 5% of stress-induced proteins were shared across all abiotic constraints. Stress-specific and non-specific stress-responsive proteins identified were categorized in terms of core biological processes, molecular functions, and cellular localization.
Collapse
|
184
|
Gupta A, Rai S, Bano A, Sharma S, Kumar M, Binsuwaidan R, Suhail Khan M, Upadhyay TK, Alshammari N, Saeed M, Pathak N. ACC Deaminase Produced by PGPR Mitigates the Adverse Effect of Osmotic and Salinity Stresses in Pisum sativum through Modulating the Antioxidants Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:3419. [PMID: 36559529 PMCID: PMC9782781 DOI: 10.3390/plants11243419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Salinity-induced ethylene production and reactive oxygen species (ROS) inhibit agricultural productivity. The plant synthesizes ethylene directly from aminocyclopropane-1-carboxylic acid (ACC). By using ACC as a nitrogen source, bacteria with ACC deaminase (ACCD) inhibit the overproduction of ethylene, thereby maintaining the ROS. The present study investigated the ACCD activity of previously identified rhizobacterial strains in Dworkin and Foster (DF) minimal salt media supplemented with 5 mM ACC (as N-source). Bacterial isolates GKP KS2_7 (Pseudomonas aeruginosa) and MBD 133 (Bacillus subtilis) could degrade ACC into α-ketobutyrate, exhibiting ACCD activity producing more than ~257 nmol of α-ketobutyrate mg protein−1 h−1, and were evaluated for other plant growth-promoting (PGP) traits including indole acetic acid production (>63 µg/mL), phosphate solubilization (>86 µg mL−1), siderophore (>20%) ammonia and exopolysaccharide production. Furthermore, Fourier Transform Infrared analysis also demonstrated α-ketobutyrate liberation from ACC deamination in DF minimal salt media, thereby confirming the ACCD activity. These isolates also showed enhanced tolerance to salinity stress of 3% w/v NaCl in vitro, in addition to facilitating multifarious PGP activities. Seed bacterization by these ACCD-producing bacterial isolates (GKP KS2_7 and MBD 133) revealed a significant decline in stress-stimulated ethylene levels and its associated growth inhibition during seedling germination. They also mitigated the negative effects of salt stress and increased the root-shoot length, fresh and dry weight of root and shoot, root-shoot biomass, total sugar, protein, reducing sugar, chlorophyll content, and antioxidants enzymes in Pisum sativum. As a result, these strains (GKP KS2_7 and MBD 133) might be applied as biofertilizers to counteract the negative effects of soil salinity.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Smita Rai
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Swati Sharma
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Manoj Kumar
- CSIR—National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62521, Saudi Arabia
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre for Research for Development, Parul University, Vadodara 391760, India
| | - Nawaf Alshammari
- Department of Biology, College of Sciences, University of Hail, Hail 55476, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 55476, Saudi Arabia
| | - Neelam Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya 224001, India
| |
Collapse
|
185
|
Guo X, Wu C, Wang D, Wang G, Jin K, Zhao Y, Tian J, Deng Z. Conditional QTL mapping for seed germination and seedling traits under salt stress and candidate gene prediction in wheat. Sci Rep 2022; 12:21010. [PMID: 36471100 PMCID: PMC9722660 DOI: 10.1038/s41598-022-25703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Breeding new wheat varieties with salt resistance is one of the best ways to solve a constraint on the sustainability and expansion of wheat cultivation. Therefore, understanding the molecular components or genes related to salt tolerance must contribute to the cultivation of salt-tolerant varieties. The present study used a recombinant inbred line (RIL) population to genetically dissect the effects of different salt stress concentrations on wheat seed germination and seedling traits using two quantitative trait locus (QTL) mapping methods. A total of 31 unconditional and 11 conditional QTLs for salt tolerance were identified on 11 chromosomes explaining phenotypic variation (PVE) ranging from 2.01 to 65.76%. Of these, 15 major QTLs were found accounting for more than 10% PVE. QTL clusters were detected on chromosomes 2A and 3B in the marker intervals 'wPt-8328 and wPt-2087' and 'wPt-666008 and wPt-3620', respectively, involving more than one salt tolerance trait. QRdw3B and QSfw3B.2 were most consistent in two or more salt stress treatments. 16 candidate genes associated with salt tolerance were predicted in wheat. These results could be useful to improve salt tolerance by marker-assisted selection (MAS) and shed new light on understanding the genetic basis of salt tolerance in wheat.
Collapse
Affiliation(s)
- Xin Guo
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China ,Taiyuan Agro-Tech Extension and Service Center, 030000 Taiyuan, Shanxi People’s Republic of China
| | - Chongning Wu
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Dehua Wang
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Guanying Wang
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Kaituo Jin
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Yingjie Zhao
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Jichun Tian
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| | - Zhiying Deng
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality Breeding, Agronomy College, Shandong Agricultural University, Tai’an, Shandong People’s Republic of China
| |
Collapse
|
186
|
Zhang YH, Yu B, Liu YC, Ma W, Li WT, Zhang PD. The influence of decreased salinity levels on the survival, growth and physiology of eelgrass Zostera marina. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105787. [PMID: 36368210 DOI: 10.1016/j.marenvres.2022.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/04/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Low salinity generally promotes the growth and propagation of temperate seagrasses, but the appropriate range is unclear. We subjected shoots of eelgrass Zostera marina to different salinity levels [10, 15, 20, 25, 30 PSU (control)] for 6 weeks under controlled laboratory conditions. We measured eelgrass responses in terms of survivorship, growth, productivity, leaf pigmentation and carbohydrate concentrations. Survival analysis combined with growth assessment suggested that the optimal salinity range for the propagation of Z. marina shoots was 18-21 PSU. Structural equation model (SEM) analysis indicated that the promotion effect of decreased salinity levels on the survival and growth of Z. marina shoots mainly depended on the increase in chlorophyll content and the accumulation and synthesis of nonstructural carbohydrates. The carotenoid content and soluble sugar content of the aboveground tissues of Z. marina shoots exposed to 20 PSU were 1.1 and 1.6 times higher than those of shoots under the control, respectively. The results will provide valuable data that could prove helpful in the development of efficient artificial propagation technology for Z. marina shoots.
Collapse
Affiliation(s)
- Yan-Hao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Bing Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - You-Cai Liu
- Hydrogeology and Engineering Geology Survey Institute, Geology and Mineral Exploration Bureau of Hebei Province, Shijiazhuang, People's Republic of China
| | - Wang Ma
- Hydrogeology and Engineering Geology Survey Institute, Geology and Mineral Exploration Bureau of Hebei Province, Shijiazhuang, People's Republic of China
| | - Wen-Tao Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Pei-Dong Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China.
| |
Collapse
|
187
|
Shen J, Wu Z, Yin L, Chen S, Cai Z, Geng X, Wang D. Physiological basis and differentially expressed genes in the salt tolerance mechanism of Thalassia hemprichii. FRONTIERS IN PLANT SCIENCE 2022; 13:975251. [PMID: 36518512 PMCID: PMC9742478 DOI: 10.3389/fpls.2022.975251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Seagrass plays a vital role in the stability of marine ecology. The human development of marine resources has greatly affected the survival of seagrass. Seawater salinity is one of the important factors affecting its survival. Seagrass can survive in high saline environments for a long time and has evolved a variety of effective tolerance mechanisms. However, little is known about the molecular mechanisms underlying salinity tolerance by seagrass. Thalassia hemprichii is a seagrass species with a global distribution. It is also an ecologically important plant species in coastal waters. Nevertheless, the continuous environmental deterioration has gradually reduced the ecological niche of seagrasses. In this study, experiments were conducted to examine the effects of salinity changes on T. hemprichii. The result showed that the optimal salinity for T. hemprichii is 25 to 35 PSU. Although it can survive under high and low salinity, high mortality rates are common in such environments. Further analyses revealed that high salinity induces growth and developmental retardation in T. hemprichii and further causes yellowing. The parenchyma cells in T. hemprichii also collapse, the structure changes, soluble sugar accumulates rapidly, soluble proteins accumulate rapidly, the malondialdehyde (MDA) content reduces, and lipid peroxidation reduces in plant membranes. The molecular mechanisms of salt tolerance differ significantly between marine and terrestrial plants. We found 319 differentially expressed genes (DEGs). These genes regulate transport and metabolism, promoting environmental adaptation. The expression of these genes changed rapidly upon exposure of T. hemprichii to salinity stress for three hours. This is the first report on the physiological and biochemical changes and gene expression regulation of T. hemprichii under different salinity conditions. The findings of this study well deepen our understanding of T. hemprichii adaptations to changes in the shoal living environment.
Collapse
Affiliation(s)
- Jie Shen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Lei Yin
- Key laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya, China
| | - Shiquan Chen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Zefu Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Xiaoxiao Geng
- Key laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Ministry of Education, Sanya, China
| | - Daoru Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| |
Collapse
|
188
|
Wang Z, Liu J, White JF, Li C. Epichloë bromicola from wild barley improves salt-tolerance of cultivated barley by altering physiological responses to salt stress. Front Microbiol 2022; 13:1044735. [PMID: 36504776 PMCID: PMC9730248 DOI: 10.3389/fmicb.2022.1044735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Epichloë bromicola is a cultivable fungal endophyte that lives in symbiosis with wild barley (Hordeum brevisubulatum) to which it confers salt tolerance. This study tested the hypothesis that E. bromicola derived from wild barley has the potential to increase salt tolerance in cultivated barley under salt stress. Methods To test this hypothesis, the growth response, physiological parameters, and metabolic profiles of barley plants inoculated with E. bromicola (E+) and those not inoculated with E. bromicola (E-) were compared under salt stress. Results Compared with E- barley plants, E+ barley plants had significantly increased plant height, shoot biomass, total biomass, chlorophyll content, osmotic synthesis, and accumulation of stress adaptation metabolites. E. bromicola increased the salt stress tolerance of cultivated barley, and the positive effects correlated with different salt stress conditions. Discussion These results suggest that E. bromicola has promising potential for enhancing the salt tolerance of barley. New insights into the mechanisms underlying this barley-fungal endophyte association are provided, and interesting questions regarding the role of E. bromicola in fungus-enhanced tolerance to salt stress in this symbiosis are raised.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Economic Crops and Malt Barley Research Institute, Gansu Academy of Agricultural Science, Lanzhou, China
| | - Jing Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Chunjie Li
- Grassland Research Center of National Forestry and Grassland Administration, Chinese Academy of Forestry Sciences, Beijing, China,*Correspondence: Chunjie Li
| |
Collapse
|
189
|
Liu J, Otie V, Matsuura A, Junichi K, Irshad M, Zheng Y, Fujimaki H, An P. Pectin Characteristics Affect Root Growth in Spinach under Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:3130. [PMID: 36432859 PMCID: PMC9696937 DOI: 10.3390/plants11223130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In understanding the role of root cell wall mechanisms in plant tolerance to salinity, it is important to elucidate the changes in the pectin composition and physical properties of the cell wall. Two salt-sensitive (Helan 3 and Prius β) and one salt-tolerant (R7) spinach cultivars were used to investigate the pectin polysaccharides, the characteristics of pectin, including the degree of pectin methy-lesterification, the HG:RG-I ratio, neutral side chains (galactan/arabinangalactan), and elasticity and viscosity parameters in the root elongation zone under salinity. Root growth was inhibited by salinity, whereas the root diameter was thickened in all cultivars. Salinity significantly reduced cell wall extensibility in all cultivars, and increased cell wall viscosity in Helan 3 and R7 relative to Prius β. Pectin was significantly increased under salinity stress. Cell wall viscosity was affected by pectin due to the molar proportion of uronic acid and/or pectin characteristics (HG:RG-I ratio). The molar proportion of uronic acid in pectin was reduced in Helan 3 and R7 compared with Prius β. The length and degree of pectin methy-lesterification of neutral side chains were significantly decreased in the R7 cultivar, with no significant changes in the other two cultivars. Demethylation of pectin could alter root growth and boost salt tolerance in the R7 cultivar. In this study, it is shown that cell wall pectin played important roles in regulating the root growth of Spinacia oleracea L. under salinity stress.
Collapse
Affiliation(s)
- Jia Liu
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Victoria Otie
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, P.M.B. 1115, Calabar 540271, Nigeria
| | - Asana Matsuura
- Faculty of Agriculture, Shinshu University, 8304, Minamiminowa-Village, Kamiina-County Nagano, Nagano 399-4598, Japan
| | - Kashiwagi Junichi
- Graduate School of Global Food Resources, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-0809, Japan
| | - Muhammad Irshad
- Department of Environmental Sciences, Abbottabad Campus, COMSATS University Islamabad (CUI), Abbottabad 22060, Pakistan
| | - Yuanrun Zheng
- Key Laboratory of Resource Plants, West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Haruyuki Fujimaki
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Ping An
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| |
Collapse
|
190
|
Alharbi K, Hafez E, Omara AED, Awadalla A, Nehela Y. Plant Growth Promoting Rhizobacteria and Silica Nanoparticles Stimulate Sugar Beet Resilience to Irrigation with Saline Water in Salt-Affected Soils. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223117. [PMID: 36432846 PMCID: PMC9694940 DOI: 10.3390/plants11223117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/27/2023]
Abstract
Combined stressors (high soil salinity and saline water irrigation) severely reduce plant growth and sugar beet yield. Seed inoculation with plant growth-promoting rhizobacteria (PGPR) and/or foliar spraying with silica nanoparticles (Si-NP) is deemed one of the most promising new strategies that have the potential to inhibit abiotic stress. Herein, sugar beet (Beta vulgaris) plants were treated with two PGPR (Pseudomonas koreensis MG209738 and Bacillus coagulans NCAIM B.01123) and/or Si-NP, during two successive seasons 2019/2020 and 2020/2021 to examine the vital role of PGPR, Si-NP, and their combination in improving growth characteristics, and production in sugar beet plants exposed to two watering treatments (fresh water and saline water) in salt-affected soil. The results revealed that combined stressors (high soil salinity and saline water irrigation) increased ion imbalance (K+/Na+ ratio; from 1.54 ± 0.11 to 1.00 ± 0.15) and declined the relative water content (RWC; from 86.76 ± 4.70 to 74.30 ± 3.20%), relative membrane stability index (RMSI), stomatal conductance (gs), and chlorophyll content, which negatively affected on the crop productivity. Nevertheless, the application of combined PGPR and Si-NP decreased oxidative stress indicators (hydrogen peroxide and lipid peroxidation) and sodium ions while increasing activities of superoxide dismutase (SOD; up to 1.9-folds), catalase (CAT; up to 1.4-folds), and peroxidase (POX; up to 2.5-folds) enzymes, and potassium ions resulting in physiological processes, root yield, and sugar yield compared to non-treated controls under combined stressors (high soil salinity and saline water irrigation). It is worth mentioning that the singular application of PGPR improved root length, diameter, and yield greater than Si-NP alone and it was comparable to the combined treatment (PGPR+Si-NP). It was concluded that the combined application of PGPR and Si-NP has valuable impacts on the growth and yield of sugar beet growing under combined stressors of high soil salinity and saline water irrigation.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Emad Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Alaa El-Dien Omara
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt
| | - Abdelmoniem Awadalla
- Department of Agronomy, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
191
|
Abrar MM, Sohail M, Saqib M, Akhtar J, Abbas G, Wahab HA, Mumtaz MZ, Mehmood K, Memon MS, Sun N, Xu M. Interactive salinity and water stress severely reduced the growth, stress tolerance, and physiological responses of guava (Psidium Guajava L.). Sci Rep 2022; 12:18952. [PMID: 36347946 PMCID: PMC9643515 DOI: 10.1038/s41598-022-22602-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Salinity and water stress are serious environmental issues that reduced crop production worldwide. The current research was initiated (2012) in the wirehouse of the Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan to investigate the growth, stress tolerance, and physiological responses of guava to salinity and water shortage. Guava was grown for one year in pots containing soil with Eight treatments (control, 10 dS m-1, 20 dS m-1, 40 dS m-1, control + water stress (WS), 10 dS m-1 + WS, 20 dS m-1 + WS, 40 dS m-1 + WS) in a completely randomized design. The results indicated that plant growth, stress tolerance, and physiological parameters declined at higher salinity and water stress and could not survive at 40 dS m-1. The 20 dS m-1 + WS caused a > 70% decline in dry weights of shoot and root regarding control. Similarly, the highest decrease in stress tolerance was noticed in 20 dS m-1 + WS followed by the 20 dS m-1 treatment than control. Our findings validated that guava can be cultivated on soils having salinity ≤ 10 dS m-1 but it could not be cultivated on soils having salinity ≥ 20 dS m-1 with limited water supply.
Collapse
Affiliation(s)
- Muhammad Mohsin Abrar
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Javaid Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Ghulam Abbas
- Department of Environmental Science, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Hafiz Abdul Wahab
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Khalid Mehmood
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Muhammad Suleman Memon
- Soil Fertility Research Institute, Agriculture Research Center, Tandojam, Sindh, Pakistan
| | - Nan Sun
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minggang Xu
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Institute of Agricultural Environment and Resources, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
192
|
Tufail MA, Ayyub M, Irfan M, Shakoor A, Chibani CM, Schmitz RA. Endophytic bacteria perform better than endophytic fungi in improving plant growth under drought stress: A meta-comparison spanning 12 years (2010-2021). PHYSIOLOGIA PLANTARUM 2022; 174:e13806. [PMID: 36271716 DOI: 10.1111/ppl.13806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Drought stress is a serious issue that affects agricultural productivity all around the world. Several researchers have reported using plant growth-promoting endophytic bacteria to enhance the drought resistance of crops. However, how endophytic bacteria and endophytic fungi are effectively stimulating plant growth under drought stress is still largely unknown. In this article, a global meta-analysis was undertaken to compare the plant growth-promoting effects of bacterial and fungal endophytes and to identify the processes by which both types of endophytes stimulate plant growth under drought stress. Moreover, this meta-analysis enlightens how plant growth promotion varies across crop types (C3 vs. C4 and monocot vs. dicot), experiment types (in vitro vs. pots vs. field), and the inoculation methods (seed vs. seedling). Specifically, this research included 75 peer-reviewed publications, 170 experiments, 20 distinct bacterial genera, and eight fungal classes. On average, both endophytic bacterial and fungal inoculation increased plant dry and fresh biomass under drought stress. The effect of endophytic bacterial inoculation on plant dry biomass, shoot dry biomass, root length, photosynthetic rate, leaf area, and gibberellins productions were at least two times greater than that of fungal inoculation. In addition, under drought stress, bacterial inoculation increased the proline content of C4 plants. Overall, the findings of this meta-analysis indicate that both endophytic bacterial and fungal inoculation of plants is beneficial under drought conditions, but the extent of benefit is higher with endophytic bacteria inoculation but it varies across crop type, experiment type, and inoculation method.
Collapse
Affiliation(s)
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Irfan
- Soil and Environmental Sciences Division, Nuclear Institute of Agriculture (NIA), Tandojam, Pakistan
| | - Awais Shakoor
- Teagasc, Environment, Soils, and Land-Use Department, Wexford, Ireland
| | | | - Ruth A Schmitz
- Institute for Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
193
|
Fernandes I, Paulo OS, Marques I, Sarjkar I, Sen A, Graça I, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Salt Stress Tolerance in Casuarina glauca: Insights from the Branchlets Transcriptome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2942. [PMID: 36365395 PMCID: PMC9658546 DOI: 10.3390/plants11212942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.
Collapse
Affiliation(s)
- Isabel Fernandes
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Indrani Sarjkar
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Arnab Sen
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Inês Graça
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - José C. Ramalho
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| |
Collapse
|
194
|
Rehman HM, Chen S, Zhang S, Khalid M, Uzair M, Wilmarth PA, Ahmad S, Lam HM. Membrane Proteomic Profiling of Soybean Leaf and Root Tissues Uncovers Salt-Stress-Responsive Membrane Proteins. Int J Mol Sci 2022; 23:13270. [PMID: 36362058 PMCID: PMC9655375 DOI: 10.3390/ijms232113270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Cultivated soybean (Glycine max (L.)), the world's most important legume crop, has high-to-moderate salt sensitivity. Being the frontier for sensing and controlling solute transport, membrane proteins could be involved in cell signaling, osmoregulation, and stress-sensing mechanisms, but their roles in abiotic stresses are still largely unknown. By analyzing salt-induced membrane proteomic changes in the roots and leaves of salt-sensitive soybean cultivar (C08) seedlings germinated under NaCl, we detected 972 membrane proteins, with those present in both leaves and roots annotated as receptor kinases, calcium-sensing proteins, abscisic acid receptors, cation and anion channel proteins, proton pumps, amide and peptide transporters, and vesicle transport-related proteins etc. Endocytosis, linoleic acid metabolism, and fatty acid biosynthesis pathway-related proteins were enriched in roots whereas phagosome, spliceosome and soluble NSF attachment protein receptor (SNARE) interaction-related proteins were enriched in leaves. Using label-free quantitation, 129 differentially expressed membrane proteins were found in both tissues upon NaCl treatment. Additionally, the 140 NaCl-induced proteins identified in roots and 57 in leaves are vesicle-, mitochondrial-, and chloroplast-associated membrane proteins and those with functions related to ion transport, protein transport, ATP hydrolysis, protein folding, and receptor kinases, etc. Our proteomic results were verified against corresponding gene expression patterns from published C08 RNA-seq data, demonstrating the importance of solute transport and sensing in salt stress responses.
Collapse
Affiliation(s)
- Hafiz Mamoon Rehman
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shengjie Chen
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shoudong Zhang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Memoona Khalid
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Uzair
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Shakeel Ahmad
- Seed Center, Ministry of Environment, Water & Agriculture, Riyadh 14712, Saudi Arabia
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
195
|
Ferreira TMM, Ferreira Filho JA, Leão AP, de Sousa CAF, Souza MTJ. Structural and functional analysis of stress-inducible genes and their promoters selected from young oil palm ( Elaeis guineensis) under salt stress. BMC Genomics 2022; 23:735. [PMCID: PMC9620643 DOI: 10.1186/s12864-022-08926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Soil salinity is a problem in more than 100 countries across all continents. It is one of the abiotic stress that threatens agriculture the most, negatively affecting crops and reducing productivity. Transcriptomics is a technology applied to characterize the transcriptome in a cell, tissue, or organism at a given time via RNA-Seq, also known as full-transcriptome shotgun sequencing. This technology allows the identification of most genes expressed at a particular stage, and different isoforms are separated and transcript expression levels measured. Once determined by this technology, the expression profile of a gene must undergo validation by another, such as quantitative real-time PCR (qRT-PCR). This study aimed to select, annotate, and validate stress-inducible genes—and their promoters—differentially expressed in the leaves of oil palm (Elaeis guineensis) plants under saline stress. Results The transcriptome analysis led to the selection of 14 genes that underwent structural and functional annotation, besides having their expression validated using the qRT-PCR technique. When compared, the RNA-Seq and qRT-PCR profiles of those genes resulted in some inconsistencies. The structural and functional annotation analysis of proteins coded by the selected genes showed that some of them are orthologs of genes reported as conferring resistance to salinity in other species. There were those coding for proteins related to the transport of salt into and out of cells, transcriptional regulatory activity, and opening and closing of stomata. The annotation analysis performed on the promoter sequence revealed 22 distinct types of cis-acting elements, and 14 of them are known to be involved in abiotic stress. Conclusion This study has helped validate the process of an accurate selection of genes responsive to salt stress with a specific and predefined expression profile and their promoter sequence. Its results also can be used in molecular-genetics-assisted breeding programs. In addition, using the identified genes is a window of opportunity for strategies trying to relieve the damages arising from the salt stress in many glycophyte crops with economic importance.
Collapse
Affiliation(s)
- Thalita Massaro Malheiros Ferreira
- grid.411269.90000 0000 8816 9513Graduate Program of Plant Biotechnology, Federal University of Lavras, 37200-000 Lavras, MG CP 3037, Brazil
| | - Jaire Alves Ferreira Filho
- grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| | - André Pereira Leão
- grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| | | | - Manoel Teixeira Jr. Souza
- grid.411269.90000 0000 8816 9513Graduate Program of Plant Biotechnology, Federal University of Lavras, 37200-000 Lavras, MG CP 3037, Brazil ,grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| |
Collapse
|
196
|
Marinoni L, Zabala JM, Quiroga RE, Richard GA, Pensiero JF. Seed Weight and Trade-Offs: An Experiment in False Rhodes Grasses under Different Aridity Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2887. [PMID: 36365338 PMCID: PMC9654868 DOI: 10.3390/plants11212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The false Rhodes grasses [Leptochloa crinita (Lag.) P.M. Peterson and N.W. Snow and Leptochloa pluriflora (E. Fourn.) P.M. Peterson and N.W. Snow] are considered valuable native forage resources for arid and semiarid rangelands in Argentina and the United States. Effectively using plant materials as forage under aridity conditions requires understanding their resource allocation under those conditions. In the present study, plant functional traits were evaluated in six populations of each false Rhodes grass species from different geographic origin in a humid and an arid region. The evaluation was focused on seed weight, due to the key role of this trait in plant survival. The implication of seed weight in germination under osmotic stress and trade-off relationships between functional traits were also analysed. A fixed ontogenetic variation was found in both species, since populations maintained a stable seed weight across environments. The tolerance to osmotic stress at germination stage was more related to seed weight than to population origin or maternal environment of seeds; heavier-seeded populations produced heavier seedlings instead of a higher number of germinated seeds or higher germination rates. Some traits varied between environments but other traits exhibited a fixed response. Variation patterns among populations were similar within environments and in some cases even for populations from the same geographic origin, revealing a fixed ontogenetic variation; this phenomenon was clearer in L. crinita than in L. pluriflora. Moreover, several different trade-off strategies were detected in both species. These results reinforce the knowledge about the key role of seed weight in survival and performance of seedlings at initial growth stages under arid conditions; however, at advanced stages, other traits would have an important function in growth and development of false Rhodes grasses.
Collapse
Affiliation(s)
- Lorena Marinoni
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral UNL-CONICET), Kreder 2805, Esperanza 3080, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral (FCA-UNL), Kreder 2805, Esperanza 3080, Argentina
| | - Juan M. Zabala
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral UNL-CONICET), Kreder 2805, Esperanza 3080, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral (FCA-UNL), Kreder 2805, Esperanza 3080, Argentina
| | - R. Emiliano Quiroga
- Instituto Nacional de Tecnología Agropecuaria, EEA Catamarca, Sumalao 4705, Argentina
- Cátedra de Manejo de Pastizales Naturales, Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca 4700, Argentina
| | - Geraldina A. Richard
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral UNL-CONICET), Kreder 2805, Esperanza 3080, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral (FCA-UNL), Kreder 2805, Esperanza 3080, Argentina
| | - José F. Pensiero
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral UNL-CONICET), Kreder 2805, Esperanza 3080, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral (FCA-UNL), Kreder 2805, Esperanza 3080, Argentina
| |
Collapse
|
197
|
Lu Y, Liu H, Chen Y, Zhang L, Kudusi K, Song J. Effects of drought and salt stress on seed germination of ephemeral plants in desert of northwest China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1026095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seed germination is the most sensitive stage of plant life history. Studying its response to drought and salinity can analysis the response and adaptation characteristics of desert plants to the environment. In this experiment, the seeds of four common desert ephemeral plants in Xinjiang (Ixiolirion tataricum, Nepeta micrantha, Lepidium apetalum, and Plantago minuta) were used as materials. To study the germination characteristics of seeds under drought, we used salt stress, and coupled salt-drought stress under treatments and explored the germination recovery ability of rehydrated seeds after salt and drought stress treatments. The results showed that: (1) Under salt stress, the germination ability of four plant seeds was inhibited in different degrees. Overall, the degree of inhibition was proportional to the concentration of NaCl solution. (2) Drought stress slowed the seed germination process, and the greater the degree of stress, the more pronounced the slowdown; PEG treatment showed no significant effect on the germination of the four seeds at low concentrations and significant inhibition at medium and high concentrations. (3) The coupled salt-drought treatment significantly alleviated the stress effect of one factor and improved the germination characteristics of seeds. (4) Seeds that did not germinate under different concentrations of salt stress, drought stress, and coupled stresses rapidly recover germination when the stress was relieved or lifted. Ephemeral plants are sensitive to environmental changes, and this study aims to provide a reference basis for vegetation restoration and ecological rehabilitation in arid and semi-arid areas.
Collapse
|
198
|
Wang L, Zuo Q, zheng J, You J, Yang G, Leng S. Salt stress decreases seed yield and postpones growth process of canola (Brassica napus L.) by changing nitrogen and carbon characters. Sci Rep 2022; 12:17884. [PMID: 36284201 PMCID: PMC9596443 DOI: 10.1038/s41598-022-22815-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/19/2022] [Indexed: 01/20/2023] Open
Abstract
Salt stress is a major challenge for plant growth and yield achievement in canola (Brassica napus L.). Nitrogen (N) is considered as an essential nutrient involved in many physiological processes, and carbon (C) is the most component of plant biomass. N and C assimilations of canola plants are always inhibited by salt stress. However, the knowledge of how salt stress affects biomass and seed yield through changing N and C characters is limited. A field experiment was conducted to investigate the growth process, N and C characters, photosynthetic performance, biomass accumulation and seed yield under the low and high soil salt-ion concentration conditions (LSSC and HSSC). The results indicated that HSSC postponed the time of early flowering stage and maturity stage by 4 ~ 5 days and 6 ~ 8 days, respectively, as compared with LSSC. Besides, HSSC decreased the N and C accumulation and C/N at both growing stages, suggesting that salt stress break the balance between C assimilation and N assimilation, with stronger effect on C assimilation. Although the plant N content under HSSC was increased, the photosynthesis rate at early flowering stage was decreased. The leaf area index at early flowering stage was also reduced. In addition, HSSC decreased N translocation efficiency especially in stem, and N utilization efficiency. These adverse effects of HSSC together resulted in reduced biomass accumulation and seed yield. In conclusion, the high soil salt-ion concentration reduced biomass accumulation and seed yield in canola through changing N and C characters.
Collapse
Affiliation(s)
- Long Wang
- grid.268415.cJiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Qingsong Zuo
- grid.268415.cJiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Jingdong zheng
- grid.268415.cJiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Jingjing You
- grid.268415.cJiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Guang Yang
- grid.268415.cJiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China
| | - Suohu Leng
- grid.268415.cJiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
199
|
Kong X, Guo Z, Yao Y, Xia L, Liu R, Song H, Zhang S. Acetic acid alters rhizosphere microbes and metabolic composition to improve willows drought resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157132. [PMID: 35798115 DOI: 10.1016/j.scitotenv.2022.157132] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The adverse effects of drought on plants are gradually exacerbated with global climatic change. Amelioration of the drought stress that is induced by low doses of acetic acid (AA) has been caused great interest in plants. However, whether AA can change soil microbial composition is still unknown. Here, we investigated how exogenous AA regulates the physiology, rhizosphere soil microorganisms and metabolic composition on Salix myrtillacea under drought stress. The physiological results showed that AA could improve the drought tolerance of S. myrtillacea. Azotobacter and Pseudomonas were enriched in the rhizosphere by AA irrigation. AA significantly increased the relative contents of amino acid metabolites (e.g., glycyl-L-tyrosine, l-glutamine and seryl-tryptophan) and decreased the relative contents of phenylpropane metabolites (e.g., fraxetin and sinapyl aldehyde) in soils. The enrichments of Azotobacter and Pseudomonas were significantly correlated with glycyl-L-tyrosine, l-glutamine, seryl-tryptophan, fraxetin and sinapyl aldehyde, which could increase the stress resistance by promoting nitrogen (N) uptake for willows. Furthermore, inoculation with Azotobacter chroococcum and Pseudomonas fluorescens could significantly improve willows drought tolerance. Therefore, our results reveal that the changes of plant physiology, rhizosphere soil microorganisms and metabolic composition induced by AA can improve willows drought resistance by enhancing N uptake.
Collapse
Affiliation(s)
- Xiangge Kong
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zian Guo
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuan Yao
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Linchao Xia
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ruixuan Liu
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
200
|
Zaher HA, Mesalam A, Al Bloushi AI, Tolba A, Swelum AA, Abu-Alrub I. Hematological and biochemical indices, growth performance, and puberty of goats fed with Mombasa and blue panic as salt-tolerant alternatives to alfalfa under arid conditions. Front Vet Sci 2022; 9:961583. [PMID: 36330157 PMCID: PMC9622799 DOI: 10.3389/fvets.2022.961583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to evaluate the impact of Mombasa or blue panic as a salt-tolerant alternative to alfalfa on growth performance, puberty, blood hematology, serum metabolites, and serum mineral profile in growing goats. Twenty-four growing goats of 4 months old age with 14.45 ± 0.6 kg average body weight were assigned to three treatment diets with 8 animals per treatment. Weights of each animal were measured at the onset of the trial and subsequently on a weekly basis until the end of the trial duration. A pair of blood samples were collected from each goat via a jugular vein puncture and were subjected to either hematological or biochemical analysis. The results showed that treatment diets had no significant effects (P > 0.05) on the final body weight and total body weight gain. However, blue panic had significantly increased (P < 0.05) neutral detergent fiber and crude protein digestibility. The diet-influenced MCV was significantly higher (P < 0.05) in the Alfalfa group. The serum concentration of glucose was significantly increased (P < 0.05) in the blue panic-fed group, while the urea was increased in the Mombasa-fed group. Additionally, the serum concentrations of P, Na, and Cl were significantly increased (P < 0.05) in the blue panic-fed group, but Mombasa significantly increased (P < 0.05) the K concentration. In conclusion, the study indicated that blue panic ranked the best among salt-tolerant alternatives to replace alfalfa, resulting in better feed utilization, serum metabolites, and serum minerals with no adverse effects on growth performance and puberty. This study provides new insight into the shift to the cultivation of salt-tolerant plants with a high level of crude protein in arid areas as a potential approach for the sustainability of the livestock industry.
Collapse
Affiliation(s)
- Hany Ahmed Zaher
- Research and Development Division, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
- *Correspondence: Hany Ahmed Zaher
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
- Ayman Mesalam
| | - Adel Ibrahim Al Bloushi
- Research and Development Division, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Ameer Tolba
- Research and Development Division, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Ihsan Abu-Alrub
- Research and Development Division, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| |
Collapse
|