151
|
Anderson S, Vanderhaeghen P. Cortical neurogenesis from pluripotent stem cells: complexity emerging from simplicity. Curr Opin Neurobiol 2014; 27:151-7. [PMID: 24747604 DOI: 10.1016/j.conb.2014.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/16/2014] [Accepted: 03/20/2014] [Indexed: 12/12/2022]
Abstract
The cerebral cortex contains dozens of neuronal subtypes grouped in specific layers and areas. Recent studies have revealed how embryonic and induced pluripotent stem cells (PSC) can differentiate into a wide diversity of cortical neurons in vitro, while recapitulating many of the temporal and spatial features that characterize corticogenesis. PSC-derived neurons can integrate into the brain following in vivo transplantation and display patterns of morphology and connectivity specific of cortical neurons. PSC-corticogenesis thus emerges as a robust model that provides new ways to link cortical development, evolution, and disease.
Collapse
Affiliation(s)
- Stewart Anderson
- Children's Hospital of Philadelphia, UPenn School of Medicine, Philadelphia, PA 19104-5127, United States.
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (ULB), WELBIO, Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, B-1070 Brussels, Belgium.
| |
Collapse
|
152
|
Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci 2014; 37:334-42. [PMID: 24745669 DOI: 10.1016/j.tins.2014.03.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/16/2014] [Accepted: 03/18/2014] [Indexed: 01/07/2023]
Abstract
The development of the cerebral cortex requires the tightly coordinated generation of dozens of neuronal subtypes that will populate specific layers and areas. Recent studies have revealed how pluripotent stem cells (PSC), whether of mouse or human origin, can differentiate into a wide range of cortical neurons in vitro, which can integrate appropriately into the brain following in vivo transplantation. These models are largely artificial but recapitulate a substantial fraction of the complex temporal and regional patterning events that occur during in vivo corticogenesis. Here, we review these findings with emphasis on the new perspectives that they have brought for understanding of cortical development, evolution, and diseases.
Collapse
|
153
|
From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cell Mol Life Sci 2014; 71:2917-30. [PMID: 24643740 PMCID: PMC4098049 DOI: 10.1007/s00018-014-1596-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.
Collapse
|
154
|
Polycomb binding precedes early-life stress responsive DNA methylation at the Avp enhancer. PLoS One 2014; 9:e90277. [PMID: 24599304 PMCID: PMC3943912 DOI: 10.1371/journal.pone.0090277] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
Early-life stress (ELS) in mice causes sustained hypomethylation at the downstream Avp enhancer, subsequent overexpression of hypothalamic Avp and increased stress responsivity. The sequence of events leading to Avp enhancer methylation is presently unknown. Here, we used an embryonic stem cell-derived model of hypothalamic-like differentiation together with in vivo experiments to show that binding of polycomb complexes (PcG) preceded the emergence of ELS-responsive DNA methylation and correlated with gene silencing. At the same time, PcG occupancy associated with the presence of Tet proteins preventing DNA methylation. Early hypothalamic-like differentiation triggered PcG eviction, DNA-methyltransferase recruitment and enhancer methylation. Concurrently, binding of the Methyl-CpG-binding and repressor protein MeCP2 increased at the enhancer although Avp expression during later stages of differentiation and the perinatal period continued to increase. Overall, we provide evidence of a new role of PcG proteins in priming ELS-responsive DNA methylation at the Avp enhancer prior to epigenetic programming consistent with the idea that PcG proteins are part of a flexible silencing system during neuronal development.
Collapse
|
155
|
A modular gain-of-function approach to generate cortical interneuron subtypes from ES cells. Neuron 2014; 80:1145-58. [PMID: 24314726 DOI: 10.1016/j.neuron.2013.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 01/18/2023]
Abstract
Whereas past work indicates that cortical interneurons (cINs) can be generically produced from stem cells, generating large numbers of specific subtypes of this population has remained elusive. This reflects an information gap in our understanding of the transcriptional programs required for different interneuron subtypes. Here, we have utilized the directed differentiation of stem cells into specific subpopulations of cortical interneurons as a means to identify some of these missing factors. To establish this approach, we utilized two factors known to be required for the generation of cINs, Nkx2-1 and Dlx2. As predicted, their regulated transient expression greatly improved the differentiation efficiency and specificity over baseline. We extended upon this "cIN-primed" model in order to establish a modular system whereby a third transcription factor could be systematically introduced. Using this approach, we identified Lmo3 and Pou3f4 as genes that can augment the differentiation and/or subtype specificity of cINs in vitro.
Collapse
|
156
|
Control of obesity and glucose intolerance via building neural stem cells in the hypothalamus. Mol Metab 2014; 3:313-24. [PMID: 24749061 PMCID: PMC3986657 DOI: 10.1016/j.molmet.2014.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) were recently revealed to exist in the hypothalamus of adult mice. Here, following our observation showing that a partial loss of hypothalamic NSCs caused weight gain and glucose intolerance, we studied if NSCs-based cell therapy could be developed to control these disorders. While hypothalamus-implanted NSCs failed to survive in mice with obesity, NF-κB inhibition induced survival and neurogenesis of these cells, leading to effects in counteracting obesity and glucose intolerance. To generate an alternative cell source, we revealed that iPS-derived NSCs were converted into htNSCs by neuropeptide treatment. Of note, obesity condition potentiated the transfer of carotid artery-injected NSCs into the hypothalamus. These iPS-derived cells when engineered with NF-κB inhibition were also effective in reducing obesity and glucose intolerance, and neurogenesis towards POMCergic and GABAergic lineages was accountable. In conclusion, building NSCs in the hypothalamus represents a strategy for controlling obesity and glucose disorders.
Collapse
|
157
|
Merkle FT, Fuentealba LC, Sanders TA, Magno L, Kessaris N, Alvarez-Buylla A. Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat Neurosci 2014; 17:207-14. [PMID: 24362763 PMCID: PMC4100623 DOI: 10.1038/nn.3610] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Throughout life, neural stem cells (NSCs) in different domains of the ventricular-subventricular zone (V-SVZ) of the adult rodent brain generate several subtypes of interneurons that regulate the function of the olfactory bulb. The full extent of diversity among adult NSCs and their progeny is not known. Here, we report the generation of at least four previously unknown olfactory bulb interneuron subtypes that are produced in finely patterned progenitor domains in the anterior ventral V-SVZ of both the neonatal and adult mouse brain. Progenitors of these interneurons are responsive to sonic hedgehog and are organized into microdomains that correlate with the expression domains of the Nkx6.2 and Zic family of transcription factors. This work reveals an unexpected degree of complexity in the specification and patterning of NSCs in the postnatal mouse brain.
Collapse
Affiliation(s)
- Florian T. Merkle
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Departments of Molecular and Cellular Biology, and Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Luis C. Fuentealba
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| | - Timothy A. Sanders
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, and the Eli and Edythe Broad Center of Regeneration, Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
| |
Collapse
|
158
|
Crompton LA, Byrne ML, Taylor H, Kerrigan TL, Bru-Mercier G, Badger JL, Barbuti PA, Jo J, Tyler SJ, Allen SJ, Kunath T, Cho K, Caldwell MA. Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling. Stem Cell Res 2013; 11:1206-21. [PMID: 24013066 DOI: 10.1016/j.scr.2013.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022] Open
Abstract
Basal forebrain cholinergic neurons (bfCNs) which provide innervation to the hippocampus and cortex, are required for memory and learning, and are primarily affected in Alzheimer's Disease (AD), resulting in related cognitive decline. Therefore generation of a source of bfCNs from human pluripotent stem cells (hPSCs) is crucial for in vitro disease modeling and development of novel AD therapies. In addition, for the advancement of regenerative approaches there is a requirement for an accurate developmental model to study the neurogenesis and survival of this population. Here we demonstrate the efficient production of bfCNs, using a novel embryoid body (EB) based non-adherent differentiation (NAdD) protocol. We establish a specific basal forebrain neural stem cell (NSC) phenotype via expression of the basal forebrain transcription factors NKX2.1 and LHX8, as well as the general forebrain marker FOXG1. We present evidence that this lineage is achieved via recapitulation of embryonic events, with induction of intrinsic hedgehog signaling, through the use of a 3D non-adherent differentiation system. This is the first example of hPSC-derived basal forebrain-like NSCs, which are scalable via self-renewal in prolonged culture. Furthermore upon terminal differentiation these basal forebrain-like NSCs generate high numbers of cholinergic neurons expressing the specific markers ChAT, VACht and ISL1. These hPSC-derived bfCNs possess characteristics that are crucial in a model to study AD related cholinergic neuronal loss in the basal forebrain. Examples are expression of the therapeutic target p75(NTR), the release of acetylcholine, and demonstration of a mature, and functional electrophysiological profile. In conclusion, this work provides a renewable source of human functional bfCNs applicable for studying AD specifically in the cholinergic system, and also provides a model of the key embryonic events in human bfCN development.
Collapse
Affiliation(s)
- Lucy A Crompton
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Tosches MA, Arendt D. The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 2013; 23:1080-9. [PMID: 24080363 DOI: 10.1016/j.conb.2013.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022]
Abstract
The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | |
Collapse
|
160
|
Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 2013; 16:780-9. [PMID: 23799470 DOI: 10.1038/nn.3425] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/05/2013] [Indexed: 02/06/2023]
Abstract
Human neurodegenerative disorders are among the most difficult to study. In particular, the inability to readily obtain the faulty cell types most relevant to these diseases has impeded progress for decades. Recent advances in pluripotent stem cell technology now grant access to substantial quantities of disease-pertinent neurons both with and without predisposing mutations. While this suite of technologies has revolutionized the field of 'in vitro disease modeling', great care must be taken in their deployment if robust, durable discoveries are to be made. Here we review what we perceive to be several of the stumbling blocks in the use of stem cells for the study of neurological disease and offer strategies to overcome them.
Collapse
|
161
|
Hayakawa K, Hirosawa M, Tabei Y, Arai D, Tanaka S, Murakami N, Yagi S, Shiota K. Epigenetic switching by the metabolism-sensing factors in the generation of orexin neurons from mouse embryonic stem cells. J Biol Chem 2013; 288:17099-110. [PMID: 23625921 PMCID: PMC3682516 DOI: 10.1074/jbc.m113.455899] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/18/2013] [Indexed: 11/06/2022] Open
Abstract
The orexin system plays a central role in the integration of sleep/wake and feeding behaviors in a broad spectrum of neural-metabolic physiology. Orexin-A and orexin-B are produced by the cleavage of prepro-orexin, which is encoded on the Hcrt gene. To date, methods for generating other peptide neurons could not induce orexin neurons from pluripotent stem cells. Considering that the metabolic status affects orexin expression, we supplemented the culture medium with a nutrient factor, ManNAc, and succeeded in generating functional orexin neurons from mouse ES cells. Because DNA methylation inhibitors and histone deacetylase inhibitors could induce Hcrt expression in mouse ES cells, the epigenetic mechanism may be involved in this orexin neurogenesis. DNA methylation analysis showed the presence of a tissue-dependent differentially methylated region (T-DMR) around the transcription start site of the Hcrt gene. In the orexin neurons induced by supplementation of ManNAc, the T-DMR of the Hcrt gene was hypomethylated in association with higher H3/H4 acetylation. Concomitantly, the histone acetyltransferases p300, CREB-binding protein (CBP), and Mgea5 (also called O-GlcNAcase) were localized to the T-DMR in the orexin neurons. In non-orexin-expressing cells, H3/H4 hypoacetylation and hyper-O-GlcNAc modification were observed at the T-DMRs occupied by O-GlcNAc transferase and Sirt1. Therefore, the results of the present study suggest that the glucose metabolite, ManNAc, induces switching from the inactive state by Ogt-Sirt1 to the active state by Mgea5, p300, and CBP at the Hcrt gene locus.
Collapse
Affiliation(s)
- Koji Hayakawa
- From the Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan and
| | - Mitsuko Hirosawa
- From the Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan and
| | - Yasuyuki Tabei
- From the Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan and
| | - Daisuke Arai
- From the Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan and
| | - Satoshi Tanaka
- From the Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan and
| | - Noboru Murakami
- the Laboratory of Physiology, Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Shintaro Yagi
- From the Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan and
| | - Kunio Shiota
- From the Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan and
| |
Collapse
|
162
|
Chen YJJ, Vogt D, Wang Y, Visel A, Silberberg SN, Nicholas CR, Danjo T, Pollack JL, Pennacchio LA, Anderson S, Sasai Y, Baraban SC, Kriegstein AR, Alvarez-Buylla A, Rubenstein JLR. Use of "MGE enhancers" for labeling and selection of embryonic stem cell-derived medial ganglionic eminence (MGE) progenitors and neurons. PLoS One 2013; 8:e61956. [PMID: 23658702 PMCID: PMC3641041 DOI: 10.1371/journal.pone.0061956] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/15/2013] [Indexed: 12/21/2022] Open
Abstract
The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6(+) cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6(+) cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP(+) cells, while enhancer 1056 is active in Olig2(+) cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments.
Collapse
Affiliation(s)
- Ying-Jiun J. Chen
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Vogt
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Yanling Wang
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Shanni N. Silberberg
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Cory R. Nicholas
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Teruko Danjo
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Joshua L. Pollack
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Len A. Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Stewart Anderson
- 3Children's Hospital of Philadelphia, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yoshiki Sasai
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Scott C. Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Arnold R. Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Arturo Alvarez-Buylla
- Department of Neurosurgery and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - John L. R. Rubenstein
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
163
|
Abstract
The brain plays a central role in controlling energy, glucose, and lipid homeostasis, with specialized neurons within nuclei of the mediobasal hypothalamus, namely the arcuate (ARC) and ventromedial (VMH), tasked with proper signal integration. Exactly how the exquisite cytoarchitecture and underlying circuitry becomes established within these nuclei remains largely unknown, in part because hypothalamic developmental programs are just beginning to be elucidated. Here, we demonstrate that the Retina and anterior neural fold homeobox (Rax) gene plays a key role in establishing ARC and VMH nuclei in mice. First, we show that Rax is expressed in ARC and VMH progenitors throughout development, consistent with genetic fate mapping studies demonstrating that Rax+ lineages give rise to VMH neurons. Second, the conditional ablation of Rax in a subset of VMH progenitors using a Shh::Cre driver leads to a fate switch from a VMH neuronal phenotype to a hypothalamic but non-VMH identity, suggesting that Rax is a selector gene for VMH cellular fates. Finally, the broader elimination of Rax throughout ARC/VMH progenitors using Six3::Cre leads to a severe loss of both VMH and ARC cellular phenotypes, demonstrating a role for Rax in both VMH and ARC fate specification. Combined, our study illustrates that Rax is required in ARC/VMH progenitors to specify neuronal phenotypes within this hypothalamic brain region. Rax thus provides a molecular entry point for further study of the ontology and establishment of hypothalamic feeding circuits.
Collapse
|
164
|
Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for X linked hypopituitarism. PLoS Genet 2013; 9:e1003290. [PMID: 23505376 PMCID: PMC3591313 DOI: 10.1371/journal.pgen.1003290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/16/2012] [Indexed: 11/19/2022] Open
Abstract
Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele.
Collapse
|
165
|
Sasai Y, Eiraku M, Suga H. In vitro organogenesis in three dimensions: self-organising stem cells. Development 2013; 139:4111-21. [PMID: 23093423 DOI: 10.1242/dev.079590] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organ formation during embryogenesis is a complex process that involves various local cell-cell interactions at the molecular and mechanical levels. Despite this complexity, organogenesis can be modelled in vitro. In this article, we focus on two recent examples in which embryonic stem cells can self-organise into three-dimensional structures - the optic cup and the pituitary epithelium; and one case of self-organising adult stem cells - the gut epithelium. We summarise how these approaches have revealed intrinsic programs that drive locally autonomous modes of organogenesis and homeostasis. We also attempt to interpret the results of previous in vivo studies of retinal development in light of the self-organising nature of the retina.
Collapse
Affiliation(s)
- Yoshiki Sasai
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | | | |
Collapse
|
166
|
Pluripotent stem cell for modeling neurological diseases. Exp Cell Res 2013; 319:177-84. [DOI: 10.1016/j.yexcr.2012.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022]
|
167
|
Otsuki K, Imaizumi M, Nomoto Y, Wada I, Miyake M, Sugino T, Omori K. Potential for Respiratory Epithelium Regeneration from Induced Pluripotent Stem Cells. Ann Otol Rhinol Laryngol 2013; 122:25-32. [DOI: 10.1177/000348941312200106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: In cases of laryngeal inflammatory lesions and tracheal invasion of a malignant tumor, autologous tissue implantation techniques using skin or cartilage are often applied. However, these techniques are both invasive and unstable. The purpose of this study was to evaluate the potential use of induced pluripotent stem (iPS) cells in the regeneration of respiratory epithelium. Methods: We seeded iPS cells on low-attachment plates in serum-free media to generate embryoid bodies (EBs). After a 3-day culture, the EBs were transferred to a gelatin-coated dish supplemented with activin A alone or with basic fibroblast growth factor (induction groups). As a control, EBs were cultured without these growth factors (control group). Cultured tissues from all groups were histologically examined for 2 weeks. Results: In the induction groups, the presence of respiratory epithelium-like tissue was observed with hematoxylin and eosin staining after 14 days of culture. Conclusions: This study demonstrated the potential use of iPS cells in regeneration of the respiratory epithelium.
Collapse
|
168
|
Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS One 2012; 7:e53024. [PMID: 23300850 PMCID: PMC3534089 DOI: 10.1371/journal.pone.0053024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/22/2012] [Indexed: 01/11/2023] Open
Abstract
In the mammalian cortex, the dorsal telencephalon exhibits a characteristic stratified structure. We previously reported that three-dimensional (3D) culture of mouse ES cells (mESCs) can efficiently generate cortical neuroepithelium (NE) and layer-specific cortical neurons. However, the cortical NE generated in this mESC culture was structurally unstable and broke into small neural rosettes by culture day 7, suggesting that some factors for reinforcing the structural integrity were missing. Here we report substantial supporting effects of the extracellular matrix (ECM) protein laminin on the continuous formation of properly polarized cortical NE in floating aggregate culture of mESCs. The addition of purified laminin and entactin (a laminin-associated protein), even at low concentrations, stabilized the formation of continuous cortical NE as well as the maintenance of basement membrane and prevented rosette formation. Treatment with the neutralizing ß1-integrin antibody impaired the continuous NE formation. The stabilized cortical NE exhibited typical interkinetic nuclear migration of cortical progenitors, as seen in the embryonic cortex. The laminin-treated cortical NE maintained a continuous structure even on culture days 12 and 15, and contained ventricular, basal-progenitor, cortical-plate and Cajal-Retzius cell layers. The cortical NE in this culture was flanked by cortical hem-like tissue. Furthermore, when Shh was added, ventral telencephalic structures such as lateral ganglionic eminence–like tissue formed in the region adjacent to the cortical NE. Thus, our results indicate that laminin-entactin ECM promotes the formation of structurally stable telencephalic tissues in 3D ESC culture, and supports the morphogenetic recapitulation of cortical development.
Collapse
|
169
|
The positional identity of mouse ES cell-generated neurons is affected by BMP signaling. Cell Mol Life Sci 2012; 70:1095-111. [PMID: 23069989 PMCID: PMC3578729 DOI: 10.1007/s00018-012-1182-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/10/2023]
Abstract
We investigated the effects of bone morphogenetic proteins (BMPs) in determining the positional identity of neurons generated in vitro from mouse embryonic stem cells (ESCs), an aspect that has been neglected thus far. Classical embryological studies in lower vertebrates indicate that BMPs inhibit the default fate of pluripotent embryonic cells, which is both neural and anterior. Moreover, mammalian ESCs generate neurons more efficiently when cultured in a minimal medium containing BMP inhibitors. In this paper, we show that mouse ESCs produce, secrete, and respond to BMPs during in vitro neural differentiation. After neuralization in a minimal medium, differentiated ESCs show a gene expression profile consistent with a midbrain identity, as evaluated by the analysis of a number of markers of anterior-posterior and dorsoventral identity. We found that BMPs endogenously produced during neural differentiation mainly act by inhibiting the expression of a telencephalic gene profile, which was revealed by the treatment with Noggin or with other BMP inhibitors. To better characterize the effect of BMPs on positional fate, we compared the global gene expression profiles of differentiated ESCs with those of embryonic forebrain, midbrain, and hindbrain. Both Noggin and retinoic acid (RA) support neuronal differentiation of ESCs, but they show different effects on their positional identity: whereas RA supports the typical gene expression profile of hindbrain neurons, Noggin induces a profile characteristic of dorsal telencephalic neurons. Our findings show that endogenously produced BMPs affect the positional identity of the neurons that ESCs spontaneously generate when differentiating in vitro in a minimal medium. The data also support the existence of an intrinsic program of neuronal differentiation with dorsal telencephalic identity. Our method of ESC neuralization allows for fast differentiation of neural cells via the same signals found during in vivo embryonic development and for the acquisition of cortical identity by the inhibition of BMP alone.
Collapse
|
170
|
Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012; 10:771-785. [PMID: 22704518 DOI: 10.1016/j.stem.2012.05.009] [Citation(s) in RCA: 1030] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 03/29/2012] [Accepted: 05/04/2012] [Indexed: 01/12/2023]
Abstract
In this report, we demonstrate that an optic cup structure can form by self-organization in human ESC culture. The human ESC-derived optic cup is much larger than the mouse ESC-derived one, presumably reflecting the species differences. The neural retina in human ESC culture is thick and spontaneously curves in an apically convex manner, which is not seen in mouse ESC culture. In addition, human ESC-derived neural retina grows into multilayered tissue containing both rods and cones, whereas cone differentiation is rare in mouse ESC culture. The accumulation of photoreceptors in human ESC culture can be greatly accelerated by Notch inhibition. In addition, we show that an optimized vitrification method enables en bloc cryopreservation of stratified neural retina of human origin. This storage method at an intermediate step during the time-consuming differentiation process provides a versatile solution for quality control in large-scale preparation of clinical-grade retinal tissues.
Collapse
Affiliation(s)
- Tokushige Nakano
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Division of Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan; Department of Medical Embryology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Ando
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Division of Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Nozomu Takata
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Masako Kawada
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Keiko Muguruma
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Koichi Saito
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Shigenobu Yonemura
- Electron Microscopy Laboratory, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Mototsugu Eiraku
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Division of Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Yoshiki Sasai
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Division of Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Department of Medical Embryology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
171
|
Muranishi Y, Terada K, Furukawa T. An essential role for Rax in retina and neuroendocrine system development. Dev Growth Differ 2012; 54:341-8. [PMID: 22524605 DOI: 10.1111/j.1440-169x.2012.01337.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vertebrates, the central nervous system (CNS) develops as a highly hierarchical, patterned organ with a vast diversity of neuronal and glial cell types. The vertebrate retina is developmentally a part of the CNS. Establishment of the vertebrate retina requires a series of developmental steps including specification of the anterior neural plate, evagination of the optic vesicles from the ventral forebrain, and differentiation of cells. The transcription factor RAX is a paired-type homeoprotein that plays a critical role in the eye and forebrain development of vertebrate species. Rax is initially expressed in the anterior neural region of developing mouse embryos, and later in the retina, pituitary gland, hypothalamus, and pineal gland. The targeted deletion of Rax in the mouse results in no eye formation and abnormal forebrain formation. In humans, mutations in the RAX gene lead to anophthalmia and microphthalmia. These observations indicate that RAX plays a pivotal role in the establishment of the retina. In addition, recent studies have reported that retina and pituitary gland tissues can be induced in a culture system from embryonic stem cells, using RAX expression as an indicator of neuronal progenitor cells in the induced tissue, and suggesting that the Rax gene is a key factor in neuronal regeneration. This review highlights the biological functions and molecular mechanisms of RAX in retina, pituitary, hypothalamus, and pineal gland development.
Collapse
Affiliation(s)
- Yuki Muranishi
- Department of Developmental Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka, 565-0874, Japan
| | | | | |
Collapse
|
172
|
|
173
|
West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, Sowden JC, Takahashi M, Ali RR. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 2012; 30:1424-35. [PMID: 22570183 PMCID: PMC3580313 DOI: 10.1002/stem.1123] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinal degeneration is a leading cause of irreversible blindness in the developed world. Differentiation of retinal cells, including photoreceptors, from both mouse and human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), potentially provide a renewable source of cells for retinal transplantation. Previously, we have shown both the functional integration of transplanted rod photoreceptor precursors, isolated from the postnatal retina, in the adult murine retina, and photoreceptor cell generation by stepwise treatment of ESCs with defined factors. In this study, we assessed the extent to which this protocol recapitulates retinal development and also evaluated differentiation and integration of ESC-derived retinal cells following transplantation using our established procedures. Optimized retinal differentiation via isolation of Rax.GFP retinal progenitors recreated a retinal niche and increased the yield of Crx(+) and Rhodopsin(+) photoreceptors. Rod birth peaked at day 20 of culture and expression of the early photoreceptor markers Crx and Nrl increased until day 28. Nrl levels were low in ESC-derived populations compared with developing retinae. Transplantation of early stage retinal cultures produced large tumors, which were avoided by prolonged retinal differentiation (up to day 28) prior to transplantation. Integrated mature photoreceptors were not observed in the adult retina, even when more than 60% of transplanted ESC-derived cells expressed Crx. We conclude that exclusion of proliferative cells from ESC-derived cultures is essential for effective transplantation. Despite showing expression profiles characteristic of immature photoreceptors, the ESC-derived precursors generated using this protocol did not display transplantation competence equivalent to precursors from the postnatal retina.
Collapse
Affiliation(s)
- Emma L West
- Department of Genetics, UCL Institute of Ophthalmology, University College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Clarke L, Ballios BG, van der Kooy D. Generation and clonal isolation of retinal stem cells from human embryonic stem cells. Eur J Neurosci 2012; 36:1951-9. [PMID: 22591375 DOI: 10.1111/j.1460-9568.2012.08123.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinal stem cells (RSCs) are present within the pigmented ciliary epithelium (CE) of the adult human eye and produce progeny that differentiate in vitro into all neural retinal subtypes and retinal pigmented epithelium (RPE). We hypothesized that a RSC population, similar to the adult CE-derived RSC, is contained within pigmented colonies that arise in long-term cultures of human embryonic stem cells (hESCs) suggested to recapitulate retinal development in vitro. Single pigmented hESC-derived cells were isolated and plated in serum-free media containing growth factors and, after 2 weeks, clonal sphere colonies containing both pigmented and non-pigmented cells were observed. These colonies expressed the early retinal transcription factors Rx, Chx10 and Pax6, and could be dissociated and replated as single cells to form secondary clonal colonies. When allowed to differentiate, expression of markers for both RPE and neurons was observed. Rhodopsin expression was detected after explant co-culture and transplantation into the developing mouse eye as well as following treatment with soluble factors in vitro. We show that RSCs emerge in an in vitro model of retinal development and are a potential source of human photoreceptors for use in transplantation.
Collapse
Affiliation(s)
- Laura Clarke
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, Canada.
| | | | | |
Collapse
|
175
|
Abstract
The adenohypophysis secretes multiple hormones that control vital physiological functions. A recent article in Nature (Suga et al., 2011) describes a 3D protocol for the derivation of several endocrine pituitary cell types from mouse ESCs.
Collapse
Affiliation(s)
- Viviane Tabar
- Department of Neurosurgery and Center for Stem Cell Biology, Memorial Sloan Kettering Center for Cancer Research, New York, NY, 10065 USA.
| |
Collapse
|
176
|
Eiraku M, Sasai Y. Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr Opin Neurobiol 2012; 22:768-77. [PMID: 22405989 DOI: 10.1016/j.conb.2012.02.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/04/2012] [Accepted: 02/09/2012] [Indexed: 01/26/2023]
Abstract
In vitro neural differentiation culture of embryonic stem cells (ESCs) provides a promising tool for preparing neural cells for replacement therapies and a versatile system for understanding mechanisms of neurogenesis. Consistent with the neural-default model, neural differentiation spontaneously occurs in ESCs cultured in medium containing minimal extrinsic signals. Both adherent monolayer culture and floating aggregation culture can be used for ESC conversion into neural progenitors. The floating aggregation culture has an advantage for recapitulating the formation of three-dimensional (3D) neural tissue structure such as layer formation. In this article, we review recent progress in neural differentiation culture of ESCs using 3D culture, focusing on self-organization phenomena of stratified cortex and retinal tissues. These self-organizing processes are driven by both cell intrinsic programs and local cell-cell interactions. A simple in vitro system using ESCs is useful for elucidating mechanistic dynamics in the complex orchestration of neural development.
Collapse
Affiliation(s)
- Mototsugu Eiraku
- Unit for Four-Dimensional Tissue Analysis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | |
Collapse
|
177
|
Muguruma K, Sasai Y. In vitro recapitulation of neural development using embryonic stem cells: From neurogenesis to histogenesis. Dev Growth Differ 2012; 54:349-57. [DOI: 10.1111/j.1440-169x.2012.01329.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
178
|
Nomura Y, Ishikawa M, Yashiro Y, Sanggarnjanavanich S, Yamaguchi T, Arai C, Noda K, Takano Y, Nakamura Y, Hanada N. Human periodontal ligament fibroblasts are the optimal cell source for induced pluripotent stem cells. Histochem Cell Biol 2012; 137:719-32. [DOI: 10.1007/s00418-012-0923-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2012] [Indexed: 12/20/2022]
|
179
|
Eiraku M, Adachi T, Sasai Y. Relaxation-expansion model for self-driven retinal morphogenesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level. Bioessays 2012; 34:17-25. [PMID: 22052700 PMCID: PMC3266490 DOI: 10.1002/bies.201100070] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The generation of complex organ structures such as the eye requires the intricate orchestration of multiple cellular interactions. In this paper, early retinal development is discussed with respect to the structure formation of the optic cup. Although recent studies have elucidated molecular mechanisms of retinal differentiation, little is known about how the unique shape of the optic cup is determined. A recent report has demonstrated that optic-cup morphogenesis spontaneously occurs in three-dimensional stem-cell culture without external forces, indicating a latent intrinsic order to generate the structure. Based on this self-organizing phenomenon, we introduce the "relaxation-expansion" model to mechanically interpret the tissue dynamics that enable the spontaneous invagination of the neural retina. This model involves three consecutive local rules (relaxation, apical constriction, and expansion), and its computer simulation recapitulates the optic-cup morphogenesis in silico.
Collapse
Affiliation(s)
- Mototsugu Eiraku
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental BiologyKobe, Japan
- Unit for Four-Dimensional Tissue Analysis, RIKEN Center for Developmental BiologyKobe, Japan
| | - Taiji Adachi
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto UniversityKyoto, Japan
- Computational Cell Biomechanics Team, VCAD System Research ProgramRIKEN, Wako, Japan
| | - Yoshiki Sasai
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental BiologyKobe, Japan
- Unit for Four-Dimensional Tissue Analysis, RIKEN Center for Developmental BiologyKobe, Japan
| |
Collapse
|
180
|
Vanderhaeghen P. Generation of cortical neurons from pluripotent stem cells. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186715 DOI: 10.1016/b978-0-444-59544-7.00009-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cerebral cortex is the most complex structure in the mammalian brain, which develops through the coordinated generation of dozens of neuronal subtypes. Here, we review recent studies that show how embryonic stem cell (ESC)-based differentiation can recapitulate the major milestones of cortical development observed in vivo. ESC-derived cortical-like progenitors are able to generate a diverse repertoire of neurons that display most salient features of bona fide cortical pyramidal neurons of different layers. Importantly, when transplanted into the mouse cerebral cortex in vivo, these neuronal populations develop patterns of axonal projections highly similar to those of native cortical neurons. ESC-based corticogenesis, which can be applied to cells of mouse or human origin and to induced pluripotent stem cells, opens new perspectives for the modeling of cortical development and diseases and in the long run for the rational design of brain repair strategies striking the cortex.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- IRIBHM (Institute for Interdisciplinary Research), Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.
| |
Collapse
|
181
|
Eiraku M, Sasai Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 2011; 7:69-79. [PMID: 22179593 DOI: 10.1038/nprot.2011.429] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.
Collapse
Affiliation(s)
- Mototsugu Eiraku
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | |
Collapse
|
182
|
Goulburn AL, Stanley EG, Elefanty AG, Anderson SA. Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell Res 2011; 8:416-26. [PMID: 22280980 DOI: 10.1016/j.scr.2011.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 11/29/2011] [Accepted: 12/03/2011] [Indexed: 12/15/2022] Open
Affiliation(s)
- Adam L Goulburn
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
183
|
|
184
|
Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 2011; 480:57-62. [PMID: 22080957 DOI: 10.1038/nature10637] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/14/2011] [Indexed: 12/19/2022]
Abstract
The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke's pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells. ES cells were stimulated to differentiate into non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate, and treated with hedgehog signalling. Self-organization of Rathke's-pouch-like three-dimensional structures occurred at the interface of these two epithelia, as seen in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone and, when grafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Thus, functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions.
Collapse
Affiliation(s)
- Hidetaka Suga
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Petros TJ, Tyson JA, Anderson SA. Pluripotent stem cells for the study of CNS development. Front Mol Neurosci 2011; 4:30. [PMID: 22016722 PMCID: PMC3191505 DOI: 10.3389/fnmol.2011.00030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/23/2011] [Indexed: 11/13/2022] Open
Abstract
The mammalian central nervous system is a complex neuronal network consisting of a diverse array of cellular subtypes generated in a precise spatial and temporal pattern throughout development. Achieving a greater understanding of the molecular and genetic mechanisms that direct a relatively uniform population of neuroepithelial progenitors into diverse neuronal subtypes remains a significant challenge. The advent of pluripotent stem cell (PSC) technology allows researchers to generate diverse neural populations in vitro. Although the primary focus of PSC-derived neural cells has been their therapeutic potential, utilizing PSCs to study neurodevelopment is another frequently overlooked and equally important application. In this review, we explore the potential for utilizing PSCs to study neural development. We introduce the types of neurodevelopmental questions that PSCs can help to address, and we discuss the different strategies and technologies that researchers use to generate diverse subtypes of PSC-derived neurons. Additionally, we highlight the derivation of several thoroughly characterized neural subtypes; spinal motoneurons, midbrain dopaminergic neurons and cortical neurons. We hope that this review encourages researchers to develop innovative strategies for using PSCs for the study of mammalian, and specifically human, neurodevelopment.
Collapse
Affiliation(s)
- Timothy J. Petros
- Department of Psychiatry, Weill Cornell Medical CollegeNew York, NY, USA
| | - Jennifer A. Tyson
- Department of Psychiatry, Weill Cornell Medical CollegeNew York, NY, USA
- Program in Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | | |
Collapse
|
186
|
Hansen DV, Rubenstein JLR, Kriegstein AR. Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 2011; 70:645-60. [PMID: 21609822 DOI: 10.1016/j.neuron.2011.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2011] [Indexed: 01/17/2023]
Abstract
The human cerebral cortex is an immensely complex structure that subserves critical functions that can be disrupted in developmental and degenerative disorders. Recent innovations in cellular reprogramming and differentiation techniques have provided new ways to study the cellular components of the cerebral cortex. Here, we discuss approaches to generate specific subtypes of excitatory cortical neurons from pluripotent stem cells. We review spatial and temporal aspects of cortical neuron specification that can guide efforts to produce excitatory neuron subtypes with increased resolution. Finally, we discuss distinguishing features of human cortical development and their translational ramifications for cortical stem cell technologies.
Collapse
Affiliation(s)
- David V Hansen
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
187
|
Goulburn AL, Alden D, Davis RP, Micallef SJ, Ng ES, Yu QC, Lim SM, Soh CL, Elliott DA, Hatzistavrou T, Bourke J, Watmuff B, Lang RJ, Haynes JM, Pouton CW, Giudice A, Trounson AO, Anderson SA, Stanley EG, Elefanty AG. A targeted NKX2.1 human embryonic stem cell reporter line enables identification of human basal forebrain derivatives. Stem Cells 2011; 29:462-73. [PMID: 21425409 DOI: 10.1002/stem.587] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have used homologous recombination in human embryonic stem cells (hESCs) to insert sequences encoding green fluorescent protein (GFP) into the NKX2.1 locus, a gene required for normal development of the basal forebrain. Generation of NKX2.1-GFP(+) cells was dependent on the concentration, timing, and duration of retinoic acid treatment during differentiation. NKX2.1-GFP(+) progenitors expressed genes characteristic of the basal forebrain, including SHH, DLX1, LHX6, and OLIG2. Time course analysis revealed that NKX2.1-GFP(+) cells could upregulate FOXG1 expression, implying the existence of a novel pathway for the generation of telencephalic neural derivatives. Further maturation of NKX2.1-GFP(+) cells gave rise to γ-aminobutyric acid-, tyrosine hydroxylase-, and somatostatin-expressing neurons as well as to platelet-derived growth factor receptor α-positive oligodendrocyte precursors. These studies highlight the diversity of cell types that can be generated from human NKX2.1(+) progenitors and demonstrate the utility of NKX2.1(GFP/w) hESCs for investigating human forebrain development and neuronal differentiation.
Collapse
Affiliation(s)
- Adam L Goulburn
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Durnaoglu S, Genc S, Genc K. Patient-specific pluripotent stem cells in neurological diseases. Stem Cells Int 2011; 2011:212487. [PMID: 21776279 PMCID: PMC3138107 DOI: 10.4061/2011/212487] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/28/2011] [Accepted: 05/09/2011] [Indexed: 12/29/2022] Open
Abstract
Many human neurological diseases are not currently curable and result in devastating neurologic sequelae. The increasing availability of induced pluripotent stem cells (iPSCs) derived from adult human somatic cells provides new prospects for cellreplacement strategies and disease-related basic research in a broad spectrum of human neurologic diseases. Patient-specific iPSC-based modeling of neurogenetic and neurodegenerative diseases is an emerging efficient tool for in vitro modeling to understand disease and to screen for genes and drugs that modify the disease process. With the exponential increase in iPSC research in recent years, human iPSCs have been successfully derived with different technologies and from various cell types. Although there remain a great deal to learn about patient-specific iPSC safety, the reprogramming mechanisms, better ways to direct a specific reprogramming, ideal cell source for cellular grafts, and the mechanisms by which transplanted stem cells lead to an enhanced functional recovery and structural reorganization, the discovery of the therapeutic potential of iPSCs offers new opportunities for the treatment of incurable neurologic diseases. However, iPSC-based therapeutic strategies need to be thoroughly evaluated in preclinical animal models of neurological diseases before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Serpen Durnaoglu
- Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | | | |
Collapse
|
189
|
Jing Y, Machon O, Hampl A, Dvorak P, Xing Y, Krauss S. In vitro differentiation of mouse embryonic stem cells into neurons of the dorsal forebrain. Cell Mol Neurobiol 2011; 31:715-27. [PMID: 21424551 PMCID: PMC3100494 DOI: 10.1007/s10571-011-9669-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/16/2011] [Indexed: 11/23/2022]
Abstract
Pluripotent embryonic stem cells (ESCs) are able to differentiate into all cell types in the organism including cortical neurons. To follow the dynamic generation of progenitors of the dorsal forebrain in vitro, we generated ESCs from D6-GFP mice in which GFP marks neocortical progenitors and neurons after embryonic day (E) 10.5. We used several cell culture protocols for differentiation of ESCs into progenitors and neurons of the dorsal forebrain. In cell culture, GFP-positive cells were induced under differentiation conditions in quickly formed embryoid bodies (qEBs) after 10-12 day incubation. Activation of Wnt signaling during ESC differentiation further stimulated generation of D6-GFP-positive cortical cells. In contrast, differentiation protocols using normal embryoid bodies (nEBs) yielded only a few D6-GFP-positive cells. Gene expression analysis revealed that multiple components of the canonical Wnt signaling pathway were expressed during the development of embryoid bodies. As shown by immunohistochemistry and quantitative qRT-PCR, D6-GFP-positive cells from qEBs expressed genes that are characteristic for the dorsal forebrain such as Pax6, Dach1, Tbr1, Tbr2, or Sox5. qEBs culture allowed the formation of a D6-GFP positive pseudo-polarized neuroepithelium with the characteristic presence of N-cadherin at the apical pole resembling the structure of the developing neocortex.
Collapse
Affiliation(s)
- Ying Jing
- School of Medicine, Zhengzhou University, Zhengzhou, 450001 China
- Oslo University Hospital, Unit for Cell Signalling, Forskningsparken, Gaustadalleen 21, 0349 Oslo, Norway
| | - Ondrej Machon
- Oslo University Hospital, Unit for Cell Signalling, Forskningsparken, Gaustadalleen 21, 0349 Oslo, Norway
- Institute of Molecular Genetics, Academy of Sciences, 14220 Prague, Czech Republic
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 62500 Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Ying Xing
- School of Medicine, Zhengzhou University, Zhengzhou, 450001 China
| | - Stefan Krauss
- Oslo University Hospital, Unit for Cell Signalling, Forskningsparken, Gaustadalleen 21, 0349 Oslo, Norway
| |
Collapse
|
190
|
Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011; 472:51-6. [PMID: 21475194 DOI: 10.1038/nature09941] [Citation(s) in RCA: 1443] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/17/2011] [Indexed: 12/20/2022]
Abstract
Balanced organogenesis requires the orchestration of multiple cellular interactions to create the collective cell behaviours that progressively shape developing tissues. It is currently unclear how individual, localized parts are able to coordinate with each other to develop a whole organ shape. Here we report the dynamic, autonomous formation of the optic cup (retinal primordium) structure from a three-dimensional culture of mouse embryonic stem cell aggregates. Embryonic-stem-cell-derived retinal epithelium spontaneously formed hemispherical epithelial vesicles that became patterned along their proximal-distal axis. Whereas the proximal portion differentiated into mechanically rigid pigment epithelium, the flexible distal portion progressively folded inward to form a shape reminiscent of the embryonic optic cup, exhibited interkinetic nuclear migration and generated stratified neural retinal tissue, as seen in vivo. We demonstrate that optic-cup morphogenesis in this simple cell culture depends on an intrinsic self-organizing program involving stepwise and domain-specific regulation of local epithelial properties.
Collapse
|
191
|
Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci 2011; 31:1919-33. [PMID: 21289201 DOI: 10.1523/jneurosci.5128-10.2011] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During early telencephalic development, the major portion of the ventral telencephalic (subpallial) region becomes subdivided into three regions, the lateral (LGE), medial (MGE), and caudal (CGE) ganglionic eminences. In this study, we systematically recapitulated subpallial patterning in mouse embryonic stem cell (ESC) cultures and investigated temporal and combinatory actions of patterning signals. In serum-free floating culture, the dorsal-ventral specification of ESC-derived telencephalic neuroectoderm is dose-dependently directed by Sonic hedgehog (Shh) signaling. Early Shh treatment, even before the expression onset of Foxg1 (also Bf1; earliest marker of the telencephalic lineage), is critical for efficiently generating LGE progenitors, and continuous Shh signaling until day 9 is necessary to commit these cells to the LGE lineage. When induced under these conditions and purified by fluorescence-activated cell sorter, telencephalic cells efficiently differentiated into Nolz1(+)/Ctip2(+) LGE neuronal precursors and subsequently, both in culture and after in vivo grafting, into DARPP32(+) medium-sized spiny neurons. Purified telencephalic progenitors treated with high doses of the Hedgehog (Hh) agonist SAG (Smoothened agonist) differentiated into MGE- and CGE-like tissues. Interestingly, in addition to strong Hh signaling, the efficient specification of MGE cells requires Fgf8 signaling but is inhibited by treatment with Fgf15/19. In contrast, CGE differentiation is promoted by Fgf15/19 but suppressed by Fgf8, suggesting that specific Fgf signals play different, critical roles in the positional specification of ESC-derived ventral subpallial tissues. We discuss a model of the antagonistic Fgf8 and Fgf15/19 signaling in rostral-caudal subpallial patterning and compare it with the roles of these molecules in cortical patterning.
Collapse
|
192
|
Ohgushi M, Sasai Y. Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends Cell Biol 2011; 21:274-82. [PMID: 21444207 DOI: 10.1016/j.tcb.2011.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
Two kinds of human pluripotent cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), promise new avenues for medical innovation. These human cells share many similarities with mouse counterparts, including pluripotency, and they exhibit several unique properties. This review examines the diversity of mammalian pluripotent cells from a perspective of metastable pluripotency states. An intriguing phenomenon unique to human pluripotent stem cells is dissociation-induced apoptosis, which has been a technical problem for various cellular manipulations. The discovery that this apoptosis is suppressed by ROCK inhibitors brought revolutionary change to this troublesome situation. We discuss possible links of the metastable pluripotent state to ROCK-dependent human embryonic stem cell apoptosis and summarize recent progress in molecular understandings of this phenomenon.
Collapse
Affiliation(s)
- Masatoshi Ohgushi
- Unit for Human Stem Cell Technology, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | | |
Collapse
|
193
|
Cundiff PE, Anderson SA. Impact of induced pluripotent stem cells on the study of central nervous system disease. Curr Opin Genet Dev 2011; 21:354-61. [PMID: 21277194 DOI: 10.1016/j.gde.2011.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/21/2022]
Abstract
The derivation of pluripotent stem cells from somatic tissues has provided researchers with a source of patient-specific stem cells. The potential applications of this technology are truly momentous, and include cellular modeling of disease processes, drug discovery, and cell-based therapy. Here, we review the use of induced pluripotent stem cells (iPSCs) to study CNS disease. Since the iPSC field is still in its infancy, we also discuss some of the challenges that will need to be overcome before the potential of this technology to study and to treat neurological and psychiatric disorders can be fully harnessed.
Collapse
Affiliation(s)
- Paige E Cundiff
- Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | | |
Collapse
|
194
|
El Majdoubi M. Stem cell-derived in vitro models for investigating the effects of endocrine disruptors on developing neurons and neuroendocrine cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:292-299. [PMID: 21790313 DOI: 10.1080/10937404.2011.578553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neuroendocrine cells are a set of specialized hormone-releasing neurons that control most vital functions in humans and wildlife, such as growth, reproduction, metabolism, and stress responses. Increasing evidence points to neuroendocrine cells as the primary neuronal target of endocrine disruptors. Endocrine disruption appears to be most significant during prenatal and early postnatal development. However, limitations with traditional cell culture models of neuronal development led to a lack of understanding regarding the mechanisms by which endocrine disruptors affect neurodevelopment. In recent years, Stem Cell-derived neuronal models have become available and may offer distinct advantages over other in vitro model systems for investigating the effects of endocrine disruptors on the developing brain. Further, recently new models of Stem Cell-derived neuroendocrine cells that may provide more effective ways for studying the effects of endocrine disruptors directly on developing neuroendocrine cells in vitro were developed. This constitutes a review of currently available cell models of developing neurons that have been used to investigate in vitro effects of endocrine disruptors on developing brain. The review also presents recently developed models of Stem Cell-derived neuroendocrine cells that might be used to investigate in vitro effects of endocrine disruptors and their mechanisms of action directly on the developing neuroendocrine cells.
Collapse
Affiliation(s)
- Mohammed El Majdoubi
- Department of Natural Sciences and Mathematics, Science Center, Dominican University of California, Rafael, CA 94901, USA.
| |
Collapse
|
195
|
Gaspard N, Vanderhaeghen P. From stem cells to neural networks: recent advances and perspectives for neurodevelopmental disorders. Dev Med Child Neurol 2011; 53:13-7. [PMID: 21087236 DOI: 10.1111/j.1469-8749.2010.03827.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Embryonic or induced pluripotent stem cells, available in mouse and human, have emerged as powerful tools to address complex questions in neurobiology. This review focuses on major advances relating to brain development and developmental disorders. Stem cells can differentiate into many different neuronal subtypes using in vitro models mimicking relevant in vivo developmental processes, and the underlying molecular and cellular mechanisms. Disease-specific human embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells are now available and allow for the study in vitro of the pathophysiology of degenerative and neurodevelopmental hereditary and sporadic disorders, including in the near future those of the human cortex. Finally, some recent studies have shown that stem cell-derived neural progenitors and neurons could help to rebuild damaged brain circuitry, opening the possibility of cell therapy.
Collapse
Affiliation(s)
- Nicolas Gaspard
- Université Libre de Bruxelles, Institute for Interdisciplinary Research, Brussels, Belgium
| | | |
Collapse
|
196
|
Peljto M, Dasen JS, Mazzoni EO, Jessell TM, Wichterle H. Functional diversity of ESC-derived motor neuron subtypes revealed through intraspinal transplantation. Cell Stem Cell 2010; 7:355-66. [PMID: 20804971 DOI: 10.1016/j.stem.2010.07.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 04/30/2010] [Accepted: 07/21/2010] [Indexed: 12/14/2022]
Abstract
Cultured ESCs can form different classes of neurons, but whether these neurons can acquire specialized subtype features typical of neurons in vivo remains unclear. We show here that mouse ESCs can be directed to form highly specific motor neuron subtypes in the absence of added factors, through a differentiation program that relies on endogenous Wnts, FGFs, and Hh-mimicking the normal program of motor neuron subtype differentiation. Molecular markers that characterize motor neuron subtypes anticipate the functional properties of these neurons in vivo: ESC-derived motor neurons grafted isochronically into chick spinal cord settle in appropriate columnar domains and select axonal trajectories with a fidelity that matches that of their in vivo generated counterparts. ESC-derived motor neurons can therefore be programmed in a predictive manner to acquire molecular and functional properties that characterize one of the many dozens of specialized motor neuron subtypes that exist in vivo.
Collapse
Affiliation(s)
- Mirza Peljto
- Department of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
197
|
Peljto M, Wichterle H. Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol 2010; 21:43-51. [PMID: 20970319 DOI: 10.1016/j.conb.2010.09.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 01/01/2023]
Abstract
Richness of neural circuits and specificity of neuronal connectivity depend on the diversification of nerve cells into functionally and molecularly distinct subtypes. Although efficient methods for directed differentiation of embryonic stem cells (ESCs) into multiple principal neuronal classes have been established, only a few studies systematically examined the subtype diversity of in vitro derived nerve cells. Here we review evidence based on molecular and in vivo transplantation studies that ESC-derived spinal motor neurons and cortical layer V pyramidal neurons acquire subtype specific functional properties. We discuss similarities and differences in the role of cell-intrinsic transcriptional programs, extrinsic signals and cell-cell interactions during subtype diversification of the two classes of nerve cells. We conclude that the high degree of fidelity with which differentiating ESCs recapitulate normal embryonic development provides a unique opportunity to explore developmental processes underlying specification of mammalian neuronal diversity in a simplified and experimentally accessible system.
Collapse
Affiliation(s)
- Mirza Peljto
- Dept. of Pathology and Cell Biology, Neurology, Neuroscience, Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
198
|
Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, Kakizuka A, Obata K, Yanagawa Y, Hirano T, Sasai Y. Ontogeny-recapitulating generation and tissue integration of ES cell–derived Purkinje cells. Nat Neurosci 2010; 13:1171-80. [DOI: 10.1038/nn.2638] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/13/2010] [Indexed: 11/09/2022]
|
199
|
Szarek E, Cheah PS, Schwartz J, Thomas P. Molecular genetics of the developing neuroendocrine hypothalamus. Mol Cell Endocrinol 2010; 323:115-23. [PMID: 20385202 DOI: 10.1016/j.mce.2010.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Formation of the mammalian endocrine system and neuroendocrine organs involves complex regulatory networks resulting in a highly specialized cell system able to secrete a diverse array of peptide hormones. The hypothalamus is located in the mediobasal region of the brain and acts as a gateway between the endocrine and nervous systems. From an endocrinology perspective, the parvicellular neurons of the hypothalamus are of particular interest as they function as a control centre for several critical physiological processes including growth, metabolism and reproduction by regulating hormonal signaling from target cognate cell types in the anterior pituitary. Delineating the genetic program that controls hypothalamic development is essential for complete understanding of parvicellular neuronal function and the etiology of congenital disorders that result from hypothalamic-pituitary axis dysfunction. In recent years, studies have shed light on the interactions between signaling molecules and activation of transcription factors that regulate hypothalamic cell fate commitment and terminal differentiation. The aim of this review is to summarize the recent molecular and genetic findings that have advanced our understanding of the emergence of the known important hypophysiotropic signaling molecules in the hypothalamus. We have focused on reviewing the literature that provides evidence of the dependence on expression of specific genes for the normal development and function of the cells that secrete these neuroendocrine factors, as well as studies of the elaboration of the spatial or temporal patterns of changes in gene expression that drive this development.
Collapse
Affiliation(s)
- Eva Szarek
- Discipline of Physiology, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
200
|
Gaspard N, Vanderhaeghen P. Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol 2010; 20:37-43. [PMID: 20080043 DOI: 10.1016/j.conb.2009.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 12/21/2022]
Abstract
While embryonic stem (ES) cells have been used for several years to generate specific populations of neural cells in a translational perspective, they have also emerged as a promising approach in developmental neurobiology, by providing reductionist models of neural development. Here we review recent work that indicates that ES-based models are not only able to mimic normal brain development, but also provide novel tools to dissect the relative contribution of intrinsic and extrinsic mechanisms of neural specification. These have thus not only revealed insights on early steps such as neural induction and regional patterning, but also temporal specification of distinct neuronal subtypes, as well as the later acquisition of more complex features such as cytoarchitecture and hodological properties.
Collapse
Affiliation(s)
- Nicolas Gaspard
- Université Libre de Bruxelles (U.L.B.), IRIBHM (Institute for Interdisciplinary Research), Campus Erasme, 808 route de Lennik, B-1070 Brussels, Belgium
| | | |
Collapse
|