151
|
Cole TJ. Glucocorticoid action and the development of selective glucocorticoid receptor ligands. ACTA ACUST UNITED AC 2007; 12:269-300. [PMID: 17045197 DOI: 10.1016/s1387-2656(06)12008-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are important endocrine regulators of a wide range of physiological systems ranging from respiratory development, immune function to responses to stress. Glucocorticoids in cells activate the cytoplasmic glucocorticoid receptor (GR) that dimerizes, translocates to the nucleus and functions as a ligand-dependent transcriptional regulator. Synthetic glucocorticoids such as dexamethasone and prednisolone have for decades been the cornerstone for the clinical treatment of inflammatory diseases, such as rheumatoid arthritis and asthma, and in some lymphoid cancers, yet its prolonged use has undesirable side effects such as obesity, diabetes, immune suppression and osteoporosis. Detailed knowledge on the mechanism of GR action has led to the development of novel selective glucocorticoid receptor modulators (SGRMs) that show promise of being efficacious for specific treatments of disease but with fewer side effects. SGRMs promote specific recruitment of transcriptional co-regulators that elicit specific gene responses and show promise of greater efficacy and specificity in treatment of inflammatory diseases and type-2 diabetes.
Collapse
Affiliation(s)
- Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
152
|
Lu NZ, Collins JB, Grissom SF, Cidlowski JA. Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor. Mol Cell Biol 2007; 27:7143-60. [PMID: 17682054 PMCID: PMC2168898 DOI: 10.1128/mcb.00253-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glucocorticoids are widely used in the treatment of inflammatory and other diseases. However, high-dose or chronic administration often triggers troublesome side effects such as metabolic syndrome and osteoporosis. We recently described that one glucocorticoid receptor gene produces eight translational glucocorticoid receptor isoforms that have distinct gene-regulatory abilities. We show here that specific, but not all, glucocorticoid receptor isoforms induced apoptosis in human osteosarcoma U-2 OS bone cells. Whole human genome microarray analysis revealed that the majority of the glucocorticoid target genes were selectively regulated by specific glucocorticoid receptor isoforms. Real-time PCR experiments confirmed that proapoptotic enzymes necessary for cell death, granzyme A and caspase-6, were induced by specific glucocorticoid receptor isoforms. Chromatin immunoprecipitation assays further suggested that glucocorticoid receptor isoform-dependent induction of proapoptotic genes was likely due to selective coregulator recruitment and chromatin modification. Interestingly, the capabilities to transrepress proinflammatory genes were similar among glucocorticoid receptor isoforms. Together, these findings provide new evidence that translational glucocorticoid receptor isoforms can elicit distinct glucocorticoid responses and may be useful for the development of safe glucocorticoids with reduced side effects.
Collapse
Affiliation(s)
- Nick Z Lu
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
153
|
Flaster H, Bernhagen J, Calandra T, Bucala R. The macrophage migration inhibitory factor-glucocorticoid dyad: regulation of inflammation and immunity. Mol Endocrinol 2007; 21:1267-80. [PMID: 17389748 DOI: 10.1210/me.2007-0065] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cytokine macrophage migration inhibitory factor (MIF) occupies a unique position in physiology by its ability to directly regulate the immunosuppressive actions of glucocorticoids. We review herein the interactions between MIF and glucocorticoids within the immune system and discuss the relevance of the MIF-glucocorticoid regulatory dyad in physiology and immunopathology. Therapeutic antagonism of MIF may be an effective approach for steroid-sparing therapies in patients with refractory autoimmune or inflammatory diseases.
Collapse
Affiliation(s)
- Harry Flaster
- Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
154
|
McEwan IJ, Lavery D, Fischer K, Watt K. Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors. NUCLEAR RECEPTOR SIGNALING 2007; 5:e001. [PMID: 17464357 PMCID: PMC1853069 DOI: 10.1621/nrs.05001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 01/02/2007] [Indexed: 11/20/2022]
Abstract
Steroid hormones are a diverse class of structurally related molecules, derived from cholesterol, that include androgens, estrogens, progesterone and corticosteroids. They represent an important group of physiologically active signalling molecules that bind intracellular receptor proteins and regulate genes involved in developmental, reproductive and metabolic processes. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains, but possess distinct N-terminal domains (NTD) of unique length and amino acids sequence. The NTD contains sequences important for gene regulation, exhibit structure plasticity and are likely to contribute to the specificity of the steroid hormone/receptor response.
Collapse
MESH Headings
- Amino Acid Sequence
- Computer Simulation
- Hartnup Disease
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Structure, Tertiary
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Receptors, Androgen/ultrastructure
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/ultrastructure
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- Iain J McEwan
- School of Medical Sciences, IMS Building, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | |
Collapse
|
155
|
Chin KT, Chun ACS, Ching YP, Jeang KT, Jin DY. Human T-cell leukemia virus oncoprotein tax represses nuclear receptor-dependent transcription by targeting coactivator TAX1BP1. Cancer Res 2007; 67:1072-81. [PMID: 17283140 DOI: 10.1158/0008-5472.can-06-3053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human T-cell leukemia virus type 1 oncoprotein Tax is a transcriptional regulator that interacts with a large number of host cell factors. Here, we report the novel characterization of the interaction of Tax with a human cell protein named Tax1-binding protein 1 (TAX1BP1). We show that TAX1BP1 is a nuclear receptor coactivator that forms a complex with the glucocorticoid receptor. TAX1BP1 and Tax colocalize into intranuclear speckles that partially overlap with but are not identical to the PML oncogenic domains. Tax binds TAX1BP1 directly, induces the dissociation of TAX1BP1 from the glucocorticoid receptor-containing protein complex, and represses the coactivator function of TAX1BP1. Genetic knockout of Tax1bp1 in mice abrogates the influence of Tax on the activation of nuclear receptors. We propose that Tax-TAX1BP1 interaction mechanistically explains the previously reported repression of nuclear receptor activity by Tax.
Collapse
Affiliation(s)
- King-Tung Chin
- Department of Biochemistry, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
156
|
Ricketson D, Hostick U, Fang L, Yamamoto KR, Darimont BD. A conformational switch in the ligand-binding domain regulates the dependence of the glucocorticoid receptor on Hsp90. J Mol Biol 2007; 368:729-41. [PMID: 17367809 PMCID: PMC2596751 DOI: 10.1016/j.jmb.2007.02.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 01/21/2023]
Abstract
Steroid hormone receptors (SRs) are transcription factors that act as regulatory switches by altering gene expression in response to ligands. The highly conserved ligand-binding domain of SRs is a precise but versatile molecular switch that can adopt distinct conformations. Differential stabilization of these conformations by ligands, DNA response elements and transcriptional coregulators controls the activity of SRs in a gene-specific and cell-specific manner. In the case of the glucocorticoid receptor (GR), high-affinity ligand binding requires the interaction of the LBD with the heat shock protein 90 (Hsp90). Here, we show that the dependence of the ligand binding ability of GR on Hsp90 can be modified by the replacement of single amino acids within an allosteric network that connects the buried ligand-binding pocket and a solvent-exposed coregulator interaction surface. Each of the identified mutations altered the equilibrium between alternative GR conformations distinctively, indicating that the Hsp90 dependence of SRs may correlate with differences in the conformational dynamics of these receptors. Our results suggest that Hsp90 stabilizes the GR ligand-binding pocket indirectly by utilizing the allosteric network, while allowing the receptor to remain structurally uncommitted. Thus, in addition to ensuring the accessibility of the GR ligand-binding pocket to ligands, Hsp90 seems to enable hormones and coregulators to act as allosteric effectors, which forms the basis for gene-specific and cell-specific responses of GR to ligands.
Collapse
Affiliation(s)
- D Ricketson
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403-1229, USA
| | | | | | | | | |
Collapse
|
157
|
Donn R, Berry A, Stevens A, Farrow S, Betts J, Stevens R, Clayton C, Wang J, Warnock L, Worthington J, Scott L, Graham S, Ray D. Use of gene expression profiling to identify a novel glucocorticoid sensitivity determining gene, BMPRII. FASEB J 2006; 21:402-14. [PMID: 17185747 DOI: 10.1096/fj.06-7236com] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wide variation in glucocorticoid (Gc) sensitivity exists between individuals which may influence susceptibility to, and treatment response of, inflammatory diseases. To determine a genetic fingerprint of Gc sensitivity 100 healthy human volunteers were polarized into the 10% most Gc-sensitive and 10% most Gc-resistant following a low dose dexamethasone (0.25 mg) suppression test. Gene expression profiling of primary lymphocytes identified the 98 most significantly Gc regulated genes. These genes were used to build a subnetwork of Gc signaling, with 54 genes mapping as nodes, and 6 non-Gc regulated genes inferred as signaling nodes. Twenty four of the 98 genes showed a difference in Gc response in vitro dependent on the Gc sensitivity of their donor individuals in vivo. A predictive model was built using both partial least squares discriminate analysis and support vector machines that predicted donor glucocorticoid sensitivity with 87% accuracy. Discriminating genes included bone morphogenetic protein receptor, type II (BMPRII). Transfection studies showed that BMPRII modulated Gc action. These studies reveal a broad base of gene expression that predicts Gc sensitivity and determine a Gc signaling network in human primary T lymphocytes. Furthermore, this combined gene profiling, and functional analysis approach has identified BMPRII as a modulator of Gc signaling.
Collapse
Affiliation(s)
- Rachelle Donn
- Centre for Molecular Medicine, University of Manchester, Oxford Rd., Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Wang Z, Chen W, Kono E, Dang T, Garabedian MJ. Modulation of glucocorticoid receptor phosphorylation and transcriptional activity by a C-terminal-associated protein phosphatase. Mol Endocrinol 2006; 21:625-34. [PMID: 17185395 DOI: 10.1210/me.2005-0338] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The glucocorticoid receptor (GR) is phosphorylated at three major sites on its N terminus (S203, S211, and S226), and phosphorylation modulates GR-regulatory functions in vivo. We examined the phosphorylation site interdependence, the contribution of the receptor C-terminal ligand-binding domain, and the participation of protein phosphatases in GR N-terminal phosphorylation and gene expression. We found that GR phosphorylation at S203 was greater when S226 was not phosphorylated and vice versa, indicative of intersite dependency. We also observed that a GR derivative lacking the ligand-binding domain, which no longer binds the heat shock protein 90 (Hsp90) complex, exhibits increased GR phosphorylation at all three sites as compared with the full-length receptor. A GR mutation (F602S) that produces a receptor less dependent on Hsp90 for function as well as treatment with the Hsp90 inhibitor geldanamycin also increased basal GR phosphorylation at a subset of sites. Pharmacological inhibition of serine/threonine protein phosphatases increased GR basal phosphorylation. Likewise, a reduction in protein phosphatase 5 protein levels enhanced GR phosphorylation at a subset of sites and selectively reduced the induction of endogenous GR target genes. Together, our findings suggest that GR undergoes a phosphorylation/dephosphorylation cycle that maintains steady-state receptor phosphorylation at a low basal level in the absence of ligand. Our findings also suggest that the ligand-dependent increase in GR phosphorylation results, in part, from the dissociation of a ligand-binding domain-linked protein phosphatase(s), and that changes in the intracellular concentration of protein phosphatase 5 differentially affect GR target gene expression.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Microbiology, New York University Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
159
|
Chivers JE, Gong W, King EM, Seybold J, Mak JC, Donnelly LE, Holden NS, Newton R. Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids. Mol Pharmacol 2006; 70:2084-2095. [PMID: 16988013 DOI: 10.1124/mol.106.025841] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although repression of inflammatory gene expression makes glucocorticoids powerful anti-inflammatory agents, side effects limit usage and drive the search for improved glucocorticoid receptor (GR) ligands. In A549 pulmonary cells, dexamethasone and the prototypical dissociated ligand RU24858 (Mol Endocrinol 11:1245-1255, 1997) repress interleukin (IL)-1beta-induced expression of cyclooxygenase (COX)-2 and IL-8. Although RU24858 is a weaker GR ligand, both glucocorticoids showed similar efficacies on transrepression of nuclear factor kappaB (NF-kappaB)-dependent transcription, whereas RU24858 yielded less than 12% of the response to dexamethasone on a classic glucocorticoid response element (GRE) reporter (transactivation). Modest NF-kappaB-dependent transrepression ( approximately 40%), along with analysis of IL-8 transcription rate and the accumulation of unspliced nuclear RNA, indicates that transrepression does not fully account for the repression of genes such as IL-8. This was confirmed by the finding that mRNA degradation is increased by both dexamethasone and RU24858. Analysis of IL-1beta-induced steady-state mRNA levels for IL-8 and COX-2 show that dexamethasone- and RU24858-dependent repression of these genes is attenuated by inhibitors of transcription and protein synthesis. Because similar effects were observed with respect to COX-2 and IL-8 protein expression, we conclude that glucocorticoid-dependent gene expression is necessary for repression by both glucocorticoids. Despite RU24858 being defective at classic GRE-dependent transactivation, both dexamethasone and RU24858 induced the expression of potentially anti-inflammatory genes and metabolic genes, suggesting the importance of nontraditional glucocorticoid-dependent gene expression. Thus, classic transactivation- and transrepressionbased screens for anti-inflammatory "dissociated" GR ligands may be flawed because they may not reflect the effects on real glucocorticoid-inducible genes.
Collapse
Affiliation(s)
- Joanna E Chivers
- Department of Cell Biology & Anatomy, Respiratory Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
160
|
McMaster A, Ray DW. Modelling the glucocorticoid receptor and producing therapeutic agents with anti-inflammatory effects but reduced side-effects. Exp Physiol 2006; 92:299-309. [PMID: 17138619 DOI: 10.1113/expphysiol.2006.036194] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucocorticoid hormones exert a wide spectrum of metabolic and immunological effects. They are synthesized from a cholesterol precursor and are structurally related to the other steroid hormones, progesterone, aldosterone and oestrogen. They act through the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily. The GR is an intracellular receptor; the hydrophobic ligand accesses its receptor by diffusion across the plasma membrane. The ligand-activated GR translocates to the nucleus to regulate expression of its target genes. The GR, in common with the rest of the receptor family, can be functionally divided into an N-terminal transcription activation domain, a central DNA binding domain and a C-terminal ligand binding domain, which also includes a second transactivation domain. Although synthetic glucocorticoids are the most potent anti-inflammatory agents known, their use is limited owing to the range and severity of their side-effects. The structure of the ligand binding domain of the glucocorticoid receptor has now been solved, and a series of studies has shown that even subtle changes to the ligand structure alter the final conformation of the ligand-receptor complex, with consequences for further protein recruitment and for the function of the receptor. This, coupled with the successful development of selective oestrogen receptor agonists, has led to concerted efforts to find selective GR ligands, with preserved beneficial anti-inflammatory activity, but reduced side-effect profile. Current efforts have identified several useful tool compounds, and further molecules are in development in several pharmaceutical companies.
Collapse
Affiliation(s)
- Andrew McMaster
- Endocrine Sciences Research Group, Room 3-903, Stopford Building, University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|
161
|
He Y, Simons SS. STAMP, a novel predicted factor assisting TIF2 actions in glucocorticoid receptor-mediated induction and repression. Mol Cell Biol 2006; 27:1467-85. [PMID: 17116691 PMCID: PMC1800712 DOI: 10.1128/mcb.01360-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The coactivator TIF2 was predicted to interact with an unknown factor to modify both the relative inhibition in glucocorticoid receptor (GR)-mediated gene repression and several parameters of agonists and antisteroids in GR-regulated induction. Here, we describe the isolation and characterization of the predicted factor as a new 1,277-amino-acid endogenous protein (STAMP). STAMP associates with coactivators (TIF2 and SRC-1) and is selective for a subset of the steroid/nuclear receptors including GRs. Transfected STAMP increases the effects of TIF2 in GR-mediated repression and induction. Conversely, the levels of both induction and repression of endogenous genes are reduced when STAMP small interfering RNAs are used to lower the level of endogenous STAMP. Endogenous STAMP colocalizes with GR in intact cells and is recruited to the promoters of endogenous GR-induced and -repressed genes. We suggest that STAMP is an important new, downstream component of GR action in both gene activation and gene repression.
Collapse
Affiliation(s)
- Yuanzheng He
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Room 8N307B, Bethesda, MD 20892-1772, USA
| | | |
Collapse
|
162
|
Agelopoulos M, Thanos D. Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A. EMBO J 2006; 25:4843-53. [PMID: 17036053 PMCID: PMC1618095 DOI: 10.1038/sj.emboj.7601364] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 08/31/2006] [Indexed: 02/03/2023] Open
Abstract
Transcriptional activation of the interleukin-8 (IL-8) gene is restricted to distinct cell types, although the transcriptional regulatory proteins controlling IL-8 gene expression are ubiquitous. We show that cell-specific transcription of IL-8 is due to the distinct chromatin architecture on the enhancer/promoter before the arrival of the inducing signal. In expressing epithelial cells the enhancer/promoter is nucleosome-free, whereas in non-expressing B cells a nucleosome masks the entire regulatory region. The B-cell-specific nucleosome contains the histone variant macroH2A, which is responsible for preventing transcription factor binding. Recruitment of the repressive macroH2A nucleosome requires direct interactions between ATF-2 bound to the nearby AP1 site and macroH2A and it is regulated by DNA-induced protein allostery. siRNA against ATF-2 or macroH2A rescues IL-8 transcription in B cells. Thus, a transcription factor can work as a transcriptional repressor by orchestrating and maintaining the assembly of specialized local chromatin architectures.
Collapse
Affiliation(s)
- Marios Agelopoulos
- Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center ‘Al. Fleming', Vari, Athens, Greece
| | - Dimitris Thanos
- Institute of Molecular Biology and Genetics, Biomedical Sciences Research Center ‘Al. Fleming', Vari, Athens, Greece
- Present address: Institute of Molecular Biology, Genetics and Biotechnology, Foundation for Biomedical Research of the Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece. Tel.: +30 210 6597244; Fax: +30 210 6597545; E-mail: or
| |
Collapse
|
163
|
Raviscioni M, He Q, Salicru EM, Smith CL, Lichtarge O. Evolutionary identification of a subtype specific functional site in the ligand binding domain of steroid receptors. Proteins 2006; 64:1046-57. [PMID: 16835908 DOI: 10.1002/prot.21074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear receptors are ubiquitous eukaryotic ligand-activated transcription factors that modulate gene expression through varied interactions. However, the highly conserved functional sites known today seem insufficient to explain receptor specific recruitment of different coactivator and corepressor proteins and regulation of transcription. To search for new receptor-subtype specific functional sites, we applied difference evolutionary trace (difference ET) analysis to the ligand binding domain of steroid receptors, a subgroup of the nuclear receptor (NR) family. This computational approach identified a new functional site located on a surface opposite to currently known protein-protein interaction sites and distinct from the ligand binding pocket. Strikingly, the literature shows that in vivo variations at residues in the new site are linked to androgen resistance and leukemia, and our own targeted mutations to this site lower but do not eradicate transcriptional activation by estrogen receptor alpha (ERalpha), with reduced ligand binding affinity and SRC-1 interaction. Thus, these data demonstrate that this evolutionary important surface can function as an allosteric site that modulates some but not all receptor binding interactions. Evolutionary analysis further shows that this allosteric regulatory site is shared among all NRs from groups 2 (HNF4-like) and 4 (NGFIB-like), suggesting a role among many nuclear receptors. Its concave structure, hydrophobic composition, and residue variability among nuclear receptors further suggest that it would be amenable for specific drug design. This highlights the power of evolutionary information for the identification of new functional sites even in a protein family as well studied as NRs.
Collapse
Affiliation(s)
- Michele Raviscioni
- W. M. Keck Center for Computational and Structural Biology, Baylor College of Medicine, Houston Texas 77030, USA
| | | | | | | | | |
Collapse
|
164
|
Abstract
Cytokine signaling is essential for intercellular communication and affects cell proliferation, differentiation, and survival. In the immune system, cytokines coordinate the activities of many cell types ultimately leading to both innate and adaptive immune responses. Dysregulation of these processes can result in a wide spectrum of diseases ranging from defective host responses to invading pathogens to autoimmunity. Most cytokines signal through the Janus kinase-signal transducer and activator of transcription (Jak-STAT) pathway initiated by the cytokine binding to its cell surface receptor, which leads to the activation of STAT proteins, their binding to response elements near target promoters ultimately changing the transcription of STAT-responsive genes. STAT proteins do not exist in isolation but act in concert with other transcription factors and cofactors which can either stimulate or inhibit their activity. One such factor is a ligand-dependent transcriptional regulator termed the glucocorticoid (GC) receptor (GR), which transduces the information conveyed by GC hormones and their synthetic analogs. GR is known for its anti-inflammatory and immunosuppressive properties; GC-like molecules have been used as drugs for inflammatory, autoimmune and lymphoproliferative diseases since the 1950s. In contrast, cytokines frequently promote activation of the immune system. In last several years, functional interactions have been described between virtually every member of the STAT family and GR or its cofactors. This review focuses on the recent literature on the modes and levels of interactions between these seemingly unrelated regulators and potential biological implications of STAT : GR cross-talk.
Collapse
Affiliation(s)
- I Rogatsky
- Hospital for Special Surgery, Department of Microbiology & Immunology, Weill Medical College of Cornell University, 535 E 70th Street, New York, NY 10021, USA.
| | | |
Collapse
|
165
|
Schäcke H, Rehwinkel H, Asadullah K, Cato ACB. Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index. Exp Dermatol 2006; 15:565-73. [PMID: 16842594 DOI: 10.1111/j.1600-0625.2006.00453.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucocorticoids are highly effective in the therapy of inflammatory and autoimmune disorders. Their beneficial action is restricted because of their adverse effects upon prolonged usage. Topical glucocorticoids that act locally have been developed to significantly reduce systemic side effects. Nonetheless, undesirable cutaneous effects such as skin atrophy persist from the use of topical glucocorticoids. There is therefore a high medical need for drugs as effective as glucocorticoids but with a reduced side-effect profile. Glucocorticoids function by binding to and activating the glucocorticoid receptor that positively or negatively regulates the expression of specific genes. Several experiments suggest that the negative regulation of gene expression by the glucocorticoid receptor accounts for its anti-inflammatory action. This occurs through direct or indirect binding of the receptor to transcription factors such as activator protein-1, nuclear factor-kappaB or interferon regulatory factor-3 that are already bound to their regulatory sites. The positive action of the receptor occurs through homodimer binding of the receptor to discrete nucleotide sequences and this possibly contributes to some of the adverse effects of the hormone. Glucocorticoid receptor ligands that promote the negative regulatory action of the receptor with reduced positive regulatory function should therefore show improved therapeutic potential. A complete separation of the positive from the negative regulatory activities of the receptor has so far not been possible because of the interdependent nature of the two regulatory processes. Nevertheless, considerable improvement in the therapeutic action of glucocorticoid receptor ligands is being achieved through the use of key molecular targets for screening novel glucocorticoid receptor ligands.
Collapse
Affiliation(s)
- Heike Schäcke
- CRBA Inflammation, Corporate Research, Schering AG, Berlin, Germany.
| | | | | | | |
Collapse
|
166
|
Abraham SM, Lawrence T, Kleiman A, Warden P, Medghalchi M, Tuckermann J, Saklatvala J, Clark AR. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. ACTA ACUST UNITED AC 2006; 203:1883-9. [PMID: 16880258 PMCID: PMC2118371 DOI: 10.1084/jem.20060336] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glucocorticoids (GCs), which are used in the treatment of immune-mediated inflammatory diseases, inhibit the expression of many inflammatory mediators. They can also induce the expression of dual specificity phosphatase 1 (DUSP1; otherwise known as mitogen-activated protein kinase [MAPK] phosphatase 1), which dephosphorylates and inactivates MAPKs. We investigated the role of DUSP1 in the antiinflammatory action of the GC dexamethasone (Dex). Dex-mediated inhibition of c-Jun N-terminal kinase and p38 MAPK was abrogated in DUSP1−/− mouse macrophages. Dex-mediated suppression of several proinflammatory genes (including tumor necrosis factor, cyclooxygenase 2, and interleukin 1α and 1β) was impaired in DUSP1−/− mouse macrophages, whereas other proinflammatory genes were inhibited by Dex in a DUSP1-independent manner. In vivo antiinflammatory effects of Dex on zymosan-induced inflammation were impaired in DUSP1−/− mice. Therefore, the expression of DUSP1 is required for the inhibition of proinflammatory signaling pathways by Dex in mouse macrophages. Furthermore, DUSP1 contributes to the antiinflammatory effects of Dex in vitro and in vivo.
Collapse
Affiliation(s)
- Sonya M Abraham
- Kennedy Institute of Rheumatology Division, Imperial College London, Hammersmith, London W6 8LH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Takayama S, Rogatsky I, Schwarcz LE, Darimont BD. The Glucocorticoid Receptor Represses Cyclin D1 by Targeting the Tcf-β-Catenin Complex. J Biol Chem 2006; 281:17856-63. [PMID: 16644723 DOI: 10.1074/jbc.m602290200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of glucocorticoids (GCs) to regulate cell proliferation plays an important role in their therapeutic use. The canonical Wnt pathway, which promotes the proliferation of many cancers and differentiated tissues, is an emerging target for the actions of GCs, albeit existing links between these signaling pathways are indirect. By screening known Wnt target genes for their ability to respond differently to GCs in cells whose proliferation is either positively or negatively regulated by GCs, we identified c-myc, c-jun, and cyclin D1, which encode rate-limiting factors for G(1) progression of the cell cycle. Here we show that in U2OS/GR cells, which are growth-arrested by GCs, the glucocorticoid receptor (GR) represses cyclin D1 via Tcf-beta-catenin, the transcriptional effector of the canonical Wnt pathway. We demonstrate that GR can bind beta-catenin in vitro, suggesting that GC and Wnt signaling pathways are linked directly through their effectors. Down-regulation of beta-catenin by RNA interference impeded the expression of cyclin D1 but not of c-myc or c-jun and had no significant effect on the proliferation of U2OS/GR cells. Although these results revealed that beta-catenin and cyclin D1 are not essential for the regulation of U2OS/GR cell proliferation, considering the importance of the Wnt pathway for proliferation and differentiation of other cells, the repression of Tcf-beta-catenin activity by GR could open new possibilities for tissue-selective GC therapies.
Collapse
Affiliation(s)
- Sachiko Takayama
- Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | | | |
Collapse
|
168
|
Ray DW, Donn R, Berry A. Glucocorticoid sensitivity: pathology, mutations and clinical implications. Expert Rev Endocrinol Metab 2006; 1:403-412. [PMID: 30764078 DOI: 10.1586/17446651.1.3.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoids exert diverse effects on virtually all cell types and tissues. Subtle changes in sensitivity may be generalized and congenital or acquired in a tissue-specific manner. Such changes may lead to altered susceptibility to metabolic diseases, such as ischemic heart disease, or to insensitivity to the therapeutic actions of synthetic glucocorticoids such as in inflammatory disease. This review will cover current theories of how glucocorticoids exert genetic and other congenital effects on glucocorticoid sensitivity, and acquired changes in glucocorticoid sensitivity seen principally in inflammatory and malignant disease. Recent important developments in the field include the impact of genetic variation within the glucocorticoid receptor gene, the effects of early life experience on long-term glucocorticoid sensitivity, studies identifying the role of nuclear factor κB in modulating glucocorticoid sensitivity in vitro and in vivo, and the action of macrophage migration inhibitory factor in modulating the anti-inflammatory effects of glucocorticoids. The role of chromatin organization in regulating glucocorticoid action on proinflammatory genes is discussed, as is the regulation of glucocorticoid sensitivity in human malignancy in the context of pathogenesis and treatment response.
Collapse
Affiliation(s)
- David W Ray
- a Professor of Medicine and Endocrinology, University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| | - Rachelle Donn
- b University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| | - Andrew Berry
- c Graduate Student, University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| |
Collapse
|
169
|
Allen JJ, Shokat KM. Chemical genomics: dialed in transcriptional network control with non-steroidal glucocorticoid receptor modulators. ACS Chem Biol 2006; 1:139-40. [PMID: 17163659 DOI: 10.1021/cb600137r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A recent study analyzed the transcriptional effects induced by a panel of non-steroidal glucocorticoid receptor modulators. The authors discover patterns of cell-, gene-, and mechanism-specific regulation, with implications for development of improved anti-inflammatory agents.
Collapse
Affiliation(s)
- Jasmina J Allen
- University of California-San Fransisco, 600 16th Street, GH-N512D, San Francisco, California 94143, USA
| | | |
Collapse
|
170
|
Wang JC, Shah N, Pantoja C, Meijsing SH, Ho JD, Scanlan TS, Yamamoto KR. Novel arylpyrazole compounds selectively modulate glucocorticoid receptor regulatory activity. Genes Dev 2006; 20:689-99. [PMID: 16543221 PMCID: PMC1413289 DOI: 10.1101/gad.1400506] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The activities of intracellular receptors are regulated by their cognate ligands. Here we show that a series of related arylpyrazole compounds, which specifically bind the glucocorticoid receptor (GR), selectively modulated GR-regulated biological functions in preadipocyte, pre-osteoblast, and lung epithelial cell lines. Indeed, when we monitored 17 endogenous GR target genes in one of these cell types, we found that distinct arylpyrazole compounds induced different expression patterns. We showed by chromatin immunoprecipitation that the arylpyrazole compounds regulated, in a gene-specific manner, either GR occupancy of the genomic glucocorticoid response element (GRE) or events after GR association, such as histone modification. Overall, our results establish that subtle differences in ligand chemistry can profoundly influence the transcriptional regulatory activity of GR, and that endogenous genes bearing natural GREs are especially sensitive detectors of these differences.
Collapse
Affiliation(s)
- Jen-Chywan Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94107-2280, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Chen W, Rogatsky I, Garabedian MJ. MED14 and MED1 differentially regulate target-specific gene activation by the glucocorticoid receptor. Mol Endocrinol 2006; 20:560-72. [PMID: 16239257 DOI: 10.1210/me.2005-0318] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Mediator subunits MED14 and MED1 have been implicated in transcriptional regulation by the glucocorticoid receptor (GR) by acting through its activation functions 1 and 2. To understand the contribution of these Mediator subunits to GR gene-specific regulation, we reduced the levels of MED14 and MED1 using small interfering RNAs in U2OS-hGR osteosarcoma cells and examined the mRNA induction by dexamethasone of four primary GR target genes, interferon regulatory factor 8 (IRF8), ladinin 1, IGF-binding protein 1 (IGFBP1), and glucocorticoid-inducible leucine zipper (GILZ). We found that the GR target genes differed in their requirements for MED1 and MED14. GR-dependent mRNA expression of ladinin 1 and IRF8 required both MED1 and MED14, whereas induction of IGFBP1 mRNA by the receptor was dependent upon MED14, but not MED1. In contrast, GILZ induction by GR was largely independent of MED1 and MED14, but required the p160 cofactor transcriptional intermediary factor 2. Interestingly, we observed higher GR occupancy at GILZ than at the IGFBP1 or IRF8 glucocorticoid response element (GREs). In contrast, recruitment of MED14 compared with GR at IGFBP1 and IRF8 was higher than that observed at GILZ. At GILZ, GR and RNA polymerase II were recruited to both the GRE and the promoter, whereas at IGFBP1, RNA polymerase II occupied the promoter, but not the GRE. Thus, MED14 and MED1 are used by GR in a gene-specific manner, and the requirement for the Mediator at GILZ may be bypassed by increased GR and RNA polymerase II occupancy at the GREs. Our findings suggest that modulation of the Mediator subunit activities would provide a mechanism for promoter selectivity by GR.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Microbiology, New York University Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | | | |
Collapse
|
172
|
Lavery D, Mcewan I. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 2006; 391:449-64. [PMID: 16238547 PMCID: PMC1276946 DOI: 10.1042/bj20050872] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Steroid hormones are important endocrine signalling molecules controlling reproduction, development, metabolism, salt balance and specialized cellular responses, such as inflammation and immunity. They are lipophilic in character and act by binding to intracellular receptor proteins. These receptors function as ligand-activated transcription factors, switching on or off networks of genes in response to a specific hormone signal. The receptor proteins have a conserved domain organization, comprising a C-terminal LBD (ligand-binding domain), a hinge region, a central DBD (DNA-binding domain) and a highly variable NTD (N-terminal domain). The NTD is structurally flexible and contains surfaces for both activation and repression of gene transcription, and the strength of the transactivation response has been correlated with protein length. Recent evidence supports a structural and functional model for the NTD that involves induced folding, possibly involving alpha-helix structure, in response to protein-protein interactions and structure-stabilizing solutes.
Collapse
Affiliation(s)
- Derek N. Lavery
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| | - Iain J. Mcewan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
173
|
Rubenstein JL, Fridlyand J, Shen A, Aldape K, Ginzinger D, Batchelor T, Treseler P, Berger M, McDermott M, Prados M, Karch J, Okada C, Hyun W, Parikh S, Haqq C, Shuman M. Gene expression and angiotropism in primary CNS lymphoma. Blood 2006; 107:3716-23. [PMID: 16418334 PMCID: PMC1895776 DOI: 10.1182/blood-2005-03-0897] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Primary CNS lymphoma is an aggressive form of non-Hodgkin lymphoma whose growth is restricted to the central nervous system. We used cDNA microarray analysis to compare the gene expression signature of primary CNS lymphomas with nodal large B-cell lymphomas. Here, we show that while individual cases of primary CNS lymphomas may be classified as germinal center B-cell, activated B-cell, or type 3 large B-cell lymphoma, brain lymphomas are distinguished from nodal large B-cell lymphomas by high expression of regulators of the unfolded protein response (UPR) signaling pathway, by the oncogenes c-Myc and Pim-1, and by distinct regulators of apoptosis. We demonstrate that interleukin-4 (IL-4) is expressed by tumor vasculature as well as by tumor cells in CNS lymphomas. We also identify high expression in CNS lymphomas of several IL-4-induced genes, including X-box binding protein 1 (XBP-1), a regulator of the UPR. In addition, we demonstrate expression of the activated form of STAT6, a mediator of IL-4 signaling, by tumor cells and tumor endothelia in CNS lymphomas. High expression of activated STAT6 in tumors was associated with short survival in an independent set of patients with primary CNS lymphoma who were treated with high-dose intravenous methotrexate therapy.
Collapse
MESH Headings
- Central Nervous System Neoplasms/blood supply
- Central Nervous System Neoplasms/classification
- Central Nervous System Neoplasms/genetics
- DNA-Binding Proteins/genetics
- Gene Expression
- Gene Expression Profiling
- Humans
- Interleukin-4/genetics
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Non-Hodgkin/classification
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/pathology
- Neovascularization, Pathologic
- Nuclear Proteins/genetics
- Oligonucleotide Array Sequence Analysis
- Regulatory Factor X Transcription Factors
- Transcription Factors
- X-Box Binding Protein 1
Collapse
Affiliation(s)
- James L Rubenstein
- University of California, San Francisco, Division of Hematology/Oncology M1282 Box 1270, 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Van Craenenbroeck K, De Bosscher K, Vanden Berghe W, Vanhoenacker P, Haegeman G. Role of glucocorticoids in dopamine-related neuropsychiatric disorders. Mol Cell Endocrinol 2005; 245:10-22. [PMID: 16310935 DOI: 10.1016/j.mce.2005.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 10/14/2005] [Indexed: 01/12/2023]
Abstract
'Psychoneuroendocrinology' is now quickly emerging as a hot interdisciplinary research field that addresses the interplay between neuronal and endocrine signaling in psychiatric diseases. Both glucocorticoid hormones and dopamine have an important role in maintaining normal brain functions. In this review, molecular and mechanistic aspects of glucocorticoid effects on brain function and behavior will be discussed with specific reference to dopamine signaling.
Collapse
Affiliation(s)
- Kathleen Van Craenenbroeck
- Laboratory for Eukaryotic Gene Expression and Signal Transduction, LEGEST, Department of Molecular Biology, Ghent University-UGent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
175
|
Reily MM, Pantoja C, Hu X, Chinenov Y, Rogatsky I. The GRIP1:IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression. EMBO J 2005; 25:108-17. [PMID: 16362036 PMCID: PMC1356362 DOI: 10.1038/sj.emboj.7600919] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/24/2005] [Indexed: 01/11/2023] Open
Abstract
Glucocorticoids dramatically inhibit cytokine and chemokine production. They act through the glucocorticoid receptor (GR), a ligand-dependent transcription factor that binds to and represses activities of other DNA-bound regulators, activator protein 1 and nuclear factor kappaB, utilizing a p160 GRIP1 as a corepressor. A yeast two-hybrid screen with the GRIP1 corepression domain (RD) yielded interferon (IFN) regulatory factor (IRF)3-a downstream effector of Toll-like receptors (TLR) 3/4 and an essential activator of several IFN and chemokine genes. We defined the GRIP1:IRF3 interface and showed that endogenous GRIP1 and IRF3 interact in mammalian cells. Interestingly, GR and IRF3 competed for GRIP1 binding; GR activation or GRIP1 knockdown in macrophages blocked whereas GRIP1 overexpression rescued IRF3-dependent gene expression. GR interference persisted in MyD88- and IFNA receptor-deficient mice, suggesting a specific disruption of TLR3-IRF3 pathway, not of autocrine IFN signaling. Finally, IRF3-stimulated response elements were necessary and sufficient for TLR3-dependent induction and glucocorticoid inhibition. Thus, GRIP1 plays a cofactor role in innate immunity. Competition with GR for GRIP1 antagonizes IRF3-mediated transcription, identifying the GRIP1:IRF3 interaction as a novel target for glucocorticoid immunosuppression.
Collapse
Affiliation(s)
- Michael M Reily
- Hospital for Special Surgery, Department of Microbiology & Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Carlos Pantoja
- Department of Cellular & Molecular Pharmacology, UC San Francisco, San Francisco, CA, USA
| | - Xiaoyu Hu
- Hospital for Special Surgery, Department of Microbiology & Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Yurii Chinenov
- Hospital for Special Surgery, Department of Microbiology & Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Inez Rogatsky
- Hospital for Special Surgery, Department of Microbiology & Immunology, Weill Medical College of Cornell University, New York, NY, USA
- Hospital for Special Surgery, Department of Microbiology & Immunology, Weill Medical College of Cornell University, 535 E70th Street, Research Building Room 425, New York, NY 10021, USA. Tel.: +1 212 606 1462; Fax: +1 212 774 2560; E-mail:
| |
Collapse
|
176
|
DeRijk R, de Kloet ER. Corticosteroid receptor genetic polymorphisms and stress responsivity. Endocrine 2005; 28:263-70. [PMID: 16388115 DOI: 10.1385/endo:28:3:263] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 11/11/2022]
Abstract
A fundamental question in the neuroendocrinology of stress-related psychopathology is why some individuals flourish and others perish under similar adverse conditions. In this contribution we focus on the variants of mineralocorticorticoid (MR) and glucocorticoid receptors (GR) that operate in balance and coordinate behavioral, autonomic, and neuroendocrine response patterns involved in homeostasis and health. In the GR-gene, three single nucleotide polymorphism (SNPs) have been associated with changes in metabolic profile and cardiovascular parameters: the ER22/23EK with a favorable and the N363S and the Bcl1 with a more adverse profile. Importantly, the N363S and the Bcl1 are found to increase cortisol responses to a psychosocial stressor. As a result, the whole body will suffer from overexposure with possible adverse effects on metabolism, cardiovascular control, immune function, and behavior. Also in the MR gene, variants are being identified that are associated with dysregulated autonomic, behavioral, and neuroendocrine responses. The data suggest that these MR and GR variants contribute to individual differences in resilience and vulnerability to stressors, and that these receptors therefore are potential drug targets for recovery of homeostasis and health.
Collapse
MESH Headings
- Adaptation, Physiological
- Humans
- Hydrocortisone/metabolism
- Polymorphism, Single Nucleotide/genetics
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Roel DeRijk
- Department of Psychiatry, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
177
|
Lee MJ, Wang Z, Yee H, Ma Y, Swenson N, Yang L, Kadner SS, Baergen RN, Logan SK, Garabedian MJ, Guller S. Expression and regulation of glucocorticoid receptor in human placental villous fibroblasts. Endocrinology 2005; 146:4619-26. [PMID: 16055431 DOI: 10.1210/en.2005-0235] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human placenta is a glucocorticoid (GC)-responsive organ consisting of multiple cell types including smooth muscle cells, fibroblasts, and trophoblast that demonstrate changes in gene expression after hormone treatment. However, little is known about the relative expression or activity of the GC receptor (GR) among the various placental cell types. Normal term human placentas were examined by immunohistochemistry using either GR phosphorylation site-specific antibodies that are markers for various activation states of the GR or a GR antibody that recognizes the receptor independent of its phosphorylation state (total GR). We found strong total GR and phospho-GR immunoreactivity in stromal fibroblasts of terminal villi, as well as perivascular fibroblasts and vascular smooth muscle cells of the stem villi. Lower levels of both total GR and phospho-GR were found within cytotrophoblast cells relative to fibroblasts, whereas syncytiotrophoblast showed very little total GR or phospho-GR immunoreactivity. This pattern holds true for immunoblot analysis of extracts from cell fractions cultured ex vivo. In cultured placental fibroblasts, phosphorylation of GR increased upon short-term GC treatment, consistent with a role for GR phosphorylation in receptor transactivation. Total GR levels were reduced by nearly 90% after long-term hormone treatment; however, this down-regulation was independent of changes in GR mRNA levels. These findings demonstrate that GR levels in fibroblasts can be modulated by changes in hormone exposure. Such cell type-specific differences in GR protein expression and phosphorylation may provide the means of differentially regulating the GC response among the cells of the human placenta.
Collapse
Affiliation(s)
- Men-Jean Lee
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Phuc Le P, Friedman JR, Schug J, Brestelli JE, Parker JB, Bochkis IM, Kaestner KH. Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet 2005; 1:e16. [PMID: 16110340 PMCID: PMC1186734 DOI: 10.1371/journal.pgen.0010016] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 06/16/2005] [Indexed: 12/23/2022] Open
Abstract
While the molecular mechanisms of glucocorticoid regulation of transcription have been studied in detail, the global networks regulated by the glucocorticoid receptor (GR) remain unknown. To address this question, we performed an orthogonal analysis to identify direct targets of the GR. First, we analyzed the expression profile of mouse livers in the presence or absence of exogenous glucocorticoid, resulting in over 1,300 differentially expressed genes. We then executed genome-wide location analysis on chromatin from the same livers, identifying more than 300 promoters that are bound by the GR. Intersecting the two lists yielded 53 genes whose expression is functionally dependent upon the ligand-bound GR. Further network and sequence analysis of the functional targets enabled us to suggest interactions between the GR and other transcription factors at specific target genes. Together, our results further our understanding of the GR and its targets, and provide the basis for more targeted glucocorticoid therapies.
Collapse
Affiliation(s)
- Phillip Phuc Le
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua R Friedman
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Schug
- Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John E Brestelli
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Brandon Parker
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Irina M Bochkis
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
179
|
Perissi V, Rosenfeld MG. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 2005; 6:542-54. [PMID: 15957004 DOI: 10.1038/nrm1680] [Citation(s) in RCA: 392] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors regulate many biologically important processes in development and homeostasis by their bimodal function as repressors and activators of gene transcription. A finely tuned modulation of the transcriptional activities of nuclear receptors is crucial for determining highly specific and diversified programmes of gene expression. Recent studies have provided insights into the molecular mechanisms that are required to switch between repression and activation functions, the combinatorial roles of the multiple cofactor complexes that are required for mediating transcriptional regulation, and the central question of how several different signalling pathways can be integrated at the nuclear level to achieve specific profiles of gene expression.
Collapse
Affiliation(s)
- Valentina Perissi
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | |
Collapse
|
180
|
Li S, Crothers J, Haqq CM, Blackburn EH. Cellular and Gene Expression Responses Involved in the Rapid Growth Inhibition of Human Cancer Cells by RNA Interference-mediated Depletion of Telomerase RNA. J Biol Chem 2005; 280:23709-17. [PMID: 15831499 DOI: 10.1074/jbc.m502782200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibition of the up-regulated telomerase activity in cancer cells has previously been shown to slow cell growth but only after prior telomere shortening. Previously, we have reported that, unexpectedly, a hairpin short interfering RNA specifically targeting human telomerase RNA rapidly inhibits the growth of human cancer cells independently of p53 or telomere length and without bulk telomere shortening (Li, S., Rosenberg, J. E., Donjacour, A. A., Botchkina, I. L., Hom, Y. K., Cunha, G. R., and Blackburn, E. H. (2004) Cancer Res. 64, 4833-4840). Here we have demonstrated that such telomerase RNA knockdown in cancer cells does not cause telomere uncapping but rather induces changes in the global gene expression profile indicative of a novel response pathway, which includes suppression of specific genes implicated in angiogenesis and metastasis, and is distinct from the expression profile changes induced by telomere-uncapping mutant template telomerase RNAs. These cellular responses to depleting telomerase in human cancer cells together suggest that cancer cells are "telomerase-addicted" and uncover functions of telomerase in tumor growth and progression in addition to telomere maintenance.
Collapse
Affiliation(s)
- Shang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
181
|
Tuckermann JP, Kleiman A, McPherson KG, Reichardt HM. Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit Rev Clin Lab Sci 2005; 42:71-104. [PMID: 15697171 DOI: 10.1080/10408360590888983] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system must be tightly controlled not only to guarantee efficient protection from invading pathogens and oncogenic cells but also to avoid exaggerated immune responses and autoimmunity. This is achieved through interactions amongst leukocytes themselves, by signals from stromal cells and also by various hormones, including glucocorticoids. The glucocorticoids are a class of steroid hormones that exert a wide range of anti-inflammatory and immunosuppressive activities after binding to the glucocorticoid receptor. The power of these hormones was acknowledged many decades ago, and today synthetic derivatives are widely used in the treatment of inflammatory disorders, autoimmunity and cancer. In this review, we summarize our present knowledge of the molecular mechanisms of glucocorticoid action, their influence on specific leukocytes and the induction of thymocyte apoptosis, with an emphasis on how molecular genetics has contributed to our growing, although still incomplete, understanding of these processes.
Collapse
|
182
|
Schafer-Korting M, Kleuser B, Ahmed M, Holtje HD, Korting HC. Glucocorticoids for Human Skin: New Aspects of the Mechanism of Action. Skin Pharmacol Physiol 2005; 18:103-14. [PMID: 15897682 DOI: 10.1159/000084907] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 10/19/2004] [Indexed: 12/23/2022]
Abstract
Topical glucocorticoids have always been considered first-line drugs for inflammatory diseases of the skin and bronchial system. Applied systemically, glucocorticoids are used for severe inflammatory and immunological diseases and the inhibition of transplant rejection. Owing to the progress in molecular pharmacology, the knowledge of the mechanism of action has increased during the last years. Besides distinct genomic targets, which are due to the activation of specific cytoplasmatic receptors resulting in the (trans-) activation or (trans-) repression of target genes, there are non-genomic effects on the basis of the interference with membrane-associated receptors as well as with membrane lipids. In fact, various glucocorticoids appear to differ with respect to the relative influence on these targets. Thus, the extended knowledge of glucocorticoid-induced cellular signalling should allow the design and development of even more specifically acting drugs - as it has been obtained with other steroids, e.g. estrogens for osteoporosis prevention.
Collapse
Affiliation(s)
- M Schafer-Korting
- Pharmakologie und Toxikologie, Institut fur Pharmazie, Freie Universitat Berlin, Deutschland.
| | | | | | | | | |
Collapse
|
183
|
Agbemafle BM, Oesterreicher TJ, Shaw CA, Henning SJ. Immediate early genes of glucocorticoid action on the developing intestine. Am J Physiol Gastrointest Liver Physiol 2005; 288:G897-906. [PMID: 15826934 DOI: 10.1152/ajpgi.00454.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prior studies have demonstrated that glucocorticoid hormones elicit functional maturation of the small intestine as evidenced by their ability to induce increases in the expression of various digestive hydrolases, such as sucrase-isomaltase and trehalase. However, these increases have a lag time of approximately 24 h, suggesting that they are secondary effects of hormone action. To identify candidate primary response genes, we performed microarray analysis on pooled RNA from jejunums of untreated postnatal day 8 mouse pups and from littermates who earlier received dexamethasone 2 h. Fluorescent dye-labeled samples were hybridized in quadruplicate to glass-spotted cDNA microarrays containing 15,000 cDNA clones from the National Institute of Aging cDNA clone set. Analysis of the resulting signals using relatively stringent criteria identified 66 transcripts upregulated and 36 downregulated by 2 h of glucocorticoid treatment. Among the upregulated transcripts, the magnitude of the increase detected by microarray ranged from 1.4- to 16-fold. Selected mRNAs from throughout the range were subsequently analyzed by Northern blot analysis. Of 11 mRNAs chosen all were confirmed, and there was a strong correlation between the magnitude of the increase observed from the microarray analysis and from Northern blot analysis. Additional time points showed that these transcripts peaked between 2 and 6 h and had returned to baseline by 24 h. Gene ontology analysis showed pleiotropic effects of dexamethasone on the developing intestine and pointed to genes in the development category as being likely candidates for mediation of glucocorticoid-induced maturation of intestinal function.
Collapse
Affiliation(s)
- Barbara M Agbemafle
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
184
|
Pascual-Le Tallec L, Simone F, Viengchareun S, Meduri G, Thirman MJ, Lombès M. The Elongation Factor ELL (Eleven-Nineteen Lysine-Rich Leukemia) Is a Selective Coregulator for Steroid Receptor Functions. Mol Endocrinol 2005; 19:1158-69. [PMID: 15650021 DOI: 10.1210/me.2004-0331] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dynamic and coordinated recruitment of coregulators by steroid receptors is critical for specific gene transcriptional activation. To identify new cofactors of the human (h) mineralocorticoid receptor (MR), its highly specific N-terminal domain was used as bait in a yeast two-hybrid approach. We isolated ELL (eleven-nineteen lysine-rich leukemia), a RNA polymerase II elongation factor which, when fused to MLL (mixed lineage leukemia) contributes to the pathogenesis of acute leukemia. Specific interaction between hMR and ELL was confirmed by glutathione-S-transferase pull-down and coimmunoprecipitation experiments. Transient transfections demonstrated that ELL increased receptor transcriptional potency and hormonal efficacy, indicating that ELL behaves as a bona fide MR coactivator. Of major interest, ELL differentially modulates steroid receptor responses, with striking opposite effects on hMR and glucocorticoid receptor-mediated transactivation, without affecting that of androgen and progesterone receptors. Furthermore, the MLL-ELL fusion protein, as well as several ELL truncated mutants and the ELL L214V mutant, lost their ability to potentiate MR transcriptional activities, suggesting that both the elongation domain and the ELL-associated factor 1 interaction domains are required for ELL to fulfill its selector activity on steroid receptors. This study is the first direct demonstration of a functional interaction between a nuclear receptor and an elongation factor. These results provide further evidence that the selectivity of the mineralo vs. glucocorticoid signaling pathways also occurs at the transcriptional complex level and may have major pathophysiological implications, most notably in leukemogenesis and corticosteroid-induced apoptosis. These findings allow us to propose the concept of "transcriptional selector" for ELL on steroid receptor transcriptional functions.
Collapse
Affiliation(s)
- Laurent Pascual-Le Tallec
- Institut National de la Santé et de la Recherche Médicale, Unité 693, Faculté de Médecine Paris-Sud, 63 rue Gabriel Peri, 94276 Le Kremlin Bicetre cedex, France
| | | | | | | | | | | |
Collapse
|
185
|
Abstract
Steroidal glucocorticoids are commonly used due to their powerful antiinflammatory activity. However, despite their excellent efficacy, severe side effects frequently limit the use of these drugs. The search for novel glucocorticoids with reduced side effects has been intensified by the discovery of new molecular details regarding the function of the glucocorticoid receptor. These new insights may pave the way for novel, safer therapies that retain the efficacy of currently prescribed steroids.
Collapse
Affiliation(s)
- Jonathan Rosen
- Department of Molecular and Cell Biology, Ligand Pharmaceuticals, 10275 Science Center Drive, San Diego, California 92121, USA
| | | |
Collapse
|
186
|
Shah N, Scanlan TS. Design and evaluation of novel nonsteroidal dissociating glucocorticoid receptor ligands. Bioorg Med Chem Lett 2005; 14:5199-203. [PMID: 15380227 DOI: 10.1016/j.bmcl.2004.07.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/23/2004] [Accepted: 07/23/2004] [Indexed: 11/17/2022]
Abstract
A novel class of phenylpyrazole fused Wieland-Miescher ketone derivatives are high affinity, receptor specific, selective modulators of glucocorticoid receptor (GR) mediated transcription in vitro, dissociating transactivation, AP-1 repression, and NF-kappaB repression from each other.
Collapse
Affiliation(s)
- Nilesh Shah
- Graduate Group in Biophysics, University of California--San Francisco, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
187
|
Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship. J Steroid Biochem Mol Biol 2005; 94:383-94. [PMID: 15876404 DOI: 10.1016/j.jsbmb.2004.12.046] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 12/30/2004] [Indexed: 01/02/2023]
Abstract
The glucocorticoid receptor (GR) belongs to the superfamily of ligand-activated transcription factors, the nuclear hormone receptors. Like other members of the family, the GR possesses a modular structure consisting of three major domains-the N-terminal (NTD), DNA binding (DBD), and ligand binding (LBD). Although the structures of independently expressed GR DBD and LBD are known, the structures of the NTD and of full-length GR are lacking. Both DBD and LBD possess overall globular structures. Not much is known about the structure of the NTD, which contains the powerful AF1/tau1/enh2 transactivation region. Several studies have shown that AF1 region is mostly unstructured and that it can acquire folded functional conformation under certain potentially physiological conditions, namely in the presence of osmolytes, when the GR DBD is bound to glucocorticoid response element (GRE), and when AF1 binds other transcription factor proteins. These conditions are discussed here. The functions of the GR will be fully understood only when its working three-dimensional structure is known. Based on the available data, we propose a model to explain data which are not adequately accounted for in the classical models of GR action. In this review, we summarize and discuss current information on the structure of the GR in the context of its functional aspects, such as protein:DNA and protein:protein interactions. Because of the close similarities in modular organization among the members of the nuclear hormone receptors, the principles discussed here for the GR should be applicable to many other receptors in the family as well.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1068, USA
| | | |
Collapse
|
188
|
Abrams MT, Robertson NM, Litwack G, Wickstrom E. Evaluation of glucocorticoid sensitivity in 697 pre-B acute lymphoblastic leukemia cells after overexpression or silencing of MAP kinase phosphatase-1. J Cancer Res Clin Oncol 2005; 131:347-54. [PMID: 15856297 DOI: 10.1007/s00432-004-0659-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 11/22/2004] [Indexed: 01/08/2023]
Abstract
PURPOSE To determine the effect of modulating MAP kinase phosphatase-1 (MKP-1) expression levels on cell death induced by glucocorticoid (GC) or hydroxyurea (HU) treatment in the human pre-B acute lymphoblastic leukemia cell line 697. METHODS Stable MKP-1 overexpressing transformants of the 697 pre-B acute lymphoblastic leukemia cell line were created and tested for sensitivity to the GC triamcinolone acetonide (TA) and HU, and compared to a control 697 cell line containing normal MKP-1 expression levels. Small interfering RNAs (siRNAs) were designed to inhibit MKP-1 expression and evaluated for their effect on GC-mediated cell death. RESULTS MKP-1 overexpression caused a phenotype of partial resistance to HU-induced apoptosis but not to GC-induced apoptosis. Electroporation of siRNAs effectively silenced MKP-1 expression, and increased sensitivity to TA by 9.6+/-1.9%. CONCLUSIONS Because MKP-1 protects certain tumor cells from chemotherapy-induced apoptosis, its inhibition is being considered as a possible strategy for combination cancer therapy. However, this study suggests that while MKP-1 inhibition may improve the efficacy of DNA damaging agents, it may have only limited utility in combination with glucocorticoids.
Collapse
Affiliation(s)
- Marc T Abrams
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, BLSB #219, Philadelphia, PA, 19107, USA
| | | | | | | |
Collapse
|
189
|
Ismaili N, Blind R, Garabedian MJ. Stabilization of the unliganded glucocorticoid receptor by TSG101. J Biol Chem 2005; 280:11120-6. [PMID: 15657031 DOI: 10.1074/jbc.m500059200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucocorticoid receptor (GR) has been shown to undergo hormone-dependent down-regulation via transcriptional, post-transcriptional, and posttranslational mechanisms. However, the mechanisms involved in modulating GR levels in the absence of hormone remain enigmatic. Here we demonstrate that TSG101, a previously identified GR-interacting protein, stabilizes the hypophosphorylated form of GR in the absence of ligand. We found that a non-phosphorylated version of GR (S203A/S211A) showed enhanced interaction with TSG101 as compared with the wild type GR, suggesting that TSG101 interacts more favorably with GR when it is not phosphorylated. A significant accumulation of GR S203A/S211A protein is detected in the absence of ligand when TSG101 is overexpressed, whereas no increase in the wild type phosphorylated GR or phosphomimetic GR S203E/S211E was observed in mammalian cells. In contrast, down-regulation of TSG101 expression by siRNA renders the hypophosphorylated form of GR unstable. We further show that TSG101 stabilizes GR by impeding its degradation by the proteasome and extending receptor half-life. Thus, in absence of a ligand, TSG101 binds GR and protects the non-phosphorylated receptor from degradation.
Collapse
Affiliation(s)
- Naima Ismaili
- Department of Microbiology, New York Univeristy Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
190
|
Cheung E, Acevedo ML, Cole PA, Kraus WL. Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proc Natl Acad Sci U S A 2005; 102:559-64. [PMID: 15642950 PMCID: PMC545529 DOI: 10.1073/pnas.0407113102] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen signaling occurs through at least two distinct molecular pathways: (i) direct binding of liganded estrogen receptors (ERs) to estrogen-responsive DNA elements (EREs) (the "ER/ERE pathway") and (ii) indirect recruitment of liganded ERs to activating protein-1 (AP-1)-responsive DNA elements via heterodimers of Fos and Jun (the "ER/AP-1 pathway"). We have developed a biochemical assay for examining ligand-regulated transcription by ERs in the ER/AP-1 pathway. This assay recapitulates the altered (i.e., agonistic) pharmacology of selective estrogen receptor modulator drugs in this pathway reported previously by using various cell-based assays. We used our biochemical assay to examine the detailed mechanisms of ER/AP-1-dependent transcription. Our studies indicate that (i) ERalpha/AP-1 complexes play a critical role in promoting the formation of stable RNA polymerase II preinitiation complexes leading to transcription initiation, (ii) chromatin is a key determinant of estrogen and selective estrogen receptor modulator signaling in the ERalpha/AP-1 pathway, (iii) distinct domains of ERalpha are required for recruitment to DNA-bound Fos/Jun heterodimers and transcriptional activation at AP-1 sites, and (iv) different enhancer/activator combinations in the ERalpha and AP-1 pathways use coactivators in distinct ways. These studies have increased our understanding of the molecular mechanisms underlying ligand-dependent signaling in the ER/AP-1 pathway and demonstrate the usefulness of this biochemical approach.
Collapse
Affiliation(s)
- Edwin Cheung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
191
|
Schoneveld OJLM, Gaemers IC, Lamers WH. Mechanisms of glucocorticoid signalling. ACTA ACUST UNITED AC 2004; 1680:114-28. [PMID: 15488991 DOI: 10.1016/j.bbaexp.2004.09.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
It has become increasingly clear that glucocorticoid signalling not only comprises the binding of the glucocorticoid receptor (GR) to its response element (GRE), but also involves indirect regulation glucocorticoid-responsive genes by regulating or interacting with other transcription factors. In addition, they can directly regulate gene expression by binding to negative glucocorticoid response elements (nGREs), to simple GREs, to GREs, or to GREs and GRE half sites (GRE1/2s) that are part of a regulatory unit. A response unit allows a higher level of glucocorticoid induction than simple GREs and, in addition, allows the integration of tissue-specific information with the glucocorticoid response. Presumably, the complexity of such a glucocorticoid response unit (GRU) depends on the number of pathways that integrate at this unit. Because GRUs are often located at distant sites relative to the transcription-start site, the GRU has to find a way to communicate with the basal-transcription machinery. We propose that the activating signal of a distal enhancer can be relayed onto the transcription-initiation complex by coupling elements located proximal to the promoter.
Collapse
Affiliation(s)
- Onard J L M Schoneveld
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | | | | |
Collapse
|
192
|
Bladh LG, Lidén J, Pazirandeh A, Rafter I, Dahlman-Wright K, Nilsson S, Okret S. Identification of target genes involved in the antiproliferative effect of glucocorticoids reveals a role for nuclear factor-(kappa)B repression. Mol Endocrinol 2004; 19:632-43. [PMID: 15528271 DOI: 10.1210/me.2004-0294] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid hormones (GCs) exert an antiproliferative effect on most cells. However, the molecular mechanism is still largely unclear. We investigated the antiproliferative mechanism by GCs in human embryonic kidney 293 cells with stably introduced glucocorticoid receptor (GR) mutants that discriminate between cross-talk with nuclear factor-(kappa)B (NF-(kappa)B) and activator protein-1 signaling, transactivation and transrepression, and antiproliferative vs. non-antiproliferative responses. Using the GR mutants, we here demonstrate a correlation between repression of NF-(kappa)B signaling and antiproliferative response. Gene expression profiling of endogenous genes in cells containing mutant GRs identified a limited number of genes that correlated with the antiproliferative response. This included a GC-mediated up-regulation of the NF-(kappa)B-inhibitory protein I(kappa)B(alpha), in line with repression of NF-(kappa)B signaling being important in the GC-mediated antiproliferative response. Interestingly, the GC-stimulated expression of I(kappa)B(alpha) was a direct effect despite the inability of the GR mutant to transactivate through a GC-responsive element. Selective expression of I(kappa)B(alpha) in human embryonic kidney 293 cells resulted in a decreased percentage of cells in the S/G2/M phase and impaired cell proliferation. These results demonstrate that GC-mediated inhibition of NF-(kappa)B is an important mechanism in the antiproliferative response to GCs.
Collapse
Affiliation(s)
- Lars-Göran Bladh
- Department of Medical Nutrition, Karolinska Institutet, Karolinska University Hospital Huddinge, Novum, SE-141 86 Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
193
|
Abrams MT, Robertson NM, Yoon K, Wickstrom E. Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. J Biol Chem 2004; 279:55809-17. [PMID: 15509554 DOI: 10.1074/jbc.m411767200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoids (GCs) induce apoptosis in lymphocytes and are effective agents for the treatment of leukemia. The activated glucocorticoid receptor initiates a transcriptional program leading to caspase activation and cell death, but the critical signaling intermediates in GC-induced apoptosis remain largely undefined. We have observed that GC induction of the three major protein products of the Bcl-2 relative Bim (BimEL, BimS, and BimL) correlates with GC sensitivity in a panel of human precursor B-cell (pre-B) acute lymphoblastic leukemia (ALL) cell lines. To test the hypothesis that Bim facilitates GC-induced apoptosis, we reduced BIM mRNA levels and Bim protein levels by RNA interference in highly GC-sensitive pre-B ALL cells. Reducing Bim proteins by either electroporation of synthetic small interfering RNA (siRNA) duplexes or lentivirus-mediated stable expression of short hairpin RNA inhibited the activation of caspase-3 and increased cell viability following GC exposure. We also observed that the extent of GC resistance correlated with siRNA silencing potency. siRNA duplexes that reduced only BimEL or BimEL and BimL (but not BimS) exhibited less GC resistance than a potent siRNA that silenced all three major isoforms, implying that induction of all three Bim proteins contributes to cell death. Finally, the modulation of GC-induced apoptosis caused by Bim silencing was independent of Bcl-2 expression levels, negating the hypothesis that the ratio of Bim to Bcl-2 regulates apoptosis. These results offer evidence that the induction of Bim by GC is a required event for the complete apoptotic response in pre-B ALL cells.
Collapse
Affiliation(s)
- Marc T Abrams
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
194
|
Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, Yamamoto KR. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc Natl Acad Sci U S A 2004; 101:15603-8. [PMID: 15501915 PMCID: PMC524211 DOI: 10.1073/pnas.0407008101] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The global physiological effects of glucocorticoids are well established, and the framework of transcriptional regulation by the glucocorticoid receptor (GR) has been described. However, the genes directly under GR control that trigger these physiological effects are largely unknown. To address this issue in a single cell type, we identified glucocorticoid-responsive genes in A549 human lung adenocarcinoma cells by microarray analysis and quantitative real-time PCR. Reduction of GR expression by RNA interference diminished the effects of dexamethasone on all tested target genes, thus confirming the essential role of GR in glucocorticoid-regulated gene expression. To identify primary GR target genes, in which GR is a component of the transcriptional regulatory complex, we developed a strategy that uses chromatin immunoprecipitation to scan putative regulatory regions of target genes for sites occupied by specifically bound GR. We screened 11 glucocorticoid-regulated genes, and we identified GR-binding regions for eight of them (five induced and three repressed). Thus, our approach provides a means for rapid identification of primary GR target genes and glucocorticoid-response elements, which will facilitate analyses of transcriptional regulatory mechanisms and determination of hormone-regulated gene networks.
Collapse
Affiliation(s)
- Jen-Chywan Wang
- Departments of Cellular and Molecular Pharmacology and Medicine, University of California-San Francisco, S572D, Genentech Hall, 600 16th Street, San Francisco, CA 94107-2280, USA
| | | | | | | | | | | |
Collapse
|
195
|
Leung TH, Hoffmann A, Baltimore D. One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell 2004; 118:453-64. [PMID: 15315758 DOI: 10.1016/j.cell.2004.08.007] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 06/23/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
The transcription factor NF-kappaB regulates a wide variety of genes involved in multiple processes. Although the apparent consensus sequence of DNA binding sites for NF-kappaB (kappaB sites) is very broad, the sites active in any one gene show remarkable evolutionary stability. Using a lentivirus-based methodology for implantation of gene regulatory sequences we show that for genes with two kappaB sites, both are required for activity. Swapping sites between kappaB-dependent genes altered NF-kappaB dimer specificity of the promoters and revealed that two kappaB sites can function together as a module to regulate gene activation. Further, although the sequence of the kappaB site is important for determining kappaB family member specificity, rather than determining the ability of a particular dimer to bind effectively, the sequence affects which coactivators will form productive interactions with the bound NF-kappaB dimer. This suggests that binding sites may impart a specific configuration to bound transcription factors.
Collapse
Affiliation(s)
- Thomas H Leung
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
196
|
Brickner JH, Walter P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2004; 2:e342. [PMID: 15455074 PMCID: PMC519002 DOI: 10.1371/journal.pbio.0020342] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Accepted: 08/09/2004] [Indexed: 11/18/2022] Open
Abstract
The spatial arrangement of chromatin within the nucleus can affect reactions that occur on the DNA and is likely to be regulated. Here we show that activation of INO1 occurs at the nuclear membrane and requires the integral membrane protein Scs2. Scs2 antagonizes the action of the transcriptional repressor Opi1 under conditions that induce the unfolded protein response (UPR) and, in turn, activate INO1. Whereas repressed INO1 localizes throughout the nucleoplasm, the gene is recruited to the nuclear periphery upon transcriptional activation. Recruitment requires the transcriptional activator Hac1, which is produced upon induction of the UPR, and is constitutive in a strain lacking Opi1. Artificial recruitment of INO1 to the nuclear membrane permits activation in the absence of Scs2, indicating that the intranuclear localization of a gene can profoundly influence its mechanism of activation. Gene recruitment to the nuclear periphery, therefore, is a dynamic process and appears to play an important regulatory role. A study of the yeast gene INO1 indicates that the recruitment of the gene to the nuclear membrane appears to play an important part in its regulation
Collapse
Affiliation(s)
- Jason H Brickner
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA.
| | | |
Collapse
|
197
|
Taneja SS, Ha S, Swenson NK, Torra IP, Rome S, Walden PD, Huang HY, Shapiro E, Garabedian MJ, Logan SK. ART-27, an Androgen Receptor Coactivator Regulated in Prostate Development and Cancer. J Biol Chem 2004; 279:13944-52. [PMID: 14711828 DOI: 10.1074/jbc.m306576200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor trapped clone-27 (ART-27) is a newly described transcriptional coactivator that binds to the N terminus of the androgen receptor (AR). Given the vital importance of AR signaling in prostate growth and differentiation, we investigated the role of ART-27 in these processes. Immunohistochemical studies indicate that ART-27 protein is expressed in differentiated epithelial cells of adult human prostate and breast tissue. In prostate, ART-27 is abundant in AR-positive prostate luminal epithelial cells, in contrast to the stroma, where cells express AR but not ART-27. The use of a rat model of androgen depletion/reconstitution indicates that ART-27 expression is associated with the elaboration of differentiated prostate epithelial cells. Interestingly, regulated expression of ART-27 in the androgen-sensitive LNCaP prostate cancer cell line inhibits androgen-mediated cellular proliferation and enhances androgen-mediated transcription of the prostate-specific antigen (PSA) gene. Consistent with a growth suppressive function, we show that ART-27 expression levels are negligible in human prostate cancer. Importantly, examination of ART-27 protein expression in early fetal prostate development demonstrates that ART-27 is detected only when the developing prostate gland has proceeded from a solid mass of undifferentiated cells to a stage in which differentiated luminal epithelial cells are evident. Thus, ART-27 is an AR cofactor shown to be subject to both cell type and developmental regulation in humans. Overall, the results suggest that decreased levels of ART-27 protein in prostate cancer tissue may occur as a result of de-differentiation, and indicate that ART-27 is likely to regulate a subset of AR-responsive genes important to prostate growth suppression and differentiation.
Collapse
Affiliation(s)
- Samir S Taneja
- Departments of Urology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
The Jensen Symposium was held at the University of Cincinnati in December 2003 to honor the pioneering contributions of Dr. Elwood Jensen to the field of nuclear hormone action. Those in attendance were treated to an outstanding scientific program that served as an update of recent progress and illustrated the breadth of activity in the nuclear receptor field. Here we highlight recent findings presented at the Symposium that provide new insights into the mechanisms of nuclear receptor action and the diverse roles of members of the nuclear receptor superfamily in development and homeostasis.
Collapse
Affiliation(s)
- Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|