151
|
Holland AM, Góñez LJ, Naselli G, Macdonald RJ, Harrison LC. Conditional expression demonstrates the role of the homeodomain transcription factor Pdx1 in maintenance and regeneration of beta-cells in the adult pancreas. Diabetes 2005; 54:2586-95. [PMID: 16123346 DOI: 10.2337/diabetes.54.9.2586] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The homeodomain transcription factor Pdx1 is essential for pancreas development. To investigate the role of Pdx1 in the adult pancreas, we employed a mouse model in which transcription of Pdx1 could be reversibly repressed by administration of doxycycline. Repression of Pdx1 in adult mice impaired expression of insulin and glucagon, leading to diabetes within 14 days. Pdx1 repression was associated with increased cell proliferation predominantly in the exocrine pancreas and upregulation of genes implicated in pancreas regeneration. Following withdrawal of doxycycline and derepression of Pdx1, normoglycemia was restored within 28 days; during this period, Pdx1(+)/Ins(+) and Pdx(+)/Ins(-) cells were observed in association with the duct epithelia. These findings confirm that Pdx1 is required for beta-cell function in the adult pancreas and indicate that in the absence of Pdx1 expression, a regenerative program is initiated with the potential for Pdx1-dependent beta-cell neogenesis.
Collapse
Affiliation(s)
- Andrew M Holland
- Autoimmunity and Transplantation Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
152
|
Stanger BZ, Datar R, Murtaugh LC, Melton DA. Direct regulation of intestinal fate by Notch. Proc Natl Acad Sci U S A 2005; 102:12443-8. [PMID: 16107537 PMCID: PMC1194941 DOI: 10.1073/pnas.0505690102] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The signals that maintain the proper balance between adult intestinal cell types are poorly understood. Loss-of-function studies have implicated the Notch pathway in the regulation of intestinal fate during development. However, it is unknown whether Notch has a role in maintaining the balance of different cell types in the adult intestine and whether it acts reversibly. To determine whether Notch has a direct effect on intestinal development and adult intestinal cell turnover, we have used a gain-of-function approach to activate Notch. Ectopic Notch signaling in adult intestinal progenitor cells leads to a bias against secretory fates, whereas ectopic Notch activation in the embryonic foregut results in reversible defects in villus morphogenesis and loss of the proliferative progenitor compartment. We conclude that Notch regulates adult intestinal development by controlling the balance between secretory and absorptive cell types. In the embryo, Notch activation perturbs morphogenesis, possibly through effects on stem or progenitor cells.
Collapse
Affiliation(s)
- Ben Z Stanger
- Howard Hughes Medical Institute and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
153
|
Choi YS, Lee JE, Cheong C, Sung YH, Yang EY, Park CB, Song J, Park SC, Lee HW. Generation of reversible Rb-knockdown mice. Mech Ageing Dev 2005; 126:1164-9. [PMID: 16087217 DOI: 10.1016/j.mad.2005.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2005] [Indexed: 11/30/2022]
Abstract
This study describes the generation of reversible Rb-knockdown mice using Tet-off system coupled with Rb-deficient mice currently available. Mice expressing pRB conditionally in Rb-/- background were generated by crossings P(hCMV)-tTA/TRE-Rb transgenic mice with conventional Rb+/- mice. Transgenic Rb was tightly controlled with reversibility and biologically effective as exemplified by cyclin E expression in a doxycycline-dependent manner in mouse embryonic fibroblasts. However, its ectopic expression was not sufficient to rescue the phenotypes of Rb-/- embryos at organismal level, suggesting the requirement of more sophisticated regulation of pRB. With all, these results demonstrate that our experimental strategy can be an alternative way to convert classical gene-disrupted mice into reversible conditional ones.
Collapse
Affiliation(s)
- Yoon Sik Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, 300 Chonchon-Dong, Changan-Gu, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
A vast number of studies indicate the presence of stem/progenitor cells virtually in all tissues in adult organs, particularly in bone marrow. Recent studies, however, cast doubt about the existence of true stem cells in adult tissue. The complex integrity of several cells with distinct morphologic and functional properties in the mature pancreas confers an appropriate status for stem cell research. Several different types of cells residing in the islets or in the ductal epithelium have been proposed as adult pancreatic stem cells or progenitor cells. However, these reports do not provide conceivable proof for the presence of true pancreatic stem cells. On the other hand, there is considerable evidence indicating transdifferentiation of all adult pancreatic cells into each other, and under proper conditions, to nonpancreatic cells including oncocytes and hepatocytes. Observations pertaining to the putative pancreatic stem cells, transdifferentiation ability of the differentiated mature pancreatic cells in the normal and diseased pancreas will be discussed, and our own findings supporting the transdifferentiation pathway are presented in this article.
Collapse
Affiliation(s)
- Mehmet Yalniz
- UNMC Eppley Cancer Center, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | |
Collapse
|
155
|
Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, Yamasaki Y. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic β-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2005; 37:1595-608. [PMID: 15878838 DOI: 10.1016/j.biocel.2005.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 03/11/2005] [Accepted: 04/04/2005] [Indexed: 01/07/2023]
Abstract
Type 2 diabetes is the most prevalent and serious metabolic disease affecting people all over the world. Pancreatic beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Normal beta-cells can compensate for insulin resistance by increasing insulin secretion and/or beta-cell mass, but insufficient compensation leads to the onset of glucose intolerance. Once hyperglycemia becomes apparent, beta-cell function gradually deteriorates and insulin resistance aggravates. Under diabetic conditions, oxidative stress and endoplasmic reticulum stress are induced in various tissues, leading to activation of the c-Jun N-terminal kinase pathway. The activation of c-Jun N-terminal kinase suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of c-Jun N-terminal kinase in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the c-Jun N-terminal kinase pathway plays a central role in pathogenesis of type 2 diabetes and could be a potential target for diabetes therapy.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
156
|
Yee NS, Lorent K, Pack M. Exocrine pancreas development in zebrafish. Dev Biol 2005; 284:84-101. [PMID: 15963491 DOI: 10.1016/j.ydbio.2005.04.035] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 04/05/2005] [Accepted: 04/28/2005] [Indexed: 10/25/2022]
Abstract
Although many of the genes that regulate development of the endocrine pancreas have been identified, comparatively little is known about how the exocrine pancreas forms. Previous studies have shown that exocrine pancreas development may be modeled in zebrafish. However, the timing and mechanism of acinar and ductal differentiation and morphogenesis have not been described. Here, we characterize zebrafish exocrine pancreas development in wild type and mutant larvae using histological, immunohistochemical and ultrastructural analyses. These data allow us to identify two stages of zebrafish exocrine development. During the first stage, the exocrine anlage forms from rostral endodermal cells. During the second stage, proto-differentiated progenitor cells undergo terminal differentiation followed by acinar gland and duct morphogenesis. Immunohistochemical analyses support a model in which the intrapancreatic ductal system develops from progenitors that join to form a contiguous network rather than by branching morphogenesis of the pancreatic epithelium, as described for mammals. Contemporaneous appearance of acinar glands and ducts in developing larvae and their disruption in pancreatic mutants suggest that common molecular pathways may regulate gland and duct morphogenesis and differentiation of their constituent cells. By contrast, analyses of mind bomb mutants and jagged morpholino-injected larvae suggest that Notch signaling principally regulates ductal differentiation of bipotential exocrine progenitors.
Collapse
Affiliation(s)
- Nelson S Yee
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
157
|
Stanojevic V, Yao KM, Thomas MK. The coactivator Bridge-1 increases transcriptional activation by pancreas duodenum homeobox-1 (PDX-1). Mol Cell Endocrinol 2005; 237:67-74. [PMID: 15885879 DOI: 10.1016/j.mce.2005.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 03/07/2005] [Indexed: 11/30/2022]
Abstract
Well-orchestrated transcriptional regulation of pancreatic beta cells is essential for insulin production and glucose homeostasis. Pancreas duodenum homeobox-1 (PDX-1) is a key regulator of glucose-dependent insulin production and glucose metabolism. We find that PDX-1 interacts with the PDZ-domain coactivator Bridge-1 in yeast interaction trap assays. Rat Bridge-1 and PDX-1 interact directly in GST pull-down assays via Bridge-1 interactions with the amino-terminal transactivation domain of PDX-1. Bridge-1 also interacts with wild-type and mutant human PDX-1 (IPF-1) proteins and strongly interacts with the amino-terminal PDX-1 P63fsdelC (MODY4) mutant protein. Transcriptional activation by PDX-1 is increased by addition of Bridge-1 in multiple contexts, including synergistic activation of a Gal4 reporter by Gal4-Bridge-1 and Gal4-PDX-1 fusion proteins, activation of the somatostatin promoter TAAT1 enhancer, and synergistic activation of the rat insulin I promoter FarFlat enhancer by PDX-1, E12, and E47. We propose that the coactivator Bridge-1 modulates PDX-1 functions in the regulation of its target genes.
Collapse
Affiliation(s)
- Violeta Stanojevic
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Wellman 340, 50 Blossom Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
158
|
Affiliation(s)
- Günter Schneider
- II. Department of Internal Medicine, Technical University of Munich, Germany
| | | | | | | |
Collapse
|
159
|
Iype T, Francis J, Garmey JC, Schisler JC, Nesher R, Weir GC, Becker TC, Newgard CB, Griffen SC, Mirmira RG. Mechanism of insulin Gene Regulation by the Pancreatic Transcription Factor Pdx-1. J Biol Chem 2005; 280:16798-807. [PMID: 15743769 DOI: 10.1074/jbc.m414381200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeodomain factor Pdx-1 regulates an array of genes in the developing and mature pancreas, but whether regulation of each specific gene occurs by a direct mechanism (binding to promoter elements and activating basal transcriptional machinery) or an indirect mechanism (via regulation of other genes) is unknown. To determine the mechanism underlying regulation of the insulin gene by Pdx-1, we performed a kinetic analysis of insulin transcription following adenovirus-mediated delivery of a small interfering RNA specific for pdx-1 into insulinoma cells and pancreatic islets to diminish endogenous Pdx-1 protein. insulin transcription was assessed by measuring both a long half-life insulin mRNA (mature mRNA) and a short half-life insulin pre-mRNA species by real-time reverse transcriptase-PCR. Following progressive knock-down of Pdx-1 levels, we observed coordinate decreases in pre-mRNA levels (to about 40% of normal levels at 72 h). In contrast, mature mRNA levels showed strikingly smaller and delayed declines, suggesting that the longer half-life of this species underestimates the contribution of Pdx-1 to insulin transcription. Chromatin immunoprecipitation assays revealed that the decrease in insulin transcription was associated with decreases in the occupancies of Pdx-1 and p300 at the proximal insulin promoter. Although there was no corresponding change in the recruitment of RNA polymerase II to the proximal promoter, its recruitment to the insulin coding region was significantly reduced. Our results suggest that Pdx-1 directly regulates insulin transcription through formation of a complex with transcriptional coactivators on the proximal insulin promoter. This complex leads to enhancement of elongation by the basal transcriptional machinery.
Collapse
Affiliation(s)
- Tessy Iype
- Department of Internal Medicine and the Diabetes Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 2005; 54:1009-22. [PMID: 15793239 DOI: 10.2337/diabetes.54.4.1009] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes is the most prevalent and serious metabolic disease, and the number of diabetic patients worldwide is increasing. The reduction of insulin biosynthesis in pancreatic beta-cells is closely associated with the onset and progression of diabetes, and thus it is important to search for ways to induce insulin-producing cells in non-beta-cells. In this study, we showed that a modified form of the pancreatic and duodenal homeobox factor 1 (PDX-1) carrying the VP16 transcriptional activation domain (PDX-1/VP16) markedly increases insulin biosynthesis and induces various pancreas-related factors in the liver, especially in the presence of NeuroD or neurogenin 3 (Ngn3). Furthermore, in streptozotocin-induced diabetic mice, PDX-1/VP16 overexpression, together with NeuroD or Ngn3, drastically ameliorated glucose tolerance. Thus PDX-1/VP16 expression, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. This approach warrants further investigation and may have utility in the treatment of diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
161
|
Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Miyatsuka T, Matsuhisa M, Yamasaki Y. Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. J Mol Med (Berl) 2005; 83:429-39. [PMID: 15759102 DOI: 10.1007/s00109-005-0640-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 01/04/2005] [Indexed: 12/21/2022]
Abstract
Pancreatic beta-cell dysfunction and insulin resistance are observed in type 2 diabetes. Under diabetic conditions, oxidative stress and ER stress are induced in various tissues, leading to activation of the JNK pathway. This JNK activation suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of the JNK pathway in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the JNK pathway plays a central role in pathogenesis of type 2 diabetes and may be a potential target for diabetes therapy.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
162
|
Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA. Involvement of oxidative stress and the JNK pathway in glucose toxicity. Rev Diabet Stud 2005; 1:165-74. [PMID: 17491701 PMCID: PMC1783693 DOI: 10.1900/rds.2004.1.165] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hallmark of type 2 diabetes is pancreatic beta-cell dysfunction and insulin resistance. Normal beta-cells can compensate for insulin resistance by increasing insulin secretion, but insufficient compensation leads to the onset of glucose intolerance. Once hyperglycemia becomes apparent, beta-cell function gradually deteriorates and insulin resistance becomes aggravated. Such phenomena are collectively called "glucose toxicity". Under diabetic conditions, oxidative stress is induced and the JNK pathway is activated, which is involved in "glucose toxicity". Activation of the JNK pathway suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of the JNK pathway in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Consequently, the JNK pathway plays a crucial role in the progression of pancreatic beta-cell dysfunction and insulin resistance and thus could be a potential therapeutic target for the "glucose toxicity" found in diabetes.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
163
|
Rodolosse A, Chalaux E, Adell T, Hagège H, Skoudy A, Real FX. PTF1alpha/p48 transcription factor couples proliferation and differentiation in the exocrine pancreas [corrected]. Gastroenterology 2004; 127:937-49. [PMID: 15362048 DOI: 10.1053/j.gastro.2004.06.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The basic helix-loop-helix transcription factor pancreas-specific transcription factor 1alpha (PTF1alpha)/p48 is critical for committing cells to a pancreatic fate and for the maintenance of the differentiated state in acinar cells. The aim was to analyze the ability of p48 to modulate cell proliferation, its relationship with cell differentiation, and the mechanisms involved therein. METHODS Pancreatic and nonpancreatic cells were transfected with p48 cDNA, and the effects on cell proliferation were examined. The effects on cell cycle regulators were analyzed by Western blotting and RT-PCR; transient transfection assays were used to analyze promoter regulation. RESULTS p48 Inhibited proliferation of acinar and nonacinar cells by inducing a delay in G1-S progression through the up-regulation of p21 CIP1/WAF1 and p27 KIP1 and the down-regulation of cyclin D2. A 2-fold increase in p21 CIP1/WAF1 mRNA and in the activity of the p21 CIP1/WAF1 promoter was observed. The growth inhibition action of p48 was not associated with exocrine differentiation or with apoptosis. The antiproliferative effects were dependent on the COOH-terminal region of p48 and did not require the bHLH domain. Loss of p48 expression occurring during acinar-to-ductal transitions, characteristic of chronic pancreatitis, was associated with an increase of cell proliferation in ductal complexes. CONCLUSIONS The results indicate that p48 couples cell proliferation and cell differentiation in the exocrine pancreas, thus contributing to tissue homeostasis. These effects may play a role in the increased risk for pancreatic cancer associated with chronic pancreatitis.
Collapse
Affiliation(s)
- Annie Rodolosse
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
164
|
Liu A, Desai BM, Stoffers DA. Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity. Mol Cell Biol 2004; 24:4372-83. [PMID: 15121856 PMCID: PMC400448 DOI: 10.1128/mcb.24.10.4372-4383.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hox factors are evolutionarily conserved homeodomain-containing transcription factors that activate and repress gene expression in a precise temporally and spatially regulated manner during development and differentiation. Pancreatic-duodenal homeobox 1 (PDX-1) is a Hox-type protein that is a critical requirement for normal pancreas development and for proper differentiation of the endocrine pancreas. In humans, PDX-1 gene mutation causes pancreatic agenesis and early- and late-onset type 2 diabetes. PDX-1 consists of an N-terminal transactivation domain, a homeodomain responsible for DNA binding and nuclear localization, and a conserved C terminus that is mutated in human diabetes but whose function is poorly understood. We have identified a novel POZ domain protein, PDX-1 C terminus-interacting factor 1 (PCIF1)/SPOP, that interacts with PDX-1 both in vitro and in vivo. PCIF1 is localized to the nucleus in a speckled pattern, and coexpression of PDX-1 alters the subnuclear distribution of PCIF1. Functionally, PCIF1 inhibits PDX-1 transactivation of established target gene promoters in a specific and dose-dependent manner that requires critical amino acids in the PDX-1 C terminus. PCIF1 is expressed in adult pancreatic insulin-producing beta cells, and overexpression of PCIF1 inhibits the rat insulin 1 and rat insulin 2 promoters in the MIN6 insulinoma beta cell line. The coexpression of PCIF1 with PDX-1 in beta cells and the ability of PCIF1 to repress PDX-1 transactivation suggest that modulation of PDX-1 function by PCIF1 may regulate normal beta cell differentiation.
Collapse
Affiliation(s)
- Aihua Liu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Penn Diabetes Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
165
|
Stanojevic V, Habener JF, Thomas MK. Pancreas duodenum homeobox-1 transcriptional activation requires interactions with p300. Endocrinology 2004; 145:2918-28. [PMID: 15001545 DOI: 10.1210/en.2003-1188] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The homeodomain transcription factor, pancreas duodenum homeobox (PDX)-1, is essential for pancreas development, insulin production, and glucose homeostasis. Mutations in pdx-1(ipf-1) are associated both with maturity-onset diabetes of the young and type 2 diabetes. PDX-1 interacts with multiple transcription factors and coregulators, including the coactivator p300, to activate the transcription of the insulin gene and other target genes within pancreatic beta-cells. In characterizing the protein-protein interactions of PDX-1 and p300, we identified mutations in PDX-1 that disrupt its function and are associated with increased or decreased interactions with p300. Several mutant PDX-1 proteins that are associated with heritable forms of diabetes in humans, in particular the mutant P63fsdelC, exhibited increased binding to a carboxy-terminal segment of p300 in the setting of decreased DNA-binding activities, suggesting that sequestration of p300 by mutant PDX-1 proteins may be an additional mechanism by which insulin gene expression is reduced in heterozygous carriers of pdx-1(ipf-1) mutations. The introduction of the point mutations S66A/Y68A in the highly conserved amino-terminal PDX-1 transactivation domain reduced the ability of PDX-1 to interact with p300, substantially diminished the transcriptional activation of PDX-1, and reduced the synergistic activation of glucose-responsive insulin promoter enhancer sequences by PDX-1, E12, and E47. We propose that interactions of PDX-1 with p300 are required for the transcriptional activation of PDX-1 target genes. Impairment of interactions between PDX-1 and p300 in pancreatic beta-cells may limit insulin production and lead to the development of diabetes.
Collapse
Affiliation(s)
- Violeta Stanojevic
- Laboratory of Molecular Endocrinology and Diabetes Unit, Massachusetts General Hospital, Wellman 340, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
166
|
Guillemain G, Da Silva Xavier G, Rafiq I, Leturque A, Rutter GA. Importin beta1 mediates the glucose-stimulated nuclear import of pancreatic and duodenal homeobox-1 in pancreatic islet beta-cells (MIN6). Biochem J 2004; 378:219-27. [PMID: 14632628 PMCID: PMC1223942 DOI: 10.1042/bj20031549] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 11/14/2003] [Accepted: 11/24/2003] [Indexed: 11/17/2022]
Abstract
The transcription factor PDX-1 (pancreatic and duodenal homeobox-1) is essential for pancreatic development and the maintainence of expression of islet beta-cell-specific genes. In an previous study [Rafiq, Kennedy and Rutter (1998) J. Biol. Chem. 273, 23241-23247] we demonstrated that PDX-1 may be activated at elevated glucose concentrations by translocation from undefined binding sites in the cytosol and nuclear membrane into the nucleoplasm. In the present study, we show that PDX-1 interacts directly and specifically in vitro with the nuclear import receptor family member, importin beta1, and that this interaction is mediated by the PDX-1 homeodomain (amino acids 146-206). Demonstrating the functional importance of the PDX-1-importin beta1 interaction, microinjection of MIN6 beta-cells with anti-(importin beta1) antibodies blocked both the nuclear translocation of PDX-1, and the activation by glucose (30 mM versus 3 mM) of the pre-proinsulin promoter. However, treatment with extracts from pancreatic islets incubated at either low or high glucose concentrations had no impact on the ability of PDX-1 to interact with importin beta1 in vitro. Furthermore, importin beta1 also interacted with SREBP1c (sterol-regulatory-element-binding protein 1c) in vitro, and microinjection of importin beta1 antibodies blocked the activation by glucose of SREBP1c target genes. Since the subcellular distribution of SREBP1c is unaffected by glucose, these findings suggest that a redistribution of importin beta1 is unlikely to explain the glucose-stimulated nuclear uptake of PDX-1. Instead, we conclude that the uptake of PDX-1 into the nucleoplasm, as glucose concentrations increase, may be mediated by release of the factor both from sites of retention in the cytosol and from non-productive complexes with importin beta1 at the nuclear membrane.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
167
|
Abstract
Transcription factors provide the genetic instructions that drive pancreatic development and enable mature beta cells to function properly. To understand fully how this is accomplished, it is necessary to unravel the regulatory networks formed by transcription factors acting on their genomic targets. This article discusses recent advances in our understanding of how transcriptional networks control early pancreas organogenesis, embryonic endocrine cell formation and the differentiated function of adult beta cells. We discuss how mutations in several transcription factor genes involved in such networks cause Maturity onset diabetes of the young (MODY). Finally, we propose that pancreatic gene programs might be manipulated to generate beta cells or to enhance the function of existing beta cells, thereby providing a possible treatment of different forms of diabetes.
Collapse
Affiliation(s)
- J M Servitja
- Endocrinology, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | |
Collapse
|
168
|
Abstract
In this review, analyses of the ontogenetic relations between the different pancreatic cell types are summarized. Lineage analyses allow identification of progenitor cells from which mature cell types differentiate. This knowledge is highly relevant for future cell replacement therapies in diabetic patients, helping to define the identity of putative pancreatic stem cells.
Collapse
Affiliation(s)
- Pedro Luis Herrera Merino
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
169
|
Developmental biology of the pancreas. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
170
|
Abstract
The "engineering" of a tissue implies that it can be constructed by assembling the necessary components. However, tissues are formed through an evolving, interactive process, not through a collection of parts. This chapter focuses on the biology of the progenitor cell, the native precursor to new tissue, and its role in neogenesis, or the de novo generation of functional tissue. We present a working hypothesis for the generation of parenchymal cell populations and use this hypothesis as a basis for analysis of three parenchymal populations, epidermal cells, hepatocytes of the liver, and pancreatic islets, with a view toward what impact this information will have on the development of cell therapies. By comparing developmental processes, response to injury and disease, and behavior in vitro, we conclude that the adult progenitor cell retains the potential for substantial growth and organ neogenesis and that its biological properties make it the cell of first choice for the engineering of tissues.
Collapse
|
171
|
Abstract
Type I diabetes results from the autoimmune-mediated destruction of pancreatic beta cells, which regulate blood sugar levels by secretion of insulin. Recent clinical data suggest that the disease could be cured if an adequate supply of new beta-cells were available, and one goal of pancreatic developmental biology is to understand how endogenous beta-cells are made, with the hope of making them exogenously. Much is now known about the transcriptional regulation of pancreatic organ specification, growth, and lineage allocation; less is known about intercellular signals that regulate this process, but candidates continue to emerge. Additional insights, often contradicting older models, have come from the application of new lineage-tracing techniques. Altogether, these studies also shed light on the still-elusive pancreatic stem cell, which may participate in normal organ maintenance as well as recovery from injury. A rigorous proof of the existence of such a cell, whether in vivo or in vitro, would offer real hope for the prospect of controlled beta-cell generation in a clinical setting.
Collapse
Affiliation(s)
- L Charles Murtaugh
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
172
|
Herrera PL, Nepote V, Delacour A. Pancreatic cell lineage analyses in mice. Endocrine 2002; 19:267-78. [PMID: 12624426 DOI: 10.1385/endo:19:3:267] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 11/15/2002] [Accepted: 11/15/2002] [Indexed: 11/11/2022]
Abstract
Considerable knowledge of the ontogeny of the endocrine pancreas has been gained in recent years, mainly through the use of two complementary genetic approaches in transgenic mice: gene inactivation or overexpression (to assess gene function) and genetic labeling of precursor cells (to determine cell lineages). In recent years, in vivo Cre/loxP-based direct cell tracing experiments show that (i) all pancreatic cells differentiate from pdx1-expressing precursors, (ii) p48 is involved in the exocrine and endocrine pancreatic lineages, (iii) islet endocrine cells derive from ngn3-expressing progenitor cells, and (iv) insulin cells do not derive from glucagon- expressing progenitors. Lineage analyses allow the identification of progenitor cells from which mature cell types differentiate. Once identified, such progenitors can be labeled and isolated, and their differentiation and gene expression profiles studied in vitro. Understanding pancreatic cell lineages is highly relevant for future cell replacement therapies in diabetic patients, helping to define the identity of putative (endodermal) pancreatic stem cells.
Collapse
Affiliation(s)
- Pedro L Herrera
- Department of Morphology, University of Geneva Medical School, Switzerland.
| | | | | |
Collapse
|