151
|
Feng W, Lin H, Rothzerg E, Song D, Zhao W, Ning T, Wei Q, Zhao J, Wood D, Liu Y, Xu J. RNA-seq and Single-Cell Transcriptome Analyses of TRAIL Receptors Gene Expression in Human Osteosarcoma Cells and Tissues. Cancer Inform 2023; 22:11769351231161478. [PMID: 37101729 PMCID: PMC10123892 DOI: 10.1177/11769351231161478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 04/28/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary cancer in the skeletal system, characterized by a high incidence of lung metastasis, local recurrence and death. Systemic treatment of this aggressive cancer has not improved significantly since the introduction of chemotherapy regimens, underscoring a critical need for new treatment strategies. TRAIL receptors have long been proposed to be therapeutic targets for cancer treatment, but their role in osteosarcoma remains unclear. In this study, we investigated the expression profile of four TRAIL receptors in human OS cells using total RNA-seq and single-cell RNA-seq (scRNA-seq). The results revealed that TNFRSF10B and TNFRSF10D but not TNFRSF10A and TNFRSF10C are differentially expressed in human OS cells as compared to normal cells. At the single cell level by scRNA-seq analyses, TNFRSF10B, TNFRSF10D, TNFRSF10A and TNFRSF10C are most abundantly expressed in endothelial cells of OS tissues among nine distinct cell clusters. Notably, in osteoblastic OS cells, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. Similarly, in an OS cell line U2-OS using RNA-seq, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. According to the TARGET online database, poor patient outcomes were associated with low expression of TNFRSF10C. These results could provide a new perspective to design novel therapeutic targets of TRAIL receptors for the diagnosis, prognosis and treatment of OS and other cancers.
Collapse
Affiliation(s)
- Wenyu Feng
- Department of Orthopaedics, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiyingjie Lin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | - Qingjun Wei
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Jiake Xu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| |
Collapse
|
152
|
Ando Y, Tsukasaki M. [RANKL and periodontitis]. Nihon Yakurigaku Zasshi 2023; 158:263-268. [PMID: 37121710 DOI: 10.1254/fpj.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Periodontal disease is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone. It is one of the most common infectious diseases in humans, being the leading cause of tooth loss in adults. Recently, it has been shown that the receptor activator of NF-κB ligand (RANKL) produced by osteoblasts and periodontal ligament fibroblasts critically contributes to the bone destruction caused by periodontal disease. Activation of the immune system plays an important role in the induction of RANKL during periodontal inflammation. Here we discuss the molecular mechanisms of periodontal bone destruction by focusing on the osteoimmune molecule RANKL.
Collapse
Affiliation(s)
- Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
- Department of Microbiology, Tokyo Dental College
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| |
Collapse
|
153
|
Yoshimoto S, Morita H, Okamura K, Hiraki A, Hashimoto S. IL-6 Plays a Critical Role in Stromal Fibroblast RANKL Induction and Consequent Osteoclastogenesis in Ameloblastoma Progression. J Transl Med 2023; 103:100023. [PMID: 36748192 DOI: 10.1016/j.labinv.2022.100023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023] Open
Abstract
Ameloblastoma (AB) is the most common benign, epithelial odontogenic tumor that occurs in the jawbone. AB is a slow-growing, benign epithelial tumor but shows locally invasive growth, with bone resorption or recurrence if not adequately resected. From these points of view, understanding the mechanism of AB-induced bone resorption is necessary for better clinical therapy and improving patients' quality of life. In bone resorption, osteoclasts play critical roles, and RANKL is a pivotal regulator of osteoclastogenesis. However, the source of RANKL-expressing cells in the AB tumor microenvironment is controversial, and the mechanism of osteoclastogenesis in AB progression is not fully understood. In this study, we investigated the distribution of the RNA expression of RANKL in AB specimens. We found that PDGFRα- and S100A4-positive stromal fibroblasts expressed RANKL in the AB tumor microenvironment. Moreover, we analyzed the mechanisms of osteoclastogenesis in the AB tumor microenvironment using the human AB cell line AM-1 and a human primary periodontal ligament fibroblast cells. The results of histopathologic and in vitro studies clarified that the interaction between AB cells and stromal fibroblasts upregulated IL-6 expression and that AB cells induced RANKL expression in stromal fibroblasts and consequent osteoclastogenesis in AB progression.
Collapse
Affiliation(s)
- Shohei Yoshimoto
- Section of Pathology, Division of Biomedical Sciences, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| | - Hiromitsu Morita
- The Center for Visiting Dental Service, Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Kazuhiko Okamura
- Section of Pathology, Division of Biomedical Sciences, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Akimitsu Hiraki
- Section of Oral Oncology, Division of Oral and Medical Management, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Shuichi Hashimoto
- Section of Pathology, Division of Biomedical Sciences, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
154
|
Remmers SJ, van der Heijden FC, Ito K, Hofmann S. The effects of seeding density and osteoclastic supplement concentration on osteoclastic differentiation and resorption. Bone Rep 2022; 18:101651. [PMID: 36588781 PMCID: PMC9800315 DOI: 10.1016/j.bonr.2022.101651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The bone resorbing osteoclasts are a complex type of cell essential for in vivo bone remodeling. There is no consensus on medium composition and seeding density for in vitro osteoclastogenesis, despite the importance thereof on osteoclastic differentiation and activity. The aim of this study was to investigate the relative effect of monocyte or peripheral blood mononuclear cell (PBMC) seeding density, osteoclastic supplement concentration and priming on the in vitro generation of functional osteoclasts, and to explore and evaluate the usefulness of commonly used markers for osteoclast cultures. Morphology and osteoclast formation were analyzed with fluorescence imaging for tartrate resistant acid phosphatase (TRAP) and integrin β3 (Iβ3). TRAP release was analyzed from supernatant samples, and resorption was analyzed from culture on Corning® Osteo Assay plates. In this study, we have shown that common non-standardized culturing conditions of monocyte or PBMCs had a significant effect on the in vitro generation of functional osteoclasts. We showed how increased osteoclastic supplement concentrations supported osteoclastic differentiation and resorption but not TRAP release, while priming resulted in increased TRAP release as well. Increased monocyte seeding densities resulted in more and large TRAP positive bi-nuclear cells, but not directly in more multinucleated osteoclasts, resorption or TRAP release. Increasing PBMC seeding densities resulted in more and larger osteoclasts and more resorption, although resorption was disproportionally low compared to the monocyte seeding density experiment. Exploration of commonly used markers for osteoclast cultures demonstrated that Iβ3 staining was an excellent and specific osteoclast marker in addition to TRAP staining, while supernatant TRAP measurements could not accurately predict osteoclastic resorptive activity. With improved understanding of the effect of seeding density and osteoclastic supplement concentration on osteoclasts, experiments yielding higher numbers of functional osteoclasts can ultimately improve our knowledge of osteoclasts, osteoclastogenesis, bone remodeling and bone diseases.
Collapse
Affiliation(s)
| | | | | | - Sandra Hofmann
- Corresponding author at: Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
155
|
A New Method to Sort Differentiating Osteoclasts into Defined Homogeneous Subgroups. Cells 2022; 11:cells11243973. [PMID: 36552735 PMCID: PMC9777285 DOI: 10.3390/cells11243973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts regulate skeletal development but also drive pathological osteolysis, making them prime therapeutic targets. Osteoclast research is limited by the heterogeneity of osteoclast populations generated in vitro, where the mixture of undifferentiated monocytes, binuclear pre-osteoclasts and multinucleated osteoclasts has by necessity been considered a single osteoclast population. This study describes the differentiation of primary human CD14+ monocyte-derived osteoclasts in 3D collagen gels. These osteoclasts remained small (>95% with ≤5 nuclei) but were viable and active; when released from the gel with collagenase, they fused rapidly when reseeded onto solid substrates and resorbed dentine for 2-3 weeks. 3D-generated osteoclasts expressed cell surface markers of osteoclast differentiation (e.g., CD9, RANK, OSCAR, CD63, CD51/61) which, with their small size, enabled live cell sorting of highly enriched viable subpopulations of human osteoclasts that retained full functional resorption capacity. Low-yield osteoclast preparations were strongly enriched to remove undifferentiated cells (e.g., 13.3% CD51/61+ to 84.2% CD51/61+), and subpopulations of CD9+CD51/61- early osteoclasts and CD9+CD51/61+ mature cells were distinguished. This novel approach allows the study of selected populations of differentiating osteoclasts in vitro and opens the door to in-depth transcriptomic and proteomic analysis of these cells, increasing our ability to study human osteoclast molecular mechanisms relevant to development, aging and disease.
Collapse
|
156
|
Janoušek J, Pilařová V, Macáková K, Nomura A, Veiga-Matos J, Silva DDD, Remião F, Saso L, Malá-Ládová K, Malý J, Nováková L, Mladěnka P. Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci 2022; 59:517-554. [PMID: 35575431 DOI: 10.1080/10408363.2022.2070595] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin D has a well-known role in the calcium homeostasis associated with the maintenance of healthy bones. It increases the efficiency of the intestinal absorption of dietary calcium, reduces calcium losses in urine, and mobilizes calcium stored in the skeleton. However, vitamin D receptors are present ubiquitously in the human body and indeed, vitamin D has a plethora of non-calcemic functions. In contrast to most vitamins, sufficient vitamin D can be synthesized in human skin. However, its production can be markedly decreased due to factors such as clothing, sunscreens, intentional avoidance of the direct sunlight, or the high latitude of the residence. Indeed, more than one billion people worldwide are vitamin D deficient, and the deficiency is frequently undiagnosed. The chronic deficiency is not only associated with rickets/osteomalacia/osteoporosis but it is also linked to a higher risk of hypertension, type 1 diabetes, multiple sclerosis, or cancer. Supplementation of vitamin D may be hence beneficial, but the intake of vitamin D should be under the supervision of health professionals because overdosing leads to intoxication with severe health consequences. For monitoring vitamin D, several analytical methods are employed, and their advantages and disadvantages are discussed in detail in this review.
Collapse
Affiliation(s)
- Jiří Janoušek
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Anderson Nomura
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jéssica Veiga-Matos
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Gandra, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Kateřina Malá-Ládová
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Josef Malý
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
157
|
Abstract
Despite advancement in therapeutic options, Non-Small Cell lung cancer (NSCLC) remains a lethal disease mostly due to late diagnosis at metastatic phase and drug resistance. Bone is one of the more frequent sites for NSCLC metastatization. A defined subset of cancer stem cells (CSCs) that possess motile properties, mesenchymal features and tumor initiation potential are defined as metastasis initiating cells (MICs). A better understanding of the mechanisms supporting MIC dissemination and interaction with bone microenvironment is fundamental to design novel rational therapeutic option for long lasting efficient treatment of NSCLC. In this review we will summarize findings about bone metastatic process initiated by NSCLC MICs. We will review how MICs can reach bone and interact with its microenvironment that supports their extravasation, seeding, dormancy/proliferation. The role of different cell types inside the bone metastatic niche, such as endothelial cells, bone cells, hematopoietic stem cells and immune cells will be discussed in regards of their impact in dictating the success of metastasis establishment by MICs. Finally, novel therapeutic options to target NSCLC MIC-induced bone metastases, increasing the survival of patients, will be presented.
Collapse
|
158
|
Hans D, Shevroja E, McDermott M, Huang S, Kim M, McClung M. Updated trabecular bone score accounting for the soft tissue thickness (TBS TT) demonstrated significantly improved bone microstructure with denosumab in the FREEDOM TBS post hoc analysis. Osteoporos Int 2022; 33:2517-2525. [PMID: 36115888 PMCID: PMC9652244 DOI: 10.1007/s00198-022-06549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
TBS algorithm has been updated to account for regional soft tissue noise. In postmenopausal women with osteoporosis, denosumab improved tissue thickness-adjusted TBS vs placebo independently of bone mineral density over 3 years, with the magnitude of changes from baseline or placebo numerically greater than body mass index-adjusted TBS. INTRODUCTION To evaluate the effect of denosumab on bone microarchitecture assessed by trabecular bone score (TBS) in the FREEDOM study using the updated algorithm that accounts for regional soft tissue thickness (TBSTT) in dual-energy X-ray absorptiometry (DXA) images and to compare percent changes from baseline and placebo with classical body mass index (BMI)-adjusted TBS (TBSBMI). METHODS Postmenopausal women with lumbar spine or total hip bone mineral density (BMD) T score < - 2.5 and ≥ - 4.0 received placebo or denosumab 60 mg subcutaneously every 6 months. TBSBMI and TBSTT were assessed on lumbar spine DXA scans at baseline and months 1, 12, 24, and 36 in a subset of 279 women (129 placebo, 150 denosumab) who completed the 3-year FREEDOM DXA substudy and rolled over to open-label extension study. RESULTS Baseline characteristics were similar between groups. TBSTT in the denosumab group showed numerically greater changes from both baseline and placebo than TBSBMI at months 12, 24, and 36. Denosumab led to progressive increases in BMD (1.2, 5.6, 8.1, and 10.5%) and TBSTT (0.4, 2.3, 2.6, and 3.3%) from baseline to months 1, 12, 24, and 36, respectively. Both TBS changes were significant vs baseline and placebo from months 12 to 36 (p < 0.0001). As expected, BMD and TBSTT were poorly correlated both at baseline and for changes during treatment. CONCLUSION In postmenopausal women with osteoporosis, denosumab significantly improved bone microstructure assessed by TBSTT over 3 years. TBSTT seemed more responsive to denosumab treatment than TBSBMI and was independent of BMD.
Collapse
Affiliation(s)
- Didier Hans
- Interdisciplinary Center of Bone Diseases, Lausanne University Hospital and Lausanne University, Av. Pierre Decker 4, 1011, Lausanne, Switzerland.
| | - Enisa Shevroja
- Interdisciplinary Center of Bone Diseases, Lausanne University Hospital and Lausanne University, Av. Pierre Decker 4, 1011, Lausanne, Switzerland
| | | | | | - Min Kim
- Amgen Inc, Thousand Oaks, CA, USA
| | - Michael McClung
- Oregon Osteoporosis Center, Portland, OR, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
159
|
Cholesterol and fat in diet disrupt bone and tooth homeostasis in mice. Biomed Pharmacother 2022; 156:113940. [DOI: 10.1016/j.biopha.2022.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
|
160
|
Zhu Q, Ding L, Yue R. Skeletal stem cells: a game changer of skeletal biology and regenerative medicine? LIFE MEDICINE 2022; 1:294-306. [PMID: 36811113 PMCID: PMC9938637 DOI: 10.1093/lifemedi/lnac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
Skeletal stem cells (SSCs) were originally discovered in the bone marrow stroma. They are capable of self-renewal and multilineage differentiation into osteoblasts, chondrocytes, adipocytes, and stromal cells. Importantly, these bone marrow SSCs localize in the perivascular region and highly express hematopoietic growth factors to create the hematopoietic stem cell (HSC) niche. Thus, bone marrow SSCs play pivotal roles in orchestrating osteogenesis and hematopoiesis. Besides the bone marrow, recent studies have uncovered diverse SSC populations in the growth plate, perichondrium, periosteum, and calvarial suture at different developmental stages, which exhibit distinct differentiation potential under homeostatic and stress conditions. Therefore, the current consensus is that a panel of region-specific SSCs collaborate to regulate skeletal development, maintenance, and regeneration. Here, we will summarize recent advances of SSCs in long bones and calvaria, with a special emphasis on the evolving concept and methodology in the field. We will also look into the future of this fascinating research area that may ultimately lead to effective treatment of skeletal disorders.
Collapse
Affiliation(s)
- Qiaoling Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lei Ding
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|
161
|
Wang YW, Lin WY, Wu FJ, Luo CW. Unveiling the transcriptomic landscape and the potential antagonist feedback mechanisms of TGF-β superfamily signaling module in bone and osteoporosis. Cell Commun Signal 2022; 20:190. [PMID: 36443839 PMCID: PMC9703672 DOI: 10.1186/s12964-022-01002-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND TGF-β superfamily signaling is indispensable for bone homeostasis. However, the global expression profiles of all the genes that make up this signaling module in bone and bone-related diseases have not yet been well characterized. METHODS Transcriptomic datasets from human bone marrows, bone marrow-derived mesenchymal stem cells (MSCs) and MSCs of primary osteoporotic patients were used for expression profile analyses. Protein treatments, gene quantification, reporter assay and signaling dissection in MSC lines were used to clarify the interactive regulations and feedback mechanisms between TGF-β superfamily ligands and antagonists. Ingenuity Pathway Analysis was used for network construction. RESULTS We identified TGFB1 in the ligand group that carries out SMAD2/3 signaling and BMP8A, BMP8B and BMP2 in the ligand group that conducts SMAD1/5/8 signaling have relatively high expression levels in normal bone marrows and MSCs. Among 16 antagonist genes, the dominantly expressed TGF-β superfamily ligands induced only NOG, GREM1 and GREM2 via different SMAD pathways in MSCs. These induced antagonist proteins further showed distinct antagonisms to the treated ligands and thus would make up complicated negative feedback networks in bone. We further identified TGF-β superfamily signaling is enriched in MSCs of primary osteoporosis. Enhanced expression of the genes mediating TGF-β-mediated SMAD3 signaling and the genes encoding TGF-β superfamily antagonists served as significant features to osteoporosis. CONCLUSION Our data for the first time unveiled the transcription landscape of all the genes that make up TGF-β superfamily signaling module in bone. The feedback mechanisms and regulatory network prediction of antagonists provided novel hints to treat osteoporosis. Video Abstract.
Collapse
Affiliation(s)
- Ying-Wen Wang
- grid.260539.b0000 0001 2059 7017Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112 Taiwan
| | - Wen-Yu Lin
- grid.260539.b0000 0001 2059 7017Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112 Taiwan
| | - Fang-Ju Wu
- grid.260539.b0000 0001 2059 7017Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112 Taiwan
| | - Ching-Wei Luo
- grid.260539.b0000 0001 2059 7017Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112 Taiwan
| |
Collapse
|
162
|
Petronglo JR, Putnam NE, Ford CA, Cruz-Victorio V, Curry JM, Butrico CE, Fulbright LE, Johnson JR, Peck SH, Fatah SR, Cassat JE. Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis. Infect Immun 2022; 90:e0041722. [PMID: 36226943 PMCID: PMC9670883 DOI: 10.1128/iai.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.
Collapse
Affiliation(s)
- Jenna R. Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Nicole E. Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Virginia Cruz-Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sana R. Fatah
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| |
Collapse
|
163
|
Lyros I, Perrea D, Tosios K, Nikitakis N, Tsolakis IA, Ferdianakis E, Fora E, Lykogeorgos T, Maroulakos MP, Vardas E, Georgaki M, Papadopoulou E, Tsolakis AI. Histological and Biochemical Analysis after Posterior Mandibular Displacement in Rats. Vet Sci 2022; 9:vetsci9110625. [PMID: 36356102 PMCID: PMC9697094 DOI: 10.3390/vetsci9110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Simple Summary The lower jaw has a particular contribution to the human appearance, and so it is not uncommon for people to seek treatment in cases of its extreme growth. The orthodontist often selects to place intraoral devices in order to address the problem. This study used healthy young rats to guide their lower jaws backward. Measurements of biochemical molecules in blood that are related to bone metabolism did not reveal any statistically significant differences. However, noteworthy local microscopic alterations of the condyle were evidenced. They involved histological changes in bone structure and the thickness of cartilage. In conclusion, it seems that the procedure under study might not cause any severe organic disturbance in the lab animals under the conditions of the experiment. Only minor histological effects on condylar morphology were observed. Abstract The present study aimed to investigate any biochemical and histological changes of the rat condyle and mandible in animals that had sustained mandibular growth restriction. Seventy-two male Wistar rats were divided into two equal groups, experimental and control. Each group consisted of three equal subgroups. The animals were sacrificed 30, 60, and 90 days after the start of the experiment. Blood samples were collected from the eye, and the osteoprotegerin (OPG), Receptor Activator of Nuclear Factor Kappa B Ligand (RANKL), and Macrophage Colony-Stimulating factor (MCSF)concentrations were measured by using enzyme-linked immunosorbent assay (ELISA) kits. A histological analysis was performed on the mandibular condyles. The blood serum values of OPG, RANKL, and MCSF did not exhibit any statistically significant difference between groups or subgroups. However, significant histological changes became evident after a histomorphometric condylar examination was performed. The Bone Surface/Total Surface ratio appeared reduced in the anterior and posterior regions of the condyle. In addition, the Posterior Condylar Cartilage Thickness was measured and determined to be significantly diminished. The present intervention that employed orthodontic/orthopedic devices did not prove to have any significant effect on the circulating proteins under study. Posterior displacement of the mandible may culminate only in local histological alterations in condylar cartilage thickness and its osseous microarchitecture.
Collapse
Affiliation(s)
- Ioannis Lyros
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Tosios
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Nikitakis
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis A. Tsolakis
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54623 Thessaloniki, Greece
| | - Efstratios Ferdianakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Fora
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michael P. Maroulakos
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Emmanouil Vardas
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Georgaki
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Erofili Papadopoulou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Apostolos I. Tsolakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
164
|
Nelson AL, Fontana G, Miclau E, Rongstad M, Murphy W, Huard J, Ehrhart N, Bahney C. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration. J Tissue Eng Regen Med 2022; 16:961-976. [PMID: 36112528 PMCID: PMC9826348 DOI: 10.1002/term.3349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
Activation of the canonical Wingless-related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligands makes isolating and purifying the protein difficult. To circumvent these challenges, many have sought to target extracellular inhibitors of the Wnt pathway, such as Wnt signaling pathway inhibitors Sclerostin and Dickkopf-1, or to use small molecules, ions and proteins to increase target Wnt genes. Here, we review systemic and localized bioactive approaches to enhance bone formation or improve bone repair through antibody-based therapeutics, synthetic Wnt surrogates and scaffold doping to target canonical Wnt. We conclude with a brief review of emerging technologies, such as mRNA therapy and Clustered Regularly Interspaced Short Palindromic Repeats technology, which serve as promising approaches for future clinical translation.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - GianLuca Fontana
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Elizabeth Miclau
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA
| | - Mallory Rongstad
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William Murphy
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johnny Huard
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nicole Ehrhart
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Chelsea Bahney
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA,Orthopaedic Trauma InstituteUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| |
Collapse
|
165
|
Zhang R, Peng S, Zhu G. The role of secreted osteoclastogenic factor of activated T cells in bone remodeling. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:227-232. [PMID: 35898473 PMCID: PMC9309401 DOI: 10.1016/j.jdsr.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/05/2022] [Accepted: 07/10/2022] [Indexed: 12/23/2022] Open
Abstract
The process of bone remodeling is connected with the regulated balance between bone cell populations (including bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte). And the mechanism of bone remodeling activity is related to the major pathway, receptor activator of nuclear factor kappaB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) signaling axis. Recently, researchers have found a novel cytokine secreted by activated T cells, which is related to osteoclastogenesis in the absence of osteoblasts or RANKL, leading to bone destruction. They name it the secreted osteoclastogenic factor of activated T cells (SOFAT). SOFAT has been proven to play an essential role in bone remodeling, like mediating the bone resorption in rheumatoid arthritis (RA) and periodontitis. In this review, we outline the latest research concerning SOFAT and discuss the characteristics, location, and regulation of SOFAT. We also summarize the clinical progress of SOFAT and assume the future therapeutic target in some diseases related to bone remodeling.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Peng
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
166
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
167
|
Hong SJ, Jung S, Jang JS, Mo S, Kwon JO, Kim MK, Kim HH. PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway. Mol Cells 2022; 45:749-760. [PMID: 36047447 PMCID: PMC9589368 DOI: 10.14348/molcells.2022.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.
Collapse
Affiliation(s)
- Seo Jin Hong
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Suhan Jung
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Ji Sun Jang
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Shenzheng Mo
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Jun-Oh Kwon
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
168
|
Moritani Y, Hasegawa T, Yamamoto T, Hongo H, Yimin, Abe M, Yoshino H, Nakanishi K, Maruoka H, Ishizu H, Shimizu T, Takahata M, Iwasaki N, Li M, Tei K, Ohiro Y, Amizuka N. Histochemical assessment of accelerated bone remodeling and reduced mineralization in Il-6 deficient mice. J Oral Biosci 2022; 64:410-421. [DOI: 10.1016/j.job.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
169
|
Bhatnagar A, Kekatpure AL. Postmenopausal Osteoporosis: A Literature Review. Cureus 2022; 14:e29367. [PMID: 36299953 PMCID: PMC9586717 DOI: 10.7759/cureus.29367] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
A substantial proportion of the population of females in India falls in the perimenopausal and postmenopausal age groups. One of the complications associated with older age in women is the weakening of bones and the fall in bone mineral density (BMD). This has a severe debilitating consequence in a woman’s life and leads to reduced quality of life along with a greater incidence of fractures. If the fracture involves the hip or the vertebrae, it can cause immobility and be devastating. Postmenopausal osteoporosis is linked with the deficiency of estrogen that occurs with the cessation of the function of the ovaries as age progresses. The function of estrogen in the bone remodeling process is very well understood after years of research; estrogen plays a part in both the formation of bone as well as the prevention of the resorption of bone. A diagnosis can be made by dual-energy X-ray absorptiometry (DEXA). It is the gold standard and can spot low bone density at particular sites. The treatment options are selected according to the severity and rate of progression and factors pertaining to each patient. All postmenopausal women should be made aware of this disorder, and they should be encouraged to cultivate a healthy lifestyle through the implementation of a proper diet and inculcation of a regular exercise routine. Smoking and drinking alcohol should be limited, and calcium and vitamin D supplementation should be started in all women of the postmenopausal age group with or without osteoporosis. In patients who have been diagnosed with the disorder, pharmacological intervention is done. Drugs should be selected based on their side effects and contradictions. Follow-up is essential, and patient compliance should be carefully monitored. This article attempts to review the existing literature on this very prevalent disorder to spread awareness about it so that all postmenopausal women can take the necessary steps to prevent the weakening of their bones, and deal with its progression.
Collapse
|
170
|
Abstract
Osteoclasts, the only cells that can resorb bone, play a central role in bone homeostasis as well as bone damage under pathological conditions such as osteoporosis, arthritis, periodontitis, and bone metastasis. Recent studies using single-cell technologies have uncovered the regulatory mechanisms underlying osteoclastogenesis at unprecedented resolution and shed light on the possibility that there is heterogeneity in the origin, function, and fate of osteoclast-lineage cells. Here, we discuss the current advances and emerging concepts in osteoclast biology.
Collapse
|
171
|
Li H, Li Y, Zou J, Yang Y, Han R, Zhang J. Sinomenine Inhibits Orthodontic Tooth Movement and Root Resorption in Rats and Enhances Osteogenic Differentiation of PDLSCs. Drug Des Devel Ther 2022; 16:2949-2965. [PMID: 36090955 PMCID: PMC9462521 DOI: 10.2147/dddt.s379468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the effects of sinomenine on orthodontic tooth movement and root resorption in rats, as well as the effect of sinomenine on the osteogenesis of periodontal ligament stem cells (PDLSCs). Methods Fifty-four male Wistar rats were randomly divided into 3 groups: control group, 20 mg/kg sinomenine group and 40 mg/kg sinomenine group. Fifty-gram orthodontic force was applied to all groups. Each group was injected intraperitoneally with corresponding concentration of sinomenine every day. After 14 days, all rats were sacrificed. Micro-computed tomography (micro-CT) scan was used to analyze tooth movement, root resorption and alveolar bone changes. The effect on periodontal tissue was analyzed by Masson, tartrate-resistant acid phosphatase (TRAP) and immunohistochemical staining. In vitro, PDLSCs were extracted and identified. The effect of sinomenine on proliferation was determined by cell-counting kit-8. The effect of sinomenine on osteogenesis was investigated by alkaline phosphatase (ALP) activity and alizarin red staining. qPCR and Western blotting were performed to explore the effects of sinomenine on the expression levels of ALP, runt-related transcription factor 2 (RUNX2), receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG). Results The tooth movement and root resorption of sinomenine groups were reduced. Sinomenine decreased trabecular spacing on compression side and increased alveolar bone volume and trabecular thickness on tension side. TRAP-positive cells in sinomenine groups decreased significantly. The expressions of TNF-α and RANKL were decreased, while the expressions of OPG, RUNX2 and osteocalcin were up-regulated. In vitro, 0.1 M and 0.5 M sinomenine enhanced ALP activity, mineral deposition and the expression of ALP, RUNX2 and OPG, and reduced the expression of RANKL. Conclusion Sinomenine could inhibit tooth movement, reduce root resorption, and exert a positive effect on bone formation in rats. Moreover, sinomenine promoted the osteogenesis of PDLSCs.
Collapse
Affiliation(s)
- Hongkun Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yilin Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jinghua Zou
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1 Wenhua Road West, Jinan, 250012, People’s Republic of China, Tel +86 139 5310 9816, Email
| |
Collapse
|
172
|
Abstract
Bone science has over the last decades unraveled many important pathways in bone and mineral metabolism and the interplay between genetic factors and the environment. Some of these discoveries have led to the development of pharmacological treatments of osteoporosis and rare bone diseases. Other scientific avenues have uncovered a role for the gut microbiome in regulating bone mass, which have led to investigations on the possible therapeutic role of probiotics in the prevention of osteoporosis. Huge advances have been made in identifying the genes that cause rare bone diseases, which in some cases have led to therapeutic interventions. Advances have also been made in understanding the genetic basis of the more common polygenic bone diseases, including osteoporosis and Paget's disease of bone (PDB). Polygenic profiles are used for establishing genetic risk scores aiming at early diagnosis and intervention, but also in Mendelian randomization (MR) studies to investigate both desired and undesired effects of targets for drug design.
Collapse
Affiliation(s)
- Bente L Langdahl
- Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - André G Uitterlinden
- Laboratory for Population Genomics, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
173
|
Tanaka M, Fujii S, Inoue H, Takahashi N, Ishimi Y, Uehara M. (S)-Equol Is More Effective than (R)-Equol in Inhibiting Osteoclast Formation and Enhancing Osteoclast Apoptosis, and Reduces Estrogen Deficiency-Induced Bone Loss in Mice. J Nutr 2022; 152:1831-1842. [PMID: 35675296 DOI: 10.1093/jn/nxac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Equol, a metabolite of daidzein, binds to the estrogen receptor with greater affinity than daidzein and exhibits various biological properties. It exists as an enantiomer, either (S)-equol or (R)-equol. OBJECTIVES We have previously shown that the inhibitory effect of (S)-equol on bone fragility is stronger than that of racemic equol in ovariectomized (OVX) mice; however, the effect of (R)-equol has not been elucidated. The aim of this study was to compare the activities of equol enantiomers on bone metabolism in vitro and in vivo. METHODS Bone marrow cells (BMCs) and RAW 264.7 cells were treated with equol enantiomers. The number of osteoclasts and caspase-3/7 activity were measured. We examined the effect of equol enantiomers on osteoblast differentiation in MC3T3-E1 cells. In vivo, 8-wk-old female ddY mice were assigned to 4 groups: sham-operated (sham), OVX, OVX + 0.5 mg/d of (S)-equol (S-eq), and OVX + 0.5 mg/d of (R)-equol (R-eq). Four weeks after the intervention, femoral bone mineral density (BMD) and osteoclastic gene expression were analyzed, along with concentrations of equol enantiomers in the serum and tissues. RESULTS (S)-equol and (R)-equol inhibited osteoclast differentiation in BMCs (97% and 60%, P < 0.05) and RAW 264.7 cells (83% and 68%, P < 0.05). (S)-equol promoted apoptosis of mature osteoclasts by inducing caspase-3/7 activity (29%, P < 0.05) and enhanced osteoblast differentiation (29%, P < 0.05). In OVX mice, BMD was ameliorated in (S)-equol-treated mice (11%, P < 0.05), but not in (R)-equol-treated mice. The concentrations of (S)-equol were greater than those of (R)-equol in the serum, tibia, liver, and kidney (by 148%, 80%, 22%, and 139%, respectively). CONCLUSIONS These results suggest that (S)-equol is more effective than (R)-equol in inhibiting osteoclast formation and enhancing osteoclast apoptosis in vitro, supporting the beneficial effect of (S)-equol to reduce estrogen deficiency-induced bone loss in OVX mice.
Collapse
Affiliation(s)
- Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shungo Fujii
- Department of Health and Nutrition, Faculty of Human Sciences, Hokkaido Bunkyo University, Eniwa, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoshiko Ishimi
- Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
174
|
Kim HJ, Lee DK, Jin X, Che X, Ryu SH, Choi JY. Phospholipase D2 controls bone homeostasis by modulating M-CSF-dependent osteoclastic cell migration and microtubule stability. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1146-1155. [PMID: 35945449 PMCID: PMC9440116 DOI: 10.1038/s12276-022-00820-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Phospholipase D2 (PLD2), a signaling protein, plays a central role in cellular communication and various biological processes. Here, we show that PLD2 contributes to bone homeostasis by regulating bone resorption through osteoclastic cell migration and microtubule-dependent cytoskeletal organization. Pld2-deficient mice exhibited a low bone mass attributed to increased osteoclast function without altered osteoblast activity. While Pld2 deficiency did not affect osteoclast differentiation, its absence promoted the migration of osteoclast lineage cells through a mechanism involving M-CSF-induced activation of the PI3K–Akt–GSK3β signaling pathway. The absence of Pld2 also boosted osteoclast spreading and actin ring formation, resulting in elevated bone resorption. Furthermore, Pld2 deletion increased microtubule acetylation and stability, which were later restored by treatment with a specific inhibitor of Akt, an essential molecule for microtubule stabilization and osteoclast bone resorption activity. Interestingly, PLD2 interacted with the M-CSF receptor (c-Fms) and PI3K, and the association between PLD2 and c-Fms was reduced in response to M-CSF. Altogether, our findings indicate that PLD2 regulates bone homeostasis by modulating osteoclastic cell migration and microtubule stability via the M-CSF-dependent PI3K–Akt–GSK3β axis. A signaling protein that regulates bone resorption may prove a useful target in treating skeletal conditions such as osteoporosis and rheumatoid arthritis. Bone is synthesized by cells called osteoblasts, while osteoclasts trigger bone resorption, keeping the skeleton healthy. Imbalances in this recycling process are common in bone disorders. Je-Young Choi and Hyun-Ju Kim at Kyungpook National University in Daegu, South Korea, and co-workers demonstrated that phospholipase D2 (PLD2), a membrane protein, directly regulates bone resorption in mice. Mice without the Pld2 gene had increased osteoclast activity, resulting in low bone mass. The absence of PLD2 promotes the migration of osteoclasts via a particular signaling pathway. This increased the organization of microtubules, polymers that help form the cytoskeleton. The results suggest that regulating PLD2 activity could form the basis of a future treatment method.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Dong-Kyo Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
175
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
176
|
Nakamura T, Tsutsui C, Okuda Y, Abe-Kanoh N, Okazawa S, Munemasa S, Murata Y, Kato Y, Nakamura Y. Benzyl isothiocyanate and its metabolites inhibit cell proliferation through protein modification in mouse preosteoclast RAW264.7 cells. J Biochem Mol Toxicol 2022; 36:e23184. [PMID: 35920443 DOI: 10.1002/jbt.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Benzyl isothiocyanate (BITC), derived from cruciferous vegetables, is an organosulfur compound exerting antiproliferative effects in several human cancer cells. In this study, we assessed BITC as a potential osteoclastogenesis inhibitor and investigated its underlying mechanism. BITC at 5 μM significantly decreased the viability of the osteoclast-like differentiating RAW264.7 cells, coinciding with the downregulation of the primary biomarkers for osteoclast differentiation, such as the tartrate-resistant acid phosphatase activity and nuclear factor of activated T-cells gene expression. Not only BITC but also its metabolites, inhibited cell proliferation in the normal RAW264.7 cells, suggesting that BITC shows an anti-osteoclastogenesis effect in vivo after its ingestion and metabolism, possibly through an antiproliferative action. Both BITC and its metabolites also enhanced the DNA fragmentation and the caspase-3 activity, whereas their higher concentrations tended to suppress these effects. BITC was intracellularly accumulated when the cells were treated with its metabolites via their degradation into the free form. A quantitative experiment using the proteolysis/high performance liquid chromatography technique showed that the amount of BITC-lysine thiourea in the cells was also increased in a time-dependent manner, suggesting that lysine modification of the cellular proteins actually took place in the cells treated by BITC. Among the cellular proteins, the cleaved caspase-3 was identified as a potential target for lysine modification by BITC. Taken together, BITC dissociated from its metabolites as well as its free form might modulate osteoclastogenesis, possibly through inhibition of cell proliferation by protein modification.
Collapse
Affiliation(s)
- Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chiharu Tsutsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yu Okuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naomi Abe-Kanoh
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Saori Okazawa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoji Kato
- Graduate School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
177
|
Hou YC, Zheng CM, Chiu HW, Liu WC, Lu KC, Lu CL. Role of Calcimimetics in Treating Bone and Mineral Disorders Related to Chronic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:952. [PMID: 36015101 PMCID: PMC9415417 DOI: 10.3390/ph15080952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
Renal osteodystrophy is common in patients with chronic kidney disease and end-stage renal disease and leads to the risks of fracture and extraosseous vascular calcification. Secondary hyperparathyroidism (SHPT) is characterized by a compensatory increase in parathyroid hormone (PTH) secretion in response to decreased renal phosphate excretion, resulting in potentiating bone resorption and decreased bone quantity and quality. Calcium-sensing receptors (CaSRs) are group C G-proteins and negatively regulate the parathyroid glands through (1) increasing CaSR insertion within the plasma membrane, (2) increasing 1,25-dihydroxy vitamin D3 within the kidney and parathyroid glands, (3) inhibiting fibroblast growth factor 23 (FGF23) in osteocytes, and (4) attenuating intestinal calcium absorption through Transient Receptor Potential Vanilloid subfamily member 6 (TRPV6). Calcimimetics (CaMs) decrease PTH concentrations without elevating the serum calcium levels or extraosseous calcification through direct interaction with cell membrane CaSRs. CaMs reduce osteoclast activity by reducing stress-induced oxidative autophagy and improving Wnt-10b release, which promotes the growth of osteoblasts and subsequent mineralization. CaMs also directly promote osteoblast proliferation and survival. Consequently, bone quality may improve due to decreased bone resorption and improved bone formation. CaMs modulate cardiovascular fibrosis, calcification, and renal fibrosis through different mechanisms. Therefore, CaMs assist in treating SHPT. This narrative review focuses on the role of CaMs in renal osteodystrophy, including their mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan;
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
| | - Hui-Wen Chiu
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 11031, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 11031, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan;
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation, Anti Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan;
| |
Collapse
|
178
|
Bernstein ZS, Kim EB, Raje N. Bone Disease in Multiple Myeloma: Biologic and Clinical Implications. Cells 2022; 11:cells11152308. [PMID: 35954151 PMCID: PMC9367243 DOI: 10.3390/cells11152308] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a hematologic malignancy characterized by the proliferation of monoclonal plasma cells localized within the bone marrow. Bone disease with associated osteolytic lesions is a hallmark of MM and develops in the majority of MM patients. Approximately half of patients with bone disease will experience skeletal-related events (SREs), such as spinal cord compression and pathologic fractures, which increase the risk of mortality by 20–40%. At the cellular level, bone disease results from a tumor-cell-driven imbalance between osteoclast bone resorption and osteoblast bone formation, thereby creating a favorable cellular environment for bone resorption. The use of osteoclast inhibitory therapies with bisphosphonates, such as zoledronic acid and the RANKL inhibitor denosumab, have been shown to delay and lower the risk of SREs, as well as the need for surgery or radiation therapy to treat severe bone complications. This review outlines our current understanding of the molecular underpinnings of bone disease, available therapeutic options, and highlights recent advances in the management of MM-related bone disease.
Collapse
Affiliation(s)
- Zachary S. Bernstein
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA;
| | - E. Bridget Kim
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Noopur Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA;
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
179
|
Min HK, Kim SH, Lee JY, Lee SH, Kim HR. DJ-1 controls T cell differentiation and osteoclastogenesis in rheumatoid arthritis. Sci Rep 2022; 12:12767. [PMID: 35896699 PMCID: PMC9329329 DOI: 10.1038/s41598-022-16285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, we investigated the effect of DJ-1 on helper T cell differentiation, fibroblast-like synoviocyte (FLS) activation, and osteoclastogenesis in rheumatoid arthritis (RA). Serum and synovial fluid (SF) of RA and osteoarthritis (OA) patients were collected, and DJ-1 and H2O2 levels were investigated. CD4+ cells from peripheral blood mononuclear cells (PBMCs) were cultured under type 17 helper T cell (Th17) polarization conditions, and CD4+ T cell differentiation, pro-inflammatory cytokine levels, and soluble receptor activator of nuclear factor kappa-Β ligand (RANKL) were assessed. RA-FLSs were stimulated with 50 μM H2O2, and DJ-1 (10, 50, 100 ng/mL) to evaluate MMP-9, VEGF, TNF-α, and sRANKL production, while RANKL+ FLSs were assessed using flow cytometry. Monocytes were cultured with RANKL or IL-17A with or without DJ-1 and H2O2-pretreated RA-FLS, and tartrate-resistant acid phosphatase (TRAP) staining and RT-qPCR of osteoclast-related genes were performed. The levels of DJ-1 and H2O2 in serum and SF of RA patients were higher than those of OA patients. Under Th17-polarizing conditions, CD4+RANKL+ and CD4+CCR4+CCR6+CXCR3- T cells decreased, whereas CD4+CD25highFoxp3+ T cell increased after DJ-1 administration. Additionally, IL-17A, TNF-α, and sRANKL levels decreased in DJ-1-treated groups. DJ-1 lowered MMP-9, VEGF, TNF-α, and sRANKL levels, and RANKL+ FLS in ROS-stimulated RA-FLS. Both RANKL and IL-17A stimulated osteoclast differentiation, DJ-1 decreased TRAP+ cell count, and the expression levels of TRAP, ATP6v0d2, NFATc1, and CTSK. These findings were also observed in in vitro osteoclastogenesis with DJ-1 pretreated RA-FLS. As DJ-1 regulates Th17/Treg imbalance, pro-inflammatory cytokine production, RA-FLS activation, and osteoclastogenesis, it holds potential for RA therapy.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| |
Collapse
|
180
|
Amer OE, Wani K, Ansari MGA, Alnaami AM, Aljohani N, Abdi S, Hussain SD, Al-Daghri NM, Alokail MS. Associations of Bone Mineral Density with RANKL and Osteoprotegerin in Arab Postmenopausal Women: A Cross-Sectional Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58080976. [PMID: 35893092 PMCID: PMC9330386 DOI: 10.3390/medicina58080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Background and objective: There is limited information as to the association of several key bone markers with bone mineral density (BMD) in understudied ethnic groups. This study investigated the relationship between circulating levels of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-Β ligand (RANKL) with BMD in Arab postmenopausal women. Materials and methods: In this cross-sectional study, a total of 617 Saudi postmenopausal women from the Osteoporosis Registry of the Chair for Biomarkers of Chronic Diseases were included. Anthropometric data, BMD, and biochemical data were retrieved from the registry. Participants were stratified into three groups based on T-score; n = 169 with osteoporosis, n = 282 with osteopenia, and n = 166 normal. Analysis of bone markers including RANKL, OPG, osteocalcin, and N-terminal telopeptide (NTx) was completed using commercially available bioassays. Results: The results suggested that OPG was significantly and positively correlated with age in the osteoporosis group (r = 0.29, p < 0.05), while it was inversely correlated with BMD femoral neck left (r = −0.56, p < 0.001) and BMD femoral neck right (r = −0.37, p < 0.05) in the same group. Moreover, RANKL showed a significant inverse correlation with NTx in the osteopenia group (r = −0.37, p < 0.05). Furthermore, the RANKL/OPG ratio had a positive and significant correlation with BMI (r = 0.34, p < 0.05), BMD femoral neck left (r = 0.36, p < 0.05) and BMD femoral neck right (r = 0.35, p < 0.05) in the osteopenia group. By contrast, it showed a significant inverse correlation with waist to hip ratio in the osteoporosis group (r = −0.38, p < 0.05). Multiple regression analysis showed that OPG contributes to BMD variations in the osteopenia group (p = 0.03). Conclusions: In conclusion, changes in circulating levels of RANKL and OPG might be a protective mechanism contrary to the increased bone loss in postmenopausal women.
Collapse
Affiliation(s)
- Osama E. Amer
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (O.E.A.); (K.W.); (M.G.A.A.); (A.M.A.); (S.A.); (S.D.H.)
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (O.E.A.); (K.W.); (M.G.A.A.); (A.M.A.); (S.A.); (S.D.H.)
| | - Mohammed G. A. Ansari
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (O.E.A.); (K.W.); (M.G.A.A.); (A.M.A.); (S.A.); (S.D.H.)
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (O.E.A.); (K.W.); (M.G.A.A.); (A.M.A.); (S.A.); (S.D.H.)
| | - Naji Aljohani
- Obesity, Endocrine and Metabolic Center, King Fahad Medical City, Riyadh 59046, Saudi Arabia;
| | - Saba Abdi
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (O.E.A.); (K.W.); (M.G.A.A.); (A.M.A.); (S.A.); (S.D.H.)
| | - Syed D. Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (O.E.A.); (K.W.); (M.G.A.A.); (A.M.A.); (S.A.); (S.D.H.)
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (O.E.A.); (K.W.); (M.G.A.A.); (A.M.A.); (S.A.); (S.D.H.)
- Correspondence: ; Tel.: +966-14675939; Fax: +966-14675931
| | - Majed S. Alokail
- Protein Research Chair, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
181
|
Vergara-Hernandez FB, Nielsen BD, Colbath AC. Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective. Animals (Basel) 2022; 12:ani12131722. [PMID: 35804621 PMCID: PMC9265010 DOI: 10.3390/ani12131722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Bisphosphonates are a group of drugs that intervene in the bone resorption process, producing cellular death of osteoclasts. These drugs are used for skeletal conditions, such as osteoporosis in humans, and are available for veterinary medical use. Clodronate and tiludronate are bisphosphonates approved for the treatment of navicular syndrome in horses over four years old. However, these drugs are sometimes used in juvenile animals under exercise, where osteoclast activity is higher. Bisphosphonate use in juvenile and/or exercising animals could have adverse effects, including maladaptation to exercise or accumulation of microdamage. Furthermore, bisphosphonates can be bound to the skeleton for several years, resulting in a prolonged effect with no pharmaceutical reversal available. This review presents an overview of osteoclast function and a review of bisphosphonate characteristics, mechanisms of action, and side effects in order to contextualize the potential for adverse/side effects in young or exercising animals. Abstract Osteoclasts are unique and vital bone cells involved in bone turnover. These cells are active throughout the individual’s life and play an intricate role in growth and remodeling. However, extra-label bisphosphonate use may impair osteoclast function, which could result in skeletal microdamage and impaired healing without commonly associated pain, affecting bone remodeling, fracture healing, and growth. These effects could be heightened when administered to growing and exercising animals. Bisphosphonates (BPs) are unevenly distributed in the skeleton; blood supply and bone turnover rate determine BPs uptake in bone. Currently, there is a critical gap in scientific knowledge surrounding the biological impacts of BP use in exercising animals under two years old. This may have significant welfare ramifications for growing and exercising equids. Therefore, future research should investigate the effects of these drugs on skeletally immature horses.
Collapse
Affiliation(s)
- Fernando B. Vergara-Hernandez
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln, East Lansing, MI 48824, USA; (F.B.V.-H.); (B.D.N.)
| | - Brian D. Nielsen
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln, East Lansing, MI 48824, USA; (F.B.V.-H.); (B.D.N.)
| | - Aimee C. Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Ave, East Lansing, MI 48864, USA
- Correspondence:
| |
Collapse
|
182
|
Ren N, Liang N, Dong M, Feng Z, Meng L, Sun C, Wang A, Yu X, Wang W, Xie J, Liu C, Liu H. Stem Cell Membrane-Encapsulated Zeolitic Imidazolate Framework-8: A Targeted Nano-Platform for Osteogenic Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202485. [PMID: 35633288 DOI: 10.1002/smll.202202485] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) have been recognized as one of the most promising pharmaceutical multipotent cells, and a key step for their wide application is to safely and efficiently regulate their activities. Various methods have been proposed to regulate the directional differentiation of MSCs during tissue regeneration, such as nanoparticles and metal ions. Herein, nanoscale zeolitic imidazolate framework-8 (ZIF-8), a Zn-based metal-organic framework, is modified to direct MSCs toward an osteoblast lineage. Specifically, ZIF-8 nanoparticles are encapsulated using stem cell membranes (SCMs) to mimic natural molecules and improve the biocompatibility and targeted ability toward MSCs. SCM/ZIF-8 nanoparticles adjust the sustained release of Zn2+ , and promote their specific internalization toward MSCs. The internalized SCM/ZIF-8 nanoparticles show excellent biocompatibility, and increase MSCs' osteogenic potentials. Moreover, RNA-sequencing results elucidate that the activated cyclic adenosine 3,5-monophosphate (cAMP)-PKA-CREB signaling pathway can be dominant in accelerating osteogenic differentiation. In vivo, SCM/ZIF-8 nanoparticles greatly promote the formation of new bone tissue in the femoral bone defect detected by 3D micro-CT, hematoxylin and eosin staining, and Masson staining after 4 weeks. Overall, the SCM-derived ZIF-8 nanostructures achieve the superior targeting ability, biocompatibility, and enhanced osteogenesis, providing a constructive design for tissue repair.
Collapse
Affiliation(s)
- Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Mengwei Dong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Ling Meng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Aizhu Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Xin Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Juan Xie
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chao Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Institute of Stomatology, Shandong University, Jinan, 250012, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
183
|
Han Y, Colditz GA, Toriola AT. Changes in adiposity over the life course and gene expression in postmenopausal women. Cancer Med 2022; 11:2699-2710. [PMID: 35304837 PMCID: PMC9249983 DOI: 10.1002/cam4.4649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Early life adiposity and changes in adiposity over the life course are associated with mammographic breast density among postmenopausal women. However, the underlying mechanisms are unknown; therefore, we comprehensively examined the associations of early life body mass index (BMI) and changes in BMI from ages 10, 18 to age at mammogram with growth factor, RANK pathway, and sex hormone gene expression in 372 postmenopausal women. METHODS We estimated early life BMI at age 10 using the validated 9-level Stunkard pictogram. We calculated BMI at other ages (18, 30, and current age at mammogram) by dividing weight in kilograms at these ages with height in meters squared. Sequencing for gene expression was performed using the NanoString nCounter system. After adjusting for confounders, we estimated associations using multivariable linear regressions. RESULTS A 10 kg/m2 increase in early life BMI at age 10 was associated with a 17.2% decrease in RANKL gene expression (95% confidence interval [CI] = -30.8, -0.9) but was not associated with changes in other markers. BMI changes from ages 10, 18 to age at mammogram were associated with an increase in BMP2 and decreases in RANK, RANKL, and TNFRSF13B gene expression but were not associated with gene expression of other markers. A 10 kg/m2 increase in early life BMI from age 10 to current age was associated with a 7.8% increase in BMP2 (95% CI = -1.4, 17.8), an 8.5% decrease in RANK (95% CI = -13.9, -2.8), a 10.4% decrease in RANKL (95% CI = -16.9, -3.3), and an 8.5% decrease in TNFRSF13B gene expression (95% CI = -13.8, -2.8). CONCLUSION The results provide new insights into the biological mechanisms underlying the associations of adiposity changes from early life to adulthood and early life adiposity with mammographic breast density in postmenopausal women.
Collapse
Affiliation(s)
- Yunan Han
- Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSaint LouisMissouriUSA
| | - Graham A. Colditz
- Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSaint LouisMissouriUSA
- Alvin J. Siteman Cancer CenterBarnes‐Jewish Hospital and Washington University School of MedicineSaint LouisMissouriUSA
| | - Adetunji T. Toriola
- Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSaint LouisMissouriUSA
- Alvin J. Siteman Cancer CenterBarnes‐Jewish Hospital and Washington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
184
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
185
|
Abstract
Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.
Collapse
Affiliation(s)
- Noriko Takegahara
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hyunsoo Kim
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yongwon Choi
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
186
|
Sirisereephap K, Maekawa T, Tamura H, Hiyoshi T, Domon H, Isono T, Terao Y, Maeda T, Tabeta K. Osteoimmunology in Periodontitis: Local Proteins and Compounds to Alleviate Periodontitis. Int J Mol Sci 2022; 23:5540. [PMID: 35628348 PMCID: PMC9146968 DOI: 10.3390/ijms23105540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is one of the most common oral diseases resulting in gingival inflammation and tooth loss. Growing evidence indicates that it results from dysbiosis of the oral microbiome, which interferes with the host immune system, leading to bone destruction. Immune cells activate periodontal ligament cells to express the receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) and promote osteoclast activity. Osteocytes have active roles in periodontitis progression in the bone matrix. Local proteins are involved in bone regeneration through functional immunological plasticity. Here, we discuss the current knowledge of cellular and molecular mechanisms in periodontitis, the roles of local proteins, and promising synthetic compounds generating a periodontal regeneration effect. It is anticipated that this may lead to a better perception of periodontitis pathophysiology.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hikaru Tamura
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hisanori Domon
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Toshihito Isono
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Yutaka Terao
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| |
Collapse
|
187
|
Park MS, Park JH, Joo A, Chang Y, Song TJ. The association of plasma osteoprotegerin levels and functional outcomes post endovascular thrombectomy in acute ischemic stroke patients: a retrospective observational study. PeerJ 2022; 10:e13327. [PMID: 35529501 PMCID: PMC9074858 DOI: 10.7717/peerj.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/04/2022] [Indexed: 01/13/2023] Open
Abstract
Background Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor, is a tumor necrosis factor receptor superfamily component. There is an established relationship between OPG and cardiovascular disease. We hypothesized that plasma OPG levels are associated with functional outcomes in acute ischemic stroke patients who have undergone endovascular thrombectomy (EVT). Methods From April 2014 through December 2020, a total of 360 acute ischemic stroke patients who underwent EVT were prospectively included in this retrospective observational study. Plasma OPG was measured after fasting for 12 postoperative hours after EVT. A modified Rankin Scale (mRS) was used to assess functional outcomes 3 months after index stroke occurrence. Univariate and multivariate binary logistic regression and ordinal logistic regression analyses were performed to investigate the association of plasma OPG levels with poor functional outcomes. Results Overall, 145 (40.2%) patients had poor (mRS > 2) outcomes. The mean ± standard deviation plasma OPG level was 200.2 ± 74.4 pg/mL. Multivariate analysis after adjusting for sex, body mass index, and variables with p < 0.1 in the preceding univariate analysis revealed high plasma OPG levels were independently associated with poor functional outcomes (highest tertile vs. lowest tertile of OPG; odds ratios (OR) 2.121, 95% confidence interval (CI) [1.089-4.191], p = 0.037 in binary logistic regression, OR 2.102, 95% CI [1.301-3.412], p = 0.002 in ordinal logistic regression analysis). Conclusions This study demonstrated that higher plasma OPG levels were associated with poor functional outcomes in acute ischemic stroke patients who underwent EVT.
Collapse
Affiliation(s)
- Moo-Seok Park
- Department of Neurology, Seoul Hospital Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hee Park
- Department of Molecular Medicine, College of Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Ahran Joo
- Department of Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Yoonkyung Chang
- Department of Neurology, Mokdong Hospital Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital Ewha Womans University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
188
|
Effect of denosumab on renal function in women with osteoporosis evaluated using cystatin C. Osteoporos Sarcopenia 2022; 8:68-74. [PMID: 35832419 PMCID: PMC9263171 DOI: 10.1016/j.afos.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives To investigate renal function during denosumab therapy using the estimated glomerular filtration rate based on cystatin C (eGFRcys) which is more accurate than creatinine (eGFRcr) for renal function. Methods Bone mineral densities (BMDs) of lumbar spine and hip regions, eGFRcys, eGFRcr, creatinine clearance (Ccr), and serum total homocysteine (S-Hcy) were measured during 2-year denosumab therapy in 53 women with osteoporosis naïve to anti-osteoporosis drugs (new group) and 64 women who were switched from long-term bisphosphonate treatment to denosumab therapy (switch group). Results There were no significant differences in age, eGFRcr, Ccr, eGFRcys, and S-Hcy levels at baseline between the groups. BMDs in the lumbar spine, femoral neck, and total hip increased significantly after 2-year denosumab therapy in both groups. eGFRcr decreased in the switch group, and Ccr decreased in both groups; however, eGFRcys and S-Hcy levels did not change significantly in either group. To investigate the causal factors associated with the decrease in eGFRcr and Ccr, multiple regression analysis was performed in all patients. Denosumab initiation within 3 months after fracture and eGFRcr or Ccr at baseline were independent factors for the decrease in eGFRcr or Ccr during the 2-year denosumab therapy. Decline in creatinine-based renal function could be reflected by increased muscle mass during the ongoing recovery from fracture. Conclusions Renal function was preserved in all patients, including those in the switch group during denosumab therapy. Creatinine-based renal function should be cautiously interpreted during denosumab therapy in patients with recent fractures.
Collapse
|
189
|
Kim HJ, Park MS, Joo A, Kang S, Eum S, Chang Y, Song TJ. Plasma osteoprotegerin level is associated with hemorrhagic transformation in stroke patients who underwent endovascular thrombectomy. Clin Neurol Neurosurg 2022; 219:107305. [DOI: 10.1016/j.clineuro.2022.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
|
190
|
Hoenig T, Ackerman KE, Beck BR, Bouxsein ML, Burr DB, Hollander K, Popp KL, Rolvien T, Tenforde AS, Warden SJ. Bone stress injuries. Nat Rev Dis Primers 2022; 8:26. [PMID: 35484131 DOI: 10.1038/s41572-022-00352-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 01/11/2023]
Abstract
Bone stress injuries, including stress fractures, are overuse injuries that lead to substantial morbidity in active individuals. These injuries occur when excessive repetitive loads are introduced to a generally normal skeleton. Although the precise mechanisms for bone stress injuries are not completely understood, the prevailing theory is that an imbalance in bone metabolism favours microdamage accumulation over its removal and replacement with new bone via targeted remodelling. Diagnosis is achieved by a combination of patient history and physical examination, with imaging used for confirmation. Management of bone stress injuries is guided by their location and consequent risk of healing complications. Bone stress injuries at low-risk sites typically heal with activity modification followed by progressive loading and return to activity. Additional treatment approaches include non-weight-bearing immobilization, medications or surgery, but these approaches are usually limited to managing bone stress injuries that occur at high-risk sites. A comprehensive strategy that integrates anatomical, biomechanical and biological risk factors has the potential to improve the understanding of these injuries and aid in their prevention and management.
Collapse
Affiliation(s)
- Tim Hoenig
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Kathryn E Ackerman
- Wu Tsai Female Athlete Program, Boston Children's Hospital, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Belinda R Beck
- School of Health Sciences & Social Work, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Gold Coast, Queensland, Australia.,The Bone Clinic, Brisbane, Queensland, Australia
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School and Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David B Burr
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam S Tenforde
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA, USA.
| | - Stuart J Warden
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA. .,Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN, USA. .,La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
191
|
Iwamoto R, Koide M, Udagawa N, Kobayashi Y. Positive and Negative Regulators of Sclerostin Expression. Int J Mol Sci 2022; 23:ijms23094895. [PMID: 35563281 PMCID: PMC9102037 DOI: 10.3390/ijms23094895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
Collapse
Affiliation(s)
- Rina Iwamoto
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan;
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
- Correspondence: ; Tel.: +81-263-51-2238
| |
Collapse
|
192
|
McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int J Mol Sci 2022; 23:4776. [PMID: 35563167 PMCID: PMC9104509 DOI: 10.3390/ijms23094776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.
Collapse
Affiliation(s)
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico;
| | - Simon Iloki Assanga
- Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico;
| |
Collapse
|
193
|
Aoki H, Suzuki E, Nakamura T, Onodera S, Saito A, Ohtaka M, Nakanishi M, Nishimura K, Saito A, Azuma T. Induced pluripotent stem cells from homozygous Runx2-deficient mice show poor response to vitamin D during osteoblastic differentiation. Med Mol Morphol 2022; 55:174-186. [DOI: 10.1007/s00795-022-00317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
|
194
|
Materials Properties and Application Strategy for Ligament Tissue Engineering. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
195
|
Effects of Artemisia annua L. Essential Oil on Osteoclast Differentiation and Function Induced by RANKL. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1322957. [PMID: 35432559 PMCID: PMC9010179 DOI: 10.1155/2022/1322957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Objective This study aimed to assess the main components of Artemisia annua L. essential oil (AEO) and determine their effect on the proliferation and differentiation of RAW264.7 cells induced by receptor activator for nuclear factor-ligand (RANKL) in vitro. Then, we tried to explain part of the function of its possible mechanisms. Materials and Methods Essential oil was extracted from Artemisia annua L. Osteoclasts were induced in vitro by RANKL in mouse RAW264.7 cells. The experimental group was treated with different concentrations of AEO, while the control group was not treated with AEO. CCK8 was used to detect osteoclast proliferation. The osteoclasts were stained with TRAP. Western blot was used to detect protein in the MAPK pathway and the NF-κB pathway after treatment with different concentrations of AEO. RT-PCR was used to determine the expression of osteoclast-related mRNA in cells. Results The GC-MS analysis was used to obtain the main components of AEO, including camphor, borneol, camphor, borneol, terpinen-4-ol, p-cymene, eucalyptol, deoxyartemisinin, and artemisia ketone. The CCK8 results showed that the AEO volume ratio of 1 : 4000, 1 : 5000, and 1 : 6000 did not affect the proliferation of RAW264.7 cells. However, TRAP staining showed that AEO decreased osteoclast formation. Western blot results showed that the expression of protein TRAF6, p-p38, p-ERK, p-p65, and NFATc1 decreased in the MAPK pathway and the NF-κB pathway affected by AEO. Furthermore, RT-PCR results showed that the expression of osteoclast resorption-related mRNAs (MMP-9, DC-STAMP, TRAP, and CTSK) and osteoclast differentiation-related mRNAs (OSCAR, NFATc1, c-Src, and c-Fos) also decreased in the experimental group. Conclusions AEO inhibits osteoclast differentiation in vitro, probably by reducing TRAF6 activation, acting on the MAPK pathway and NF-κB pathway, and inhibiting the expression of osteoclast-related genes.
Collapse
|
196
|
Bouzid A, Chelly A, Tekari A, Singh N, Hansdah K, Achour I, Ben Ayed I, Jbeli F, Charfeddine I, Ramchander PV, Hamoudi R, Masmoudi S. Genetic Association of rs1021188 and DNA Methylation Signatures of TNFSF11 in the Risk of Conductive Hearing Loss. Front Med (Lausanne) 2022; 9:870244. [PMID: 35510247 PMCID: PMC9058115 DOI: 10.3389/fmed.2022.870244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Otosclerosis (OTSC) is a complex bone disorder of the otic capsule, which causes conductive hearing impairment in human adults. The dysregulation of the signaling axis mediated by the receptor activator of nuclear factor-kappa-B (RANK), RANK ligand (RANKL), and osteoprotegerin has been widely attributed to the context of metabolic bone disorders. While genetic associations and epigenetic alterations in the TNFSF11 gene (RANKL) have been well-linked to metabolic bone diseases of the skeleton, particularly osteoporosis, they have never been addressed in OTSC. This study aimed to assess whether the genetic association of rs1021188 polymorphism in the upstream of TNFSF11 and the DNA methylation changes in its promoter CpG-region reveal the susceptibility of OTSC. Peripheral blood DNA samples were collected from unrelated Tunisian-North African subjects for genotyping (109 cases and 120 controls) and for DNA methylation analysis (40 cases and 40 controls). The gender-stratified analysis showed that the TNFSF11 rs1021188 C/T was associated with OTSC in men (p = 0.023), but not in women (p = 0.458). Individuals with CC genotype were more susceptible to OTSC, suggesting an increased risk to disease development. Using publicly available data, the rs1021188 was within a cluster grouping the subpopulations with African ethnicity. Moreover, 26 loci in the TNFSF11 gene were in linkage disequilibrium with rs1021188, revealing relative similarities between different populations. Significant differences in both DNA methylation and unmethylation status were detected with 4.53- and 4.83-fold decreases in the global DNA methylation levels in female and male OTSC groups, respectively. These changes could contribute to an increased risk of OTSC development. Bioinformatic analyses indicated that each of the rs1021188 variations and the DNA methylation changes in the promoter CpG-sites within TNFSF11 may play an important role in its transcription regulation. To our knowledge, this is the first study that investigates an independent effect of the rs1021188 polymorphism and DNA hypomethylation of TNFSF11 promoter in OTSC. Genetic and epigenetic changes in the regulatory regions of TNFSF11 could offer new molecular insights into the understanding of the complexity of OTSC.
Collapse
Affiliation(s)
- Amal Bouzid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- *Correspondence: Amal Bouzid
| | - Ameni Chelly
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Neha Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Kirtal Hansdah
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Imen Achour
- Department of Otorhinolaryngology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Ikhlas Ben Ayed
- Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia
| | - Fida Jbeli
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ilhem Charfeddine
- Department of Otorhinolaryngology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | | | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
197
|
Anti-RANKL Inhibits Thymic Function and Causes DRONJ in Mice. Int J Dent 2022; 2022:9299602. [PMID: 35464103 PMCID: PMC9033356 DOI: 10.1155/2022/9299602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Denosumab, a human monoclonal antibody against receptor activator of nuclear factor-kappa B ligand (RANKL), is a novel bone antiresorptive agent used in patients with osteoporosis or metastatic bone cancer. Denosumab-related osteonecrosis of the jaw (DRONJ) has been recently reported in patients using denosumab. However, the mechanisms of DRONJ are not fully understood. Appropriate pathogenic mechanisms of DRONJ have yet to be established. Therefore, we investigated the pathogenesis of DRONJ in mice. Methods Anti-mouse RANKL monoclonal antibody and melphalan were performed to create a mouse model of DRONJ-like lesions in female C57BL/6J mice. We examined the development of DRONJ-like lesions and immune function. Results We showed that administration of anti-mouse RANKL monoclonal antibody and melphalan caused DRONJ-like lesions that recapitulated major clinical manifestations of the human disease, including the characteristic features of an open alveolar socket and exposed necrotic bone. In the analysis using a mouse model of DRONJ-like lesion, it was revealed that anti-mouse RANKL monoclonal antibody and melphalan suppress autoimmune regulator (AIRE) expression in the thymus and imbalanced T cell populations. Conclusion This study suggests evidence of an immunity-based mechanism of DRONJ-like disease. This work may contribute to a better understanding of the pathogenesis of human DRONJ.
Collapse
|
198
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
199
|
RANKL Impairs the TLR4 Pathway by Increasing TRAF6 and RANK Interaction in Macrophages. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7740079. [PMID: 35463988 PMCID: PMC9019442 DOI: 10.1155/2022/7740079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
High serum levels of osteoprotegerin (OPG) are found in patients with obesity, type 2 diabetes, sepsis, or septic shock and are associated with a high mortality rate in stroke. The primary known function of OPG is to bind to the receptor activator of NF-κB ligand (RANKL), and by doing so, it inhibits the binding between RANKL and its receptor (RANK). TLR4 signaling in macrophages involves TRAF6 recruitment and contributes to low-grade chronic inflammation in adipose tissue. LPS is a classical activator of the TLR4 pathway and induces the expression of inflammatory cytokines in macrophages. We have previously observed that in the presence of RANKL, there is no LPS-induced activation of TLR4 in macrophages. In this study, we investigated the crosstalk between RANK and TLR4 pathways in macrophages stimulated with both RANKL and LPS to unveil the role of OPG in inflammatory processes. We found that RANKL inhibits TLR4 activation by binding to RANK, promoting the binding between TRAF6 and RANK, lowering TLR4 activation and the expression of proinflammatory mediators. Furthermore, high OPG levels aggravate inflammation by inhibiting RANKL. Our findings elect RANKL as a candidate for drug development as a way to mitigate the impact of obesity-induced inflammation in patients.
Collapse
|
200
|
Morikawa N, Kato Y, Takeshita N, Shimizu Y. Pharmacological characterization of AS2690168, a novel small molecule RANKL signal transduction inhibitor. Eur J Pharmacol 2022; 924:174941. [PMID: 35398031 DOI: 10.1016/j.ejphar.2022.174941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Pathological osteolysis is associated with excessive bone resorption by activated osteoclasts. Given that receptor activator of NF-kB and its ligand (RANKL) are key players in the differentiation and activation of osteoclasts, the RANKL/RANK signaling pathway is considered a promising target for the development of effective osteoclastogenesis inhibitors. We previously found that the orally available compound, AS2690168, suppresses RANKL-induced osteoclastogenesis of RAW264 cells. In this report, we further characterized the pharmacological profiles of AS2690168 in vitro and in vivo. AS2690168 suppressed soluble RANKL (sRANKL)-induced NFATc1 mRNA expression in RAW264 cells at 0.3 and 3.0 μM. It also suppressed calcium release from parathyroid hormone-stimulated mouse calvaria with an IC50 value of 0.46 μM. Oral administration of AS2690168 completely suppressed the decrease in femoral bone mineral content in an sRANKL-induced osteopenic mice model at 3.0 mg/kg. It also significantly suppressed the decrease in femoral bone mineral density and increase in serum tartrate-resistant acid phosphatase-5b levels in ovariectomized rats at doses of 0.3, 1 and 3 mg/kg. Finally, AS260168 suppressed the increase in urine deoxypyridinoline in a rat prednisolone-induced osteoporosis model at 10 mg/kg. These results suggest that AS2690168 is a promising treatment for bone disorders with excessive bone resorption.
Collapse
Affiliation(s)
- Noriyuki Morikawa
- Drug Discovery Research, Astellas Pharma Inc. 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Yasuko Kato
- Drug Discovery Research, Astellas Pharma Inc. 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Nobuaki Takeshita
- Drug Discovery Research, Astellas Pharma Inc. 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Yasuaki Shimizu
- Drug Discovery Research, Astellas Pharma Inc. 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| |
Collapse
|