151
|
Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci 2021; 22:2194. [PMID: 33672103 PMCID: PMC7927090 DOI: 10.3390/ijms22042194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been considered as a toxic gas, but as research progressed, the idea has been updated and it has now been shown to have potent protective effects at reasonable concentrations. H2S is an endogenous gas signaling molecule in mammals and is produced by specific enzymes in different cell types. An increasing number of studies indicate that H2S plays an important role in cardiovascular homeostasis, and in most cases, H2S has been reported to be downregulated in cardiovascular diseases (CVDs). Similarly, in preclinical studies, H2S has been shown to prevent CVDs and improve heart function after heart failure. Recently, many H2S donors have been synthesized and tested in cellular and animal models. Moreover, numerous molecular mechanisms have been proposed to demonstrate the effects of these donors. In this review, we will provide an update on the role of H2S in cardiovascular activities and its involvement in pathological states, with a special focus on the roles of exogenous H2S in cardiac protection.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Di Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Hui-Wen Qi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Qing-Lin He
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
152
|
McCarty MF, DiNicolantonio JJ, Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis-And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int J Mol Sci 2021; 22:2140. [PMID: 33669995 PMCID: PMC7926325 DOI: 10.3390/ijms22042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and increased cytoplasmic calcium are key mediators of the detrimental effects on neuronal function and survival in Alzheimer's disease (AD). Pathways whereby these perturbations arise, and then prevent dendritic spine formation, promote tau hyperphosphorylation, further amplify amyloid β generation, and induce neuronal apoptosis, are described. A comprehensive program of nutraceutical supplementation, comprised of the NADPH oxidase inhibitor phycocyanobilin, phase two inducers, the mitochondrial antioxidant astaxanthin, and the glutathione precursor N-acetylcysteine, may have important potential for antagonizing the toxic effects of amyloid β on neurons and thereby aiding prevention of AD. Moreover, nutraceutical antioxidant strategies may oppose the adverse impact of amyloid β oligomers on astrocyte clearance of glutamate, and on the ability of brain capillaries to export amyloid β monomers/oligomers from the brain. Antioxidants, docosahexaenoic acid (DHA), and vitamin D, have potential for suppressing microglial production of interleukin-1β, which potentiates the neurotoxicity of amyloid β. Epidemiology suggests that a health-promoting lifestyle, incorporating a prudent diet, regular vigorous exercise, and other feasible measures, can cut the high risk for AD among the elderly by up to 60%. Conceivably, complementing such lifestyle measures with long-term adherence to the sort of nutraceutical regimen outlined here may drive down risk for AD even further.
Collapse
Affiliation(s)
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel
| |
Collapse
|
153
|
Nourabadi D, Baluchnejadmojarad T, Zarch SMM, Ramazi S, Serenjeh MN, Roghani M. Fetal Hypothyroidism Impairs Aortic Vasorelaxation Responses in Adulthood: Involvement of Hydrogen Sulfide and Nitric Oxide Cross talk. J Cardiovasc Pharmacol 2021; 77:238-244. [PMID: 33165144 DOI: 10.1097/fjc.0000000000000948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/21/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Thyroid hormones have a wide range of effects on growth, differentiation, evolution, metabolism, and physiological function of all tissues, including the vascular bed. In this study, the effect of fetal hypothyroidism on impairment of aortic vasorelaxation responses in adulthood was investigated with emphasis on possible involvement of hydrogen sulfide (H2S)/nitric oxide interaction. Two groups of female rats were selected. After mating and observation of vaginal plaque, one group received propylthiouracil (200 ppm in drinking water) until the end of pregnancy and another group had no propylthiouracil treatment during the fetal period. In adult rats, aortic relaxation responses to l-arginine and GYY4137 were assessed in the presence or absence of Nω-nitro-L-arginine methyl ester hydrochloride and dl-propargylglycine in addition to the biochemical measurement of thyroid hormones and some related factors. Obtained findings showed a lower vasorelaxation response for GYY4137 and l-arginine in the fetal hypothyroidism group, and preincubation with Nω-nitro-L-arginine methyl ester hydrochloride or dl-propargylglycine did not significantly aggravate this weakened relaxation response. In addition, aortic levels of sirtuin 3, endothelial nitric oxide synthase, cystathionine gamma-lyase, and H2S were significantly lower in the fetal hypothyroidism group. Meanwhile, no significant changes were obtained regarding serum levels of thyroid hormones including free triiodothyronine;, total triiodothyronine, free thyroxine, total thyroxine, and thyroid-stimulating hormone in adult rats. It can be concluded that hypothyroidism in the fetal period has inappropriate effects on the differentiation and development of vascular bed with subsequent functional abnormality that persists into adulthood, and part of this vascular abnormality is mediated through weakened interaction and/or cross talk between H2S and nitric oxide.
Collapse
Affiliation(s)
- Davood Nourabadi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed M M Zarch
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ; and
| | - Samira Ramazi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza N Serenjeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
154
|
Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021; 10:cells10020220. [PMID: 33499368 PMCID: PMC7911547 DOI: 10.3390/cells10020220] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; inhibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its inhibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance of mitochondrial organization (protection against mitochondrial fission) and the maintenance of mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair complexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial functions of endogenously produced H2S in cancer cells.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
155
|
Cacanyiova S, Golas S, Zemancikova A, Majzunova M, Cebova M, Malinska H, Hüttl M, Markova I, Berenyiova A. The Vasoactive Role of Perivascular Adipose Tissue and the Sulfide Signaling Pathway in a Nonobese Model of Metabolic Syndrome. Biomolecules 2021; 11:108. [PMID: 33467512 PMCID: PMC7829844 DOI: 10.3390/biom11010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the mutual relationship among perivascular adipose tissue (PVAT) and endogenous and exogenous H2S in vasoactive responses of isolated arteries from adult normotensive (Wistar) rats and hypertriglyceridemic (HTG) rats, which are a nonobese model of metabolic syndrome. In HTG rats, mild hypertension was associated with glucose intolerance, dyslipidemia, increased amount of retroperitoneal fat, increased arterial contractility, and endothelial dysfunction associated with arterial wall injury, which was accompanied by decreased nitric oxide (NO)-synthase activity, increased expression of H2S producing enzyme, and an altered oxidative state. In HTG, endogenous H2S participated in the inhibition of endothelium-dependent vasorelaxation regardless of PVAT presence; on the other hand, aortas with preserved PVAT revealed a stronger anticontractile effect mediated at least partially by H2S. Although we observed a higher vasorelaxation induced by exogenous H2S donor in HTG rats than in Wistar rats, intact PVAT subtilized this effect. We demonstrate that, in HTG rats, endogenous H2S could manifest a dual effect depending on the type of triggered signaling pathway. H2S within the arterial wall contributes to endothelial dysfunction. On the other hand, PVAT of HTG is endowed with compensatory vasoactive mechanisms, which include stronger anti-contractile action of H2S. Nevertheless, the possible negative impact of PVAT during hypertriglyceridemia on the activity of exogenous H2S donors needs to be taken into consideration.
Collapse
Affiliation(s)
- Sona Cacanyiova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| | - Samuel Golas
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| | - Anna Zemancikova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| | - Miroslava Majzunova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, 811 08 Bratislava, Slovakia
| | - Martina Cebova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| | - Hana Malinska
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (M.H.); (I.M.)
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (M.H.); (I.M.)
| | - Irena Markova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.M.); (M.H.); (I.M.)
| | - Andrea Berenyiova
- Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (S.G.); (A.Z.); (M.M.); (M.C.); (A.B.)
| |
Collapse
|
156
|
Hassan AY, Maulood IM, Salihi A. The vasodilatory mechanism of nitric oxide and hydrogen sulfide in the human mesenteric artery in patients with colorectal cancer. Exp Ther Med 2021; 21:214. [PMID: 33500703 DOI: 10.3892/etm.2021.9646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Recent studies have focused on the role of gasotransmitters in cancer progression and prevention. Therefore, the current study was designed to explore the vasodilator activity of NO and H2S in the human mesenteric arteries of patients with colorectal cancer (CRC) via the activation of K+ channels. A total of two sets of experiments were established for the current investigation. Blood samples from patients with CRC were obtained to detect serum levels of endocan and malondialdehyde (MDA). The role of K+ channels in mediating the vasodilation of the human mesenteric artery in response to sodium nitroprusside (SNP) and sodium disulfide (Na2S) was assessed. The level of serum endocan was indicated to be decreased in patients with CRC compared with healthy individuals, while the level of serum MDA remained unaltered between groups. The arterial rings pre-contracted with norepinephrine were first relaxed by the cumulative addition of increasing concentrations of either SNP (30 nM-30 µM) or (1-6 mM). Maximal relaxation rates were then calculated at 15 min intervals for 60 min. Pre-incubation of arterial rings for 20 min with individual K+ channel blockers was indicated to significantly reduce SNP- and Na2S-induced relaxation at different time points. Pre-treatment of L-nitro-arginine methyl ester did not alter vasodilation that was induced by Na2S. Furthermore, vasodilation of the CRC mesenteric artery was not altered by the synergistic application of SNP and Na2S, while pre-incubation of arterial rings with D,L-propargylglycine significantly enhanced vasodilation induced by SNP. These results indicated that endothelial dysfunction and oxidative stress do not serve roles in the pathogenesis of CRC. The dilatory mechanisms of NO and H2S in mesenteric arteries of patients with CRC were K+ channel- and time-dependent, and the activity of cystathionine γ-lyase enzyme inhibited the ability of exogenous NO in vasodilation processes.
Collapse
Affiliation(s)
- Awat Y Hassan
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq.,Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| |
Collapse
|
157
|
Mamtilahun M, Wei Z, Qin C, Wang Y, Tang Y, Shen FX, Tian HL, Zhang Z, Yang GY. DL-3n-Butylphthalide Improves Blood-Brain Barrier Integrity in Rat After Middle Cerebral Artery Occlusion. Front Cell Neurosci 2021; 14:610714. [PMID: 33510620 PMCID: PMC7835508 DOI: 10.3389/fncel.2020.610714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: DL-3n-butylphthalide (NBP) has beneficial effects in different stages of ischemic stroke. Our previous studies have demonstrated that NBP promoted angiogenesis in the perifocal region of the ischemic brain. However, the molecular mechanism of NBP for blood–brain barrier protection in acute ischemic stroke was unclear. Here, we explored the neuroprotective effects of NBP on blood–brain barrier integrity in the acute phase of ischemic stroke in a rat model. Methods: Adult male Sprague–Dawley rats (n = 82) underwent 2 h of transient middle cerebral artery occlusion and received 90 mg/kg of NBP for 3 days. Brain edema, infarct volume, surface blood flow, and neurological severity score were evaluated. Blood–brain barrier integrity was evaluated by Evans blue leakage and changes in tight junction proteins. We further examined AQP4 and eNOS expression, MMP-9 enzyme activity, and possible signaling pathways for the role of NBP after ischemic stroke. Results: NBP treatment significantly increased eNOS expression and surface blood flow in the brain, reduced brain edema and infarct volume, and improved neurological severity score compared to the control group (p < 0.05). Furthermore, NBP attenuated Evans blue and IgG leakage and increased tight junction protein expression compared to the control after 1 and 3 days of ischemic stroke (p < 0.05). Finally, NBP decreased AQP4 expression, MMP-9 enzyme activity, and increased MAPK expression during acute ischemic stroke. Conclusion: NBP protected blood–brain barrier integrity and attenuated brain injury in the acute phase of ischemic stroke by decreasing AQP4 expression and MMP-9 enzyme activity. The MAPK signaling pathway may be associated in this process.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Wei
- University of Shanghai for Science and Technology Affiliated Shidong Hospital, Shanghai, China
| | - Chuan Qin
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fan-Xia Shen
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
158
|
Guerra DD, Bok R, Breen K, Vyas V, Jiang H, MacLean KN, Hurt KJ. Estrogen Regulates Local Cysteine Metabolism in Mouse Myometrium. Reprod Sci 2021; 28:79-90. [PMID: 32820455 DOI: 10.1007/s43032-020-00284-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfur amino acid metabolism influences reproductive physiology, and transsulfuration in particular may be critical for normal cellular function. The sex hormone estrogen (E2) modulates gene expression and redox balance in some tissues by inducing the transsulfuration enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). The role of sex hormones in sulfur amino acid metabolism by uterine smooth muscle is not known. Here, we show that CBS and CSE proteins increase in the mouse myometrium during estrus and diestrus, respectively, suggesting that E2 reciprocally regulates myometrial CBS and CSE expression. In ovariectomized mice, exogenous E2 upregulates CBS and downregulates CSE levels. E2 promotes CBS mRNA and protein expression but attenuates CSE protein expression without affecting CSE mRNA. This pattern of E2-stimulated changes in transsulfuration enzyme expression is specific to the uterine smooth muscle. E2 does not change vaginal or cervical expression of CBS or CSE significantly, and E2 decreases expression of CSE in the liver without affecting CBS. E2 also downregulates myometrial cysteinesulfinic acid decarboxylase (CSAD) and decreases myometrial biochemical synthesis of the gaso-transmitter hydrogen sulfide (H2S). These findings suggest that myometrial sulfur amino acid metabolism may regulate uterine redox homeostasis, with implications for the source and metabolism of myometrial cysteine in high E2 states such as estrus and pregnancy.
Collapse
Affiliation(s)
- Damian D Guerra
- Department of Biology , University of Louisville , 2301 South 3rd Street, Louisville, Kentucky, 40292, USA
| | - Rachael Bok
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Kelsey Breen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Vibhuti Vyas
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Hua Jiang
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Kenneth N MacLean
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Mail Stop 8613, Aurora, CO, 80045, USA.
| |
Collapse
|
159
|
Lv B, Chen S, Tang C, Jin H, Du J, Huang Y. Hydrogen sulfide and vascular regulation - An update. J Adv Res 2021; 27:85-97. [PMID: 33318869 PMCID: PMC7728588 DOI: 10.1016/j.jare.2020.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is considered to be the third gasotransmitter after carbon monoxide (CO) and nitric oxide (NO). It plays an important role in the regulation of vascular homeostasis. Vascular remodeling have has proved to be related to the impaired H2S generation. AIM OF REVIEW This study aimed to summarize and discuss current data about the function of H2S in vascular physiology and pathophysiology as well as the underlying mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW Endogenous hydrogen sulfide (H2S) as a third gasotransmitter is primarily generated by the enzymatic pathways and regulated by several metabolic pathways. H2S as a physiologic vascular regulator, inhibits proliferation, regulates its apoptosis and autophagy of vascular cells and controls the vascular tone. Accumulating evidence shows that the downregulation of H2S pathway is involved in the pathogenesis of a variety of vascular diseases, such as hypertension, atherosclerosis and pulmonary hypertension. Alternatively, H2S supplementation may greatly help to prevent the progression of the vascular diseases by regulating vascular tone, inhibiting vascular inflammation, protecting against oxidative stress and proliferation, and modulating vascular cell apoptosis, which has been verified in animal and cell experiments and even in the clinical investigation. Besides, H2S system and angiotensin-converting enzyme (ACE) inhibitors play a vital role in alleviating ischemic heart disease and left ventricular dysfunction. Notably, sulfhydryl-containing ACEI inhibitor zofenopril is superior to other ACE inhibitors due to its capability of H2S releasing, in addition to ACE inhibition. The design and application of novel H2S donors have significant clinical implications in the treatment of vascular-related diseases. However, further research regarding the role of H2S in vascular physiology and pathophysiology is required.
Collapse
Affiliation(s)
- Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| |
Collapse
|
160
|
Ngowi EE, Afzal A, Sarfraz M, Khattak S, Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, Ji XY, Wu DD. Role of hydrogen sulfide donors in cancer development and progression. Int J Biol Sci 2021; 17:73-88. [PMID: 33390834 PMCID: PMC7757040 DOI: 10.7150/ijbs.47850] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, a vast number of potential cancer therapeutic targets have emerged. However, developing efficient and effective drugs for the targets is of major concern. Hydrogen sulfide (H2S), one of the three known gasotransmitters, is involved in the regulation of various cellular activities such as autophagy, apoptosis, migration, and proliferation. Low production of H2S has been identified in numerous cancer types. Treating cancer cells with H2S donors is the common experimental technique used to improve H2S levels; however, the outcome depends on the concentration/dose, time, cell type, and sometimes the drug used. Both natural and synthesized donors are available for this purpose, although their effects vary independently ranging from strong cancer suppressors to promoters. Nonetheless, numerous signaling pathways have been reported to be altered following the treatments with H2S donors which suggest their potential in cancer treatment. This review will analyze the potential of H2S donors in cancer therapy by summarizing key cellular processes and mechanisms involved.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shams Uz Zaman
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
161
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
162
|
Tao BB, Zhu YC. A Common Molecular Switch for H 2S to Regulate Multiple Protein Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:1-16. [PMID: 34302686 DOI: 10.1007/978-981-16-0991-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide, a small molecule, produced by endogenous enzymes, such as CTH, CBS, and MPST using L-cysteine as substrates, has been reported to have numerous protective effects. However, the key problem that the target of H2S and how it can affect the structure and activity of biological molecules is still unknown. Till now, there are two main theories of its working mechanism. One is that H2S can modify the free thiol in cysteine to produce the persulfide state of the thiol and the sulfhydration of cysteine can significantly change the structure and activity of target proteins. The other theory is that H2S, as an antioxidant molecule, can directly break the disulfide bond in target proteins, and the persulfide state of thiol can be an intermediate product during the reaction. Both phenomena exit for no doubt since they are both supported by large amounts of experiments. Here, we will summarize both theories and try to discuss which one is the more effective or direct mechanism for H2S and what is the relationship between them. Therefore, we will discover more protein targets of H2S with the mechanism and understand more about the effect of this small molecule.
Collapse
Affiliation(s)
- Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
163
|
Citi V, Martelli A, Gorica E, Brogi S, Testai L, Calderone V. Role of hydrogen sulfide in endothelial dysfunction: Pathophysiology and therapeutic approaches. J Adv Res 2021; 27:99-113. [PMID: 33318870 PMCID: PMC7728589 DOI: 10.1016/j.jare.2020.05.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The vascular endothelium represents a fundamental mechanical and biological barrier for the maintenance of vascular homeostasis along the entire vascular tree. Changes in its integrity are associated to several cardiovascular diseases, including hypertension, atherosclerosis, hyperhomocysteinemia, diabetes, all linked to the peculiar condition named endothelial dysfunction, which is referred to the loss of endothelial physiological functions, comprehending the regulation of vascular relaxation and/or cell redox balance, the inhibition of leukocyte infiltration and the production of NO. Among the endothelium-released vasoactive factors, in the last years hydrogen sulfide has been viewed as one of the main characters involved in the regulation of endothelium functionality, and many studies demonstrated that H2S behaves as a vasoprotective gasotransmitter in those cardiovascular diseases where endothelial dysfunction seems to be the central issue. AIM The role of hydrogen sulfide in endothelial dysfunction-related cardiovascular diseases is discussed in this review. KEY SCIENTIFIC CONCEPTS Possible therapeutic approaches using molecules able to release H2S.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Era Gorica
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno n.6, 56125 Pisa, Italy
| |
Collapse
|
164
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
165
|
Zhao L, Huang Z, Ma D, Yan Y, Zhang X, Xiao Y. A nucleus targetable fluorescent probe for ratiometric imaging of endogenous NO in living cells and zebrafishes. Analyst 2021; 146:4130-4134. [DOI: 10.1039/d1an00426c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nucleus targetable fluorescent probe is developed based on a Hoechst and rhodamine dyad for ratiometric imaging of endogenous NO in living cells and zebrafishes.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Daqing Ma
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
- a Academy of Safety Science and Technology
| | - Yu Yan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
166
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
167
|
Abstract
The therapeutic effectiveness of immune checkpoint inhibitors in cancer patients is quite profound. However, it is generally accepted that further progress is curtailed by accompanying adverse events and by low cure rates linked to the tumor microenvironment. The multitudes of immune processes altered by low-molecular-weight thiols published over the past decades suggest they have potential to alter tumor microenvironment processes which could result in an increase in immune checkpoint inhibitor survival rates. Based on one of the most studied and most potent low-molecular-weight thiols, β-mercaptoethanol (BME), it is proposed that clinical assessment be undertaken to identify any BME benefits with relevance for proliferation/differentiation of immune cells, lymphocyte exhaustion, immunogenicity of tumor antigens and inactivation of suppressor cells/factors. The BME alterations projected to be most effective are: maintenance/replacement of glutathione in lymphocytes via facilitation of cysteine uptake, inhibition of suppressor cells/soluble factors and inactivation of free-radical, reactive oxygen species.
Collapse
Affiliation(s)
- Robert E Click
- Altick Associates, 2000 Maxwell Drive, Suite 207, Hudson, WI 54016, USA
| |
Collapse
|
168
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
169
|
Aekthammarat D, Tangsucharit P, Pannangpetch P. Hydrogen sulfide as a mediator of endothelium-dependent relaxation evoked by Moringa oleifera leaf extract in mesenteric arterial beds isolated from L-NAME hypertensive rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:287-293. [PMID: 34187128 DOI: 10.1515/jcim-2020-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/09/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Aqueous extract of Moringa oleifera leaves (MOE) is a potent inducer of endothelium-dependent relaxation of mesenteric resistance arteries of rats induced to be hypertensive using Nω-nitro-L-arginine methyl ester (L-NAME). Hydrogen sulfide (H2S) has been shown to participate in endothelium-dependent relaxation of small resistance arteries. Therefore, this study aimed to investigate whether endothelial H2S-dependent signaling plays a role in the vasorelaxation in response to MOE. METHODS Mesenteric arterial beds isolated from L-NAME hypertensive rats were set up in an ex vivo perfusion system for measurement of vasoreactivity. All experiments were performed in the presence of the nitric oxide synthase inhibitor, L-NAME (100 µM) and the cyclooxygenase inhibitor, indomethacin (10 µM) to prevent the formation of nitric oxide and prostanoids, respectively. RESULTS In the presence of the nitric oxide synthase inhibitor, L-NAME and the cyclooxygenase inhibitor, indomethacin, the endothelium-dependent vasorelaxation induced by MOE (0.001-3 mg) was completely inhibited by DL-propargylglycine (100 µM), which inhibits the H2Sgenerating enzyme, cystathionine γ-lyase. This H2Sdependent response was reduced by the KATP channel blocker; glibenclamide (10 µM), the KCa channel blocker; tetraethylammonium (1 µM), and the myo-endothelial gap-junctional uncoupler; 18α-glycyrrhetinic acid (10 µM). In contrast, the muscarinic receptor antagonist, atropine (100 µM), did not affect the response to MOE. CONCLUSIONS The results may suggest that H2S is the likely mediator of endothelium-dependent relaxation in response to MOE in mesenteric arterial beds of L-NAME-induced hypertensive rats. MOE-induced H2S-dependent vasorelaxation involves activation of KATP and KCa channels and requires myo-endothelial gap-junctional communication.
Collapse
Affiliation(s)
- Direk Aekthammarat
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Panot Tangsucharit
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Patchareewan Pannangpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
170
|
Dongó E, Kiss L. The Potential Role of Hydrogen Sulfide in the Regulation of Cerebrovascular Tone. Biomolecules 2020; 10:biom10121685. [PMID: 33339440 PMCID: PMC7766080 DOI: 10.3390/biom10121685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/15/2023] Open
Abstract
A better understanding of the regulation of cerebrovascular circulation is of great importance because stroke and other cerebrovascular diseases represent a major concern in healthcare leading to millions of deaths yearly. The circulation of the central nervous system is regulated in a highly complex manner involving many local factors and hydrogen sulfide (H2S) is emerging as one such possible factor. Several lines of evidence support that H2S takes part in the regulation of vascular tone. Examinations using either exogenous treatment with H2S donor molecules or alterations to the enzymes that are endogenously producing this molecule revealed numerous important findings about its physiological and pathophysiological role. The great majority of these studies were performed on vessel segments derived from the systemic circulation but there are important observations made using cerebral vessels as well. The findings of these experimental works indicate that H2S is having a complex, pleiotropic effect on the vascular wall not only in the systemic circulation but in the cerebrovascular region as well. In this review, we summarize the most important experimental findings related to the potential role of H2S in the cerebral circulation.
Collapse
Affiliation(s)
- Eleni Dongó
- Department of Physiology, Semmelweis University, 1088 Budapest, Hungary
- Department of Neurology, Semmelweis University, 1088 Budapest, Hungary;
| | - Levente Kiss
- Department of Physiology, Semmelweis University, 1088 Budapest, Hungary
- Correspondence: ; Tel.: +36-20-384-5753
| |
Collapse
|
171
|
Fuschillo S, Palomba L, Capparelli R, Motta A, Maniscalco M. Nitric Oxide and Hydrogen Sulfide: A Nice Pair in the Respiratory System. Curr Med Chem 2020; 27:7136-7148. [DOI: 10.2174/0929867327666200310120550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
Abstract
Nitric Oxide (NO) is internationally regarded as a signal molecule involved in several
functions in the respiratory tract under physiological and pathogenic conditions. Hydrogen Sulfide
(H2S) has also recently been recognized as a new gasotransmitter with a diverse range of functions
similar to those of NO.
Depending on their respective concentrations, both these molecules act synergistically or antagonistically
as signals or damage promoters. Nevertheless, available evidence shows that the complex
biological connections between NO and H2S involve multiple pathways and depend on the site of
action in the respiratory tract, as well as on experimental conditions. This review will provide an
update on these two gasotransmitters in physiological and pathological processes.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, (NA), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| |
Collapse
|
172
|
Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, Goymann P, Delgado Lagos F, Fisslthaler B, Zukunft S, Kyselova A, Justo AFO, Heidler J, Tsilimigras D, Brandes RP, Dimmeler S, Papapetropoulos A, Knapp S, Offermanns S, Wittig I, Nishimura SL, Sigala F, Fleming I. Mapping the Endothelial Cell S-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation 2020; 143:935-948. [PMID: 33307764 DOI: 10.1161/circulationaha.120.051877] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and β3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on β3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the β leg. β3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between β3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect β3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Jiong Hu
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Mario Looso
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany (A.W.)
| | - Corina Ratiu
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Janina Wittig
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Maria Kyriaki Drekolia
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany
| | - Lukas Tombor
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Matthias S Leisegang
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Philipp Goymann
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fredy Delgado Lagos
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Beate Fisslthaler
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Sven Zukunft
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Anastasia Kyselova
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Alberto Fernando Oliveira Justo
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Juliana Heidler
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ralf P Brandes
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens Medical School, Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece (A.P.)
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University, Frankfurt am Main, Germany
| | - Stefan Offermanns
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Department of Pharmacology (S.O.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ilka Wittig
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany
| | | | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ingrid Fleming
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| |
Collapse
|
173
|
Bok R, Guerra DD, Lorca RA, Wennersten SA, Harris PS, Rauniyar AK, Stabler SP, MacLean KN, Roede JR, Brown LD, Hurt KJ. Cystathionine γ-lyase promotes estrogen-stimulated uterine artery blood flow via glutathione homeostasis. Redox Biol 2020; 40:101827. [PMID: 33485059 PMCID: PMC7823052 DOI: 10.1016/j.redox.2020.101827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
During pregnancy, estrogen (E2) stimulates uterine artery blood flow (UBF) by enhancing nitric oxide (NO)-dependent vasodilation. Cystathionine γ-lyase (CSE) promotes vascular NO signaling by producing hydrogen sulfide (H2S) and by maintaining the ratio of reduced-to-oxidized intracellular glutathione (GSH/GSSG) through l-cysteine production. Because redox homeostasis can influence NO signaling, we hypothesized that CSE mediates E2 stimulation of UBF by modulating local intracellular cysteine metabolism and GSH/GSSG levels to promote redox homeostasis. Using non-pregnant ovariectomized WT and CSE-null (CSE KO) mice, we performed micro-ultrasound of mouse uterine and renal arteries to assess changes in blood flow upon exogenous E2 stimulation. We quantified serum and uterine artery NO metabolites (NOx), serum amino acids, and uterine and renal artery GSH/GSSG. WT and CSE KO mice exhibited similar baseline uterine and renal blood flow. Unlike WT, CSE KO mice did not exhibit expected E2 stimulation of UBF. Renal blood flow was E2-insensitive for both genotypes. While serum and uterine artery NOx were similar between genotypes at baseline, E2 decreased NOx in CSE KO serum. Cysteine was also lower in CSE KO serum, while citrulline and homocysteine levels were elevated. E2 and CSE deletion additively decreased GSH/GSSG in uterine arteries. In contrast, renal artery GSH/GSSG was insensitive to E2 or CSE deletion. Together, these findings suggest that CSE maintenance of uterine artery GSH/GSSG facilitates nitrergic signaling in uterine arteries and is required for normal E2 stimulation of UBF. These data have implications for pregnancy pathophysiology and the selective hormone responses of specific vascular beds. CSE-null mice exhibit abnormal estrogen augmentation of uterine artery blood flow. Estrogen lowers uterine artery nitric oxide metabolites in CSE null mice. CSE loss and estrogen additively impair uterine artery glutathione homeostasis. Neither CSE loss nor estrogen influences renal artery blood flow or glutathione.
Collapse
Affiliation(s)
- Rachael Bok
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Damian D Guerra
- Department of Biology, University of Louisville, 2301 S. 3rd Street, Louisville, KY, 40292, USA
| | - Ramón A Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Sara A Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Abhishek K Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Sally P Stabler
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Kenneth N MacLean
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Laura D Brown
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Perinatal Research Center, 13243 E. 23rd Avenue, Aurora, CO, 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
174
|
Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T. Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. Int J Nanomedicine 2020; 15:9717-9743. [PMID: 33299313 PMCID: PMC7721306 DOI: 10.2147/ijn.s276001] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetic wound shows delayed and incomplete healing processes, which in turn exposes patients to an environment with a high risk of infection. This article has summarized current developments of nanoparticles/hydrogels and nanotechnology used for promoting the wound healing process in either diabetic animal models or patients with diabetes mellitus. These nanoparticles/hydrogels promote diabetic wound healing by loading bioactive molecules (such as growth factors, genes, proteins/peptides, stem cells/exosomes, etc.) and non-bioactive substances (metal ions, oxygen, nitric oxide, etc.). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favored by researchers. In addition, nanoparticles/hydrogels can be combined with some technology (including PTT, LBL self-assembly technique and 3D-printing technology) to treat diabetic wound repair. By reviewing the recent literatures, we also proposed new strategies for improving multifunctional treatment of diabetic wounds in the future.
Collapse
Affiliation(s)
- Que Bai
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Han
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Qianfa Long
- Mini-Invasive Neurosurgery and Translational Medical Center, Xi’an Central Hospital, Xi’an Jiaotong University, Xi’an710003, People’s Republic of China
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| |
Collapse
|
175
|
Yang S, Sun J, Xu L, Zhou Q, Chen X, Zhu S, Dong B, Lu G, Song H. Au@ZnO functionalized three–dimensional macroporous WO3: A application of selective H2S gas sensor for exhaled breath biomarker detection. SENSORS AND ACTUATORS B: CHEMICAL 2020; 324:128725. [DOI: 10.1016/j.snb.2020.128725] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
|
176
|
Wenzel J, Spyropoulos D, Assmann JC, Khan MA, Stölting I, Lembrich B, Kreißig S, Ridder DA, Isermann B, Schwaninger M. Endogenous THBD (Thrombomodulin) Mediates Angiogenesis in the Ischemic Brain—Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:2837-2844. [DOI: 10.1161/atvbaha.120.315061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
THBD (thrombomodulin) is part of the anticoagulant protein C-system that acts at the endothelium and is involved in anti-inflammatory and barrier-stabilizing processes. A recombinant soluble form of THBD was shown to have protective effects in different organs, but how the endogenous THBD is regulated during ischemia, particularly in the brain is not known to date. The aim of this study was to investigate the role of THBD, especially in brain endothelial cells, during ischemic stroke.
Approach and Results:
To induce ischemic brain damage, we occluded the middle cerebral artery of mice. We found an increased endothelial expression of
Thbd
in the peri-infarct area, whereas in the core of the ischemic tissue
Thbd
expression was decreased compared with the contralateral side. We generated a novel Cre/loxP-based mouse line that allows for the inducible deletion of
Thbd
specifically in brain endothelial cells, which worsened stroke outcome 48 hours after middle cerebral artery occlusion. Unexpectedly, we found no signs of increased coagulation, thrombosis, or inflammation in the brain but decreased vessel diameters and impaired angiogenesis in the peri-infarct area that led to a reduced overall vessel length 1 week after stroke induction.
Conclusions:
Endogenous THBD acts as a protective factor in the brain during ischemic stroke and enhances vessel diameter and proliferation. These previously unknown properties of THBD could offer new opportunities to affect vessel function after ischemia and thereby improve stroke outcome.
Collapse
Affiliation(s)
- Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| | - Dimitrios Spyropoulos
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| | - Julian Christopher Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Mahtab Ahmad Khan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Beate Lembrich
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | - Sara Kreißig
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
| | | | - Berend Isermann
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany (B.I.)
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany (J.W., D.S., J.C.A., M.A.K., I.S., B.L., S.K., M.S.)
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (J.W., D.S., M.S.)
| |
Collapse
|
177
|
GASOMEDIATOR H2S IN THROMBOSIS AND HEMOSTASIS. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review was aimed to briefly summarize current knowledge of the biological roles of gasomediator H2S in hemostasis and cardiovascular diseases. Since the discovery that mammalian cells are enzymatically producing H2S, this molecule underwent a dramatic metamorphosis from dangerous pollutant to a biologically relevant mediator. As a gasomediator, hydrogen sulfide plays a role of signaling molecule, which is involved in a number of processes in health and disease, including pathogenesis of cardiovascular abnormalities, mainly through modulating different patterns of vasculature functions and thrombotic events. Recently, several studies have provided unequivocal evidence that H2S reduces blood platelet reactivity by inhibiting different stages of platelet activation (platelet adhesion, secretion and aggregation) and thrombus formation. Moreover, H2S changes the structure and function of fibrinogen and proteins associated with fibrinolysis. Hydrogen sulfide regulates proliferation and apoptosis of vascular smooth muscle cells, thus modulating angiogenesis and vessel function. Undoubtedly, H2S is also involved in a multitude of other physiological functions. For example, it exhibits anti-inflammatory effects by inhibiting ROS production and increasing expression of antioxidant enzymes. Some studies have demonstrated the role of hydrogen sulfide as a therapeutic agent in various diseases, including cardiovascular pathologies. Further studies are required to evaluate its importance as a regulator of cell physiology and associated cardiovascular pathological conditions such as myocardial infarction and stroke.
Collapse
|
178
|
The antihypertension effect of hydrogen sulfide (H 2S) is induced by activating VEGFR2 signaling pathway. Life Sci 2020; 267:118831. [PMID: 33253721 DOI: 10.1016/j.lfs.2020.118831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
AIMS Previous studies demonstrated that H2S has an antihypertension effect on hypertension, but the mechanism involved is unclear until now. The aim of the study is to elucidate the effect of H2S on PH and the mechanism involved. MAIN METHODS In this study, GYY4137 (a H2S donor) were administered to spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) by intraperitoneally injection daily for consecutive 14 days. Systolic blood pressure (SBP), endothelial-dependent relaxation (EDR), plasma malondialdehyde (MDA), superoxide dismutase (SOD), and H2S levels were measured. Human umbilical vein endothelial cells (HUVECs) were also used to elucidate the mechanism involved in the protect effect of H2S on the injured vessels. KEY FINDINGS Our results showed that GYY4137 normalized the SBP (P < 0.0001), increased EDR (P < 0.01), reduced oxidative stress (increased the content of SOD and reduced the content of MDA) of SHR. Meanwhile, GYY4137 could promote the proliferation (P < 0.01) and migration (P < 0.01) of HUVECs, increase the expression of endothelial NO synthase (eNOS) and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) both in SHR and HUVECs treated with GYY4137. In addition to the above results, the PIP3/Akt signaling pathway was activated and the expression of caspase 3 was increased by GYY4137. However, all the above effects of GYY4137 were blocked by ZD6474 (a VEGFR2 inhibitor). SIGNIFICANCE GYY4137 had a hypotensive and vascular protect effect on PH. This effect might be mediated through upregulating the expression of VEGFR2, which subsequently alleviating oxidant-provoked vascular endothelial dysfunction, and promoting the proliferation and migration of endothelial cells in SHR.
Collapse
|
179
|
Jiang W, Liu C, Deng M, Wang F, Ren X, Fan Y, Du J, Wang Y. H 2S promotes developmental brain angiogenesis via the NOS/NO pathway in zebrafish. Stroke Vasc Neurol 2020; 6:244-251. [PMID: 33246971 PMCID: PMC8258041 DOI: 10.1136/svn-2020-000584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023] Open
Abstract
Background Hydrogen sulphide (H2S) is considered as the third member of the gasotransmitter family, along with nitric oxide (NO) and carbon monoxide. H2S has been reported to induce angiogenesis by promoting the growth, migration and tube-like structure formation of endothelial cells. Those studies were conducted in conditions of cell culture, mouse Matrigel plug assay model, rat wound healing model or rat hindlimb ischaemia model. Recent in vivo studies showed the physiological importance of H2S in muscle angiogenesis. However, the importance of endogenous H2S for brain angiogenesis during development remains unknown. We therefore aimed at determining the role of H2S in brain vascular development. Methods and results Both knockdown and knockout of H2S-producing enzymes, cystathionine β-synthase (cbs) and cystathionine γ-lyase (cth), using morpholino oligonucleotides and clustered regularly interspaced short palindromic repeats/Cas9-mediated mutation, impaired brain vascular development of larval zebrafish. Incubation with the slow-releasing H2S donor GYY4137 alleviated the defects of brain vascular development in cbs and cth morphants. Quantitative analysis of the midbrain vascular network showed that H2S enhances angiogenesis without affecting the topological structure of the brain vasculature. Mechanically, nitric oxide synthase 2a (nos2a) expression and NO production were decreased in both cbs and cth morphants. Overexpression of nos2a by coinjection of cbs or cth MO with full-length zebrafish nos2a mRNA alleviated the brain vascular developmental defects in cbs and cth morphants. Conclusion We conclude that H2S promotes brain developmental angiogenesis via the NOS/NO pathway in zebrafish.
Collapse
Affiliation(s)
- Weiqing Jiang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Chen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhu Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Wang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Xiao Ren
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yilin Fan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yonggang Wang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
180
|
Ngowi EE, Sarfraz M, Afzal A, Khan NH, Khattak S, Zhang X, Li T, Duan SF, Ji XY, Wu DD. Roles of Hydrogen Sulfide Donors in Common Kidney Diseases. Front Pharmacol 2020; 11:564281. [PMID: 33364941 PMCID: PMC7751760 DOI: 10.3389/fphar.2020.564281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) plays a key role in the regulation of physiological processes in mammals. The decline in H2S level has been reported in numerous renal disorders. In animal models of renal disorders, treatment with H2S donors could restore H2S levels and improve renal functions. H2S donors suppress renal dysfunction by regulating autophagy, apoptosis, oxidative stress, and inflammation through multiple signaling pathways, such as TRL4/NLRP3, AMP-activated protein kinase/mammalian target of rapamycin, transforming growth factor-β1/Smad3, extracellular signal-regulated protein kinases 1/2, mitogen-activated protein kinase, and nuclear factor kappa B. In this review, we summarize recent developments in the effects of H2S donors on the treatment of common renal diseases, including acute/chronic kidney disease, renal fibrosis, unilateral ureteral obstruction, glomerulosclerosis, diabetic nephropathy, hyperhomocysteinemia, drug-induced nephrotoxicity, metal-induced nephrotoxicity, and urolithiasis. Novel H2S donors can be designed and applied in the treatment of common renal diseases.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Muhammad Sarfraz
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Attia Afzal
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
| | - Saadullah Khattak
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin Zhang
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Diseases and Bio-Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
181
|
Cetin Z, Gunduz O, Topuz RD, Dokmeci D, Karadag HC, Ulugol A. The Role of Hydrogen Sulfide in the Development of Tolerance and Dependence to Morphine in Mice. Neuropsychobiology 2020; 80:264-270. [PMID: 33207349 DOI: 10.1159/000511541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Hydrogen sulfide is an endogenous gaseous mediator that has been indicated to have a role in pain mechanisms. In this study, we aimed to detect brain and spinal cord hydrogen sulfide levels during different phases of tolerance and dependence to morphine and to determine the effects of inhibition of endogenous hydrogen sulfide production on the development of tolerance and dependence. METHODS Morphine tolerance and dependence was developed by subcutaneous injection of morphine (10 mg/kg) twice daily for 12 days. Physical dependence was determined by counting the jumps for 20 min, which is a withdrawal symptom occurring after a single dose of naloxone (5 mg/kg) administered intraperitoneally (i.p.). Propargylglycine (30 mg/kg, i.p.), a cystathionine-γ-lyase inhibitor, and hydroxylamine (12.5 mg/kg, i.p.), a cystathionine-β-synthase inhibitor, were used as hydrogen sulfide synthase inhibitors. The tail-flick and hot-plate tests were used to determine the loss of antinociceptive effects of morphine and development of tolerance. RESULTS It was found that chronic and acute uses of both propargylglycine and hydroxylamine prevented the development of tolerance to morphine, whereas they had no effect on morphine dependence. Chronic and acute administrations of hydrogen sulfide synthase inhibitors did not exert any difference in hydrogen sulfide levels in brain and spinal cords of both morphine-tolerant and -dependent animals. CONCLUSION It has been concluded that hydrogen sulfide synthase inhibitors may have utility in preventing morphine tolerance.
Collapse
Affiliation(s)
- Zeynep Cetin
- Vocational College of Arda, Chemistry and Chemical Processing Technologies Department, Trakya University, Edirne, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ruhan D Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Dikmen Dokmeci
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan C Karadag
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ahmet Ulugol
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey,
| |
Collapse
|
182
|
The multifaceted roles of sulfane sulfur species in cancer-associated processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148338. [PMID: 33212042 DOI: 10.1016/j.bbabio.2020.148338] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Sulfane sulfur species comprise a variety of biologically relevant hydrogen sulfide (H2S)-derived species, including per- and poly-sulfidated low molecular weight compounds and proteins. A growing body of evidence suggests that H2S, currently recognized as a key signaling molecule in human physiology and pathophysiology, plays an important role in cancer biology by modulating cell bioenergetics and contributing to metabolic reprogramming. This is accomplished through functional modulation of target proteins via H2S binding to heme iron centers or H2S-mediated reversible per- or poly-sulfidation of specific cysteine residues. Since sulfane sulfur species are increasingly viewed not only as a major source of H2S but also as key mediators of some of the biological effects commonly attributed to H2S, the multifaceted role of these species in cancer biology is reviewed here with reference to H2S, focusing on their metabolism, signaling function, impact on cell bioenergetics and anti-tumoral properties.
Collapse
|
183
|
Pieretti JC, Junho CVC, Carneiro-Ramos MS, Seabra AB. H 2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res 2020; 161:105121. [PMID: 32798649 PMCID: PMC7426260 DOI: 10.1016/j.phrs.2020.105121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a syndrome affecting most patients hospitalized due to kidney disease; it accounts for 15 % of patients hospitalized in intensive care units worldwide. AKI is mainly caused by ischemia and reperfusion (IR) injury, which temporarily obstructs the blood flow, increases inflammation processes and induces oxidative stress. AKI treatments available nowadays present notable disadvantages, mostly for patients with other comorbidities. Thus, it is important to investigate different approaches to help minimizing side effects such as the ones observed in patients subjected to the aforementioned treatments. Therefore, the aim of the current review is to highlight the potential of two endogenous gasotransmitters - hydrogen sulfide (H2S) and nitric oxide (NO) - and their crosstalk in AKI treatment. Both H2S and NO are endogenous signalling molecules involved in several physiological and pathophysiological processes, such as the ones taking place in the renal system. Overall, these molecules act by decreasing inflammation, controlling reactive oxygen species (ROS) concentrations, activating/inactivating pro-inflammatory cytokines, as well as promoting vasodilation and decreasing apoptosis, hypertrophy and autophagy. Since these gasotransmitters are found in gaseous state at environmental conditions, they can be directly applied by inhalation, or in combination with H2S and NO donors, which are compounds capable of releasing these molecules at biological conditions, thus enabling higher stability and slow release of NO and H2S. Moreover, the combination between these donor compounds and nanomaterials has the potential to enable targeted treatments, reduce side effects and increase the potential of H2S and NO. Finally, it is essential highlighting challenges to, and perspectives in, pharmacological applications of H2S and NO to treat AKI, mainly in combination with nanoparticulated delivery platforms.
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
184
|
Xu G, Wei F, Cen Y, Cheng X, Hu Q. Dual-Emissive Fluorescent Sensor Based on Functionalized Quantum Dots for the Simultaneous Determination of Nitric Oxide and Hydrogen Sulfide. ACS Biomater Sci Eng 2020; 6:6086-6094. [DOI: 10.1021/acsbiomaterials.0c00842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xia Cheng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| |
Collapse
|
185
|
Bolton SG, Pluth MD. Modified cyclodextrins solubilize elemental sulfur in water and enable biological sulfane sulfur delivery. Chem Sci 2020; 11:11777-11784. [PMID: 34123204 PMCID: PMC8162768 DOI: 10.1039/d0sc04137h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An important form of biological sulfur is sulfane sulfur, or S0, which is found in polysulfide and persulfide compounds as well as in elemental sulfur. Sulfane sulfur, often in the form of S8, functions as a key energy source in the metabolic processes of thermophilic Archaean organisms found in sulfur-rich environments and can be metabolized both aerobically and anaerobically by different archaeons. Despite this importance, S8 has a low solubility in water (∼19 nM), raising questions of how it can be made chemically accessible in complex environments. Motivated by prior crystallographic data showing S8 binding to hydrophobic motifs in filamentous glycoproteins from the sulfur reducing Staphylothermus marinus anaerobe, we demonstrate that simple macrocyclic hydrophobic motifs, such as 2-hydroxypropyl β-cyclodextrin (2HPβ), are sufficient to solubilize S8 at concentrations up to 2.0 ± 0.2 mM in aqueous solution. We demonstrate that the solubilized S8 can be reduced with the common reductant tris(2-carboxyethyl)phosphine (TCEP) and reacts with thiols to generate H2S. The thiol-mediated conversion of 2HPβ/S8 to H2S ranges from 80% to quantitative efficiency for Cys and glutathione (GSH). Moreover, we demonstrate that 2HPβ can catalyze the Cys-mediated reduction of S8 to H2S in water. Adding to the biological relevance of the developed systems, we demonstrate that treatment of Raw 264.7 macrophage cells with the 2HPβ/S8 complex prior to LPS stimulation decreases NO2 - levels, which is consistent with known activities of bioavailable H2S and sulfane sulfur. Taken together, these investigations provide a new strategy for delivering H2S and sulfane sulfur in complex systems and more importantly provide new insights into the chemical accessibility and storage of S0 and S8 in biological environments.
Collapse
Affiliation(s)
- Sarah G Bolton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene OR 97403 USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
186
|
Hu Q, Zhang B, Liu Y, Guo Y, Zhang T, Nie R, Ke X, Dong X. The effect of fluid shear stress in hydrogen sulphide production and cystathionine γ-lyase expression in human early endothelial progenitor cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1318. [PMID: 33209898 PMCID: PMC7661880 DOI: 10.21037/atm-20-6467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Physiological fluid shear stress has been shown to have a beneficial impact on vascular homeostasis. Endothelial progenitor cells (EPCs) make a significant contribution to maintaining endothelial integrity. Therefore, we hypothesised that shear stress-induced endothelium protection plays a role in hydrogen sulphide (H2S) production and up-regulation of cystathionine γ-lyase (CSE) expression in EPCs. Methods Human EPC-derived CSE activity was detected by colorimetric assay, and H2S production was evaluated by membrane adsorption method. Cell proliferation, migration, and adhesion were assessed by MTT, Transwell, and endothelial cell-mediated adhesion assays, respectively. Real-time polymerase chain reaction (RT-PCR) was carried out to analyse gene expression. Protein expression was analysed by western blot. Results Human EPCs were treated with shear stress levels of 5–25 dyn/cm2 for up to 3 h, and 25 dyn/cm2 for up to 24 h. H2S production and CSE mRNA expression in the EPCs were increased by shear stress in a dose-dependent manner in vitro. Likewise, time-dependent shear stress also significantly enhanced CSE protein expression. Compared to static condition, shear stress improved EPCs proliferation, migration and adhesion capacity. Knockdown of CSE expression by small interfering RNA substantially eliminated the shear stress-induced above functions of human EPCs in vitro. Conclusions This study gives new insight into the regulatory effect of physiological shear stress on the CSE/H2S system in human EPCs. Our findings may contribute to the development of vascular protective research, although the relevant evidence is admittedly indirect.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Zhang
- Cardiac Care Unit, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Yulong Liu
- Department of Intervention and Vascular Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiqun Guo
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Tao Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruqiong Nie
- Department of Cardiology, Guangzhou Province Key Laboratory of Arrhymia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Xiaobian Dong
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
187
|
Teoh JP, Li X, Simoncini T, Zhu D, Fu X. Estrogen-Mediated Gaseous Signaling Molecules in Cardiovascular Disease. Trends Endocrinol Metab 2020; 31:773-784. [PMID: 32682630 DOI: 10.1016/j.tem.2020.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Gender difference is well recognized as a key risk factor for cardiovascular disease (CVD). Estrogen, the primary female sex hormone, improves cardiovascular functions through receptor (ERα, ERβ, or G protein-coupled estrogen receptor)-initiated genomic or non-genomic mechanisms. Gaseous signaling molecules, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are important regulators of cardiovascular function. Recent studies have demonstrated that estrogen regulates the production of these signaling molecules in cardiovascular cells to exert its cardiovascular protective effects. We discuss current understanding of gaseous signaling molecules in cardiovascular disease (CVD), the underlying mechanisms through which estrogen exerts cardiovascular protective effects by regulating these molecules, and how these findings can be translated to improve the health of postmenopausal women.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Xiaosa Li
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy
| | - Dongxing Zhu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| | - Xiaodong Fu
- Department of Gynecology and Obstetrics, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511518, P.R. China; Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China.
| |
Collapse
|
188
|
Xia H, Li Z, Sharp TE, Polhemus DJ, Carnal J, Moles KH, Tao YX, Elrod J, Pfeilschifter J, Beck KF, Lefer DJ. Endothelial Cell Cystathionine γ-Lyase Expression Level Modulates Exercise Capacity, Vascular Function, and Myocardial Ischemia Reperfusion Injury. J Am Heart Assoc 2020; 9:e017544. [PMID: 32990120 PMCID: PMC7792404 DOI: 10.1161/jaha.120.017544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Hydrogen sulfide (H2S) is an important endogenous physiological signaling molecule and exerts protective properties in the cardiovascular system. Cystathionine γ‐lyase (CSE), 1 of 3 H2S producing enzyme, is predominantly localized in the vascular endothelium. However, the regulation of CSE in vascular endothelium remains incompletely understood. Methods and Results We generated inducible endothelial cell‐specific CSE overexpressed transgenic mice (EC‐CSE Tg) and endothelial cell‐specific CSE knockout mice (EC‐CSE KO), and investigated vascular function in isolated thoracic aorta, treadmill exercise capacity, and myocardial injury following ischemia‐reperfusion in these mice. Overexpression of CSE in endothelial cells resulted in increased circulating and myocardial H2S and NO, augmented endothelial‐dependent vasorelaxation response in thoracic aorta, improved exercise capacity, and reduced myocardial‐reperfusion injury. In contrast, genetic deletion of CSE in endothelial cells led to decreased circulating H2S and cardiac NO production, impaired endothelial dependent vasorelaxation response and reduced exercise capacity. However, myocardial‐reperfusion injury was not affected by genetic deletion of endothelial cell CSE. Conclusions CSE‐derived H2S production in endothelial cells is critical in maintaining endothelial function, exercise capacity, and protecting against myocardial ischemia/reperfusion injury. Our data suggest that the endothelial NO synthase—NO pathway is likely involved in the beneficial effects of overexpression of CSE in the endothelium.
Collapse
Affiliation(s)
- Huijing Xia
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Zhen Li
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Thomas E Sharp
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - David J Polhemus
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Jean Carnal
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Karl H Moles
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology College of Veterinary Medicine Auburn University Auburn AL
| | - John Elrod
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Josef Pfeilschifter
- Institute of Pharmacology and Toxicology Goethe University Frankfurt am Main Germany
| | - Karl-Friedrich Beck
- Institute of Pharmacology and Toxicology Goethe University Frankfurt am Main Germany
| | - David J Lefer
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| |
Collapse
|
189
|
Mitidieri E, Vanacore D, Turnaturi C, Sorrentino R, d’Emmanuele di Villa Bianca R. Uterine Dysfunction in Diabetic Mice: The Role of Hydrogen Sulfide. Antioxidants (Basel) 2020; 9:antiox9100917. [PMID: 32993056 PMCID: PMC7599872 DOI: 10.3390/antiox9100917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
It is well-known that the physiological uterine peristalsis, related to several phases of reproductive functions, plays a pivotal role in fertility and female reproductive health. Here, we have addressed the role of hydrogen sulfide (H2S) signaling in changes of uterine contractions driven by diabetes in non-obese diabetic (NOD) mice, a murine model of type-1 diabetes mellitus. The isolated uterus of NOD mice showed a significant reduction in spontaneous motility coupled to a generalized hypo-contractility to uterotonic agents. The levels of cyclic nucleotides, cAMP and cGMP, notoriously involved in the regulation of uterus homeostasis, were significantly elevated in NOD mouse uteri. This increase was well-correlated with the higher levels of H2S, a non-specific endogenous inhibitor of phosphodiesterases. The exposure of isolated uterus to L-cysteine (L-Cys), but not to sodium hydrogen sulfide, the exogenous source of H2S, showed a weak tocolytic effect in the uterus of NOD mice. Western blot analysis revealed a reorganization of the enzymatic expression with an upregulation of 3-mercaptopyruvate-sulfurtransferase (3-MST) coupled to a reduction in both cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) expression. In conclusion, the increased levels of cyclic nucleotides dysregulate the uterus peristalsis and contractility in diabetic mice through an increase in basal H2S synthesis suggesting a role of 3-MST.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine, University of Naples, Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (E.M.); (D.V.); (C.T.); (R.d.d.V.B.)
| | - Domenico Vanacore
- Department of Pharmacy, School of Medicine, University of Naples, Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (E.M.); (D.V.); (C.T.); (R.d.d.V.B.)
| | - Carlotta Turnaturi
- Department of Pharmacy, School of Medicine, University of Naples, Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (E.M.); (D.V.); (C.T.); (R.d.d.V.B.)
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples, Federico II, Via Pansini, 5, 80131 Naples, Italy
- Interdepartmental Centre for Sexual Medicine, University of Naples, Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-678437
| | - Roberta d’Emmanuele di Villa Bianca
- Department of Pharmacy, School of Medicine, University of Naples, Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (E.M.); (D.V.); (C.T.); (R.d.d.V.B.)
- Interdepartmental Centre for Sexual Medicine, University of Naples, Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
190
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|
191
|
Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair. Redox Biol 2020; 37:101704. [PMID: 32942144 PMCID: PMC7498944 DOI: 10.1016/j.redox.2020.101704] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is one of the most prevalent metabolic disorders and is estimated to affect 400 million of 4.4% of population worldwide in the next 20 year. In diabetes, risk to develop vascular diseases is two-to four-fold increased. Ischemic tissue injury, such as refractory wounds and critical ischemic limb (CLI) are major ischemic vascular complications in diabetic patients where oxygen supplement is insufficient due to impaired angiogenesis/neovascularization. In spite of intensive studies, the underlying mechanisms of diabetes-impaired ischemic tissue injury remain incompletely understood. Hydrogen sulfide (H2S) has been considered as a third gasotransmitter regulating angiogenesis under physiological and ischemic conditions. Here, the underlying mechanisms of insufficient H2S-impaired angiogenesis and ischemic tissue repair in diabetes are discussed. We will primarily focuses on the signaling pathways of H2S in controlling endothelial function/biology, angiogenesis and ischemic tissue repair in diabetic animal models. We summarized that H2S plays an important role in maintaining endothelial function/biology and angiogenic property in diabetes. We demonstrated that exogenous H2S may be a theraputic agent for endothelial dysfunction and impaired ischemic tissue repair in diabetes.
Collapse
|
192
|
Lobov GI. The Role of Hydrogen Sulfide in the Dilatation of Mesenteric Lymphatic Vessels in Bulls. Bull Exp Biol Med 2020; 169:302-305. [PMID: 32748133 DOI: 10.1007/s10517-020-04874-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/22/2022]
Abstract
We studied the effects and mechanisms of action of NaHS, an H2S donor, on bovine isolated mesenteric efferent lymphatic vessels pre-contracted with phenylephrine. NaHS induced concentration-dependent relaxation of lymphatic vessels. Removal of the endothelium reduced, but did not completely abolish the relaxing effect of NaHS. Application of NO synthase inhibitor L-NAME, soluble guanylyl cyclase inhibitor ODQ, blocker ATP-sensitive K+ channels glibenclamide, and a combination of blockers of Ca-activated K+ channels of small and intermediate conductance charybdotoxin and apamin attenuated relaxation of lymphatic vessels. Thus, H2S produces a pleiotropic effect on lymphatic vessels; vasorelaxant effect is achieved by several parallel mechanisms. H2S induces relaxation of lymphatic vessels and modulates the rate of lymph transport, thereby affecting the development of immune processes in the body.
Collapse
Affiliation(s)
- G I Lobov
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
193
|
Chi Z, Le TPH, Lee SK, Guo E, Kim D, Lee S, Seo SY, Lee SY, Kim JH, Lee SY. Honokiol ameliorates angiotensin II-induced hypertension and endothelial dysfunction by inhibiting HDAC6-mediated cystathionine γ-lyase degradation. J Cell Mol Med 2020; 24:10663-10676. [PMID: 32755037 PMCID: PMC7521302 DOI: 10.1111/jcmm.15686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hypertension and endothelial dysfunction are associated with various cardiovascular diseases. Hydrogen sulphide (H2S) produced by cystathionine γ‐lyase (CSE) promotes vascular relaxation and lowers hypertension. Honokiol (HNK), a natural compound in the Magnolia plant, has been shown to retain multifunctional properties such as anti‐oxidative and anti‐inflammatory activities. However, a potential role of HNK in regulating CSE and hypertension remains largely unknown. Here, we aimed to demonstrate that HNK co‐treatment attenuated the vasoconstriction, hypertension and H2S reduction caused by angiotensin II (AngII), a well‐established inducer of hypertension. We previously found that histone deacetylase 6 (HDAC6) mediates AngII‐induced deacetylation of CSE, which facilitates its ubiquitination and proteasomal degradation. Our current results indicated that HNK increased endothelial CSE protein levels by enhancing its stability in a sirtuin‐3‐independent manner. Notably, HNK could increase CSE acetylation levels by inhibiting HDAC6 catalytic activity, thereby blocking the AngII‐induced degradative ubiquitination of CSE. CSE acetylation and ubiquitination occurred mainly on the lysine 73 (K73) residue. Conversely, its mutant (K73R) was resistant to both acetylation and ubiquitination, exhibiting higher protein stability than that of wild‐type CSE. Collectively, our findings suggested that HNK treatment protects CSE against HDAC6‐mediated degradation and may constitute an alternative for preventing endothelial dysfunction and hypertensive disorders.
Collapse
Affiliation(s)
- Zhexi Chi
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Sang Ki Lee
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| | - Erling Guo
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| | - Dongsoo Kim
- Department of Anesthesiology and Pain Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Sanha Lee
- College of Pharmacy, Gachon University, Incheon, Korea
| | | | - Sook Young Lee
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Jae Hyung Kim
- Department of Anesthesiology and Pain Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
194
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
195
|
Lobov GI. Relaxing Effect of Hydrogen Sulfide on Isolated Bovine Mesenteric Lymph Nodes. Bull Exp Biol Med 2020; 169:192-196. [PMID: 32651810 DOI: 10.1007/s10517-020-04848-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 11/29/2022]
Abstract
We studied the effects and mechanisms of action of NaHS, an H2S donor, on isolated phenylephrine-precontracted bovine mesenteric lymph nodes. NaHS induced concentration-dependent relaxation of lymph nodes. Removal of the endothelium reduced, but did not abolish the relaxing effect of NaHS. The relaxing effect was reduced by NO synthase inhibitor L-NAME, soluble guanylate cyclase inhibitor ODQ, ATP-sensitive K+ channel blocker glibenclamide, and a combination charybdotoxin+apamin (blockers of small- and intermediate-conductance Ca2+-activated K+ channels). Thus, the relaxing effect of H2S on lymph nodes is mediated by several parallel mechanisms. H2S induces relaxation of LN and modulates the rate of lymph transport, thereby affecting the development of immune processes in the body.
Collapse
Affiliation(s)
- G I Lobov
- Laboratory of Physiology of Cardiovascular and Lymphatic Systems, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
196
|
Li S, Song X, Zhu W, Chen Y, Zhu R, Wang L, Chen X, Song J, Yang H. Light-Switchable Yolk-Mesoporous Shell UCNPs@MgSiO 3 for Nitric Oxide-Evoked Multidrug Resistance Reversal in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30066-30076. [PMID: 32393026 DOI: 10.1021/acsami.0c06102] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gas therapy has emerged as a forceful strategy for augmenting the effects of chemotherapeutic drugs against cancer cells. However, it remains extremely challenging to effectively deliver gas into tissues of interest and unravel its underlying mechanisms. Herein, we designed a near-infrared (NIR) light-switchable nitric oxide (NO) delivery nanosystem for high-efficacy multidrug resistance (MDR) reversal in cancer therapy based on a yolk-shell upconverting nanoparticles@magnesium silica (UCNP@MgSiO3). The internal hollow cavity and flower-like mesoporous shell of UCNPs@MgSiO3 not only enabled a significantly high encapsulation capacity for the NO precursor (BNN6) and doxorubicin (DOX) but also allowed the enhanced cellular uptake, resulting in NIR-triggered NO generation and low pH-triggered DOX release in cancer cells. Mechanistically, intracellular NO can downregulate the drug efflux-related P-glycoprotein and adenosine 5'-triphosphate-binding cassette transporters, thereby increasing the DOX accumulation in the cell nuclei. Such combination therapy of NO and DOX induced the apoptosis of MDR cells and completely inhibited in vivo MDR tumor growth. We further elucidated the therapy mechanism via proteomic profiling, showcasing the downregulation of the ubiquitin-proteasome pathway and nuclear factor kappa-B signaling pathway in the NO-treated MDR cells. Therefore, our findings develop a promising nanoscale gas/drug delivery paradigm for fighting MDR tumors and providing molecular insights into cancer therapy.
Collapse
Affiliation(s)
- Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wei Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yongling Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xian Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
197
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
198
|
Chen Y, Zhang F, Yin J, Wu S, Zhou X. Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol 2020; 235:9059-9070. [PMID: 32542668 DOI: 10.1002/jcp.29761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2 S), which has been identified as the third gaseous signaling molecule after nitric oxide (NO) and carbon monoxide (CO), plays an important role in maintaining homeostasis in the cardiovascular system. Endogenous H2 S is produced mainly by three endogenous enzymes: cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfur transferase. Numerous studies have shown that H2 S has a significant protective role in myocardial ischemia. The mechanisms by which H2 S affords cardioprotection include the antifibrotic and antiapoptotic effects, regulation of ion channels, protection of mitochondria, reduction of oxidative stress and inflammatory response, regulation of microRNA expression, and promotion of angiogenesis. Amplification of NO- and CO-mediated signaling through crosstalk between H2 S, NO, and CO may also contribute to the cardioprotective effect. Exogenous H2 S donors are expected to become effective drugs for the treatment of cardiovascular diseases. This review article focuses on the protective mechanisms and potential therapeutic applications of H2 S in myocardial ischemia.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Siyi Wu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
199
|
Hua W, Zhao J, Gou S. A naphthalimide derivative can release COS and form H 2S in a light-controlled manner and protect cells against ROS with real-time monitoring ability. Analyst 2020; 145:3878-3884. [PMID: 32297624 DOI: 10.1039/d0an00371a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As an important gasotransmitter, hydrogen sulfide having multiple biological roles cannot be easily probed in cells. In this study, a light controllable H2S donor, Nap-Sul-ONB, derived from naphthalimide was developed. Under the irradiation of 365 nm light, a readily controlled stimulus, the donor could release COS to form H2S and exhibit turn on fluorescence to indicate the release of payload and its cellular location. Besides, the ROS scavenging ability and cell protective effect of Nap-Sul-ONB against endogenous and exogenous ROS were studied. The results showed that upon 365 nm light irradiation, Nap-Sul-ONB could reduce the cellular ROS level and increase the survival rate of PMA-treated cells.
Collapse
Affiliation(s)
- Wuyang Hua
- Pharmaceutical Research Centre and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | |
Collapse
|
200
|
Sobczuk P, Czerwińska M, Kleibert M, Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. Heart Fail Rev 2020; 27:295-319. [PMID: 32472524 PMCID: PMC8739307 DOI: 10.1007/s10741-020-09977-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few millions of new cancer cases are diagnosed worldwide every year. Due to significant progress in understanding cancer biology and developing new therapies, the mortality rates are decreasing with many of patients that can be completely cured. However, vast majority of them require chemotherapy which comes with high medical costs in terms of adverse events, of which cardiotoxicity is one of the most serious and challenging. Anthracyclines (doxorubicin, epirubicin) are a class of cytotoxic agents used in treatment of breast cancer, sarcomas, or hematological malignancies that are associated with high risk of cardiotoxicity that is observed in even up to 30% of patients and can be diagnosed years after the therapy. The mechanism, in which anthracyclines cause cardiotoxicity are not well known, but it is proposed that dysregulation of renin-angiotensin-aldosterone system (RAAS), one of main humoral regulators of cardiovascular system, may play a significant role. There is increasing evidence that drugs targeting this system can be effective in the prevention and treatment of anthracycline-induced cardiotoxicity what has recently found reflection in the recommendation of some scientific societies. In this review, we comprehensively describe possible mechanisms how anthracyclines affect RAAS and lead to cardiotoxicity. Moreover, we critically review available preclinical and clinical data on use of RAAS inhibitors in the primary and secondary prevention and treatment of cardiac adverse events associated with anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Czerwińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|