151
|
Wang ST, Setlow B, Conlon EM, Lyon JL, Imamura D, Sato T, Setlow P, Losick R, Eichenberger P. The Forespore Line of Gene Expression in Bacillus subtilis. J Mol Biol 2006; 358:16-37. [PMID: 16497325 DOI: 10.1016/j.jmb.2006.01.059] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
Endospore formation by Bacillus subtilis involves three differentiating cell types, the predivisional cell, the mother cell, and the forespore. Here we report the program of gene expression in the forespore, which is governed by the RNA polymerase sigma factors sigma(F) and sigma(G) and the DNA-binding proteins RsfA and SpoVT. The sigma(F) factor turns on about 48 genes, including the gene for RsfA, which represses a gene in the sigma(F) regulon, and the gene for sigma(G). The sigma(G) factor newly activates 81 genes, including the gene for SpoVT, which turns on (in nine cases) or stimulates (in 11 cases) the expression of 20 genes that had been turned on by sigma(G) and represses the expression of 27 others. The forespore line of gene expression consists of many genes that contribute to morphogenesis and to the resistance and germination properties of the spore but few that have metabolic functions. Comparative genomics reveals a core of genes in the sigma(F) and sigma(G) regulons that are widely conserved among endospore-forming species but are absent from closely related, but non-spore-forming Listeria spp. Two such partially conserved genes (ykoU and ykoV), which are members of the sigma(G) regulon, are shown to confer dry-heat resistance to dormant spores. The ykoV gene product, a homolog of the non-homologous end-joining protein Ku, is shown to associate with the nucleoid during germination. Extending earlier work on gene expression in the predivisional cell and the mother cell, we present an integrated overview of the entire program of sporulation gene expression.
Collapse
Affiliation(s)
- Stephanie T Wang
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Budde I, Steil L, Scharf C, Völker U, Bremer E. Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology (Reading) 2006; 152:831-853. [PMID: 16514163 DOI: 10.1099/mic.0.28530-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The soil bacterium Bacillus subtilis frequently encounters a reduction in temperature in its natural habitats. Here, a combined transcriptomic and proteomic approach has been used to analyse the adaptational responses of B. subtilis to low temperature. Propagation of B. subtilis in minimal medium at 15 °C triggered the induction of 279 genes and the repression of 301 genes in comparison to cells grown at 37 °C. The analysis thus revealed profound adjustments in the overall gene expression profile in chill-adapted cells. Important transcriptional changes in low-temperature-grown cells comprise the induction of the SigB-controlled general stress regulon, the induction of parts of the early sporulation regulons (SigF, SigE and SigG) and the induction of a regulatory circuit (RapA/PhrA and Opp) that is involved in the fine-tuning of the phosphorylation status of the Spo0A response regulator. The analysis of chill-stress-repressed genes revealed reductions in major catabolic (glycolysis, oxidative phosphorylation, ATP synthesis) and anabolic routes (biosynthesis of purines, pyrimidines, haem and fatty acids) that likely reflect the slower growth rates at low temperature. Low-temperature repression of part of the SigW regulon and of many genes with predicted functions in chemotaxis and motility was also noted. The proteome analysis of chill-adapted cells indicates a major contribution of post-transcriptional regulation phenomena in adaptation to low temperature. Comparative analysis of the previously reported transcriptional responses of cold-shocked B. subtilis cells with this data revealed that cold shock and growth in the cold constitute physiologically distinct phases of the adaptation of B. subtilis to low temperature.
Collapse
Affiliation(s)
- Ina Budde
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Leif Steil
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Christian Scharf
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
| | - Uwe Völker
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Erhard Bremer
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| |
Collapse
|
153
|
Pomerantsev AP, Sitaraman R, Galloway CR, Kivovich V, Leppla SH. Genome engineering in Bacillus anthracis using Cre recombinase. Infect Immun 2006; 74:682-93. [PMID: 16369025 PMCID: PMC1346652 DOI: 10.1128/iai.74.1.682-693.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome engineering is a powerful method for the study of bacterial virulence. With the availability of the complete genomic sequence of Bacillus anthracis, it is now possible to inactivate or delete selected genes of interest. However, many current methods for disrupting or deleting more than one gene require use of multiple antibiotic resistance determinants. In this report we used an approach that temporarily inserts an antibiotic resistance marker into a selected region of the genome and subsequently removes it, leaving the target region (a single gene or a larger genomic segment) permanently mutated. For this purpose, a spectinomycin resistance cassette flanked by bacteriophage P1 loxP sites oriented as direct repeats was inserted within a selected gene. After identification of strains having the spectinomycin cassette inserted by a double-crossover event, a thermo-sensitive plasmid expressing Cre recombinase was introduced at the permissive temperature. Cre recombinase action at the loxP sites excised the spectinomycin marker, leaving a single loxP site within the targeted gene or genomic segment. The Cre-expressing plasmid was then removed by growth at the restrictive temperature. The procedure could then be repeated to mutate additional genes. In this way, we sequentially mutated two pairs of genes: pepM and spo0A, and mcrB and mrr. Furthermore, loxP sites introduced at distant genes could be recombined by Cre recombinase to cause deletion of large intervening regions. In this way, we deleted the capBCAD region of the pXO2 plasmid and the entire 30 kb of chromosomal DNA between the mcrB and mrr genes, and in the latter case we found that the 32 intervening open reading frames were not essential to growth.
Collapse
Affiliation(s)
- Andrei P Pomerantsev
- Bacterial Toxins and Therapeutics Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-4349, USA
| | | | | | | | | |
Collapse
|
154
|
Alsaker KV, Papoutsakis ET. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 2005; 187:7103-18. [PMID: 16199581 PMCID: PMC1251621 DOI: 10.1128/jb.187.20.7103-7118.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarray analysis of Clostridium acetobutylicum was used to examine the genomic-scale gene expression changes during the shift from exponential-phase growth and acidogenesis to stationary phase and solventogenesis. Self-organizing maps were used to identify novel expression patterns of functional gene classes, including aromatic and branched-chain amino acid synthesis, ribosomal proteins, cobalt and iron transporters, cobalamin biosynthesis, and lipid biosynthesis. The majority of pSOL1 megaplasmid genes (in addition to the solventogenic genes aad-ctfA-ctfB and adc) had increased expression at the onset of solventogenesis, suggesting that other megaplasmid genes may play a role in stationary-phase phenomena. Analysis of sporulation genes and comparison with published Bacillus subtilis results indicated conserved expression patterns of early sporulation genes, including spo0A, the sigF operon, and putative canonical genes of the sigma(H) and sigma(F) regulons. However, sigE expression could not be detected within 7.5 h of initial spo0A expression, consistent with the observed extended time between the appearance of clostridial forms and endospore formation. The results were compared with microarray comparisons of the wild-type strain and the nonsolventogenic, asporogenous M5 strain, which lacks the pSOL1 megaplasmid. While some results were similar, the expression of primary metabolism genes and heat shock proteins was higher in M5, suggesting a difference in metabolic regulation or a butyrate stress response in M5. The results of this microarray platform and analysis were further validated by comparing gene expression patterns to previously published Northern analyses, reporter assays, and two-dimensional protein electrophoresis data of metabolic genes (including all major solventogenesis genes), sporulation genes, heat shock proteins, and other solventogenesis-induced gene expression.
Collapse
Affiliation(s)
- Keith V Alsaker
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
155
|
Abstract
The endospore-forming rhizobacterium Bacillus subtilis- the model system for Gram-positive organisms, is able to produce more than two dozen antibiotics with an amazing variety of structures. The produced anti-microbial active compounds include predominantly peptides that are either ribosomally synthesized and post-translationally modified (lantibiotics and lantibiotic-like peptides) or non-ribosomally generated, as well as a couple of non-peptidic compounds such as polyketides, an aminosugar, and a phospholipid. Here I summarize the structures of all known B. subtilis antibiotics, their biochemistry and genetic analysis of their biosyntheses. An updated summary of well-studied antibiotic regulation pathways is given. Furthermore, current findings are resumed that show roles for distinct B. subtilis antibiotics beyond the "pure" anti-microbial action: Non-ribosomally produced lipopeptides are involved in biofilm and swarming development, lantibiotics function as pheromones in quorum-sensing, and a "killing factor" effectuates programmed cell death in sister cells. A discussion of how these antibiotics may contribute to the survival of B. subtilis in its natural environment is given.
Collapse
Affiliation(s)
- Torsten Stein
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Strasse 9, 60439 Frankfurt/Main, Germany.
| |
Collapse
|
156
|
Ren D, Zuo R, González Barrios AF, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol 2005; 71:4022-34. [PMID: 16000817 PMCID: PMC1169008 DOI: 10.1128/aem.71.7.4022-4034.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 01/31/2005] [Indexed: 12/16/2022] Open
Abstract
After 13,000 samples of compounds purified from plants were screened, a new biofilm inhibitor, ursolic acid, has been discovered and identified. Using both 96-well microtiter plates and a continuous flow chamber with COMSTAT analysis, 10 microg of ursolic acid/ml inhibited Escherichia coli biofilm formation 6- to 20-fold when added upon inoculation and when added to a 24-h biofilm; however, ursolic acid was not toxic to E. coli, Pseudomonas aeruginosa, Vibrio harveyi, and hepatocytes. Similarly, 10 microg of ursolic acid/ml inhibited biofilm formation by >87% for P. aeruginosa in both complex and minimal medium and by 57% for V. harveyi in minimal medium. To investigate the mechanism of this nontoxic inhibition on a global genetic basis, DNA microarrays were used to study the gene expression profiles of E. coli K-12 grown with or without ursolic acid. Ursolic acid at 10 and 30 microg/ml induced significantly (P < 0.05) 32 and 61 genes, respectively, and 19 genes were consistently induced. The consistently induced genes have functions for chemotaxis and mobility (cheA, tap, tar, and motAB), heat shock response (hslSTV and mopAB), and unknown functions (such as b1566 and yrfHI). There were 31 and 17 genes repressed by 10 and 30 microg of ursolic acid/ml, respectively, and 12 genes were consistently repressed that have functions in cysteine synthesis (cysK) and sulfur metabolism (cysD), as well as unknown functions (such as hdeAB and yhaDFG). Ursolic acid inhibited biofilms without interfering with quorum sensing, as shown with the V. harveyi AI-1 and AI-2 reporter systems. As predicted by the differential gene expression, deleting motAB counteracts ursolic acid inhibition (the paralyzed cells no longer become too motile). Based on the differential gene expression, it was also discovered that sulfur metabolism (through cysB) affects biofilm formation (in the absence of ursolic acid).
Collapse
Affiliation(s)
- Dacheng Ren
- Department of Chemical Engineering and Molecular and Cell Biology, University of Connecticut, 191 Auditorium Rd., Storrs, CT 06269-3222, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Kumar A, Goel G, Fehrenbach E, Puniya AK, Singh K. Microarrays: The Technology, Analysis and Application. Eng Life Sci 2005. [DOI: 10.1002/elsc.200420075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
158
|
Stephenson K, Lewis RJ. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2004.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
159
|
Freiberg C, Fischer HP, Brunner NA. Discovering the mechanism of action of novel antibacterial agents through transcriptional profiling of conditional mutants. Antimicrob Agents Chemother 2005; 49:749-59. [PMID: 15673760 PMCID: PMC547252 DOI: 10.1128/aac.49.2.749-759.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a new strategy for predicting novel antibiotic mechanisms of action based on the analysis of whole-genome microarray data. We first built up a reference compendium of Bacillus subtilis expression profiles induced by 14 different antibiotics. This data set was expanded by adding expression profiles from mutants that showed downregulation of genes coding for proven or emerging antibacterial targets. Here, we investigate conditional mutants underexpressing ileS, pheST, fabF, and accDA, each of which is essential for growth. Our proof-of-principle analyses reveal that conditional mutants can be used to mimic chemical inhibition of the corresponding gene products. Moreover, we show that a statistical data analysis combined with thorough pathway and regulon analysis can pinpoint the molecular target of uncharacterized antibiotics. We apply this approach to two novel antibiotics: a recently published phenyl-thiazolylurea derivative and the natural product moiramide B. Our results support recent findings suggesting that the phenyl-thiazolylurea derivative is a novel phenylalanyl-tRNA synthetase inhibitor. Finally, we propose a completely novel antibiotic mechanism of action for moiramide B based on inhibition of the bacterial acetyl coenzyme A carboxylase.
Collapse
MESH Headings
- Algorithms
- Amides/pharmacology
- Anti-Bacterial Agents/pharmacology
- Bacillus subtilis/drug effects
- Bacillus subtilis/genetics
- Bacteria/drug effects
- Bacteria/genetics
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/genetics
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Microbial Sensitivity Tests
- Models, Statistical
- Mutation/genetics
- Mutation/physiology
- Oligonucleotide Array Sequence Analysis
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Regulon/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Statistics, Nonparametric
- Succinimides/pharmacology
Collapse
Affiliation(s)
- C Freiberg
- Bayer HealthCare AG, Pharma Research, 42096 Wuppertal, Germany
| | | | | |
Collapse
|
160
|
Steil L, Serrano M, Henriques AO, Völker U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology (Reading) 2005; 151:399-420. [PMID: 15699190 DOI: 10.1099/mic.0.27493-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporal and compartment-specific control of gene expression during sporulation inBacillus subtilisis governed by a cascade of four RNA polymerase subunits.σFin the prespore andσEin the mother cell control early stages of development, and are replaced at later stages byσGandσK, respectively. Ultimately, a comprehensive description of the molecular mechanisms underlying spore morphogenesis requires the knowledge of all the intervening genes and their assignment to specific regulons. Here, in an extension of earlier work, DNA macroarrays have been used, and members of the four compartment-specific sporulation regulons have been identified. Genes were identified and grouped based on: i) their temporal expression profile and ii) the use of mutants for each of the four sigma factors and abofAallele, which allowsσKactivation in the absence ofσG. As a further test, artificial production of active alleles of the sigma factors in non-sporulating cells was employed. A total of 439 genes were found, including previously characterized genes whose transcription is induced during sporulation: 55 in theσFregulon, 154σE-governed genes, 113σG-dependent genes, and 132 genes underσKcontrol. The results strengthen the view that the activities ofσF,σE,σGandσKare largely compartmentalized, both temporally as well as spatially, and that the major vegetative sigma factor (σA) is active throughout sporulation. The results provide a dynamic picture of the changes in the overall pattern of gene expression in the two compartments of the sporulating cell, and offer insight into the roles of the prespore and the mother cell at different times of spore morphogenesis.
Collapse
Affiliation(s)
- Leif Steil
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras Codex, Portugal
| | - Uwe Völker
- Ernst-Moritz-Arndt-University, Medical School, Laboratory for Functional Genomics, Walther-Rathenau-Str. 49A, D-17487 Greifswald, Germany
- Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| |
Collapse
|
161
|
Fujita M, González-Pastor JE, Losick R. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 2005; 187:1357-68. [PMID: 15687200 PMCID: PMC545642 DOI: 10.1128/jb.187.4.1357-1368.2005] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Accepted: 11/15/2004] [Indexed: 11/20/2022] Open
Abstract
The master regulator for entry into sporulation in Bacillus subtilis is the response regulator Spo0A, which directly governs the expression of about 121 genes. Using cells in which the synthesis of Spo0A was under the control of an inducible promoter or in which production of the regulatory protein was impaired by a promoter mutation, we found that sporulation required a high (threshold) level of Spo0A and that many genes in the regulon differentially responded to high and low doses of the regulator. We distinguished four categories of genes, as follows: (i) those that required a high level of Spo0A to be activated, (ii) those that required a high level of Spo0A to be repressed, (iii) those that were activated at a low level of the regulator, and (iv) those that were repressed at a low dose of the regulator. Genes that required a high dose of Spo0A to be activated were found to have low binding constants for the DNA-binding protein. Some genes that were turned on at a low dose of Spo0A either had a high binding constant for the regulatory protein or were activated by an indirect mechanism involving Spo0A-mediated relief of repression by the repressor protein AbrB. We propose that progressive increases in the level of Spo0A leads to an early phase of transcription in which genes that play auxiliary roles in development, such as cannibalism and biofilm formation, are turned on and a later phase in which genes that play a direct role in sporulation are activated.
Collapse
Affiliation(s)
- Masaya Fujita
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| | | | | |
Collapse
|
162
|
Abstract
Differentiation of vegetative Bacillus subtilis into heat resistant spores is initiated by the activation of the key transcription regulator Spo0A through the phosphorelay. Subsequent events depend on the cell compartment-specific action of a series of RNA polymerase sigma factors. Analysis of genes in the Spo0A regulon has helped delineate the mechanisms of axial chromatin formation and asymmetric division. There have been considerable advances in our understanding of critical controls that act to regulate the phosphorelay and to activate the sigma factors.
Collapse
Affiliation(s)
- Patrick J Piggot
- Department of Microbiology and Immunology, Temple University School of Medicine. 3400N. Broad St., Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
163
|
Voskuil MI, Visconti KC, Schoolnik GK. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb) 2004; 84:218-27. [PMID: 15207491 DOI: 10.1016/j.tube.2004.02.003] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The innate mechanisms used by Mycobacterium tuberculosis to persist during periods of non-proliferation are central to understanding the physiology of the bacilli during latent disease. We have used whole genome expression profiling to expose adaptive mechanisms initiated by M. tuberculosis in two common models of M. tuberculosis non-proliferation. The first of these models was a standard growth curve in which gene expression changes were followed from exponential growth through the transition to stationary phase. In the second model, we followed the adaptive process of M. tuberculosis during transition from aerobic growth to a state of anaerobic non-replicating persistence. The most striking finding from these experiments was the strong induction of the entire DosR "dormancy" regulon over approximately 20 days during the long transition to an anaerobic state. This is contrasted by the muted overall response to aerated stationary phase with only a partial dormancy regulon response. From the results presented here we conclude that the respiration-limited environment of the oxygen-depleted NRP model recreates at least one fundamental factor for which the genome of M. tuberculosis encodes a decisive adaptive program.
Collapse
Affiliation(s)
- M I Voskuil
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | |
Collapse
|
164
|
Muchová K, Lewis RJ, Perecko D, Brannigan JA, Ladds JC, Leech A, Wilkinson AJ, Barák I. Dimer-induced signal propagation in Spo0A. Mol Microbiol 2004; 53:829-42. [PMID: 15255896 DOI: 10.1111/j.1365-2958.2004.04171.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spo0A, the response regulator protein controlling the initiation of sporulation in Bacillus, has two distinct domains, an N-terminal phosphoacceptor (or receiver) domain and a C-terminal DNA-binding (or effector) domain. The phosphoacceptor domain mediates dimerization of Spo0A on phosphorylation. A comparison of the crystal structures of phosphorylated and unphosphorylated response regulators suggests a mechanism of activation in which structural changes originating at the phosphorylatable aspartate extend to the alpha4beta5alpha5 surface of the protein. In particular, the data show an important role in downstream signalling for a conserved aromatic residue (Phe-105 in Spo0A), the conformation of which alters upon phosphorylation. In this study, we have prepared a Phe-105 to Ala mutant to probe the contribution of this residue to Spo0A function. We have also made an alanine substitution of the neighbouring residue Tyr-104 that is absolutely conserved in the Spo0As of spore-forming Bacilli. The spo0A(Y104A) and spo0A(F105A) alleles severely impair sporulation in vivo. In vitro phosphorylation of the purified proteins by phosphoramidate is unaffected, but dimerization and DNA binding are abolished by the mutations. We have identified intragenic suppressor mutations of spo0A(F105A) and shown that these second-site mutations in the purified proteins restore phosphorylation-dependent dimer formation. Our data support a model in which dimerization and signal transduction between the two domains of Spo0A are mediated principally by the alpha4beta5alpha5 signalling surface in the receiver domain.
Collapse
Affiliation(s)
- K Muchová
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava 45, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Ren D, Bedzyk LA, Setlow P, England DF, Kjelleberg S, Thomas SM, Ye RW, Wood TK. Differential gene expression to investigate the effect of (5Z)-4-bromo- 5-(bromomethylene)-3-butyl-2(5H)-furanone on Bacillus subtilis. Appl Environ Microbiol 2004; 70:4941-9. [PMID: 15294834 PMCID: PMC492336 DOI: 10.1128/aem.70.8.4941-4949.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
(5Z)-4-Bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) from the red marine alga Delisea pulchra was found previously to inhibit the growth, swarming, and biofilm formation of gram-positive bacteria. Using the gram-positive bacterium Bacillus subtilis as a test organism, we observed cell killing by 20 microg of furanone per ml, while 5 microg of furanone per ml inhibited growth approximately twofold without killing the cells. To discover the mechanism of this inhibition on a genetic level and to investigate furanone as a novel antibiotic, full-genome DNA microarrays were used to analyze the gene expression profiles of B. subtilis grown with and without 5 microg of furanone per ml. This agent induced 92 genes more than fivefold (P < 0.05) and repressed 15 genes more than fivefold (P < 0.05). The induced genes include genes involved in stress responses (such as the class III heat shock genes clpC, clpE, and ctsR and the class I heat shock genes groES, but no class II or IV heat shock genes), fatty acid biosynthesis, lichenan degradation, transport, and metabolism, as well as 59 genes with unknown functions. The microarray results for four genes were confirmed by RNA dot blotting. Mutation of a stress response gene, clpC, caused B. subtilis to be much more sensitive to 5 microg of furanone per ml (there was no growth in 8 h, while the wild-type strain grew to the stationary phase in 8 h) and confirmed the importance of the induction of this gene as identified by the microarray analysis.
Collapse
Affiliation(s)
- Dacheng Ren
- Department of Chemical Engineering, University of Connecticut, 191 Auditorium Rd., U-3222, Storrs, CT 06269-3222, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS, Losick R. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2004; 2:e328. [PMID: 15383836 PMCID: PMC517825 DOI: 10.1371/journal.pbio.0020328] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Accepted: 07/29/2004] [Indexed: 11/24/2022] Open
Abstract
Asymmetric division during sporulation by Bacillus subtilis generates a mother cell that undergoes a 5-h program of differentiation. The program is governed by a hierarchical cascade consisting of the transcription factors: σE, σK, GerE, GerR, and SpoIIID. The program consists of the activation and repression of 383 genes. The σE factor turns on 262 genes, including those for GerR and SpoIIID. These DNA-binding proteins downregulate almost half of the genes in the σE regulon. In addition, SpoIIID turns on ten genes, including genes involved in the appearance of σK. Next, σK activates 75 additional genes, including that for GerE. This DNA-binding protein, in turn, represses half of the genes that had been activated by σK while switching on a final set of 36 genes. Evidence is presented that repression and activation contribute to proper morphogenesis. The program of gene expression is driven forward by its hierarchical organization and by the repressive effects of the DNA-binding proteins. The logic of the program is that of a linked series of feed-forward loops, which generate successive pulses of gene transcription. Similar regulatory circuits could be a common feature of other systems of cellular differentiation. A comprehensive genomic analysis of sporulation in Bacillus subtilis reveals a coordinated program of gene activation and repression, which involves 383 genes
Collapse
Affiliation(s)
- Patrick Eichenberger
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Masaya Fujita
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Shane T Jensen
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Erin M Conlon
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - David Z Rudner
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Stephanie T Wang
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Caitlin Ferguson
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Koki Haga
- 3International Environmental and Agricultural Science, Tokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Tsutomu Sato
- 3International Environmental and Agricultural Science, Tokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Jun S Liu
- 2Department of Statistics, Harvard UniversityCambridge, MassachusettsUnited States of America
| | - Richard Losick
- 1Department of Molecular and Cellular Biology, Harvard UniversityCambridge, MassachusettsUnited States of America
| |
Collapse
|
167
|
Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK. Stationary-phase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli. Appl Environ Microbiol 2004; 70:2038-43. [PMID: 15066794 PMCID: PMC383170 DOI: 10.1128/aem.70.4.2038-2043.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Quorum sensing via autoinducer-2 (AI-2) has been identified in different strains, including those from Escherichia, Vibrio, Streptococcus, and Bacillus species, and previous studies have suggested the existence of additional quorum-sensing signals working in the stationary phase of Escherichia coli cultures. To investigate the presence and global effect of these possible quorum-sensing signals other than AI-2, DNA microarrays were used to study the effect of stationary-phase signals on the gene expression of early exponential-phase cells of the AI-2-deficient strain E. coli DH5alpha. For statistically significant differential gene expression (P < 0.05), 14 genes were induced by supernatants from a stationary culture and 6 genes were repressed, suggesting the involvement of indole (induction of tnaA and tnaL) and phosphate (repression of phoA, phoB, and phoU). To study the stability of the signals, the stationary-phase supernatant was autoclaved and was used to study its effect on E. coli gene expression. Three genes were induced by autoclaved stationary-phase supernatant, and 34 genes were repressed. In total, three genes (ompC, ptsA, and btuB) were induced and five genes (nupC, phoB, phoU, argT, and ompF) were repressed by both fresh and autoclaved stationary-phase supernatants. Furthermore, supernatant from E. coli DH5alpha stationary culture was found to repress E. coli K-12 AI-2 concentrations by 4.8-fold +/- 0.4-fold, suggesting that an additional quorum-sensing system in E. coli exists and that gene expression is controlled as a network with different signals working at different growth stages.
Collapse
Affiliation(s)
- Dacheng Ren
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | | | | | | | | |
Collapse
|
168
|
van Ooij C, Eichenberger P, Losick R. Dynamic patterns of subcellular protein localization during spore coat morphogenesis in Bacillus subtilis. J Bacteriol 2004; 186:4441-8. [PMID: 15231775 PMCID: PMC438564 DOI: 10.1128/jb.186.14.4441-4448.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endospores of Bacillus subtilis are encased in a thick, proteinaceous shell known as the coat, which is composed of a large number of different proteins. Here we report the identification of three previously uncharacterized coat-associated proteins, YabP, YheD, and YutH, and their patterns of subcellular localization during the process of sporulation, obtained by using fusions of the proteins to the green fluorescent protein (GFP). YabP-GFP was found to form both a shell and a ring around the center of the forespore across the short axis of the sporangium. YheD-GFP, in contrast, formed two rings around the forespore that were offset from its midpoint, before it eventually redistributed to form a shell around the developing spore. Finally, YutH-GFP initially localized to a focus at one end of the forespore, which then underwent transformation into a ring that was located adjacent to the forespore. Next, the ring became a cap at the mother cell pole of the forespore that eventually spread around the entire developing spore. Thus, each protein exhibited its own distinct pattern of subcellular localization during the course of coat morphogenesis. We concluded that spore coat assembly is a dynamic process involving diverse patterns of protein assembly and localization.
Collapse
Affiliation(s)
- Christiaan van Ooij
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Ave., Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
169
|
Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 2004; 52:847-60. [PMID: 15101989 PMCID: PMC1409746 DOI: 10.1111/j.1365-2958.2004.04023.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis is a ubiquitous soil bacterium that forms biofilms in a process that is negatively controlled by the transcription factor AbrB. To identify the AbrB-regulated genes required for biofilm formation by B. subtilis, genome-wide expression profiling studies of biofilms formed by spo0A abrB and sigH abrB mutant strains were performed. These data, in concert with previously published DNA microarray analysis of spo0A and sigH mutant strains, led to the identification of 39 operons that appear to be repressed by AbrB. Eight of these operons had previously been shown to be repressed by AbrB, and we confirmed AbrB repression for a further six operons by reverse transcription-PCR. The AbrB-repressed genes identified in this study are involved in processes known to be regulated by AbrB, such as extracellular degradative enzyme production and amino acid metabolism, and processes not previously known to be regulated by AbrB, such as membrane bioenergetics and cell wall functions. To determine whether any of these AbrB-regulated genes had a role in biofilm formation, we tested 23 mutants, each with a disruption in a different AbrB-regulated operon, for the ability to form biofilms. Two mutants had a greater than twofold defect in biofilm formation. A yoaW mutant exhibited a biofilm structure with reduced depth, and a sipW mutant exhibited only surface-attached cells and did not form a mature biofilm. YoaW is a putative secreted protein, and SipW is a signal peptidase. This is the first evidence that secreted proteins have a role in biofilm formation by Bacillus subtilis.
Collapse
Affiliation(s)
- Mélanie A. Hamon
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
| | - Nicola R. Stanley
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
| | - Robert A. Britton
- Department of Biology Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Alan. D. Grossman
- Department of Biology Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Beth A. Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
- *For correspondence. E-mail; Tel (+1) 310 794 4804; Fax (+1) 310 206 5231
| |
Collapse
|
170
|
Hilbert DW, Piggot PJ. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 2004; 68:234-62. [PMID: 15187183 PMCID: PMC419919 DOI: 10.1128/mmbr.68.2.234-262.2004] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression in members of the family Bacillaceae becomes compartmentalized after the distinctive, asymmetrically located sporulation division. It involves complete compartmentalization of the activities of sporulation-specific sigma factors, sigma(F) in the prespore and then sigma(E) in the mother cell, and then later, following engulfment, sigma(G) in the prespore and then sigma(K) in the mother cell. The coupling of the activation of sigma(F) to septation and sigma(G) to engulfment is clear; the mechanisms are not. The sigma factors provide the bare framework of compartment-specific gene expression. Within each sigma regulon are several temporal classes of genes, and for key regulators, timing is critical. There are also complex intercompartmental regulatory signals. The determinants for sigma(F) regulation are assembled before septation, but activation follows septation. Reversal of the anti-sigma(F) activity of SpoIIAB is critical. Only the origin-proximal 30% of a chromosome is present in the prespore when first formed; it takes approximately 15 min for the rest to be transferred. This transient genetic asymmetry is important for prespore-specific sigma(F) activation. Activation of sigma(E) requires sigma(F) activity and occurs by cleavage of a prosequence. It must occur rapidly to prevent the formation of a second septum. sigma(G) is formed only in the prespore. SpoIIAB can block sigma(G) activity, but SpoIIAB control does not explain why sigma(G) is activated only after engulfment. There is mother cell-specific excision of an insertion element in sigK and sigma(E)-directed transcription of sigK, which encodes pro-sigma(K). Activation requires removal of the prosequence following a sigma(G)-directed signal from the prespore.
Collapse
Affiliation(s)
- David W Hilbert
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad St., Philadelphia, PA 19140, USA
| | | |
Collapse
|
171
|
Liu J, Tan K, Stormo GD. Computational identification of the Spo0A-phosphate regulon that is essential for the cellular differentiation and development in Gram-positive spore-forming bacteria. Nucleic Acids Res 2004; 31:6891-903. [PMID: 14627822 PMCID: PMC290249 DOI: 10.1093/nar/gkg879] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spo0A-phosphate is essential for the initiation of cellular differentiation and developmental processes in Gram-positive spore-forming bacteria. Here we combined comparative genomics with analyses of microarray expression profiles to identify the Spo0A-phosphate regulon in Bacillus subtilis. The consensus Spo0A-phosphate DNA-binding motif identified from the training set based on different computational algorithms is an 8 bp sequence, TTGTCGAA. The same motif was identified by aligning the upstream regulatory sequences of spo0A-dependent genes obtained from the expression profile of Sad67 (a constitutively active form of Spo0A) and their orthologs. After the transcription units (TUs) having putative Spo0A-phosphate binding sites were obtained, conservation of regulons among the genomes of B.subtilis, Bacillus halodurans and Bacillus anthracis, and expression profiles were employed to identify the most confident predictions. Besides genes already known to be directly under the control of Spo0A-phosphate, 276 novel members (organized in 109 TUs) of the Spo0A-phosphate regulon in B.subtilis are predicted in this study. The sensitivity and specificity of our predictions are estimated based on known sites and combinations of different types of evidence. Further characterization of the novel candidates will provide information towards understanding the role of Spo0A-phosphate in the sporulation process, as well as the entire genetic network governing cellular differentiation and developmental processes in B.subtilis.
Collapse
Affiliation(s)
- Jiajian Liu
- Department of Genetics, Washington University Medical School, St Louis, MO 63110, USA
| | | | | |
Collapse
|
172
|
Alsaker KV, Spitzer TR, Papoutsakis ET. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress. J Bacteriol 2004; 186:1959-71. [PMID: 15028679 PMCID: PMC374416 DOI: 10.1128/jb.186.7.1959-1971.2004] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spo0A is the regulator of stationary-phase events and is required for transcription of solvent formation genes in Clostridium acetobutylicum. In order to elucidate the role of spo0A in differentiation, we performed transcriptional analysis of 824(pMSPOA) (a spo0A-overexpressing C. acetobutylicum strain with enhanced sporulation) against a plasmid control strain. DNA microarray data were contrasted to data from a spo0A knockout strain (SKO1) that neither sporulates nor produces solvents. Transcripts of fatty acid metabolism genes, motility and chemotaxis genes, heat shock protein genes, and genes encoding the Fts family of cell division proteins were differentially expressed in the two strains, suggesting that these genes play roles in sporulation and the solvent stress response. 824(pMSPOA) alone showed significant downregulation of many glycolytic genes in stationary phase, which is consistent with metabolic flux analysis data. Surprisingly, spo0A overexpression resulted in only nominal transcriptional changes of regulatory genes (abrB and sigF) whose expression was significantly altered in SKO1. Overexpression of spo0A imparted increased tolerance and prolonged metabolism in response to butanol stress. While most of the differentially expressed genes appear to be part of a general stress response (similar to patterns in two plasmid control strains and a groESL-overexpressing strain), several genes were expressed at higher levels at early time points after butanol challenge only in 824(pMSPOA). Most of these genes were related to butyryl coenzyme A and butyrate formation and/or assimilation, but they also included the cell division gene ftsX, the gyrase subunit-encoding genes gyrB and gyrA, DNA synthesis and repair genes, and fatty acid synthesis genes, all of which might play a role in the immediate butanol stress response, and thus in enhanced butanol tolerance.
Collapse
Affiliation(s)
- Keith V Alsaker
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
173
|
Tomas CA, Beamish J, Papoutsakis ET. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 2004; 186:2006-18. [PMID: 15028684 PMCID: PMC374415 DOI: 10.1128/jb.186.7.2006-2018.2004] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of challenges with low (0.25%, vol/vol) and high (0.75%) concentrations of butanol on the growth, glucose metabolism, product formation, and transcriptional program of the solvent-tolerant Clostridium acetobutylicum strain 824(pGROE1) and the plasmid control strain 824(pSOS95del) were used to study solvent tolerance and stress response. Strain 824(pGROE1) was generated by groESL overexpression. The growth of 824(pGROE1) was less inhibited than that of 824(pSOS95del), and 824(pGROE1) was able to metabolize glucose over the entire course of the culture (60 h postchallenge) while glucose metabolism in 824(pSOS95del) lasted 24 h. A comparison of their respective DNA array-based transcriptional profiles identified genes with similar expression patterns (these genes are likely to be part of a general butanol stress response) and genes with opposite expression patterns (these genes are likely to be associated with increased tolerance to butanol). Both strains exhibited a butanol dose-dependent increase in expression of all major stress protein genes, including groES, dnaKJ, hsp18, and hsp90; all major solvent formation genes, including aad, ctfA and -B, adc, and bdhA and -B (an unexpected and counterintuitive finding); the butyrate formation genes (ptb and buk); the butyryl coenzyme A biosynthesis operon genes; fructose bisphosphate aldolase; and a gene with homology to Bacillus subtilis kinA. A dose-dependent decrease in expression was observed for the genes of the major fatty acid synthesis operon (also an unexpected and counterintuitive finding), several glycolytic genes, and a few sporulation genes. Genes with opposite expression kinetics included rlpA, artP, and a gene encoding a hemin permease. Taken together, these data suggest that stress, even when it derives from the solvent product itself, triggers the induction of the solvent formation genes.
Collapse
Affiliation(s)
- Christopher A Tomas
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
174
|
Maughan H, Nicholson WL. Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J Bacteriol 2004; 186:2212-4. [PMID: 15028708 PMCID: PMC374405 DOI: 10.1128/jb.186.7.2212-2214.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has recently been proposed that phenotypic variation in clonal populations of bacterial species results from intracellular "noise," i.e., random fluctuations in levels of cellular molecules, which would be predicted to be insensitive to selective pressure. To test this notion, we propagated five populations of Bacillus subtilis for 5,000 generations with selection for one phenotype: the decision to sporulate. In support of the noise hypothesis, we report that none of the populations responded to selection by improving their efficiency of sporulation, indicating that intracellular noise is independent of heritable genotype.
Collapse
Affiliation(s)
- Heather Maughan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
175
|
Rubio A, Pogliano K. Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J 2004; 23:1636-46. [PMID: 15044948 PMCID: PMC391076 DOI: 10.1038/sj.emboj.7600171] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 02/19/2004] [Indexed: 11/08/2022] Open
Abstract
In Bacillus subtilis, many membrane proteins localize to the sporulation septum, where they play key roles in spore morphogenesis and cell-specific gene expression, but the mechanism for septal targeting is not well understood. SpoIIQ, a forespore-expressed protein, is involved in engulfment and forespore-specific gene expression. We find that SpoIIQ dynamically localizes to the sporulation septum, tracks the engulfing mother cell membrane, assembles into helical arcs around the forespore and is finally degraded. Retention of SpoIIQ in the septum requires one or more mother cell-expressed proteins. We also observed that any forespore-expressed membrane protein initially localizes to the septum and later spreads throughout the forespore membrane, suggesting that membrane protein insertion occurs at the forespore septal region. This possibility provides an attractive mechanism for how activation of mother cell-specific gene expression is restricted to adjacent sister cells, since direct insertion of the signaling protein SpoIIR into the septum would spatially restrict its activity. In keeping with this hypothesis, we find that SpoIIR localizes to the septum and is transiently expressed.
Collapse
Affiliation(s)
- Aileen Rubio
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA. Tel.: +1 858 822 1314; Fax: +1 858 822 1431; E-mail:
| |
Collapse
|
176
|
Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE, Liu JS, Losick R. The Spo0A regulon of Bacillus subtilis. Mol Microbiol 2004; 50:1683-701. [PMID: 14651647 DOI: 10.1046/j.1365-2958.2003.03818.x] [Citation(s) in RCA: 418] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The master regulator for entry into sporulation in Bacillus subtilis is the DNA-binding protein Spo0A, which has been found to influence, directly or indirectly, the expression of over 500 genes during the early stages of development. To search on a genome-wide basis for genes under the direct control of Spo0A, we used chromatin immunoprecipitation in combination with gene microarray analysis to identify regions of the chromosome at which an activated form of Spo0A binds in vivo. This information in combination with transcriptional profiling using gene microarrays, gel electrophoretic mobility shift assays, using the DNA-binding domain of Spo0A, and bioinformatics enabled us to assign 103 genes to the Spo0A regulon in addition to 18 previously known members. Thus, in total, 121 genes, which are organized as 30 single-gene units and 24 operons, are likely to be under the direct control of Spo0A. Forty of these genes are under the positive control of Spo0A, and 81 are under its negative control. Among newly identified members of the regulon with transcription that was stimulated by Spo0A are genes for metabolic enzymes and genes for efflux pumps. Among members with transcription that was in-hibited by Spo0A are genes encoding components of the DNA replication machinery and genes that govern flagellum biosynthesis and chemotaxis. Also in-cluded in the regulon are many (25) genes with products that are direct or indirect regulators of gene transcription. Spo0A is a master regulator for sporulation, but many of its effects on the global pattern of gene transcription are likely to be mediated indirectly by regulatory genes under its control.
Collapse
Affiliation(s)
- Virginie Molle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Affiliation(s)
- Robert A Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
178
|
Kumar A, Buckner Starke C, DeZalia M, Moran CP. Surfaces of Spo0A and RNA polymerase sigma factor A that interact at the spoIIG promoter in Bacillus subtilis. J Bacteriol 2004; 186:200-6. [PMID: 14679239 PMCID: PMC303461 DOI: 10.1128/jb.186.1.200-206.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, the DNA binding protein Spo0A activates transcription from two classes of promoters, those used by RNA polymerase containing the primary sigma factor, sigma(A) (e.g., spoIIG), and those used by RNA polymerase containing the secondary sigma factor, sigma(H) (e.g., spoIIA). Several single amino acid substitutions in region 4 of sigma(A) define positions in sigma(A) that are specifically required for Spo0A-dependent promoter activation. Similarly, several single amino acid substitutions in Spo0A define positions in Spo0A that are required for sigma(A)-dependent promoter activation but not for other functions of Spo0A. It is unknown whether these amino acids in Spo0A interact directly with those in region 4 of sigma(A) or whether they interact with another subunit of RNA polymerase to effect promoter activation. Here we report the identification of a new amino acid in region 4 of sigma(A), arginine at position 355 (R355), that is involved in Spo0A-dependent promoter activation. To further investigate the role of R355, we used the coordinates of Spo0A and sigma region 4, each in complex with DNA, to build a model for the interaction of sigma(A) and Spo0A at the spoIIG promoter. We tested the model by examining the effects of amino acid substitutions in the putative interacting surfaces of these molecules. As predicted by the model, we found genetic evidence for interaction of R355 of sigma(A) with glutamine at position 221 of Spo0A. These results appear to define the surfaces of Spo0A and sigma(A) that directly interact during activation of the spoIIG promoter.
Collapse
Affiliation(s)
- Amrita Kumar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
179
|
Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system ofEscherichia coli. Biotechnol Bioeng 2004; 88:630-42. [PMID: 15470704 DOI: 10.1002/bit.20259] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The quorum sensing disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) of the alga Delisea pulchra was previously found by us (Environ Microbiol 3:731-736, 2001) to inhibit quorum sensing in Escherichia coli via autoinducer-2 (AI-2, produced by LuxS). In this study, DNA microarrays were used to study the genetic basis of this natural furanone inhibition of AI-2 signaling (significant values with p < 0.05 are reported). Using DNA microarrays, the AI-2 mutant Escherichia coli DH5alpha was compared with the AI-2 wild-type strain, E. coli K12, to determine how AI-2 influenced gene expression. Escherichia coli K12 was also grown with 0 and 60 microg/mL furanone to study the inhibition of quorum sensing gene expression. It was found that 166 genes were differentially expressed by AI-2 (67 were induced and 99 were repressed) and 90 genes were differentially expressed by furanone (34 were induced and 56 were repressed). Importantly, 79% (44 out of 56) of the genes repressed by furanone were induced by AI-2, which indicated that furanone inhibited AI-2 signaling and influenced the same suite of genes as a regulon. Most of these genes have functions of chemotaxis, motility, and flagellar synthesis. Interestingly, the aerotaxis genes aer and tsr were discovered to be induced by AI-2 and repressed by furanone. Representative microarray results were confirmed by RNA dot blotting. Furthermore, the E. coli air-liquid interface biofilm formation was repressed by furanone, supporting the results that taxis and flagellar genes were repressed by furanone. The autoinducer bioassay indicated that 100 microg/mL furanone decreased the extracellular concentration of AI-2 2-fold, yet luxS and pfs transcription were not significantly altered. Hence, furanone appeared to alter AI-2 signaling post-transcriptionally.
Collapse
Affiliation(s)
- Dacheng Ren
- Department of Chemical Engineering and Molecular & Cell Biology, University of Connecticut, 191 Auditorium Road, U-3222, Storrs, Connecticut 06269-3222, USA
| | | | | | | | | |
Collapse
|
180
|
Abstract
Spore formation in bacteria poses a number of biological problems of fundamental significance. Asymmetric cell division at the onset of sporulation is a powerful model for studying basic cell-cycle problems, including chromosome segregation and septum formation. Sporulation is one of the best understood examples of cellular development and differentiation. Fascinating problems posed by sporulation include the temporal and spatial control of gene expression, intercellular communication and various aspects of cell morphogenesis.
Collapse
Affiliation(s)
- Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
181
|
Feucht A, Evans L, Errington J. Identification of sporulation genes by genome-wide analysis of the σ
E regulon of Bacillus subtilis. Microbiology (Reading) 2003; 149:3023-3034. [PMID: 14523133 DOI: 10.1099/mic.0.26413-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differentiation in the spore-forming bacterium Bacillus subtilis is governed by the sequential activation of five sporulation-specific transcription factors. The early mother-cell-specific transcription factor, σ
E, directs the transcription of many genes that contribute to the formation of mature, dormant spores. In this study, DNA microarrays were used to identify genes belonging to the σ
E regulon. In total, 171 genes were found to be under the control of σ
E. Of these, 101 genes had not previously been described as being σ
E dependent. Disruption of some of the previously unknown genes (ydcC, yhaL, yhbH, yjaV and yqfD) resulted in a defect in sporulation.
Collapse
Affiliation(s)
- Andrea Feucht
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Louise Evans
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
182
|
Hecker M. A proteomic view of cell physiology of Bacillus subtilis--bringing the genome sequence to life. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 83:57-92. [PMID: 12934926 DOI: 10.1007/3-540-36459-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The genome sequence is the "blue-print of life", and the proteomic approach brings this genome sequence to life. Simple model systems are urgently required to "train" this transformation of the genome sequence into life: why not Bacillus subtilis, the model organism for gram-positive bacteria and of functional genomics? By combination of the highly sensitive 2D protein gel electrophoresis with the identification of the protein spots by microsequencing or mass spectrometry we established a 2D protein index of Bacillus subtilis. In order to depict the entire proteome of a B. subtilis cell, alkaline, cell-wall associated, or extracellular proteins were also included. The proteins of this database (see http://microbio2.biologie.uni-greifswald.de:8880/sub2d.htm) were allocated to proteins with house-keeping functions typical of growing cells and to proteins synthesized particularly in non-growing cells. A computer-aided evaluation of the 2D gels loaded with radioactively-labeled proteins from growing or stressed/starved cells proved to be a powerful tool for the analysis of global regulation of the expression of the entire genome. This is shown for the analysis of glycolysis/TCA cycle (house keeping proteins) and for the analysis of the heat stress stimulon. For the heat stress stimulon it is demonstrated how the proteomic approach can be used: (i) to define the structure of a stimulon, (ii) to dissect stimulons into regulons, (iii) to analyze the regulation, structure, and function of unknown regulons, (iv) to define overlapping reguIons or modulons, and finally (v) to explore complex adaptational networks. Furthermore, it will be demonstrated how the "dual channel pattern comparison" or "proteomics signature" (R. VanBogelen) can be used for a comprehensive understanding or prediction of the physiological state of growing or starving cell populations. This is shown for glucose-starved cells. In order to describe the structure and function of gene regulation groups it is generally recommended to complement the proteomics approach with DNA array technologies. Further studies will focus on the analysis of the global regulation of gene expression by the proteomic approach that cannot be addressed by the application of DNA array techniques: the phosphoproteome and its implications in signal transduction; the global control of protein stability; protein targeting and protein secretion.
Collapse
Affiliation(s)
- Michael Hecker
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, F.-L.-Jahn-Strasse 15, 17487 Greifswald, Germany.
| |
Collapse
|
183
|
Abstract
DNA microarray technology has become an important research tool for microbiology and biotechnology as it allows for comprehensive DNA and RNA analyses to characterize genetic diversity and gene expression in a genome-wide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Mycobacterium tuberculosis, but only recently have they been used for the related high-GC Gram-positive Corynebacterium glutamicum, which is widely used for biotechnological amino acid production. Besides the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, recent applications of DNA microarray technology in C. glutamicum including the characterization of ribose-specific gene expression and the valine stress response will be described. Emerging perspectives of functional genomics to enlarge our insight into fundamental biology of C. glutamicum and their impact on applied biotechnology will be discussed.
Collapse
Affiliation(s)
- Volker F Wendisch
- Institute of Biotechnology, 1 Research Center Jülich, D-52428 Jülich, Germany.
| |
Collapse
|
184
|
Tomas CA, Alsaker KV, Bonarius HPJ, Hendriksen WT, Yang H, Beamish JA, Paredes CJ, Papoutsakis ET. DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J Bacteriol 2003; 185:4539-47. [PMID: 12867463 PMCID: PMC165787 DOI: 10.1128/jb.185.15.4539-4547.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large-scale transcriptional program of two Clostridium acetobutylicum strains (SKO1 and M5) relative to that of the parent strain (wild type [WT]) was examined by using DNA microarrays. Glass DNA arrays containing a selected set of 1,019 genes (including all 178 pSOL1 genes) covering more than 25% of the whole genome were designed, constructed, and validated for data reliability. Strain SKO1, with an inactivated spo0A gene, displays an asporogenous, filamentous, and largely deficient solventogenic phenotype. SKO1 displays downregulation of all solvent formation genes, sigF, and carbohydrate metabolism genes (similar to genes expressed as part of the stationary-phase response in Bacillus subtilis) but also several electron transport genes. A major cluster of genes upregulated in SKO1 includes abrB, the genes from the major chemotaxis and motility operons, and glycosylation genes. Strain M5 displays an asporogenous and nonsolventogenic phenotype due to loss of the megaplasmid pSOL1, which contains all genes necessary for solvent formation. Therefore, M5 displays downregulation of all pSOL1 genes expressed in the WT. Notable among other genes expressed more highly in WT than in M5 were sigF, several two-component histidine kinases, spo0A, cheA, cheC, many stress response genes, fts family genes, DNA topoisomerase genes, and central-carbon metabolism genes. Genes expressed more highly in M5 include electron transport genes (but different from those downregulated in SKO1) and several motility and chemotaxis genes. Most of these expression patterns were consistent with phenotypic characteristics. Several of these expression patterns are new or different from what is known in B. subtilis and can be used to test a number of functional-genomic hypotheses.
Collapse
Affiliation(s)
- Christopher A Tomas
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Affiliation(s)
- Hanna Engelberg-Kulka
- Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
186
|
Abstract
Spore formation by the bacterium Bacillus subtilis is an elaborate developmental process that is triggered by nutrient limitation. Here we report that cells that have entered the pathway to sporulate produce and export a killing factor and a signaling protein that act cooperatively to block sister cells from sporulating and to cause them to lyse. The sporulating cells feed on the nutrients thereby released, which allows them to keep growing rather than to complete morphogenesis. We propose that sporulation is a stress-response pathway of last resort and that B. subtilis delays a commitment to spore formation by cannibalizing its siblings.
Collapse
Affiliation(s)
- José E González-Pastor
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
187
|
Ladds JC, Muchová K, Blaskovic D, Lewis RJ, Brannigan JA, Wilkinson AJ, Barák I. The response regulator Spo0A from Bacillus subtilis is efficiently phosphorylated in Escherichia coli. FEMS Microbiol Lett 2003; 223:153-7. [PMID: 12829280 DOI: 10.1016/s0378-1097(03)00321-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The response regulator proteins of two-component systems mediate many adaptations of bacteria to their ever-changing environment. Most response regulators are transcription factors that alter the level of transcription of specific sets of genes. Activation of response regulators requires their phosphorylation on a conserved aspartate residue by a cognate sensor kinase. For this reason, expression of a recombinant response regulator in the absence of the requisite sensor kinase is expected to yield an unphosphorylated product in the inactive state. For Spo0A, the response regulator controlling sporulation in Bacillus subtilis however, we have found that a significant fraction of the purified recombinant protein is phosphorylated. This phosphorylated component is dimeric and binds to Spo0A recognition sequences in DNA. Treatment with the Spo0A-specific phosphatase, Spo0E, leads to dissociation of the dimers and loss of DNA binding. It is therefore necessary to pre-treat recombinant Spo0A preparations with the cognate phosphatase, to generate the fully inactive state of the molecule.
Collapse
Affiliation(s)
- Joanne C Ladds
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, UK
| | | | | | | | | | | | | |
Collapse
|
188
|
Cook KL, Sayler GS. Environmental application of array technology: promise, problems and practicalities. Curr Opin Biotechnol 2003; 14:311-8. [PMID: 12849785 DOI: 10.1016/s0958-1669(03)00057-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Array technology has been applied in environmental research using innovative approaches in gene expression, comparative genomics and mixed community analysis. Greater fundamental understanding of sources of experimental and analytical error in array experiments should facilitate the future application of array technology to environmental analysis.
Collapse
Affiliation(s)
- Kimberly L Cook
- Department of Microbiology, Center for Environmental Biotechnology, 676 Dabney Hall, University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
189
|
Nicholson TL, Olinger L, Chong K, Schoolnik G, Stephens RS. Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. J Bacteriol 2003; 185:3179-89. [PMID: 12730178 PMCID: PMC154084 DOI: 10.1128/jb.185.10.3179-3189.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distinct morphological changes associated with the complex development cycle of the obligate intracellular bacterial pathogen Chlamydia trachomatis have been historically well characterized by microscopy. A number of temporally regulated genes have been characterized previously, suggesting that the chlamydial developmental cycle is regulated at the transcriptional level. This hypothesis was tested by microarray analysis in which the entire C. trachomatis genome was analyzed, providing a comprehensive assessment of global gene regulation throughout the chlamydial developmental cycle. Seven temporally cohesive gene clusters were identified, with 22% (189 genes) of the genome differentially expressed during the developmental cycle. The correlation of these gene clusters with hallmark morphological events of the chlamydial developmental cycle suggests three global stage-specific networks of gene regulation.
Collapse
Affiliation(s)
- Tracy L Nicholson
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
190
|
Eichenberger P, Jensen ST, Conlon EM, van Ooij C, Silvaggi J, González-Pastor JE, Fujita M, Ben-Yehuda S, Stragier P, Liu JS, Losick R. The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 2003; 327:945-72. [PMID: 12662922 DOI: 10.1016/s0022-2836(03)00205-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the identification and characterization on a genome-wide basis of genes under the control of the developmental transcription factor sigma(E) in Bacillus subtilis. The sigma(E) factor governs gene expression in the larger of the two cellular compartments (the mother cell) created by polar division during the developmental process of sporulation. Using transcriptional profiling and bioinformatics we show that 253 genes (organized in 157 operons) appear to be controlled by sigma(E). Among these, 181 genes (organized in 121 operons) had not been previously described as members of this regulon. Promoters for many of the newly identified genes were located by transcription start site mapping. To assess the role of these genes in sporulation, we created null mutations in 98 of the newly identified genes and operons. Of the resulting mutants, 12 (in prkA, ybaN, yhbH, ykvV, ylbJ, ypjB, yqfC, yqfD, ytrH, ytrI, ytvI and yunB) exhibited defects in spore formation. In addition, subcellular localization studies were carried out using in-frame fusions of several of the genes to the coding sequence for GFP. A majority of the fusion proteins localized either to the membrane surrounding the developing spore or to specific layers of the spore coat, although some fusions showed a uniform distribution in the mother cell cytoplasm. Finally, we used comparative genomics to determine that 46 of the sigma(E)-controlled genes in B.subtilis were present in all of the Gram-positive endospore-forming bacteria whose genome has been sequenced, but absent from the genome of the closely related but not endospore-forming bacterium Listeria monocytogenes, thereby defining a core of conserved sporulation genes of probable common ancestral origin. Our findings set the stage for a comprehensive understanding of the contribution of a cell-specific transcription factor to development and morphogenesis.
Collapse
Affiliation(s)
- Patrick Eichenberger
- Department of Molecular and Cellular Biology, Harvard University Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Ragkousi K, Eichenberger P, van Ooij C, Setlow P. Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J Bacteriol 2003; 185:2315-29. [PMID: 12644503 PMCID: PMC151495 DOI: 10.1128/jb.185.7.2315-2329.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis spores can germinate with a 1:1 chelate of Ca(2+) and dipicolinic acid (DPA), a compound present at high levels in the spore core. Using a genetic screen to identify genes encoding proteins that are specifically involved in spore germination by Ca(2+)-DPA, three mutations were identified. One was in the gene encoding the cortex lytic enzyme, CwlJ, that was previously shown to be essential for spore germination by Ca(2+)-DPA. The other two were mapped to an open reading frame, ywdL, encoding a protein of unknown function. Analysis of ywdL expression showed that the gene is expressed during sporulation in the mother cell compartment of the sporulating cell and that its transcription is sigma(E) dependent. Functional characterization of YwdL demonstrated that it is a new spore coat protein that is essential for the presence of CwlJ in the spore coat. Assembly of YwdL itself into the spore coat is dependent on the coat morphogenetic proteins CotE and SpoIVA. However, other than lacking CwlJ, ywdL spores have no obvious defect in their spore coat. Because of the role for YwdL in a part of the spore germination process, we propose renaming ywdL as a spore germination gene, gerQ.
Collapse
Affiliation(s)
- Katerina Ragkousi
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | |
Collapse
|
192
|
Abstract
Microarrays provide a powerful new tool for understanding the regulation of gene expression in bacteria. Many recent publications have used microarrays for identifying regulon members and stimulons that describe the complex organismal responses to environmental perturbations. The use of bioinformatics to identify DNA binding sites of transcription factors greatly facilitates the interpretation of these experiments. Understanding the transcriptome of an organism includes identifying all transcripts and mapping their 5' and 3' ends. High-density oligonucleotide arrays have enabled the identification of many new transcripts, including small RNAs and antisense RNAs.
Collapse
Affiliation(s)
- Virgil A Rhodius
- Department of Microbiology and Immunology, University of California, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2200, USA.
| | | |
Collapse
|
193
|
Asai K, Yamaguchi H, Kang CM, Yoshida KI, Fujita Y, Sadaie Y. DNA microarray analysis of Bacillus subtilis sigma factors of extracytoplasmic function family. FEMS Microbiol Lett 2003; 220:155-60. [PMID: 12644242 DOI: 10.1016/s0378-1097(03)00093-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Target gene candidates of the seven extracytoplasmic function (ECF) sigma factors of Bacillus subtilis have been surveyed using DNA microarray analysis of mRNA extracted from cells grown in Luria-Bertani broth, in which an ECF sigma factor gene was placed under the control of the spac promoter on multicopy plasmid pDG148 and overexpressed. The number of target candidates for each of the sigma factors varied greatly, and a total of 278 genes were selected. Interestingly, the above target gene candidates shared only one gene out of 94 target genes of the general stress sigma B that have been reported in the literature thus far. Furthermore, lacZ-fusion experiments based on the results of DNA microarray analysis indicated that each ECF sigma factor directs transcription of its own operon, with the exception of sigZ. The DNA microarray data collected in this study are available at the KEGG Expression Database web site (http://www.genome.ad.jp/kegg/expression/).
Collapse
Affiliation(s)
- Kei Asai
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, 338-8570 Saitama, Japan
| | | | | | | | | | | |
Collapse
|
194
|
Molle V, Nakaura Y, Shivers RP, Yamaguchi H, Losick R, Fujita Y, Sonenshein AL. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol 2003; 185:1911-22. [PMID: 12618455 PMCID: PMC150151 DOI: 10.1128/jb.185.6.1911-1922.2003] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Additional targets of CodY, a GTP-activated repressor of early stationary-phase genes in Bacillus subtilis, were identified by combining chromatin immunoprecipitation, DNA microarray hybridization, and gel mobility shift assays. The direct targets of CodY newly identified by this approach included regulatory genes for sporulation, genes that are likely to encode transporters for amino acids and sugars, and the genes for biosynthesis of branched-chain amino acids.
Collapse
Affiliation(s)
- Virginie Molle
- Department of Cellular and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Stanley NR, Britton RA, Grossman AD, Lazazzera BA. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 2003; 185:1951-7. [PMID: 12618459 PMCID: PMC150146 DOI: 10.1128/jb.185.6.1951-1957.2003] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are structured communities of cells that are encased in a self-produced polymeric matrix and are adherent to a surface. Many biofilms have a significant impact in medical and industrial settings. The model gram-positive bacterium Bacillus subtilis has recently been shown to form biofilms. To gain insight into the genes involved in biofilm formation by this bacterium, we used DNA microarrays representing >99% of the annotated B. subtilis open reading frames to follow the temporal changes in gene expression that occurred as cells transitioned from a planktonic to a biofilm state. We identified 519 genes that were differentially expressed at one or more time points as cells transitioned to a biofilm. Approximately 6% of the genes of B. subtilis were differentially expressed at a time when 98% of the cells in the population were in a biofilm. These genes were involved in motility, phage-related functions, and metabolism. By comparing the genes differentially expressed during biofilm formation with those identified in other genomewide transcriptional-profiling studies, we were able to identify several transcription factors whose activities appeared to be altered during the transition from a planktonic state to a biofilm. Two of these transcription factors were Spo0A and sigma-H, which had previously been shown to affect biofilm formation by B. subtilis. A third signal that appeared to be affecting gene expression during biofilm formation was glucose depletion. Through quantitative biofilm assays and confocal scanning laser microscopy, we observed that glucose inhibited biofilm formation through the catabolite control protein CcpA.
Collapse
Affiliation(s)
- Nicola R Stanley
- Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
196
|
Abstract
Eukaryotic chromosomes are anchored to a spindle apparatus during mitosis, but no such structure is known during chromosome segregation in bacteria. When sister chromosomes are segregated during sporulation in Bacillus subtilis, the replication origin regions migrate to opposite poles of the cell. If and how origin regions are fastened at the poles has not been determined. Here we describe a developmental protein, RacA, that acts as a bridge between the origin region and the cell poles. We propose that RacA assembles into an adhesive patch at a centromere-like element near the origin, causing chromosomes to stick at the poles.
Collapse
Affiliation(s)
- Sigal Ben-Yehuda
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
197
|
Rhodius V, Van Dyk TK, Gross C, LaRossa RA. Impact of genomic technologies on studies of bacterial gene expression. Annu Rev Microbiol 2003; 56:599-624. [PMID: 12142487 DOI: 10.1146/annurev.micro.56.012302.160925] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to simultaneously monitor expression of all genes in any bacterium whose genome has been sequenced has only recently become available. This requires not only careful experimentation but also that voluminous data be organized and interpreted. Here we review the emerging technologies that are impacting the study of bacterial global regulatory mechanisms with a view toward discussing both perceived best practices and the current state of the art. To do this, we concentrate upon examples using Escherichia coli and Bacillus subtilis because prior work in these organisms provides a sound basis for comparison.
Collapse
Affiliation(s)
- Virgil Rhodius
- Department of Stomatology, University of California, San Francisco, 94143, USA.
| | | | | | | |
Collapse
|
198
|
de Jong H, Gouzé JL, Hernandez C, Page M, Sari T, Geiselmann J. Hybrid Modeling and Simulation of Genetic Regulatory Networks: A Qualitative Approach. HYBRID SYSTEMS: COMPUTATION AND CONTROL 2003. [DOI: 10.1007/3-540-36580-x_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
199
|
Kuwana R, Kasahara Y, Fujibayashi M, Takamatsu H, Ogasawara N, Watabe K. Proteomics characterization of novel spore proteins of Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3971-3982. [PMID: 12480901 DOI: 10.1099/00221287-148-12-3971] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The spores of Bacillus subtilis have characteristic properties and consist of complex structures including various types of proteins. To perform comprehensive analysis of the protein composition of the spores, the proteins extracted from the spore were analysed by a combination of one-dimensional PAGE and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using Turboquest SEQUEST software interfaced with the DNA sequence database of B. subtilis. A total of 154 proteins were identified, and 69 of them were novel. The remaining 85 proteins have been previously reported as sporulation-specific proteins or as proteins that are synthesized in vegetative cells. The expression pattern of each gene deduced to encode novel spore proteins was analysed using a series of strains carrying a lacZ reporter gene. The results revealed that the expression of 26 genes was dependent on sporulation-specific sigma factors, namely sigma(F), sigma(E), sigma(G) and sigma(K). In this study, it is demonstrated that the combination of the techniques of SDS-PAGE and LC-MS/MS, with the mutant library of B. subtilis, is an effective tool for the analysis of complicated cellular structures.
Collapse
Affiliation(s)
- Ritsuko Kuwana
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan1
| | - Yasuhiro Kasahara
- Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan2
| | - Machiko Fujibayashi
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan1
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan1
| | - Naotake Ogasawara
- Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan2
| | - Kazuhito Watabe
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan1
| |
Collapse
|
200
|
|