151
|
He F, Nakamura H, Hoshino S, Fong Chin JS, Yang L, Zhang H, Hayashi F, Abe I. Hinduchelins A-D, Noncytotoxic Catechol Derivatives from Streptoalloteichus hindustanus. JOURNAL OF NATURAL PRODUCTS 2018; 81:1493-1496. [PMID: 29792433 DOI: 10.1021/acs.jnatprod.8b00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Four new catechol derivatives, hinduchelins A-D (1-4), composed of 2,3- dihydroxybenzoic acid, threonine, and decarboxylated phenylalanine, were isolated from Streptoalloteichus hindustanus. Their structures and absolute configurations were elucidated by interpretation of NMR and HRMS data and quantum chemical ECD calculations. The iron-binding properties of the compounds were evaluated by a pyoverdine production assay in Pseudomonas aeruginosa, and compound 4 showed moderate ability to induce pyoverdine production at 50 μM. None of the compounds were cytotoxic toward HL-20, A549, SMMC-7721, MCF-7, and SW-480 tumor cell lines.
Collapse
Affiliation(s)
- Fei He
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-0033 , Japan
- Integrative Microbiology Research Centre, College of Agriculture , South China Agricultural University , Guangzhou 510642 , People's Republic of China
| | - Hitomi Nakamura
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Joyce Seow Fong Chin
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) , Nanyang Technological University , Singapore 637551 , Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) , Nanyang Technological University , Singapore 637551 , Singapore
| | - Huiping Zhang
- RIKEN Center for Life Science Technology , 1-7-22, Suehiro-cho , Tsurumi-ku, Yokuhama 230-0045 , Japan
| | - Fumiaki Hayashi
- RIKEN Center for Life Science Technology , 1-7-22, Suehiro-cho , Tsurumi-ku, Yokuhama 230-0045 , Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
152
|
Huang L, Liu W, Jiang Q, Zuo Y, Su Y, Zhao L, Qin Y, Yan Q. Integration of Transcriptomic and Proteomic Approaches Reveals the Temperature-Dependent Virulence of Pseudomonas plecoglossicida. Front Cell Infect Microbiol 2018; 8:207. [PMID: 29977868 PMCID: PMC6021524 DOI: 10.3389/fcimb.2018.00207] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/05/2018] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas plecoglossicida is a facultative pathogen that is associated with diseases of multiple fish, mainly at 15–20°C. Although fish disease caused by P. plecoglossicida has led to significant economic losses, the mechanisms of the temperature-dependent virulence are unclear. Here, we identify potential pathogenicity mechanisms and demonstrate the direct regulation of several virulence factors by temperature with transcriptomic and proteomic analyses, quantitative real-time PCR (qRT-PCR), RNAi, pyoverdine (PVD) quantification, the chrome azurol S (CAS) assay, growth curve measurements, a biofilm assay, and artificial infection. The principal component analysis, the heat map generation and hierarchical clustering, together with the functional annotations of the differentially expressed genes (DEGs) demonstrated that, under different growth temperatures, the animation and focus of P. plecoglossicida are quite different, which may be the key to pathogenicity. Genes involved in PVD synthesis and in the type VI secretion system (T6SS) are specifically upregulated at the virulent temperature of 18°C. Silencing of the PVD-synthesis-related genes reduces the iron acquisition, growth, biofilm formation, distribution in host organs and virulence of the bacteria. Silencing of the T6SS genes also leads to the reduction of biofilm formation, distribution in host organs and virulence. These findings reveal that temperature regulates multiple virulence mechanisms in P. plecoglossicida, especially through iron acquisition and T6SS secretion. Meanwhile, integration of transcriptomic and proteomic data provide us with a new perspective into the pathogenesis of P. plecoglossicida, which would not have been easy to catch at either the protein or mRNA differential analyses alone, thus illustrating the power of multi-omics analyses in microbiology.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Wenjia Liu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingling Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
153
|
Kang D, Kirienko NV. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J Microbiol 2018; 56:449-457. [PMID: 29948830 DOI: 10.1007/s12275-018-8114-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms remain a persistent threat to human healthcare due to their role in the development of antimicrobial resistance. To combat multi-drug resistant pathogens, it is crucial to enhance our understanding of not only the regulation of biofilm formation, but also its contribution to bacterial virulence. Iron acquisition lies at the crux of these two subjects. In this review, we discuss the role of iron acquisition in biofilm formation and how hosts impede this mechanism to defend against pathogens. We also discuss recent findings that suggest that biofilm formation can also have the reciprocal effect, influencing siderophore production and iron sequestration.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of Biosciences, Rice University, Houston, USA
| | | |
Collapse
|
154
|
Borges A, Simões M, Todorović TR, Filipović NR, García-Sosa AT. Cobalt Complex with Thiazole-Based Ligand as New Pseudomonas aeruginosa Quorum Quencher, Biofilm Inhibitor and Virulence Attenuator. Molecules 2018; 23:E1385. [PMID: 29890626 PMCID: PMC6099793 DOI: 10.3390/molecules23061385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most dreaded human pathogens, because of its intrinsic resistance to a number of commonly used antibiotics and ability to form sessile communities (biofilms). Innovative treatment strategies are required and that can rely on the attenuation of the pathogenicity and virulence traits. The interruption of the mechanisms of intercellular communication in bacteria (quorum sensing) is one of such promising strategies. A cobalt coordination compound (Co(HL)₂) synthesized from (E)-2-(2-(pyridin-2-ylmethylene)hydrazinyl)-4-(p-tolyl)thiazole (HL) is reported herein for the first time to inhibit P. aeruginosa 3-oxo-C12-HSL-dependent QS system (LasI/LasR system) and underling phenotypes (biofilm formation and virulence factors). Its interactions with a possible target, the transcriptional activator protein complex LasR-3-oxo-C12-HSL, was studied by molecular modeling with the coordination compound ligand having stronger predicted interactions than those of co-crystallized ligand 3-oxo-C12-HSL, as well as known-binder furvina. Transition metal group 9 coordination compounds may be explored in antipathogenic/antibacterial drug design.
Collapse
Affiliation(s)
- Anabela Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Tamara R Todorović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12⁻16, Belgrade 11000, Serbia.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11000, Serbia.
| | | |
Collapse
|
155
|
Fourie R, Kuloyo OO, Mochochoko BM, Albertyn J, Pohl CH. Iron at the Centre of Candida albicans Interactions. Front Cell Infect Microbiol 2018; 8:185. [PMID: 29922600 PMCID: PMC5996042 DOI: 10.3389/fcimb.2018.00185] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Iron is an absolute requirement for both the host and most pathogens alike and is needed for normal cellular growth. The acquisition of iron by biological systems is regulated to circumvent toxicity of iron overload, as well as the growth deficits imposed by iron deficiency. In addition, hosts, such as humans, need to limit the availability of iron to pathogens. However, opportunistic pathogens such as Candida albicans are able to adapt to extremes of iron availability, such as the iron replete environment of the gastrointestinal tract and iron deficiency during systemic infection. C. albicans has developed a complex and effective regulatory circuit for iron acquisition and storage to circumvent iron limitation within the human host. As C. albicans can form complex interactions with both commensal and pathogenic co-inhabitants, it can be speculated that iron may play an important role in these interactions. In this review, we highlight host iron regulation as well as regulation of iron homeostasis in C. albicans. In addition, the review argues for the need for further research into the role of iron in polymicrobial interactions. Lastly, the role of iron in treatment of C. albicans infection is discussed.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Oluwasegun O Kuloyo
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Bonang M Mochochoko
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
156
|
Wang K, Chen YQ, Salido MM, Kohli GS, Kong JL, Liang HJ, Yao ZT, Xie YT, Wu HY, Cai SQ, Drautz-Moses DI, Darling AE, Schuster SC, Yang L, Ding Y. The rapid in vivo evolution of Pseudomonas aeruginosa in ventilator-associated pneumonia patients leads to attenuated virulence. Open Biol 2018; 7:rsob.170029. [PMID: 28878043 PMCID: PMC5627047 DOI: 10.1098/rsob.170029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe airway infections in humans. These infections are usually difficult to treat and associated with high mortality rates. While colonizing the human airways, P. aeruginosa could accumulate genetic mutations that often lead to its better adaptability to the host environment. Understanding these evolutionary traits may provide important clues for the development of effective therapies to treat P. aeruginosa infections. In this study, 25 P. aeruginosa isolates were longitudinally sampled from the airways of four ventilator-associated pneumonia (VAP) patients. Pacbio and Illumina sequencing were used to analyse the in vivo evolutionary trajectories of these isolates. Our analysis showed that positive selection dominantly shaped P. aeruginosa genomes during VAP infections and led to three convergent evolution events, including loss-of-function mutations of lasR and mpl, and a pyoverdine-deficient phenotype. Specifically, lasR encodes one of the major transcriptional regulators in quorum sensing, whereas mpl encodes an enzyme responsible for recycling cell wall peptidoglycan. We also found that P. aeruginosa isolated at late stages of VAP infections produce less elastase and are less virulent in vivo than their earlier isolated counterparts, suggesting the short-term in vivo evolution of P. aeruginosa leads to attenuated virulence.
Collapse
Affiliation(s)
- Ke Wang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Centre for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Yi-Qiang Chen
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - May M Salido
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Gurjeet S Kohli
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Jin-Liang Kong
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Hong-Jie Liang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Zi-Ting Yao
- Centre for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Yan-Tong Xie
- The First Clinical School of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Shuang-Qi Cai
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Aaron E Darling
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yichen Ding
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore .,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.,Interdisciplinary Graduate School, SCELSE, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
157
|
Bhardwaj T, Haque S, Somvanshi P. In silico identification of molecular mimics involved in the pathogenesis of Clostridium botulinum ATCC 3502 strain. Microb Pathog 2018; 121:238-244. [PMID: 29763729 DOI: 10.1016/j.micpath.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
Abstract
Bacterial pathogens invade and disrupt the host defense system by means of protein sequences structurally similar at global and local level both. The sharing of homologous sequences between the host and the pathogenic bacteria mediates the infection and defines the concept of molecular mimicry. In this study, various computational approaches were employed to elucidate the pathogenicity of Clostridium botulinum ATCC 3502 at genome-wide level. Genome-wide study revealed that the pathogen mimics the host (Homo sapiens) and unraveled the complex pathogenic pathway of causing infection. The comparative 'omics' approaches helped in selective screening of 'molecular mimicry' candidates followed by the qualitative assessment of the virulence potential and functional enrichment. Overall, this study provides a deep insight into the emergence and surveillance of multidrug resistant C. botulinum ATCC 3502 caused infections. This is the very first report identifying C. botulinum ATCC 3502 proteome enriched similarities to the human host proteins and resulted in the identification of 20 potential mimicry candidates, which were further characterized qualitatively by sub-cellular organization prediction and functional annotation. This study will provide a variety of avenues for future studies related to infectious agents, host-pathogen interactions and the evolution of pathogenesis process.
Collapse
Affiliation(s)
- Tulika Bhardwaj
- Department of Biotechnology, 10, Institutional Area, Vasant Kunj, TERI School of Advanced Studies, New Delhi 110070, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Pallavi Somvanshi
- Department of Biotechnology, 10, Institutional Area, Vasant Kunj, TERI School of Advanced Studies, New Delhi 110070, India.
| |
Collapse
|
158
|
The Pseudomonas aeruginosa PrrF1 and PrrF2 Small Regulatory RNAs Promote 2-Alkyl-4-Quinolone Production through Redundant Regulation of the antR mRNA. J Bacteriol 2018; 200:JB.00704-17. [PMID: 29507088 DOI: 10.1128/jb.00704-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that requires iron for growth and virulence. Under low-iron conditions, P. aeruginosa transcribes two highly identical (95%) small regulatory RNAs (sRNAs), PrrF1 and PrrF2, which are required for virulence in acute murine lung infection models. The PrrF sRNAs promote the production of 2-akyl-4(1H)-quinolone metabolites (AQs) that mediate a range of biological activities, including quorum sensing and polymicrobial interactions. Here, we show that the PrrF1 and PrrF2 sRNAs promote AQ production by redundantly inhibiting translation of antR, which encodes a transcriptional activator of the anthranilate degradation genes. A combination of genetic and biophysical analyses was used to define the sequence requirements for PrrF regulation of antR, demonstrating that the PrrF sRNAs interact with the antR 5' untranslated region (UTR) at sequences overlapping the translational start site of this mRNA. The P. aeruginosa Hfq protein interacted with UA-rich sequences in both PrrF sRNAs (Kd [dissociation constant] = 50 nM and 70 nM). Hfq bound with lower affinity to the antR mRNA (0.3 μM), and PrrF was able to bind to antR mRNA in the absence of Hfq. Nevertheless, Hfq increased the rate of PrrF annealing to the antR UTR by 10-fold. These studies provide a mechanistic description of how the PrrF1 and PrrF2 sRNAs mediate virulence traits, such as AQ production, in P. aeruginosaIMPORTANCE The iron-responsive PrrF sRNAs play a central role in regulating P. aeruginosa iron homeostasis and pathogenesis, yet the molecular mechanisms by which PrrF regulates gene expression are largely unknown. In this study, we used genetic and biophysical analyses to define the interactions of the PrrF sRNAs with Hfq, an RNA annealer, and the antR mRNA, which has downstream effects on quorum sensing and virulence factor production. These studies provide a comprehensive mechanistic analysis of how the PrrF sRNAs regulate virulence trait production through a key mRNA target in P. aeruginosa.
Collapse
|
159
|
Leinweber A, Weigert M, Kümmerli R. The bacterium Pseudomonas aeruginosa senses and gradually responds to interspecific competition for iron. Evolution 2018; 72:1515-1528. [PMID: 29665015 PMCID: PMC6314444 DOI: 10.1111/evo.13491] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/07/2018] [Indexed: 12/20/2022]
Abstract
Phenotypic plasticity in response to competition is a well-described phenomenon in higher organisms. Here, we show that also bacteria have the ability to sense the presence of competitors and mount fine-tuned responses to match prevailing levels of competition. In our experiments, we studied interspecific competition for iron between the bacterium Pseudomonas aeruginosa (PA) and its competitor Burkholderia cenocepacia (BC). We focused on the ability of PA to phenotypically adjust the production of pyoverdine, an iron-scavenging siderophore. We found that PA upregulates pyoverdine production early on during competition under condition of low iron availability. This plastic upregulation was fine-tuned in response to the level of competition imposed by BC, and seems to confer a relative fitness benefit to PA in the form of an earlier initiation of growth. At later time points, however, PA showed reduced growth in mixed compared to monoculture, suggesting that competitive responses are costly. Altogether, our results demonstrate that phenotypic plasticity in siderophore production plays an important role in interspecific competition for iron. Upregulating siderophore production may be a powerful strategy to lock iron away from competing species, and to reserve this nutrient for strain members possessing the compatible receptor for uptake.
Collapse
Affiliation(s)
- Anne Leinweber
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
160
|
A Robust CRISPR Interference Gene Repression System in Pseudomonas. J Bacteriol 2018; 200:JB.00575-17. [PMID: 29311279 DOI: 10.1128/jb.00575-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas spp. are widely used model organisms in different areas of research. Despite the relevance of Pseudomonas in many applications, the use of protein depletion tools in this host remains limited. Here, we developed the CRISPR interference system for gene repression in Pseudomonas spp. using a nuclease-null Streptococcus pasteurianus Cas9 variant (dead Cas9, or dCas9). We demonstrate a robust and titratable gene depletion system with up to 100-fold repression in β-galactosidase activity in P. aeruginosa and 300-fold repression in pyoverdine production in Pseudomonas putida This inducible system enables the study of essential genes, as shown by ftsZ depletions in P. aeruginosa, P. putida, and Pseudomonas fluorescens that led to phenotypic changes consistent with depletion of the targeted gene. Additionally, we performed the first in vivo characterization of protospacer adjacent motif (PAM) site preferences of S. pasteurianus dCas9 and identified NNGCGA as a functional PAM site that resulted in repression efficiencies comparable to the consensus NNGTGA sequence. This discovery significantly expands the potential genomic targets of S. pasteurianus dCas9, especially in GC-rich organisms.IMPORTANCEPseudomonas spp. are prevalent in a variety of environments, such as the soil, on the surface of plants, and in the human body. Although Pseudomonas spp. are widely used as model organisms in different areas of research, existing tools to deplete a protein of interest in these organisms remain limited. We have developed a robust and inducible gene repression tool in P. aeruginosa, P. putida, and P. fluorescens using the Streptococcus pasteurianus dCas9. This method of protein depletion is superior to existing methods, such as promoter replacements and addition of degradation tags, because it does not involve genomic modifications of the target protein, is titratable, and is capable of repressing multiple genes simultaneously. This gene repression system now enables easy depletion of specific proteins in Pseudomonas, accelerating the study and engineering of this widely used model organism.
Collapse
|
161
|
Weigert M, Kümmerli R. The physical boundaries of public goods cooperation between surface-attached bacterial cells. Proc Biol Sci 2018; 284:rspb.2017.0631. [PMID: 28701557 DOI: 10.1098/rspb.2017.0631] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/02/2017] [Indexed: 01/17/2023] Open
Abstract
Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. Here, we address this issue by studying the sharing of iron-scavenging siderophores between surface-attached microcolonies of the bacterium Pseudomonas aeruginosa Using single-cell fluorescence microscopy, we show that siderophores, secreted by producers, quickly reach non-producers within a range of 100 µm, and significantly boost their fitness. Producers in turn respond to variation in sharing efficiency by adjusting their pyoverdine investment levels. These social effects wane with larger cell-to-cell distances and on hard surfaces. Thus, our findings reveal the boundaries of compound sharing, and show that sharing is particularly relevant between nearby yet physically separated bacteria on soft surfaces, matching realistic natural conditions such as those encountered in soft tissue infections.
Collapse
Affiliation(s)
- Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland .,Department of Biology I, Division of Microbiology, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
162
|
Sharma R, Bhardwaj R, Gautam V, Kohli SK, Kaur P, Bali RS, Saini P, Thukral AK, Arora S, Vig AP. Microbial Siderophores in Metal Detoxification and Therapeutics: Recent Prospective and Applications. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
163
|
Kang D, Turner KE, Kirienko NV. PqsA Promotes Pyoverdine Production via Biofilm Formation. Pathogens 2017; 7:pathogens7010003. [PMID: 29295589 PMCID: PMC5874729 DOI: 10.3390/pathogens7010003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023] Open
Abstract
Biofilms create an impermeable barrier against antimicrobial treatment and immune cell access, severely complicating treatment and clearance of nosocomial Pseudomonas aeruginosa infections. We recently reported that biofilm also contributes to pathogen virulence by regulating the production of the siderophore pyoverdine. In this study, we investigated the role of PqsA, a key cell-signaling protein, in this regulatory pathway. We demonstrate that PqsA promotes pyoverdine production in a biofilm-dependent manner. Under nutritionally deficient conditions, where biofilm and pyoverdine are decoupled, PqsA is dispensable for pyoverdine production. Interestingly, although PqsA-dependent pyoverdine production does not rely upon Pseudomonas quinolone signal (PQS) biosynthesis, exogenous PQS can also trigger biofilm-independent production of pyoverdine. Adding PQS rapidly induced planktonic cell aggregation. Moreover, these clumps of cells exhibit strong expression of pyoverdine biosynthetic genes and show substantial production of this siderophore. Finally, we surveyed the relationship between biofilm formation and pyoverdine production in various clinical and environmental isolates of P. aeruginosa to evaluate the clinical significance of targeting biofilm during infections. Our findings implicate PqsA in P. aeruginosa virulence by regulating biofilm formation and pyoverdine production.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| | - Kelly E Turner
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| | | |
Collapse
|
164
|
Bishop TF, Martin LW, Lamont IL. Activation of a Cell Surface Signaling Pathway in Pseudomonas aeruginosa Requires ClpP Protease and New Sigma Factor Synthesis. Front Microbiol 2017; 8:2442. [PMID: 29312164 PMCID: PMC5733041 DOI: 10.3389/fmicb.2017.02442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/24/2017] [Indexed: 11/13/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors control expression of large numbers of genes in bacteria. Most ECF sigma factors are inhibited by antisigma proteins, with inhibition being relieved by environmental signals that lead to inactivation of the antisigma protein and consequent sigma factor activity. In cell surface signaling (CSS) systems in Gram negative bacteria antisigma activity is controlled by an outer membrane protein receptor and its ligand. In Pseudomonas aeruginosa one such system controls expression of genes for secretion and uptake of a siderophore, pyoverdine. In this system the activities of two sigma factors σFpvI and σPvdS are inhibited by antisigma protein FpvR20 that binds to the sigma factors, preventing their interaction with core RNA polymerase. Transport of ferripyoverdine by its outer membrane receptor FpvA causes proteolytic degradation of FpvR20, inducing expression of σFpvI- and σPvdS-dependent target genes. Here we show that degradation of FpvR20 and induction of target gene expression was initiated within 1 min of addition of pyoverdine. FpvR20 was only partially degraded in a mutant lacking the intracellular ClpP protease, resulting in an FpvR20 subfragment (FpvR12) that inhibited σFpvI and σPvdS. The translation inhibitor chloramphenicol did not prevent induction of an σFpvI-dependent gene, showing that degradation of FpvR20 released pre-existing σFpvI in an active form. However, chloramphenicol inhibited induction of σPvdS-dependent genes showing that active σPvdS is not released when FpvR20 is degraded and instead, σPvdS must be synthesized in the absence of FpvR20 to be active. These findings show that sigma factor activation occurs rapidly following addition of the inducing signal in a CSS pathway and requires ClpP protease. Induction of gene expression that can arise from release of active sigma from an antisigma protein but can also require new sigma factor synthesis.
Collapse
Affiliation(s)
- Thomas F Bishop
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
165
|
Studies of Pseudomonas aeruginosa Mutants Indicate Pyoverdine as the Central Factor in Inhibition of Aspergillus fumigatus Biofilm. J Bacteriol 2017; 200:JB.00345-17. [PMID: 29038255 DOI: 10.1128/jb.00345-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus are common opportunistic bacterial and fungal pathogens, respectively. They often coexist in airways of immunocompromised patients and individuals with cystic fibrosis, where they form biofilms and cause acute and chronic illnesses. Hence, the interactions between them have long been of interest and it is known that P. aeruginosa can inhibit A. fumigatusin vitro We have approached the definition of the inhibitory P. aeruginosa molecules by studying 24 P. aeruginosa mutants with various virulence genes deleted for the ability to inhibit A. fumigatus biofilms. The ability of P. aeruginosa cells or their extracellular products produced during planktonic or biofilm growth to affect A. fumigatus biofilm metabolism or planktonic A. fumigatus growth was studied in agar and liquid assays using conidia or hyphae. Four mutants, the pvdD pchE, pvdD, lasR rhlR, and lasR mutants, were shown to be defective in various assays. This suggested the P. aeruginosa siderophore pyoverdine as the key inhibitory molecule, although additional quorum sensing-regulated factors likely contribute to the deficiency of the latter two mutants. Studies of pure pyoverdine substantiated these conclusions and included the restoration of inhibition by the pyoverdine deletion mutants. A correlation between the concentration of pyoverdine produced and antifungal activity was also observed in clinical P. aeruginosa isolates derived from lungs of cystic fibrosis patients. The key inhibitory mechanism of pyoverdine was chelation of iron and denial of iron to A. fumigatusIMPORTANCE Interactions between human pathogens found in the same body locale are of vast interest. These interactions could result in exacerbation or amelioration of diseases. The bacterium Pseudomonas aeruginosa affects the growth of the fungus Aspergillus fumigatus Both pathogens form biofilms that are resistant to therapeutic drugs and host immunity. P. aeruginosa and A. fumigatus biofilms are found in vivo, e.g., in the lungs of cystic fibrosis patients. Studying 24 P. aeruginosa mutants, we identified pyoverdine as the major anti-A. fumigatus compound produced by P. aeruginosa Pyoverdine captures iron from the environment, thus depriving A. fumigatus of a nutrient essential for its growth and metabolism. We show how microbes of different kingdoms compete for essential resources. Iron deprivation could be a therapeutic approach to the control of pathogen growth.
Collapse
|
166
|
Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron chelator - Siderophore: A review. Microbiol Res 2017; 212-213:103-111. [PMID: 29103733 DOI: 10.1016/j.micres.2017.10.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/10/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022]
Abstract
Siderophores, the secondary metabolite of various microorganisms are ferric ion specific chelators secreted under iron stressed condition. These non-ribosomal peptides have been classified as catecholate, hydroxamate, carboxylate and mixed types. Recent studies focus on discovery of possible mammalian siderophores. The biosynthesis pathway including non-ribosomal dependent as well as non-ribosomal independent pathways are of great interest now a days. Many significant roles of siderophores such as virulence in pathogens, oxidative stress tolerance, classification of organisms etc. are being discovered. Studies on siderophore utilization in bioremediation and other heavy metal chelation have increased in past decade. The iron chelation ability of siderophores is being recently studied with regards to malignant cancerous cells. Not only this, it has been found that they possess antimicrobial properties which can be utilized against number of microbes. This review covers all recent aspects of siderophore and its applications.
Collapse
Affiliation(s)
- Azmi Khan
- Life Science Programme, Centre for Biological Sciences, Central University of South Bihar, Patna 800014, India
| | - Pratika Singh
- Life Science Programme, Centre for Biological Sciences, Central University of South Bihar, Patna 800014, India
| | - Amrita Srivastava
- Life Science Programme, Centre for Biological Sciences, Central University of South Bihar, Patna 800014, India.
| |
Collapse
|
167
|
Edgar RJ, Hampton GE, Garcia GPC, Maher MJ, Perugini MA, Ackerley DF, Lamont IL. Integrated activities of two alternative sigma factors coordinate iron acquisition and uptake by Pseudomonas aeruginosa. Mol Microbiol 2017; 106:891-904. [PMID: 28971540 DOI: 10.1111/mmi.13855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 11/28/2022]
Abstract
Alternative sigma (σ) factors govern expression of bacterial genes in response to diverse environmental signals. In Pseudomonas aeruginosa σPvdS directs expression of genes for production of a siderophore, pyoverdine, as well as a toxin and a protease. σFpvI directs expression of a receptor for ferripyoverdine import. Expression of the genes encoding σPvdS and σFpvI is iron-regulated and an antisigma protein, FpvR20 , post-translationally controls the activities of the sigma factors in response to the amount of ferripyoverdine present. Here we show that iron represses synthesis of σPvdS to a far greater extent than σFpvI . In contrast ferripyoverdine exerts similar effects on the activities of both sigma factors. Using a combination of in vivo and in vitro assays we show that σFpvI and σPvdS have comparable affinities for, and are equally inhibited by, FpvR20 . Importantly, in the absence of ferripyoverdine the amount of FpvR20 per cell is lower than the amount of σFpvI and σPvdS , allowing basal expression of target genes that is required to activate the signalling pathway when ferripyoverdine is present. This complex interplay of transcriptional and post-translational regulation enables a co-ordinated response to ferripyoverdine but distinct responses to iron.
Collapse
Affiliation(s)
- Rebecca J Edgar
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | - G Patricia Casas Garcia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
168
|
Mastropasqua MC, D'Orazio M, Cerasi M, Pacello F, Gismondi A, Canini A, Canuti L, Consalvo A, Ciavardelli D, Chirullo B, Pasquali P, Battistoni A. Growth of Pseudomonas aeruginosa
in zinc poor environments is promoted by a nicotianamine-related metallophore. Mol Microbiol 2017; 106:543-561. [DOI: 10.1111/mmi.13834] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | - Melania D'Orazio
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Mauro Cerasi
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | | | - Angelo Gismondi
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Antonella Canini
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Lorena Canuti
- Department of Biology; University of Rome Tor Vergata; Rome Italy
| | - Ada Consalvo
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT; Chieti Italy
- Department of Medical, Oral and Biotechnological Sciences; “G. d'Annunzio” University of Chieti-Pescara; Chieti Italy
| | - Domenico Ciavardelli
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT; Chieti Italy
- School of Human and Social Science; “Kore” University of Enna; Enna Italy
| | - Barbara Chirullo
- Department of Food Safety and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| | - Paolo Pasquali
- Department of Food Safety and Veterinary Public Health; Istituto Superiore di Sanità; Rome Italy
| | | |
Collapse
|
169
|
Identification of Fluorescent Pseudomonas Isolates with Potential Biocontrol activity from the Rhizosphere of Crops. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.3.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
170
|
Kang D, Kirienko NV. High-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa. Front Microbiol 2017; 8:1707. [PMID: 28928729 PMCID: PMC5591869 DOI: 10.3389/fmicb.2017.01707] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/23/2017] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa is a re-emerging, multidrug-resistant, opportunistic pathogen that threatens the lives of immunocompromised patients, patients with cystic fibrosis, and those in critical care units. One of the most important virulence factors in this pathogen is the siderophore pyoverdine. Pyoverdine serves several critical roles during infection. Due to its extremely high affinity for ferric iron, pyoverdine gives the pathogen a significant advantage over the host in their competition for iron. In addition, pyoverdine can regulate the production of multiple bacterial virulence factors and perturb host mitochondrial homeostasis. Inhibition of pyoverdine biosynthesis decreases P. aeruginosa pathogenicity in multiple host models. To better understand the regulation of pyoverdine production, we developed a high-throughput genetic screen that uses the innate fluorescence of pyoverdine to identify genes necessary for its biosynthesis. A substantial number of hits showing severe impairment of pyoverdine production were in genes responsible for early attachment and biofilm formation. In addition to genetic disruption of biofilm, both physical and chemical perturbations also attenuated pyoverdine production. This regulatory relationship between pyoverdine and biofilm is particularly significant in the context of P. aeruginosa multidrug resistance, where the formation of biofilm is a key mechanism preventing access to antimicrobials and the immune system. Furthermore, we demonstrate that the biofilm inhibitor 2-amino-5,6-dimethylbenzimidazole effectively attenuates pyoverdine production and rescues Caenorhabditis elegans from P. aeruginosa-mediated pathogenesis. Our findings suggest that targeting biofilm formation in P. aeruginosa infections may have multiple therapeutic benefits and that employing an unbiased, systems biology-based approach may be useful for understanding the regulation of specific virulence factors and identifying novel anti-virulence therapeutics or new applications for existing therapies for P. aeruginosa infections.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of Biosciences, Rice UniversityHouston, TX, United States
| | | |
Collapse
|
171
|
Poh WH, Barraud N, Guglielmo S, Lazzarato L, Rolando B, Fruttero R, Rice SA. Furoxan Nitric Oxide Donors Disperse Pseudomonas aeruginosa Biofilms, Accelerate Growth, and Repress Pyoverdine Production. ACS Chem Biol 2017. [PMID: 28628310 DOI: 10.1021/acschembio.7b00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of nitric oxide (NO) as a signal for biofilm dispersal has been shown to increase the susceptibility of many biofilms to antibiotics, promoting their eradication. The delivery of NO to biofilms can be achieved by using NO donors with different kinetics and properties of NO release that can influence their efficacy as biofilm control agents. In this study, the kinetics of three furoxan derivatives were evaluated. The effects of these NO donors, which have an advantageous pharmacological profile of slower onset with an extended duration of action, on Pseudomonas aeruginosa growth, biofilm development, and dispersal were also characterized. Compound LL4254, which showed a fast rate of NO release, induced biofilm dispersal at approximately 200 μM. While LL4212 and LL4216 have a slower rate of NO release, both compounds could induce biofilm dispersal, under the same treatment conditions, when used at higher concentrations. In addition, LL4212 and LL4216 were found to promote P. aeruginosa growth in iron-limited minimal medium, leading to a faster rate of biofilm formation and glucose utilization, and ultimately resulted in early dispersal of biofilm cells through carbon starvation. High concentrations of LL4216 also repressed production of the siderophore pyoverdine by more than 50-fold, via both NOx-dependent and NOx-independent mechanisms. The effects on growth and pyoverdine levels exerted by the furoxans appeared to be mediated by NO-independent mechanisms, suggesting functional activities of furoxans in addition to their release of NO and nitrite. Overall, this study reveals that secondary effects of furoxans are important considerations for their use as NO-releasing dispersal agents and that these compounds could be potentially redesigned as pyoverdine inhibitors.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Nicolas Barraud
- Genetics
of Biofilms Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Stefano Guglielmo
- Dipartimento
di Scienza e Tecnologia del Farmaco, The University of Torino, Torino, Italy
| | - Loretta Lazzarato
- Dipartimento
di Scienza e Tecnologia del Farmaco, The University of Torino, Torino, Italy
| | - Barbara Rolando
- Dipartimento
di Scienza e Tecnologia del Farmaco, The University of Torino, Torino, Italy
| | - Roberta Fruttero
- Dipartimento
di Scienza e Tecnologia del Farmaco, The University of Torino, Torino, Italy
| | - Scott A. Rice
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- School
of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
172
|
Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PAHM, Pieterse CMJ. Iron and Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:355-375. [PMID: 28598721 DOI: 10.1146/annurev-phyto-080516-035537] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Iron is an essential nutrient for most life on Earth because it functions as a crucial redox catalyst in many cellular processes. However, when present in excess iron can lead to the formation of harmful hydroxyl radicals. Hence, the cellular iron balance must be tightly controlled. Perturbation of iron homeostasis is a major strategy in host-pathogen interactions. Plants use iron-withholding strategies to reduce pathogen virulence or to locally increase iron levels to activate a toxic oxidative burst. Some plant pathogens counteract such defenses by secreting iron-scavenging siderophores that promote iron uptake and alleviate iron-regulated host immune responses. Mutualistic root microbiota can also influence plant disease via iron. They compete for iron with soil-borne pathogens or induce a systemic resistance that shares early signaling components with the root iron-uptake machinery. This review describes the progress in our understanding of the role of iron homeostasis in both pathogenic and beneficial plant-microbe interactions.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Pauline L Trapet
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Sophie Kruijs
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands;
| |
Collapse
|
173
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
174
|
Yan S, Wu G. Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions. J Appl Genet 2017; 58:545-563. [PMID: 28685384 PMCID: PMC5655620 DOI: 10.1007/s13353-017-0402-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/22/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023]
Abstract
Although polycyclic aromatic hydrocarbons (PAHs) are harmful to human health, their elimination from the environment is not easy. Biodegradation of PAHs is promising since many bacteria have the ability to use hydrocarbons as their sole carbon and energy sources for growth. Of various microorganisms that can degrade PAHs, Pseudomonas aeruginosa is particularly important, not only because it causes a series of diseases including infection in cystic fibrosis patients, but also because it is a model bacterium in various studies. The genes that are responsible for degrading PAHs have been identified in P. aeruginosa, however, no gene acts alone as various stresses often initiate different metabolic pathways, quorum sensing, biofilm formation, antibiotic tolerance, etc. Therefore, it is important to study how PAH degradation genes behave under different conditions. In this study, we apply network analysis to investigating how 46 PAH degradation genes reorganized among 5549 genes in P. aeruginosa PAO1 under nine different conditions using publicly available gene coexpression data from GEO. The results provide six aspects of novelties: (i) comparing the number of gene clusters before and after stresses, (ii) comparing the membership in each gene cluster before and after stresses, (iii) defining which gene changed its membership together with PAH degradation genes before and after stresses, (iv) classifying membership-changed-genes in terms of category in Pseudomonas Genome Database, (v) postulating unknown gene’s function, and (vi) proposing new mechanisms for genes of interests. This study can shed light on understanding of cooperative mechanisms of PAH degradation from the level of entire genes in an organism, and paves the way to conduct the similar studies on other genes.
Collapse
Affiliation(s)
- Shaomin Yan
- Bioscience and Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- Bioscience and Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
175
|
Yssel AEJ, Vanderleyden J, Steenackers HP. Repurposing of nucleoside- and nucleobase-derivative drugs as antibiotics and biofilm inhibitors. J Antimicrob Chemother 2017; 72:2156-2170. [DOI: 10.1093/jac/dkx151] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
176
|
Schuster M, Sexton DJ, Hense BA. Why Quorum Sensing Controls Private Goods. Front Microbiol 2017; 8:885. [PMID: 28579979 PMCID: PMC5437708 DOI: 10.3389/fmicb.2017.00885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Cell-cell communication, also termed quorum sensing (QS), is a widespread process that coordinates gene expression in bacterial populations. The generally accepted view is that QS optimizes the cell density-dependent benefit attained from cooperative behaviors, often in the form of secreted products referred to as "public goods." This view is challenged by an increasing number of cell-associated products or "private goods" reported to be under QS-control for which a collective benefit is not apparent. A prominent example is nucleoside hydrolase from Pseudomonas aeruginosa, a periplasmic enzyme that catabolizes adenosine. Several recent studies have shown that private goods can function to stabilize cooperation by co-regulated public goods, seemingly explaining their control by QS. Here we argue that this property is a by-product of selection for other benefits rather than an adaptation. Emphasizing ecophysiological context, we propose alternative explanations for the QS control of private goods. We suggest that the benefit attained from private goods is associated with high cell density, either because a relevant ecological condition correlates with density, or because the private good is, directly or indirectly, involved in cooperative behavior. Our analysis helps guide a systems approach to QS, with implications for antivirulence drug design and synthetic biology.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - D Joseph Sexton
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum MünchenNeuherberg, Germany
| |
Collapse
|
177
|
Bastiaansen KC, Civantos C, Bitter W, Llamas MA. New Insights into the Regulation of Cell-Surface Signaling Activity Acquired from a Mutagenesis Screen of the Pseudomonas putida IutY Sigma/Anti-Sigma Factor. Front Microbiol 2017; 8:747. [PMID: 28512454 PMCID: PMC5411451 DOI: 10.3389/fmicb.2017.00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023] Open
Abstract
Cell-surface signaling (CSS) is a signal transfer system that allows Gram-negative bacteria to detect environmental signals and generate a cytosolic response. These systems are composed of an outer membrane receptor that senses the inducing signal, an extracytoplasmic function sigma factor (σECF) that targets the cytosolic response by modifying gene expression and a cytoplasmic membrane anti-sigma factor that keeps the σECF in an inactive state in the absence of the signal and transduces its presence from the outer membrane to the cytosol. Although CSS systems regulate bacterial processes as crucial as stress response, iron scavenging and virulence, the exact mechanisms that drive CSS are still not completely understood. Binding of the signal to the CSS receptor is known to trigger a signaling cascade that results in the regulated proteolysis of the anti-sigma factor and the activation of the σECF in the cytosol. This study was carried out to generate new insights in the proteolytic activation of CSS σECF. We performed a random mutagenesis screen of the unique IutY protein of Pseudomonas putida, a protein that combines a cytosolic σECF domain and a periplasmic anti-sigma factor domain in a single polypeptide. In response to the presence of an iron carrier, the siderophore aerobactin, in the extracellular medium, IutY is processed by two different proteases, Prc and RseP, which results in the release and activation of the σIutY domain. Our experiments show that all IutY mutant proteins that contain periplasmic residues depend on RseP for activation. In contrast, Prc is only required for mutant variants with a periplasmic domain longer than 50 amino acids, which indicates that the periplasmic region of IutY is trimmed down to ~50 amino acids creating the RseP substrate. Moreover, we have identified several conserved residues in the CSS anti-sigma factor family of which mutation leads to constitutive activation of their cognate σECF. These findings advance our knowledge on how CSS activity is regulated by the consecutive action of two proteases. Elucidation of the exact mechanism behind CSS activation will enable the development of strategies to block CSS in pathogenic bacteria.
Collapse
Affiliation(s)
- Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC)Granada, Spain.,Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University AmsterdamAmsterdam, Netherlands
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC)Granada, Spain
| | - Wilbert Bitter
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University AmsterdamAmsterdam, Netherlands
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC)Granada, Spain
| |
Collapse
|
178
|
Schaible B, Rodriguez J, Garcia A, von Kriegsheim A, McClean S, Hickey C, Keogh CE, Brown E, Schaffer K, Broquet A, Taylor CT. Hypoxia Reduces the Pathogenicity of Pseudomonas aeruginosa by Decreasing the Expression of Multiple Virulence Factors. J Infect Dis 2017; 215:1459-1467. [PMID: 28368464 DOI: 10.1093/infdis/jix139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2023] Open
Abstract
Our understanding of how the course of opportunistic bacterial infection is influenced by the microenvironment is limited. We demonstrate that the pathogenicity of Pseudomonas aeruginosa strains derived from acute clinical infections is higher than that of strains derived from chronic infections, where tissues are hypoxic. Exposure to hypoxia attenuated the pathogenicity of strains from acute (but not chronic) infections, implicating a role for hypoxia in regulating bacterial virulence. Mass spectrometric analysis of the secretome of P. aeruginosa derived from an acute infection revealed hypoxia-induced repression of multiple virulence factors independent of altered bacterial growth. Pseudomonas aeruginosa lacking the Pseudomonas prolyl-hydroxylase domain-containing protein, which has been implicated in bacterial oxygen sensing, displays reduced virulence factor expression. Furthermore, pharmacological hydroxylase inhibition reduces virulence factor expression and pathogenicity in a murine model of pneumonia. We hypothesize that hypoxia reduces P. aeruginosa virulence at least in part through the regulation of bacterial hydroxylases.
Collapse
Affiliation(s)
| | | | - Amaya Garcia
- Systems Biology Ireland, University College Dublin
| | | | - Siobhán McClean
- Centre for Microbial Host Interactions, Department of Science, Institute of Technology Tallaght-Dublin, and
| | | | | | | | - Kirsten Schaffer
- Department of Clinical Microbiology, St Vincent's University Hospital, Dublin, Ireland; and
| | | | - Cormac T Taylor
- Conway Institute and
- Systems Biology Ireland, University College Dublin
| |
Collapse
|
179
|
Antifungal Bacteria on Woodland Salamander Skin Exhibit High Taxonomic Diversity and Geographic Variability. Appl Environ Microbiol 2017; 83:AEM.00186-17. [PMID: 28213545 DOI: 10.1128/aem.00186-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022] Open
Abstract
Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.IMPORTANCE Amphibians harbor skin bacteria that can kill an amphibian fungal pathogen, Batrachochytrium dendrobatidis Some amphibians die from B. dendrobatidis infection, whereas others do not. The bacteria that can kill B. dendrobatidis, called anti-B. dendrobatidis bacteria, are thought to influence the B. dendrobatidis infection outcome for the amphibian. Yet how anti-B. dendrobatidis bacterial species vary among amphibian species and populations is unknown. We determined the distribution of anti-B. dendrobatidis bacterial species among three salamander species (n = 61) sampled at three localities. We identified 50 unique anti-B. dendrobatidis bacterial species and found that all of the tested salamanders were negative for B. dendrobatidis Five anti-B. dendrobatidis bacterial species were commonly detected, suggesting a stable, functional association with these salamanders. The number of anti-B. dendrobatidis bacteria per individual varied among localities but not among co-occurring salamander species, demonstrating that environment is more influential than host factors in structuring the anti-B. dendrobatidis bacterial community. These anti-B. dendrobatidis bacteria may serve a protective function for their salamander hosts.
Collapse
|
180
|
Drug repurposing for antivirulence therapy against opportunistic bacterial pathogens. Emerg Top Life Sci 2017; 1:13-22. [DOI: 10.1042/etls20160018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/23/2022]
Abstract
Antibiotic resistance is a serious public health concern at the global level. Available antibiotics have saved millions of lives, but are progressively losing their efficacy against many bacterial pathogens, and very few new antibiotics are being developed by the pharmaceutical industry. Over the last few decades, progress in understanding the pathogenic process of bacterial infections has led researchers to focus on bacterial virulence factors as potential targets for ‘antivirulence' drugs, i.e. compounds which inhibit the ability of bacteria to cause damage to the host, as opposed to inhibition of bacterial growth which is typical of antibiotics. Hundreds of virulence inhibitors have been examined to date in vitro and/or in animal models, but only a few were entered into clinical trials and none were approved, thus hindering the clinical validation of antivirulence therapy. To breathe new life into antivirulence research and speed-up its transfer to the clinic, antivirulence activities have also been sought in drugs already approved for different therapeutic purposes in humans. If effective, these drugs could be repositioned for antivirulence therapy and have an easier and faster transfer to the clinic. In this work we summarize the approaches which have led to the identification of repurposing candidates with antivirulence activities, and discuss the challenges and opportunities related to antivirulence therapy and drug repurposing. While this approach undoubtedly holds promise for boosting antivirulence drug research, some important issues remain to be addressed in order to make antivirulence drugs viable alternatives to traditional antibacterials.
Collapse
|
181
|
Li L, Faucher SP. Role of the LuxR family transcriptional regulator Lpg2524 in the survival of Legionella pneumophila in water. Can J Microbiol 2017; 63:535-545. [PMID: 28264171 DOI: 10.1139/cjm-2016-0780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The water-borne Gram-negative bacterium Legionella pneumophila (Lp) is the causative agent of Legionnaires' disease. Lp is typically transmitted to humans from water systems, where it grows inside amoebae. Survival of Lp in water is central to its transmission to humans. A transcriptomic study previously identified many genes induced by Lp in water. One such gene, lpg2524, encodes a putative LuxR family transcriptional regulator. It was hypothesized that this gene could be involved in the survival of Lp in water. Deletion of lpg2524 does not affect the growth of Lp in rich medium, in the amoeba Acanthamoeba castellanii, or in human macrophage-like THP-1 cells, showing that Lpg2524 is not required for growth in vitro and in vivo. Nevertheless, deletion of lpg2524 results in a faster colony-forming unit (CFU) reduction in an artificial freshwater medium, Fraquil, indicating that Lpg2524 is important for Lp to survive in water. Overexpression of Lpg2524 also results in a survival defect, suggesting that a precise level of this transcriptional regulator is essential for its function. However, our result shows that Lpg2524 is dispensable for survival in water when Lp is at a high cell density (109 CFU/mL), suggesting that its regulon is regulated by another regulator activated at high cell density.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada.,Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada
| |
Collapse
|
182
|
Li JH. Real-Time Observation of Pyoverdine Dissolving Ferric Hydroxide. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1605114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jia-hong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
183
|
Borges A, Sousa P, Gaspar A, Vilar S, Borges F, Simões M. Furvina inhibits the 3-oxo-C12-HSL-based quorum sensing system of Pseudomonas aeruginosa and QS-dependent phenotypes. BIOFOULING 2017; 33:156-168. [PMID: 28140677 DOI: 10.1080/08927014.2017.1280732] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Disruption of cell-cell communication or quorum sensing (QS) is considered a stimulating approach for reducing bacterial pathogenicity and resistance. Although several QS inhibitors (QSIs) have been discovered so far their clinical use remains distant. This problem can be circumvented by searching for QSI among drugs already approved for the treatment of different diseases. In this context, antibiotics have earned special attention. Whereas at high concentrations antibiotics exert a killing effect, at lower concentrations they may act as signaling molecules and as such can modulate gene expression. In this study, the antibiotic furvina was shown to be able to cause inhibition of the 3-oxo-C12-HSL-dependent QS system of Pseudomonas aeruginosa. Furvina interacts with the LasI/LasR system. The data were validated by modeling studies. Furvina can also reduce biofilm formation and decrease the production of QS-controlled virulence factors.
Collapse
Affiliation(s)
- Anabela Borges
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
- b CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
- c CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science , University of Trás-os-Montes e Alto Douro , Vila Real , Portugal
| | - Pedro Sousa
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Alexandra Gaspar
- b CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - Santiago Vilar
- d Department of Biomedical Informatics , Columbia University , New York , USA
- e Department of Organic Chemistry, Faculty of Pharmacy , University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Fernanda Borges
- b CIQ-UP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - Manuel Simões
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| |
Collapse
|
184
|
Okino N, Ito M. Molecular mechanism for sphingosine-induced Pseudomonas ceramidase expression through the transcriptional regulator SphR. Sci Rep 2016; 6:38797. [PMID: 27941831 PMCID: PMC5150637 DOI: 10.1038/srep38797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa, an opportunistic, but serious multidrug-resistant pathogen, secretes a ceramidase capable of cleaving the N-acyl linkage of ceramide to generate fatty acids and sphingosine. We previously reported that the secretion of P. aeruginosa ceramidase was induced by host-derived sphingolipids, through which phospholipase C-induced hemolysis was significantly enhanced. We herein investigated the gene(s) regulating sphingolipid-induced ceramidase expression and identified SphR, which encodes a putative AraC family transcriptional regulator. Disruption of the sphR gene in P. aeruginosa markedly decreased the sphingomyelin-induced secretion of ceramidase, reduced hemolytic activity, and resulted in the loss of sphingomyelin-induced ceramidase expression. A microarray analysis confirmed that sphingomyelin significantly induced ceramidase expression in P. aeruginosa. Furthermore, an electrophoretic mobility shift assay revealed that SphR specifically bound free sphingoid bases such as sphingosine, dihydrosphingosine, and phytosphingosine, but not sphingomyelin or ceramide. A β-galactosidase-assisted promoter assay showed that sphingosine activated ceramidase expression through SphR at a concentration of 100 nM. Collectively, these results demonstrated that sphingosine induces the secretion of ceramidase by promoting the mRNA expression of ceramidase through SphR, thereby enhancing hemolytic phospholipase C-induced cytotoxicity. These results facilitate understanding of the physiological role of bacterial ceramidase in host cells.
Collapse
Affiliation(s)
- Nozomu Okino
- The Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- The Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
185
|
Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 2016; 47 Suppl 1:86-98. [PMID: 27825606 PMCID: PMC5156507 DOI: 10.1016/j.bjm.2016.10.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023] Open
Abstract
The microorganism–microorganism or microorganism–host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial–host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community.
Collapse
Affiliation(s)
- Raíssa Mesquita Braga
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Manuella Nóbrega Dourado
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Welington Luiz Araújo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil.
| |
Collapse
|
186
|
Weigert M, Ross-Gillespie A, Leinweber A, Pessi G, Brown SP, Kümmerli R. Manipulating virulence factor availability can have complex consequences for infections. Evol Appl 2016; 10:91-101. [PMID: 28035238 PMCID: PMC5192820 DOI: 10.1111/eva.12431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Given the rise of bacterial resistance against antibiotics, we urgently need alternative strategies to fight infections. Some propose we should disarm rather than kill bacteria, through targeted disruption of their virulence factors. It is assumed that this approach (i) induces weak selection for resistance because it should only minimally impact bacterial fitness, and (ii) is specific, only interfering with the virulence factor in question. Given that pathogenicity emerges from complex interactions between pathogens, hosts and their environment, such assumptions may be unrealistic. To address this issue in a test case, we conducted experiments with the opportunistic human pathogen Pseudomonas aeruginosa, where we manipulated the availability of a virulence factor, the iron‐scavenging pyoverdine, within the insect host Galleria mellonella. We observed that pyoverdine availability was not stringently predictive of virulence and affected bacterial fitness in nonlinear ways. We show that this complexity could partly arise because pyoverdine availability affects host responses and alters the expression of regulatorily linked virulence factors. Our results reveal that virulence factor manipulation feeds back on pathogen and host behaviour, which in turn affects virulence. Our findings highlight that realizing effective and evolutionarily robust antivirulence therapies will ultimately require deeper engagement with the intrinsic complexity of host–pathogen systems.
Collapse
Affiliation(s)
- Michael Weigert
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland; Microbiology Department of Biology I Ludwig Maximilians University Munich Martinsried Germany
| | - Adin Ross-Gillespie
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland; Bioinformatics Core Facility SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Anne Leinweber
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| | - Sam P Brown
- School of Biological Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology University of Zurich Zurich Switzerland
| |
Collapse
|
187
|
Poirier I, Kuhn L, Demortière A, Mirvaux B, Hammann P, Chicher J, Caplat C, Pallud M, Bertrand M. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles. J Proteomics 2016; 148:213-27. [DOI: 10.1016/j.jprot.2016.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
|
188
|
Quesada JM, Otero-Asman JR, Bastiaansen KC, Civantos C, Llamas MA. The Activity of the Pseudomonas aeruginosa Virulence Regulator σ(VreI) Is Modulated by the Anti-σ Factor VreR and the Transcription Factor PhoB. Front Microbiol 2016; 7:1159. [PMID: 27536271 PMCID: PMC4971064 DOI: 10.3389/fmicb.2016.01159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Gene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σECF) is predominant. Pseudomonas aeruginosa contains nineteen σECF, including the virulence regulator σVreI. σVreI is encoded by the vreAIR operon, which also encodes a receptor-like protein (VreA) and an anti-σ factor (VreR). These three proteins form a signal transduction pathway known as PUMA3, which controls expression of P. aeruginosa virulence functions. Expression of the vreAIR operon occurs under inorganic phosphate (Pi) limitation and requires the PhoB transcription factor. Intriguingly, the genes of the σVreI regulon are also expressed in low Pi despite the fact that the σVreI repressor, the anti-σ factor VreR, is also produced in this condition. Here we show that although σVreI is partially active under Pi starvation, maximal transcription of the σVreI regulon genes requires the removal of VreR. This strongly suggests that an extra signal, probably host-derived, is required in vivo for full σVreI activation. Furthermore, we demonstrate that the activity of σVreI is modulated not only by VreR but also by the transcription factor PhoB. Presence of this regulator is an absolute requirement for σVreI to complex the DNA and initiate transcription of the PUMA3 regulon. The potential DNA binding sites of these two proteins, which include a pho box and −10 and −35 elements, are proposed.
Collapse
Affiliation(s)
- Jose M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Karlijn C Bastiaansen
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones CientíficasGranada, Spain; Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University AmsterdamAmsterdam, Netherlands
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
189
|
Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection. Infect Immun 2016; 84:2324-2335. [PMID: 27271740 DOI: 10.1128/iai.00098-16] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe(3+) uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe(2+) acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe(3+) transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities.
Collapse
|
190
|
Xu X, Yu H, Zhang D, Xiong J, Qiu J, Xin R, He X, Sheng H, Cai W, Jiang L, Zhang K, Hu X. Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation. Microbiol Res 2016; 192:84-95. [PMID: 27664726 DOI: 10.1016/j.micres.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/28/2022]
Abstract
During infection, bacteria might generate adaptive responses to facilitate their survival and colonization in the host environment. The alarmone guanosine 5'-triphosphate-3'-diphosphate (ppGpp), the levels of which are regulated by the RelA and SpoT enzymes, plays a critical role in mediating bacterial adaptive responses and virulence. However, the mechanism by which ppGpp regulates virulence-associated traits in Pseudomonas aeruginosa is poorly understood. To investigate the regulatory role of ppGpp, the ppGpp-deficient strain ΔRS (relA and spoT gene double mutant) and the complemented strain ΔRS(++) (complemented with relA and spoT genes) were constructed. Herein, we reported that the ΔRS strain showed decreased cytotoxicity towards A549 human alveolar adenocarcinoma cell lines and led to reduced mortality, lung edema and inflammatory cell infiltration in a mouse model of acute pneumonia compared to wild-type PAO1 and the complemented strain ΔRS(++). Subsequent analyses demonstrated that the ΔRS strain displayed reduced T3SS expression, decreased levels of elastase activity, pyocyanin, pyoverdin and alginate, and inhibited swarming and biofilm formation compared to PAO1 and the complemented strain ΔRS(++). In addition, the results demonstrate that ppGpp-mediated regulation of T3SS, virulence factor production, and swarming occurs in a quinolone quorum-sensing system-dependent manner. Taken together, these results suggest that ppGpp is required for virulence regulation in P. aeruginosa, providing new clues for the development of interference strategies against bacterial infection.
Collapse
Affiliation(s)
- Xiaohui Xu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Di Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rong Xin
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenqiang Cai
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu Jiang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaomei Hu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| |
Collapse
|
191
|
Bose J, Kloesener MH, Schulte RD. Multiple-genotype infections and their complex effect on virulence. ZOOLOGY 2016; 119:339-49. [PMID: 27389395 DOI: 10.1016/j.zool.2016.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 11/17/2022]
Abstract
Multiple infections are common. Although in recent years our understanding of multiple infections has increased significantly, it has also become clear that a diversity of aspects has to be considered to understand the interplay between co-infecting parasite genotypes of the same species and its implications for virulence and epidemiology, resulting in high complexity. Here, we review different interaction mechanisms described for multiple infections ranging from competition to cooperation. We also list factors influencing the interaction between co-infecting parasite genotypes and their influence on virulence. Finally, we emphasise the importance of between-host effects and their evolution for understanding multiple infections and their implications.
Collapse
Affiliation(s)
- Joy Bose
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany
| | - Michaela H Kloesener
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany
| | - Rebecca D Schulte
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany.
| |
Collapse
|
192
|
Ali M, Sun Y, Xie L, Yu H, Bashir A, Li L. The Pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the Transcriptional Response of Nematicidal Genes upon Different Nutritional Conditions. Front Microbiol 2016; 7:805. [PMID: 27303387 PMCID: PMC4884745 DOI: 10.3389/fmicb.2016.00805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Different species of the Pseudomonas genus have been reported for their pathogenic potential against animal cells. However, the pathogenicity of Pseudomonas syringae against Caenorhabditis elegans has never been reported. In this study, the interaction of P. syringae MB03 with C. elegans was studied. Different bioassays such as killing assay, lawn leaving assay, food preference assay, L4 growth assay and newly developed “secretion assay” were performed to evaluate the pathogenic potential of P. syringae on different growth media. The results of the killing assay showed that P. syringae MB03 was able to kill C. elegans under specific conditions, as the interaction between the host and the pathogen varied from non-pathogenic (assay on NGM medium) to pathogenic (assay on PG medium). The lawn leaving assay and the food preference assay illustrated that C. elegans identified P. syringae MB03 as a pathogen when assays were performed on PG medium. Green fluorescent protein was used as the reporter protein to study gut colonization by P. syringae MB03. Our results suggested that MB03 has the ability to colonize the gut of C. elegans. Furthermore, to probe the role of selected virulence determinants, qRT-PCR was used. The genes for pyoverdine, phoQ/phoP, phoR/phoB, and flagella were up regulated during the interaction of P. syringae MB03 and C. elegans on PG medium. Other than these, the genes for some proteases, such as pepP, clpA, and clpS, were also up regulated. On the other hand, kdpD and kdpB were down regulated more than threefold in the NGM – C. elegans interaction model. The deletion of the kdpD and kdpE genes altered the pathogenicity of the bacterial strain against C. elegans. Overall, our results suggested that the killing of C. elegans by P. syringae requires a prolonged interaction between the host and pathogen in an agar-based assay. Moreover, it seemed that some toxic metabolites were secreted by the bacterial strain that were sensed by C. elegans. Previously, it was believed that P. syringae could not damage animal cells. However, this study provides evidence of the pathogenic behavior of P. syringae against C. elegans.
Collapse
Affiliation(s)
- Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Li Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Huafu Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Anum Bashir
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
193
|
Structural basis of the signalling through a bacterial membrane receptor HasR deciphered by an integrative approach. Biochem J 2016; 473:2239-48. [PMID: 27208170 PMCID: PMC4941744 DOI: 10.1042/bcj20160131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
In bacteria, some scarce nutrients are sensed, bound and internalized by their specific transporter. In the present study, using an integrative structural approach, we study HasR, a bacterial haem transporter in both its free and its loaded forms. Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70–90 Å (1 Å=0.1 nm) from the HasR β-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners.
Collapse
|
194
|
Lopez-Medina E, Koh AY. The complexities of bacterial-fungal interactions in the mammalian gastrointestinal tract. MICROBIAL CELL 2016; 3:191-195. [PMID: 28357354 PMCID: PMC5349146 DOI: 10.15698/mic2016.05.497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Eduardo Lopez-Medina
- Department of Pediatrics, Universidad del Valle and Centro de Estudios en Infectología Pediátrica, Cali, Colombia
| | - Andrew Y Koh
- Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
195
|
Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids. Front Physiol 2016; 7:64. [PMID: 26955357 PMCID: PMC4767902 DOI: 10.3389/fphys.2016.00064] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Ruan Ells
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa; National Control Laboratory, University of the Free StateBloemfontein, South Africa
| | - Chantel W Swart
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Olihile M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| |
Collapse
|
196
|
Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, Titz A. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections. J Med Chem 2016; 59:5929-69. [DOI: 10.1021/acs.jmedchem.5b01698] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stefanie Wagner
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Roman Sommer
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Stefan Hinsberger
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Cenbin Lu
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Martin Empting
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| |
Collapse
|
197
|
Cianciotto NP. An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction. Future Microbiol 2016; 10:841-51. [PMID: 26000653 DOI: 10.2217/fmb.15.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron acquisition is critical for the growth and pathogenesis of Legionella pneumophila, the causative agent of Legionnaires' disease. L. pneumophila utilizes two main modes of iron assimilation, namely ferrous iron uptake via the FeoB system and ferric iron acquisition through the action of the siderophore legiobactin. This review highlights recent studies concerning the mechanism of legiobactin assimilation, the impact of c-type cytochromes on siderophore production, the importance of legiobactin in lung infection and a newfound role for a bacterial pyomelanin in iron acquisition. These data demonstrate that key aspects of L. pneumophila iron acquisition are significantly distinct from those of long-studied, 'model' organisms. Indeed, L. pneumophila may represent a new paradigm for a variety of other intracellular parasites, pathogens and under-studied bacteria.
Collapse
|
198
|
TatC-dependent translocation of pyoverdine is responsible for the microbial growth suppression. J Microbiol 2016; 54:122-30. [PMID: 26832668 DOI: 10.1007/s12275-016-5542-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/28/2023]
Abstract
Infections are often not caused by a colonization of Pseudomonas aeruginosa alone but by a consortium of other bacteria. Little is known about the impact of P. aeruginosa on the growth of other bacteria upon coinfection. Here, cell-ree culture supernatants obtained from P. aeruginosa suppressed the growth of a number of bacterial strains such as Corynebacterium glutamicum, Bacillus subtilis, Staphylococcus aureus, and Agrobacterium tumefaciens, but had little effect on the growth of Escherichia coli and Salmonella Typhimurium. The growth suppression effect was obvious when P. aeruginosa was cultivated in M9 minimal media, and the suppression was not due to pyocyanin, a well-known antimicrobial toxin secreted by P. aeruginosa. By performing transposon mutagenesis, PA5070 encoding TatC was identified, and the culture supernatant of its mutant did not suppress the growth. HPLC analysis of supernatants showed that pyoverdine was a secondary metabolite present in culture supernatants of the wild-type strain, but not in those of the PA5070 mutant. Supplementation of FeCl2 as a source of iron compromised the growth suppression effect of supernatants and also recovered biofilm formation of S. aureus, indicating that pyoverdine-mediated iron acquisition is responsible for the growth suppression. Thus, this study provides the action of TatC-dependent pyoverdine translocation for the growth suppression of other bacteria, and it might aid understanding of the impact of P. aeruginosa in the complex community of bacterial species upon coinfection.
Collapse
|
199
|
A TonB-Dependent Transporter Is Responsible for Methanobactin Uptake by Methylosinus trichosporium OB3b. Appl Environ Microbiol 2016; 82:1917-1923. [PMID: 26773085 DOI: 10.1128/aem.03884-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 11/20/2022] Open
Abstract
Methanobactin, a small modified polypeptide synthesized by methanotrophs for copper uptake, has been found to be chromosomally encoded. The gene encoding the polypeptide precursor of methanobactin, mbnA, is part of a gene cluster that also includes several genes encoding proteins of unknown function (but speculated to be involved in methanobactin formation) as well as mbnT, which encodes a TonB-dependent transporter hypothesized to be responsible for methanobactin uptake. To determine if mbnT is truly responsible for methanobactin uptake, a knockout was constructed in Methylosinus trichosporium OB3b using marker exchange mutagenesis. The resulting M. trichosporium mbnT::Gm(r) mutant was found to be able to produce methanobactin but was unable to internalize it. Further, if this mutant was grown in the presence of copper and exogenous methanobactin, copper uptake was significantly reduced. Expression of mmoX and pmoA, encoding polypeptides of the soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO), respectively, also changed significantly when methanobactin was added, which indicates that the mutant was unable to collect copper under these conditions. Copper uptake and gene expression, however, were not affected in wild-type M. trichosporium OB3b, indicating that the TonB-dependent transporter encoded by mbnT is responsible for methanobactin uptake and that methanobactin is a key mechanism used by methanotrophs for copper uptake. When the mbnT::Gm(r) mutant was grown under a range of copper concentrations in the absence of methanobactin, however, the phenotype of the mutant was indistinguishable from that of wild-type M. trichosporium OB3b, indicating that this methanotroph has multiple mechanisms for copper uptake.
Collapse
|
200
|
Microbial Virulence and Interactions With Metals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:27-49. [DOI: 10.1016/bs.pmbts.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|