151
|
Imam MA, Mahmoud SS, Holton J, Abouelmaati D, Elsherbini Y, Snow M. A systematic review of the concept and clinical applications of Bone Marrow Aspirate Concentrate in Orthopaedics. SICOT J 2017; 3:17. [PMID: 29792397 PMCID: PMC5966837 DOI: 10.1051/sicotj/2017007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/08/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Mesenchymal stem cells (MSC's) are believed to have multipotent plasticity with the capability to differentiate along multiple cell lineages such as cartilage, bone, tendon, muscle, and nerve. Such multipotency has the potential to play an important role in the repair and reconstruction of multiple tissues across a number of orthopaedic specialties. Bone marrow and fat are the most abundant and accessible source of MSC's with bone marrow aspirate the most commonly being reported to stimulate healing. METHODS This review examines the current reported 20 Q2 clinical applications of bone marrow aspirate concentrate and its effectiveness. RESULTS The published studies reported techniques of collection and preparation of BMAC in addition to its applications in a number of orthopaedic sub-specialities. Studies could be sub-categorised into: techniques of extraction, processing and microscopic examination of BMAC (31), reconstruction of osseous defects/non-union (20), treatment of avascular necrosis (9), repair of cartilage defects (8), treatment of sports injuries and tendon injury/repair (9), injection in regenerative therapy (4), treatment of spine conditions (4) including enhancing postoperative fusion and degenerative disc pathology and orthopaedic oncology (4). A few published studies combined the use of platelet-rich plasma (PRP) with BMAC (4) or compared them in different applications (5). CONCLUSIONS BMAC has been used in bone, cartilage and tendon injuries with encouraging results.
Collapse
Affiliation(s)
- Mohamed A. Imam
-
Department of Trauma and Orthopaedics, Faculty of Medicine, Suez Canal University 41111
Ismailia Egypt
-
The Royal Orthopaedic Hospital B31 2AP
Birmingham UK
| | | | - James Holton
-
Department of Trauma and Orthopaedics, Faculty of Medicine, Suez Canal University 41111
Ismailia Egypt
-
The Royal Orthopaedic Hospital B31 2AP
Birmingham UK
| | | | - Yasser Elsherbini
-
Research and Development, OxCell OX3 8AT
Oxford UK
-
Institute of Biomedical Engineering, University of Oxford OX3 7DQ
Oxford UK
| | - Martyn Snow
-
The Royal Orthopaedic Hospital B31 2AP
Birmingham UK
-
Birmingham University B15 2TT
Birmingham UK
| |
Collapse
|
152
|
Isolation and Characterization of Human Chorionic Membranes Mesenchymal Stem Cells and Their Neural Differentiation. Tissue Eng Regen Med 2017; 14:143-151. [PMID: 30603471 DOI: 10.1007/s13770-017-0025-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/06/2016] [Accepted: 06/12/2016] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be obtained from a variety of human tissues. Placenta has become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to localize and characterize MSCs within human chorionic membranes (hCMSCs). For this purpose, immunofluorescence labeling with CD105 and CD90 were used to determine the distribution of MSCs in chorionic membranes tissue. A medium supplemented with a synthetic serum and various concentrations of neurotrophic factors and cytokines was used to induce hCMSCs to neural cells. The results showed that the CD90 positive cells were scattered in the chorionic membranes tissue, and the CD105 positive cells were mostly located around the small blood vessels. hCMSCs expressed typical mesenchymal markers (CD73, CD90, CD105, CD44 and CD166) but not hematopoietic markers (CD45, CD34) and HLA-DR. hCMSCs differentiated into adipocytes, osteocytes, chondrocytes, and neuronal cells, as revealed by morphological changes, cell staining, immunofluorescence analyses, and RT-PCR showing the tissue-specific gene presence for differentiated cell lineages after the treatment with induce medium. Human chorionic membranes may be the source of MSCs for treatment of nervous system injury.
Collapse
|
153
|
Lalzad A, Wong F, Schneider M. Neonatal Cranial Ultrasound: Are Current Safety Guidelines Appropriate? ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:553-560. [PMID: 27979665 DOI: 10.1016/j.ultrasmedbio.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Ultrasound can lead to thermal and mechanical effects in interrogated tissues. We reviewed the literature to explore the evidence on ultrasound heating on fetal and neonatal neural tissue. The results of animal studies have suggested that ultrasound exposure of the fetal or neonatal brain may lead to a significant temperature elevation at the bone-brain interface above current recommended safety thresholds. Temperature increases between 4.3 and 5.6°C have been recorded. Such temperature elevations can potentially affect neuronal structure and function and may also affect behavioral and cognitive function, such as memory and learning. However, the majority of these studies were carried out more than 25 y ago using non-diagnostic equipment with power outputs much lower than those of modern machines. New studies to address the safety issues of cranial ultrasound are imperative to provide current clinical guidelines and safety recommendations.
Collapse
Affiliation(s)
- Assema Lalzad
- Department of Medical Imaging and Radiation Sciences, Monash University, Malvern, Victoria, Australia; Department of Medical Imaging, St. Francis Xavier Cabrini Hospital, Malvern, Victoria, Australia; Department of Medical Imaging, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Flora Wong
- Monash Newborn, Monash Medical Centre, Clayton, Victoria, Australia; The Ritchie Centre, MIMR-PHI Institute of Medical Research, Melbourne, Victoria, Australia; Department of Pediatrics, Monash University, Clayton, Victoria, Australia
| | - Michal Schneider
- Department of Medical Imaging and Radiation Sciences, Monash University, Malvern, Victoria, Australia.
| |
Collapse
|
154
|
Park KI, Lee YH, Rah WJ, Jo SH, Park SB, Han SH, Koh H, Suh JY, Um JS, Choi EH, Park UJ, Kim MJ. Effect of Intravenous Infusion of G-CSF-Mobilized Peripheral Blood Mononuclear Cells on Upper Extremity Function in Cerebral Palsy Children. Ann Rehabil Med 2017; 41:113-120. [PMID: 28289643 PMCID: PMC5344812 DOI: 10.5535/arm.2017.41.1.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the effect of intravenous infusion of peripheral blood mononuclear cells (mPBMC) mobilized by granulocyte-colony stimulating factor (G-CSF) on upper extremity function in children with cerebral palsy (CP). Methods Fifty-seven children with CP were enrolled. Ten patients were excluded due to follow-up loss. In total, 47 patients (30 males and 17 females) were analyzed. All patients' parents provided signed consent before the start of the study. After administration of G-CSF for 5 days, mPBMC was collected and cryopreserved. Patients were randomized into two groups 1 month later. Twenty-two patients were administered mPBMC and 25 patients received normal saline as placebo. Six months later, the two groups were switched, and administered mPBMC and placebo, respectively. Quality of Upper Extremity Skills Test (QUEST) and the Manual Ability Classification System (MACS) were used to evaluate upper motor function. Results All subdomain and total scores of QUEST were significantly improved after mPBMC and placebo infusion, without significant differences between mPBMC and placebo groups. A month after G-CSF, all subdomain and total scores of QUEST were improved. The level of MACS remained unchanged in both mPBMC and placebo groups. Conclusion In this study, intravenously infused mPBMC showed no significant effect on upper extremity function in children with CP, as compared to placebo. The effect of mPBMC was likely masked by the effect of G-CSF, which was used in both groups and/or G-CSF itself might have other neurotrophic potentials in children with CP.
Collapse
Affiliation(s)
- Kyeong Il Park
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Young-Ho Lee
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Korea
| | - Wee-Jin Rah
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Korea
| | - Seung Hwi Jo
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Si-Bog Park
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Hoon Han
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hani Koh
- Department of Translational Medicine, Graduate School of Biomedical Engineering, Hanyang University, Seoul, Korea.; Blood & Marrow Transplantation Center, Hanyang University Medical Center, Seoul, Korea
| | - Jin Young Suh
- Blood & Marrow Transplantation Center, Hanyang University Medical Center, Seoul, Korea
| | - Jang Soo Um
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Eun Hye Choi
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Un Jin Park
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Mi Jung Kim
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
155
|
Hasan A, Deeb G, Rahal R, Atwi K, Mondello S, Marei HE, Gali A, Sleiman E. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury. Front Neurol 2017; 8:28. [PMID: 28265255 PMCID: PMC5316525 DOI: 10.3389/fneur.2017.00028] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University , Doha , Qatar
| | - George Deeb
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Rahaf Rahal
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Khairallah Atwi
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina , Messina , Italy
| | | | - Amr Gali
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| | - Eliana Sleiman
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut , Beirut , Lebanon
| |
Collapse
|
156
|
Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017; 16:31. [PMID: 28148268 PMCID: PMC5286812 DOI: 10.1186/s12943-017-0597-8] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/19/2017] [Indexed: 02/08/2023] Open
Abstract
Tumour progression is dependent on the interaction between tumour cells and cells of the surrounding microenvironment. The tumour is a dynamic milieu consisting of various cell types such as endothelial cells, fibroblasts, cells of the immune system and mesenchymal stem cells (MSCs). MSCs are multipotent stromal cells that are known to reside in various areas such as the bone marrow, fat and dental pulp. MSCs have been found to migrate towards inflammatory sites and studies have shown that they also migrate towards and incorporate into the tumour. The key question is how they interact there. MSCs may interact with tumour cells through paracrine signalling. On the other hand, MSCs have the capacity to differentiate to various cell types such as osteocytes, chondrocytes and adipocytes and it is possible that MSCs differentiate at the site of the tumour. More recently it has been shown that cross-talk between tumour cells and MSCs has been shown to increase metastatic potential and promote epithelial-to-mesenchymal transition. This review will focus on the role of MSCs in tumour development at various stages of progression from growth of the primary tumour to the establishment of distant metastasis.
Collapse
Affiliation(s)
- Sarah M Ridge
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, Costello Road, Galway, Ireland.,Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, Costello Road, Galway, Ireland. .,Prostate Cancer Institute, School of Medicine, Costello Road, Galway, Ireland.
| |
Collapse
|
157
|
Mesenchymal Stem Cell Therapy for Inflammatory Skin Diseases: Clinical Potential and Mode of Action. Int J Mol Sci 2017; 18:ijms18020244. [PMID: 28125063 PMCID: PMC5343781 DOI: 10.3390/ijms18020244] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory skin disorders that cause serious deterioration of the quality of life have become one of the major public concerns. Despite their significance, there is no fundamental cure to date. Mesenchymal stem cells (MSCs) possess unique immunomodulatory properties which make them a promising tool for the treatment of various inflammatory diseases. Our recent preclinical and clinical studies have shown that MSCs can be successfully used for the treatment of atopic dermatitis (AD), one of the major inflammatory skin diseases. This observation along with similar reports from other groups revealed the efficacy and underlying mechanisms of MSCs in inflammatory dermatosis. In addition, it has been proposed that cell priming or gene transduction can be novel strategies for the development of next-generation high-efficacy MSCs for treating inflammatory skin diseases. We discuss here existing evidence that demonstrates the regulatory properties of MSCs on immune responses under inflammatory conditions.
Collapse
|
158
|
Kuroda M, Wada H, Kimura Y, Ueda K, Kioka N. Vinculin promotes nuclear localization of TAZ to inhibit ECM stiffness-dependent differentiation into adipocytes. J Cell Sci 2017; 130:989-1002. [PMID: 28115535 DOI: 10.1242/jcs.194779] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) stiffness regulates the lineage commitment of mesenchymal stem cells (MSCs). Although cells sense ECM stiffness through focal adhesions, how cells sense ECM stiffness and regulate ECM stiffness-dependent differentiation remains largely unclear. In this study, we show that the cytoskeletal focal adhesion protein vinculin plays a critical role in the ECM stiffness-dependent adipocyte differentiation of MSCs. ST2 mouse MSCs differentiate into adipocytes and osteoblasts in an ECM stiffness-dependent manner. We find that a rigid ECM increases the amount of cytoskeleton-associated vinculin and promotes the nuclear localization and activity of the transcriptional coactivator paralogs Yes-associated protein (YAP, also known as YAP1) and transcriptional coactivator with a PDZ-binding motif (TAZ, also known as WWTR1) (hereafter YAP/TAZ). Vinculin is necessary for enhanced nuclear localization and activity of YAP/TAZ on the rigid ECM but it does not affect the phosphorylation of the YAP/TAZ kinase LATS1. Furthermore, vinculin depletion promotes differentiation into adipocytes on rigid ECM, while it inhibits differentiation into osteoblasts. Finally, TAZ knockdown was less effective at promoting adipocyte differentiation in vinculin-depleted cells than in control cells. These results suggest that vinculin promotes the nuclear localization of transcription factor TAZ to inhibit the adipocyte differentiation on rigid ECM.
Collapse
Affiliation(s)
- Mito Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroki Wada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
159
|
Ishikawa S, Horinouchi C, Murata D, Matsuzaki S, Misumi K, Iwamoto Y, Korosue K, Hobo S. Isolation and characterization of equine dental pulp stem cells derived from Thoroughbred wolf teeth. J Vet Med Sci 2017; 79:47-51. [PMID: 27818457 PMCID: PMC5289236 DOI: 10.1292/jvms.16-0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent stem cells that are capable of self-renewal and differentiation into multiple cell lineages. Methods for
cell therapy using MSCs have been developed in equine medicine. Recently, human dental pulp stem cells (DPSCs) have drawn much attention owing to their trophic
factor producing ability and minimally invasive collection methods. However, there have been no reports on equine dental pulp-derived cells (eDPCs). Therefore,
the aim of this study was to isolate and characterize the eDPCs from discarded wolf teeth. Plastic-adherent spindle-shaped cells were isolated from wolf teeth.
The doubling time of the isolated eDPCs was approximately 1 day. Differentiation assays using induction medium eDPCs differentiated into osteogenic,
chondrogenic and adipogenic lineages. The eDPCs expressed mesenchymal makers (CD11a/18, CD44, CD90 CD105 and MHC class I and II), but did not express
hematopoietic markers (CD34 and CD45). Taken together, the results show that eDPCs can be isolated from discarded wolf teeth, and they satisfy the minimal
criteria for MSCs. Thus, these eDPCs can be referred to as equine DPSCs (eDPSCs). These eDPSCs may become a new source for cell therapy.
Collapse
Affiliation(s)
- Shingo Ishikawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Argibay B, Trekker J, Himmelreich U, Beiras A, Topete A, Taboada P, Pérez-Mato M, Vieites-Prado A, Iglesias-Rey R, Rivas J, Planas AM, Sobrino T, Castillo J, Campos F. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Sci Rep 2017; 7:40758. [PMID: 28091591 PMCID: PMC5238501 DOI: 10.1038/srep40758] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/09/2016] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising clinical therapy for ischemic stroke. However, critical parameters, such as the most effective administration route, remain unclear. Intravenous (i.v.) and intraarterial (i.a.) delivery routes have yielded varied outcomes across studies, potentially due to the unknown MSCs distribution. We investigated whether MSCs reached the brain following i.a. or i.v. administration after transient cerebral ischemia in rats, and evaluated the therapeutic effects of both routes. MSCs were labeled with dextran-coated superparamagnetic nanoparticles for magnetic resonance imaging (MRI) cell tracking, transmission electron microscopy and immunohistological analysis. MSCs were found in the brain following i.a. but not i.v. administration. However, the i.a. route increased the risk of cerebral lesions and did not improve functional recovery. The i.v. delivery is safe but MCS do not reach the brain tissue, implying that treatment benefits observed for this route are not attributable to brain MCS engrafting after stroke.
Collapse
Affiliation(s)
- Bárbara Argibay
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesse Trekker
- IMEC, Department of Life Science Technology, Leuven 3001, Belgium.,Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Andrés Beiras
- Department of Morphological Sciences, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Topete
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, México
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Pérez-Mato
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Rivas
- Applied Physics Department, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d' Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
161
|
Phinney DG. Advancing mesenchymal stem/stromal cells-based therapies for neurologic disease. Neural Regen Res 2017; 12:60-61. [PMID: 28250743 PMCID: PMC5319237 DOI: 10.4103/1673-5374.198978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, Jupiter, FL, USA
| |
Collapse
|
162
|
Soundara Rajan T, Giacoppo S, Scionti D, Diomede F, Grassi G, Pollastro F, Piattelli A, Bramanti P, Mazzon E, Trubiani O. Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells. J Cell Biochem 2016; 118:1531-1546. [PMID: 27918106 DOI: 10.1002/jcb.25815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
In the last years, mesenchymal stromal cells (MSCs) from oral tissues have received considerable interest in regenerative medicine since they can be obtained with minimal invasive procedure and exhibit immunomodulatory properties. This study was aimed to investigate whether in vitro pre-treatment of MSCs obtained from human gingiva (hGMSCs) with Cannabidiol (CBD), a cannabinoid component produced by the plant Cannabis sativa, may promote human gingiva derived MSCs to differentiate toward neuronal precursor cells. Specifically, we have treated the hGMSCs with CBD (5 µM) for 24 h in order to evaluate the expression of genes involved in cannabidiol signaling, cell proliferation, self-renewal and multipotency, and neural progenitor cells differentiation. Next generation sequencing (NGS) demonstrated that CBD activates genes associated with G protein coupled receptor signaling in hGMSCs. Genes involved in DNA replication, cell cycle, proliferation, and apoptosis were regulated. Moreover, genes associated with the biological process of neuronal progenitor cells (NCPs) proliferation, neuron differentiation, neurogenesis, and nervous system development were significantly modulated. From our results, we hypothesize that human gingiva-derived MSCs conditioned with CBD could represent a valid method for improving the hGMSCs phenotype and thus might be a potential therapeutic tool in the treatment of neurodegenerative diseases. J. Cell. Biochem. 118: 1531-1546, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti 66100, Italy
| | - Gianpaolo Grassi
- Council for Research and Experimentation in Agriculture-Research Centre for Industrial Crops (CRA-CIN), Rovigo, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara 28100, Italy
| | - Adriano Piattelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti 66100, Italy
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina 98124, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti 66100, Italy
| |
Collapse
|
163
|
Paulini J, Higuti E, Bastos RMC, Gomes SA, Rangel ÉB. Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy. Stem Cells Int 2016; 2016:9521629. [PMID: 28058051 PMCID: PMC5187468 DOI: 10.1155/2016/9521629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN.
Collapse
Affiliation(s)
- Janaina Paulini
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Eliza Higuti
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Rosana M. C. Bastos
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Samirah A. Gomes
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- University of São Paulo, 01246 São Paulo, SP, Brazil
| | - Érika B. Rangel
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- Federal University of São Paulo, 04023 São Paulo, SP, Brazil
| |
Collapse
|
164
|
Nasef A, Fouillard L, El-Taguri A, Lopez M. Human bone marrow-derived mesenchymal stem cells. Libyan J Med 2016. [DOI: 10.3402/ljm.v2i4.4729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- A. Nasef
- EA 1638 –Hématologie, Faculté de Médicine Saint-Antoine, Université de Pierre et Marie Curie, Paris VI, 27 Rue de Chaligny, 75012 Paris, France and
| | - L. Fouillard
- EA 1638 –Hématologie, Faculté de Médicine Saint-Antoine, Université de Pierre et Marie Curie, Paris VI, 27 Rue de Chaligny, 75012 Paris, France and
| | | | - M. Lopez
- EA 1638 –Hématologie, Faculté de Médicine Saint-Antoine, Université de Pierre et Marie Curie, Paris VI, 27 Rue de Chaligny, 75012 Paris, France and
| |
Collapse
|
165
|
A novel chitosan- tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range. Int J Biol Macromol 2016; 93:87-97. [DOI: 10.1016/j.ijbiomac.2016.08.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
|
166
|
Kramer PR, Nares S, Kramer SF, Grogan D, Kaiser M. Mesenchymal Stem Cells Acquire Characteristics of Cells in the Periodontal Ligament in vitro. J Dent Res 2016; 83:27-34. [PMID: 14691109 DOI: 10.1177/154405910408300106] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells differentiate into multiple types of cells derived from mesenchyme. Periodontal ligament cells are primarily derived from mesenchyme; thus, we expected mesenchymal stem cells to differentiate into periodontal ligament. Using a combination of immunohistochemistry and in situ hybridization on co-cultures of mesenchymal stem cells and periodontal ligament, we observed a significant increase in mesenchymal stem cells’ expression of osteocalcin and osteopontin and a significant decrease in expression of bone sialoprotein, characteristics of periodontal ligament in vivo. Increased osteopontin and osteocalcin and decreased bone sialoprotein expression was detected within 7 days and maintained through 21 days of co-culture. We conclude that contact or factors from periodontal ligament induced mesenchymal stem cells to obtain periodontal-ligament-like characteristics. Importantly, analysis of the data suggests the feasibility of utilizing mesenchymal stem cells in clinical applications for repairing and/or regenerating periodontal tissue.
Collapse
Affiliation(s)
- P R Kramer
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave., Dallas, TX 75246, USA.
| | | | | | | | | |
Collapse
|
167
|
Brenner AK, Andersson Tvedt TH, Bruserud Ø. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells. Molecules 2016; 21:molecules21111512. [PMID: 27845732 PMCID: PMC6273124 DOI: 10.3390/molecules21111512] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
| | - Tor Henrik Andersson Tvedt
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Øystein Bruserud
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
168
|
Motegi SI, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci 2016; 86:83-89. [PMID: 27866791 DOI: 10.1016/j.jdermsci.2016.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/27/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are bone marrow-derived non-hematopoietic progenitor cells. MSCs are able to differentiate into various types of cells, including chondrocytes, adipocytes, osteocytes, myocytes, endothelial cells, and keratinocytes. There is increasing evidence that MSCs might be located external to the vasculature, and that perivascular cells in the skin, generally called as "pericytes", might include MSCs. It has been suggested that MSCs localized around blood vessels might migrate into wounds and contribute to the restoration of injured tissues. Many studies have demonstrated that intravenous or intradermal administration of MSCs enhanced cutaneous wound healing, such as acute incisional and excisional wounds, diabetic ulcers, radiation ulcers, and burns in animals and humans. Several mechanisms of the acceleration of wound healing by MSCs have been identified, including the enhancement of angiogenesis by secretion of pro-angiogenic factors and the differentiation into endothelial cells and/or pericytes, M2 macrophages polarization, the recruitment of endogenous stem/progenitor cells, extracellular matrix production and remodeling, and immunosuppressive effects. Since the microenvironments of wounds and/or injured tissues are similar to those of tumors, MSCs also play similar roles in malignant tumors, such as the enhancement of angiogenesis, M2 macrophages polarization, and immunosuppressive effects. In addition, the mechanisms of homing of MSCs might have a commonality in the pathogenesis of wound healing and tumors. Thus, the regulating factors of MSCs, including MFG-E8, could be a therapeutic target and lead to the establishment of new therapeutic approaches for both intractable wound healing and tumors.
Collapse
Affiliation(s)
- Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma 371-8511, Japan.
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
169
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
170
|
Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow‑derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep 2016; 14:5065-5071. [PMID: 27779661 PMCID: PMC5355702 DOI: 10.3892/mmr.2016.5862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 08/16/2016] [Indexed: 12/04/2022] Open
Abstract
Notch signaling is involved in the early process of differentiation to determine the fate of stem cells. However, the precise role of Notch in human bone marrow-derived mesenchymal stem cells (hBMSCs) remains unclear. The present study aimed to investigate the involvement of Notch signalling during the course of hBMSC differentiation into cardiomyocytes using hBMSCs, with multilineage differentiation ability, isolated and purified from human bone marrow. Flow cytometric analysis revealed that CD29, CD44 and CD90 were highly expressed on the surface of cells in their fifth passage, whereas detection of CD34, CD45, CD54 and HLA-DR was negative. Visualization of morphological changes, western blotting, immunocytochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) demonstrated that hBMSCs differentiate into cardiomyocytes through treatment with 5-azacytidine (5-aza). Transmission electron microscopy revealed ultramicroscopic details of differentiated hBMSCs. Western blotting and immunocytochemistry demonstrated increased protein expression levels of α-actin and cardiac troponin T expression, and RT-qPCR revealed increased mRNA expression of Notch1 early in the process of differentiation (days 1, 4 and 7), and increased mRNA expression levels of the transcription factors GATA binding protein-4 and NK2 homeobox 5 at day 28 day. In conclusion, differentiation of hBMSCs into cardiomyocytes was induced in vitro by 5-aza, and was associated with upregulation of Notch1, GATA binding protein-4 and Nkx2.5 expression. Overexpression of the Notch1 signaling pathway may represent a potential mechanism underlying the differentiation of hBMSCs.
Collapse
Affiliation(s)
- Zipu Yu
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yu Zou
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jingya Fan
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Chengchen Li
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Liang Ma
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
171
|
Kumar A, Dudhal S, Sundari T A, Sunkara M, Usman H, Varshney A, Mukhopadhyay A. Dopaminergic-primed fetal liver mesenchymal stromal-like cells can reverse parkinsonian symptoms in 6-hydroxydopamine-lesioned mice. Cytotherapy 2016; 18:307-19. [PMID: 26857226 DOI: 10.1016/j.jcyt.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Cell replacement therapy is considered a promising alternative in the treatment of degenerative diseases, and in this context, mesenchymal stromal cells (MSCs) have been proposed for transplantation in Parkinson disease (PD). Thus far, the results of animal studies are found to be inconsistent and inconclusive regarding the therapeutic ability of the cells. This study investigated the efficacy of fetal liver (FL)-MSC-derived dopaminergic (DA) neuronal primed cells for correction of parkinsonian symptoms in mice. METHODS FL-MSCs were differentiated for 21 days in the presence of a combination of neurotropic factors. The extent of cellular reprogramming was analyzed by quantitative polymerase chain reaction for DA-specific neuronal gene expressions and protein expressions by immuno-cytochemistry. The functionality of the cells was determined by electrophysiology and dopamine release assays. Ten-day-primed neuron-like cells or unprimed MSCs were transplanted into the 6-hydroxydopamine (6-OHDA)-lesioned striatum using a stereotaxic device. Dopamine-secreting properties and behavioral studies were used to assess improvement of parkinsonian symptoms. RESULTS The differentiated cells expressed DA-specific genes and proteins, while exhibiting a high level of voltage-gated potassium current. Furthermore, neuronal primed cells differentiated into tyrosine hydroxylase immunoreactive and dopamine-secreting functional neuron-like cells. Symptomatic correction of PD in the recipient mice within 2 months of transplantation was also observed. DISCUSSION FL-MSC-derived primed neuron-like cells integrated into the striatum of PD mice, improving parkinsonian symptoms. This study demonstrates an effective cell-based therapy for PD.
Collapse
Affiliation(s)
- Amit Kumar
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Swati Dudhal
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Abinaya Sundari T
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Hyder Usman
- Daiichi Sankyo India Pharma Pvt Ltd, Village Sarhaul, Gurgaon, India
| | - Anurag Varshney
- Daiichi Sankyo India Pharma Pvt Ltd, Village Sarhaul, Gurgaon, India
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
172
|
The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy 2016; 19:1-8. [PMID: 27769637 DOI: 10.1016/j.jcyt.2016.09.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/26/2016] [Accepted: 09/10/2016] [Indexed: 12/25/2022]
Abstract
From the outset, it was apparent that developing new therapies with mesenchymal stem/stromal cells (MSCs) was not a simple or easy task. Among the earliest experiments was administration of MSCs from normal mice to transgenic mice that developed brittle bones because they expressed a mutated gene for type 1 collagen isolated from a patient with osteogenesis imperfecta. The results prompted a clinical trial of MSCs in patients with severe osteogenesis imperfecta. Subsequent work by large numbers of scientists and clinicians has established that, with minor exceptions, MSCs do not engraft or differentiate to a large extent in vivo. Instead the cells produce beneficial effects in a large number of animal models and some clinical trials by secreting paracrine factors and extracellular vesicles in a "hit and run" scenario. The field faces a number of challenges, but the results indicate that we are on the way to effective therapies for millions of patients who suffer from devastating diseases.
Collapse
|
173
|
G-CSF-mobilized Bone Marrow Mesenchymal Stem Cells Replenish Neural Lineages in Alzheimer's Disease Mice via CXCR4/SDF-1 Chemotaxis. Mol Neurobiol 2016; 54:6198-6212. [PMID: 27709493 DOI: 10.1007/s12035-016-0122-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022]
Abstract
Recent studies reported granulocyte colony-stimulating factor (G-CSF) treatment can improve the cognitive function of Alzheimer's disease (AD) mice, and the mobilized hematopoietic stem cells (HSCs) or bone marrow mesenchymal stem cells (BM-MSCs) are proposed to be involved in this recovery effect. However, the exact role of mobilized HSC/BM-MSC in G-CSF-based therapeutic effects is still unknown. Here, we report that C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor 1 (SDF-1) chemotaxis was a key mediator in G-CSF-based therapeutic effects, which was involved in the recruitment of repair-competent cells. Furthermore, we found both mobilized HSCs and BM-MSCs were able to infiltrate into the brain, but only BM-MSCs replenished the neural lineage cells and contributed to neurogenesis in the brains of AD mice. Together, our data show that mobilized BM-MSCs are involved in the replenishment of neural lineages following G-CSF treatment via CXCR4/SDF-1 chemotaxis and further support the potential use of BM-MSCs for further autogenically therapeutic applications.
Collapse
|
174
|
Hsuan YCY, Lin CH, Chang CP, Lin MT. Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav 2016; 6:e00526. [PMID: 27781140 PMCID: PMC5064338 DOI: 10.1002/brb3.526] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation has been reported to improve neurological function following neural injury. Many physiological and molecular mechanisms involving MSC therapy-related neuroprotection have been identified. METHODS A review is presented of articles that pertain to MSC therapy and diverse brain injuries including stroke, neural trauma, and heat stroke, which were identified using an electronic search (e.g., PubMed), emphasize mechanisms of MSC therapy-related neuroprotection. We aim to discuss neuroprotective mechanisms that underlie the beneficial effects of MSCs in treating stroke, neural trauma, and heatstroke. RESULTS MSC therapy is promising as a means of augmenting brain repair. Cell incorporation into the injured tissue is not a prerequisite for the beneficial effects exerted by MSCs. Paracrine signaling is believed to be the most important mediator of MSC therapy in brain injury. The multiple mechanisms of action of MSCs include enhanced angiogenesis and neurogenesis, immunomodulation, and anti-inflammatory effects. Microglia are the first source of the inflammatory cascade during brain injury. Cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6, are significantly produced by microglia in the brain after experimental brain injury. The proinflammatory M1 phenotype of microglia is associated with tissue destruction, whereas the anti-inflammatory M2 phenotype of microglia facilitates repair and regeneration. MSC therapy may improve outcomes of ischemic stroke, neural trauma, and heatstroke by inhibiting the activity of M1 phenotype of microglia but augmenting the activity of M2 phenotype of microglia. CONCLUSION This review offers a testable platform for targeting microglial-mediated cytokines in clinical trials based upon the rational design of MSC therapy in the future. MSCs that are derived from the placenta provide a great choice for stem cell therapy. Although targeting the microglial activation is an important approach to reduce the burden of the injury, it is not the only one. This review focuses on this specific aspect.
Collapse
Affiliation(s)
| | | | - Ching-Ping Chang
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| |
Collapse
|
175
|
Hu Y, Liu N, Zhang P, Pan C, Zhang Y, Tang Y, Deng H, Aimaiti M, Zhang Y, Zhou H, Wu G, Tang Z. Preclinical Studies of Stem Cell Transplantation in Intracerebral Hemorrhage: a Systemic Review and Meta-Analysis. Mol Neurobiol 2016; 53:5269-77. [PMID: 26409481 PMCID: PMC5012148 DOI: 10.1007/s12035-015-9441-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/10/2015] [Indexed: 01/15/2023]
Abstract
To comprehensively evaluate the therapeutic effects on both functional and structural outcomes, we performed a meta-analysis of preclinical data on stem cell therapy in intracranial hemorrhage, thus providing optimal evidence and instruction for clinical translation. We searched online databases to identify eligible studies based on unmodified stem cell transplantation in intracranial hemorrhage (ICH). From each study, we extracted data regarding neurobehavioral and histological outcomes in order to analyze the comprehensive effective sizes according to the most important clinical parameters (seven indices) and to explore any potential correlation through meta-regression. We analyzed 40 eligible studies including 1021 animals and found a significant improvement in both behavioral and structural outcomes with the median effect size of 1.77 for modified Neurological Severity Score, 1.16 for the modified placement test, 1.82 for the rotarod test, and 1.24 for tissue loss reduction. The meta-regression results revealed that intracerebral administration was the most effective for behavioral and structural recovery post-ICH; mesenchymal stem cells shared comparable therapeutic effects with neural stem cells. Delayed therapy, applied more than 1 week after ICH, showed the greatest improvement of structural outcomes. Stem cell therapy showed significant improvement on behavioral and structural outcomes of ICH animals with relatively large effect sizes. However, the practical efficacy of the therapy is likely to be lower considering poor study quality and non-negligible publication bias. Further, future research should interpret animal results cautiously considering the limited internal and external validity when referring to the design of both animal studies and clinical trials.
Collapse
Affiliation(s)
- Yang Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Youping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hong Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Miribanu Aimaiti
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ye Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Houguang Zhou
- Department of Geriatrics Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Guofeng Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, 550004, People's Republic of China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
176
|
He B, Yao Q, Liang Z, Lin J, Xie Y, Li S, Wu G, Yang Z, Xu P. The Dose of Intravenously Transplanted Bone Marrow Stromal Cells Determines the Therapeutic Effect on Vascular Remodeling in a Rat Model of Ischemic Stroke. Cell Transplant 2016; 25:2173-2185. [PMID: 27480476 DOI: 10.3727/096368916x692627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The therapeutic benefits of bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation for ischemic stroke have been extensively demonstrated. However, studies on the optimal cell dose for intravenous administration are still limited. This study aimed to determine an appropriate cell dose for BM-MSC intravenous transplantation and to investigate the effect of cell dose on vascular remodeling in a rat model of ischemic stroke. BM-MSCs at doses of 5104 (low-dose group), 5105 (medium-dose group), and 2106 (high-dose group) were intravenously injected into rats at 72 h after ischemia. The therapeutic efficacy of BM-MSCs was evaluated by measuring infarct volume, vascular diameters, capillary area in the peri-infarct zone, level of basic fibroblast growth factor (bFGF) in the peri-infarct zone, and serum vascular endothelial growth factor (VEGF) level at 7 days after ischemia. Compared with the low-dose and control groups, medium-dose and high-dose BM-MSC transplantation significantly reduced the volume of the infarct area, enlarged the diameters of pial vessels and the basilar artery, and increased the capillary area in the peri-infarct zone of the cerebral cortex. Furthermore, transplanted BM-MSCs elevated the expressions of bFGF in the peri-infarct zone and the serum VEGF level. Administration of 5105 BM-MSCs is an appropriate cell dose for ischemic stroke therapy in rats. These findings may be helpful for designing future clinical trials.
Collapse
|
177
|
Current state of stem cell-mediated therapies for facial nerve injury. Curr Opin Otolaryngol Head Neck Surg 2016; 24:285-93. [DOI: 10.1097/moo.0000000000000292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
178
|
Schäfer R, Spohn G, Baer PC. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy? Transfus Med Hemother 2016; 43:256-267. [PMID: 27721701 DOI: 10.1159/000447458] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are becoming increasingly important for the development of cell therapeutics in regenerative medicine. Featuring immunomodulatory potential as well as secreting a variety of trophic factors, MSCs showed remarkable therapeutic effects in numerous preclinical disease models. However, sustainable translation of MSC therapies to the clinic is hampered by heterogeneity of MSCs and non-standardized in vitro culture technologies. Moreover, potent MSC therapeutics require MSCs with maximum regenerative capacity. There is growing evidence that in vitro preconditioning strategies of MSCs can optimize their therapeutic potential. In the following we will discuss achievements and challenges of the development of MSC therapies in regenerative medicine highlighting specific in vitro preconditioning strategies prior to cell transplantation to increase their therapeutic efficacy.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt/M., Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt/M., Germany
| | - Patrick C Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe University, Frankfurt/M., Germany
| |
Collapse
|
179
|
LoGuidice A, Houlihan A, Deans R. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process. J Tissue Eng 2016; 7:2041731416656148. [PMID: 27493716 PMCID: PMC4959303 DOI: 10.1177/2041731416656148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023] Open
Abstract
Multipotent adult progenitor cells are a recently described population of stem cells derived from the bone marrow stroma. Research has demonstrated the potential of multipotent adult progenitor cells for treating ischemic injury and cardiovascular repair; however, understanding of multipotent adult progenitor cells in orthopedic applications remains limited. In this study, we evaluate the osteogenic and angiogenic capacity of multipotent adult progenitor cells, both in vitro and loaded onto demineralized bone matrix in vivo, with comparison to mesenchymal stem cells, as the current standard. When compared to mesenchymal stem cells, multipotent adult progenitor cells exhibited a more robust angiogenic protein release profile in vitro and developed more extensive vasculature within 2 weeks in vivo. The establishment of this vascular network is critical to the ossification process, as it allows nutrient exchange and provides an influx of osteoprogenitor cells to the wound site. In vitro assays confirmed the multipotency of multipotent adult progenitor cells along mesodermal lineages and demonstrated the enhanced expression of alkaline phosphatase and production of calcium-containing mineral deposits by multipotent adult progenitor cells, necessary precursors for osteogenesis. In combination with a demineralized bone matrix scaffold, multipotent adult progenitor cells demonstrated enhanced revascularization and new bone formation in vivo in an orthotopic defect model when compared to mesenchymal stem cells on demineralized bone matrix or demineralized bone matrix–only control groups. The potent combination of angiogenic and osteogenic properties provided by multipotent adult progenitor cells appears to create a synergistic amplification of the bone healing process. Our results indicate that multipotent adult progenitor cells have the potential to better promote tissue regeneration and healing and to be a functional cell source for use in orthopedic applications.
Collapse
|
180
|
Dhoke NR, Kalabathula E, Kaushik K, Geesala R, Sravani B, Das A. Histone deacetylases differentially regulate the proliferative phenotype of mouse bone marrow stromal and hematopoietic stem/progenitor cells. Stem Cell Res 2016; 17:170-80. [DOI: 10.1016/j.scr.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 01/22/2023] Open
|
181
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
182
|
Abstract
Bone marrow, in addition to hematopoietic precursors, contains cells that are considered stem cells of nonhematopoietic tissues. These cells are referred to as marrow stromal cells or mesenchymal stem cells. Marrow stromal cells, because of their ability to survive, integrate, and migrate within the central nervous system, can be used as an alternative source of cells for neural transplantation and repair. They can be expanded rapidly in culture and can be induced to express markers of neural cells. Moreover, implanted into the developing brain, these cells can integrate without disrupting the host brain architecture and can assume the fate of neural cells. They can be genetically transduced and can elaborate transgene products. Because large numbers of stromal cells can be obtained from small aspirates of bone marrow, these cells are potentially useful for treating a variety of neurological diseases.
Collapse
Affiliation(s)
- S. Ausim Azizi
- Department of Neurology and Center for Gene Therapy, MCP-Hahnemann University, Philadelphia, Pennsylvania,
| |
Collapse
|
183
|
Pombero A, Garcia-Lopez R, Martinez S. Brain mesenchymal stem cells: physiology and pathological implications. Dev Growth Differ 2016; 58:469-80. [PMID: 27273235 DOI: 10.1111/dgd.12296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine.
Collapse
Affiliation(s)
- Ana Pombero
- Intituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, University of Murcia, Murcia, Spain
| | - Raquel Garcia-Lopez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones, Av Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| | - Salvador Martinez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones, Av Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| |
Collapse
|
184
|
Dennie D, Louboutin JP, Strayer DS. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells 2016; 8:136-157. [PMID: 27114746 PMCID: PMC4835673 DOI: 10.4252/wjsc.v8.i4.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells transduced by SV40 vectors migrating to the hippocampus, and these cells were seen at earlier time points in the DG. We show that the cell membrane chemokine receptor, CCR5, and its ligands, enhance CNS inflammation and seizure activity in a model of neuronal excitotoxicity. SV40-based gene delivery of RNAi targeting CCR5 to the BM results in downregulating CCR5 in circulating cells, suggesting that CCR5 plays an important role in regulating traffic of BM-derived cells into the CNS, both in the basal state and in response to injury. Furthermore, reduction in CCR5 expression in circulating cells provides profound neuroprotection from excitotoxic neuronal injury, reduces neuroinflammation, and increases neuronal regeneration following this type of insult. These results suggest that BM-derived, transgene-expressing, cells can migrate to the brain and that they become neurons, at least in part, by differentiating into neuron precursors and subsequently developing into mature neurons.
Collapse
|
185
|
Doulames VM, Plant GW. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. Int J Mol Sci 2016; 17:530. [PMID: 27070598 PMCID: PMC4848986 DOI: 10.3390/ijms17040530] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.
Collapse
Affiliation(s)
- Vanessa M Doulames
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| | - Giles W Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive Stanford, California, CA 94305, USA.
| |
Collapse
|
186
|
Matchynski-Franks JJ, Pappas C, Rossignol J, Reinke T, Fink K, Crane A, Twite A, Lowrance SA, Song C, Dunbar GL. Mesenchymal Stem Cells as Treatment for Behavioral Deficits and Neuropathology in the 5xFAD Mouse Model of Alzheimer's Disease. Cell Transplant 2016; 25:687-703. [DOI: 10.3727/096368916x690818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by a progressive loss of memory and other cognitive disturbances. The neuropathology of AD includes the major hallmarks of toxic amyloid-β oligomer accumulation and neurofibrillary tangles, as well as increased oxidative stress, cholinergic dysfunction, synapse loss, changes in endogenous neurotrophic factors, and overall degeneration of the brain. Adult mesenchymal stem cells (MSCs) offer the potential for a readily available treatment that would be long lasting, have low likelihood of rejection, and could target a variety of pathological deficits. MSCs have been shown to be effective in alleviating symptoms in some transgenic models of AD, but the optimal location for transplanting MSCs has yet to be determined. In the present study, the behavioral effects of transplantation of MSCs into the lateral ventricles, the hippocampus, or both of these regions were compared in the 5xFAD mouse model of AD. The results indicate that MSC transplants effectively reduce learning deficits in the 5xFAD mouse model and demonstrate a clear impact of MSCs on the levels of Aβ42 in the brains of 5xFAD mice. Overall, these findings support the hypothesis that MSCs may be a viable treatment for AD, especially when injected into the lateral ventricles.
Collapse
Affiliation(s)
- Jessica J. Matchynski-Franks
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
- Department of Psychology and Behavioral Sciences, Rochester College, Rochester Hills, MI, USA
| | - Colleen Pappas
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA
| | - Tiffany Reinke
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
| | - Kyle Fink
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
| | - Andrew Crane
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
| | - Alison Twite
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
| | - Steven A. Lowrance
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
| | - Cheng Song
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
| | - Gary L. Dunbar
- Field Neurosciences Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI, USA
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, USA
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI, USA
- St. Mary's of Michigan Field Neurosciences Institute, Saginaw MI, USA
| |
Collapse
|
187
|
Ajioka I. Biomaterial-engineering and neurobiological approaches for regenerating the injured cerebral cortex. Regen Ther 2016; 3:63-67. [PMID: 31245474 PMCID: PMC6581816 DOI: 10.1016/j.reth.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023] Open
Abstract
The cerebral cortex is responsible for higher functions of the central nervous system (CNS), such as movement, sensation, and cognition. When the cerebral cortex is severely injured, these functions are irreversibly impaired. Although recent neurobiological studies reveal that the cortex has the potential for regeneration, therapies for functional recovery face some technological obstacles. Biomaterials have been used to evoke regenerative potential and promote regeneration in several tissues, including the CNS. This review presents a brief overview of new therapeutic strategies for cortical regeneration from the perspectives of neurobiology and biomaterial engineering, and discusses a promising technology for evoking the regenerative potential of the cerebral cortex.
Collapse
Affiliation(s)
- Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan,The Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8510, Japan. Fax: +81 3 5803 4716.
| |
Collapse
|
188
|
Kuroda S. Current Opinion of Bone Marrow Stromal Cell Transplantation for Ischemic Stroke. Neurol Med Chir (Tokyo) 2016; 56:293-301. [PMID: 26984453 PMCID: PMC4908072 DOI: 10.2176/nmc.ra.2015-0349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article reviews recent advancement and perspective of bone marrow stromal cell (BMSC) transplantation for ischemic stroke, based on current information of basic and translational research. The author would like to emphasize that scientific approach would enable us to apply BMSC transplantation into clinical situation in near future.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama
| |
Collapse
|
189
|
Abstract
Mesenchymal stem cells (MSCs) were initially characterized as connective tissue progenitors resident in bone marrow, but have now been isolated from a variety of tissues and organs and shown to also exhibit potent tissue regenerative properties mediated largely via paracrine actions. These findings have spurred the development of MSC-based therapies for treating a diverse array of nonskeletal diseases. Although genetic and experimental rodent models of disease represent important tools for developing efficacious MSC-based therapies, development of reliable methods to isolate MSCs from mouse bone marrow has been hampered by the unique biological properties of these cells. Indeed, few isolation schemes afford high yields and purity while maintaining the genomic integrity of cells. We recently demonstrated that mouse MSCs are highly sensitive to oxidative stress, and long-term expansion of these cells in atmospheric oxygen selects for immortalized clones that lack a functional p53 protein. Herein, we describe a protocol for the isolation of primary MSCs from mouse bone marrow that couples immunodepletion with culture in a low-oxygen environment and affords high purity and yield while preserving p53 function.
Collapse
Affiliation(s)
- Siddaraju V Boregowda
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Veena Krishnappa
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
190
|
Isolation and Characterization of Human Mesenchymal Stem Cells From Facet Joints and Interspinous Ligaments. Spine (Phila Pa 1976) 2016; 41:E1-7. [PMID: 26555840 DOI: 10.1097/brs.0000000000001178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN A descriptive in vitro study on isolation and differentiation of human mesenchymal stem cells (MSCs) derived from the facet joints and interspinous ligaments. OBJECTIVE To isolate cells from the facet joints and interspinous ligaments and investigate their surface marker profile and differentiation potentials. SUMMARY OF BACKGROUND DATA Lumbar spinal canal stenosis and ossification of the posterior longitudinal ligament are progressive conditions characterized by the hypertrophy and ossification of ligaments and joints within the spinal canal. MSCs are believed to play a role in the advancement of these diseases and the existence of MSCs has been demonstrated within the ligamentum flavum and posterior longitudinal ligament. The aim of this study was to investigate whether these cells could also be found within facet joints and interspinous ligaments. METHODS Samples were harvested from 10 patients undergoing spinal surgery. The MSCs from facet joints and interspinous ligaments were isolated using direct tissue explant technique. Cell surface antigen profilings were performed via flow cytometry. Their lineage differentiation potentials were analyzed. RESULTS The facet joints and interspinous ligaments-derived MSCs have the tri-lineage potential to be differentiated into osteogenic, adipogenic, and chondrogenic cells under appropriate inductions. Flow cytometry analysis revealed both cell lines expressed MSCs markers. Both facet joints and interspinous ligaments-derived MSCs expressed marker genes for osteoblasts, adipocytes, and chondrocytes. CONCLUSION The facet joints and interspinous ligaments may provide alternative sources of MSCs for tissue engineering applications. The facet joints and interspinous ligaments-derived MSCs are part of the microenvironment of the human ligaments of the spinal column and might play a crucial role in the development and progression of degenerative spine conditions.
Collapse
|
191
|
YE YL, YU K, LIN XD, WANG Y, WU LJ, XU JN, LIU DD, ZHONG K, ZHANG Q, LV GY. Mesenchymal stem cells transplantation delays functional deteriorationby inhibiting neuroinflammation response in aged mice. Turk J Biol 2016. [DOI: 10.3906/biy-1507-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
192
|
Abstract
Mesenchymal stem/stromal cells (MSCs) have been extensively investigated for their potential to regenerate tissue, to modulate the immune system, and their wound healing properties in over 350 clinical trials worldwide. MSCs from various tissues such as adipose, bone, and others are currently being studied in clinical trials in indications for ischemic, inflammatory, autoimmune, and degenerative disorders. As a result, numerous isolation protocols have been published. This chapter provides a simple protocol whereby a total of 80-100 million human MSCs, with an average viability greater than 90 %, can be produced from a relatively small (1-3 mL) bone marrow aspirate in 14-20 days using double stack culture chambers. MSCs were originally referred to as fibroblastoid colony forming cells because one of their characteristic features is adherence to tissue culture plastic and generation of colonies when plated at low densities. The efficiency with which they form colonies still remains an important assay for the quality of cell preparations. To assess the quality of cell preparations, two different colony forming unit (CFU) assays are also provided.
Collapse
|
193
|
Marrow-Derived Mesenchymal Stromal Cells in the Treatment of Stroke. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
194
|
Cao S, Wei X, Li H, Miao J, Zhao G, Wu D, Liu B, Zhang Y, Gu H, Wang L, Fan Y, An D, Yuan Z. Comparative Study on the Differentiation of Mesenchymal Stem Cells Between Fetal and Postnatal Rat Spinal Cord Niche. Cell Transplant 2015; 25:1115-30. [PMID: 26651539 DOI: 10.3727/096368915x689910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In a previous study, we established a prenatal surgical approach and transplanted mesenchymal stem cells (MSCs) into the fetal rat spinal column to treat neural tube defects (NTDs). We found that the transplanted MSCs survived and differentiated into neural lineage cells. Various cytokines and extracellular signaling systems in the spinal cord niche play an important role in cell differentiation. In this study, we observed the differentiation of transplanted MSCs in different spinal cord niches and further observed the expression of neurotrophic factors and growth factors in the spinal cord at different developmental stages to explore the mechanism of MSC differentiation in different spinal cord niches. The results showed that transplanted MSCs expressed markers of neural precursor cells (nestin), neurogliocytes (GFAP), and neurons (β-tubulin). The percentages of GFP(+)/nestin(+) double-positive cells in transplanted MSCs in E16, P1, and P21 rats were 18.31%, 12.18%, and 5.06%, respectively. The percentages of GFP(+)/GFAP(+) double-positive cells in E16, P1, and P21 rats were 32.01%, 15.35%, and 12.56%, respectively. The percentages of GFP(+)/β-tubulin(+) double-positive cells in E16, P1, and P21 were 11.76%, 7.62%, and 4.88%, respectively. The differentiation rates of MSCs in embryonic spinal cords were significantly higher than in postnatal spinal cords (p < 0.05). We found that the transplanted MSCs expressed synapsin-1 at different developmental stages. After MSC transplantation, we observed that neurotrophic factor-3 (NT-3), fibroblast growth factor-2 (FGF-2), FGF-8, transforming growth factor-α (TGF-α), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) significantly increased in the MSC transplantation group compared with the blank injection group. Furthermore, FGF-2 and VEGF expression were positively correlated with the number of surviving MSCs. In addition, we found that the expression of brain-derived neurotrophic factor (BDNF), NT-3, FGF-8, TGF-β, epidermal growth factor (EGF), and insulin-like growth factor (IGF) decreased with age, and the expression of FGF-2, FGF-10, FGF-20, TGF-α, and PDGF increased with age. Our data suggest that the embryonic spinal cord niche is more conducive to MSC differentiation after transplantation.
Collapse
Affiliation(s)
- Songying Cao
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep 2015; 13:49-58. [PMID: 26572749 PMCID: PMC4686117 DOI: 10.3892/mmr.2015.4553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/26/2015] [Indexed: 12/26/2022] Open
Abstract
Recent studies regarding regenerative medicine have focused on bone marrow mesenchymal stem cells (BMSCs), which have the potential to undergo neural differentiation, and may be transfected with specific genes. BMSCs can differentiate into neuron-like cells in certain neurotropic circumstances in vitro. Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are often used to induce neural differentiation in BMSCs in vitro. However, previous studies regarding their combined actions are insufficient. The present study is the first, to the best of our knowledge, to thoroughly assess the enhancement of neural differentiation of BMSCs following transfection with bFGF and NGF. Sprague-Dawley (SD) rat BMSCs were separated through whole bone marrow adherence, and were then passaged to the third generation. The cells were subsequently divided into five groups: The control group, which consisted of untransfected BMSCs; the plv-blank-transfected BMSCs group; the plv-bFGF-trans-fected BMSCs group; the plv-NGF-transfected BMSCs group; and the plv-NGF-bFGF co-transfected BMSCs group. Cell neural differentiation was characterized in terms of stem cell molecular expression, and the neuronal morphology and expression of neural-like molecules was detected in each of the groups. A total of 72 h post-transfection, the expression levels of neuron-specific enolase, glial fibrillary acidic protein, and nestin protein, were higher in the co-transfected group, as compared with the other groups, the expression levels of β-tubulin III were also increased in the co-transfected cells, thus suggesting the maturation of differentiated neuron-like cells. Furthermore, higher neuronal proliferation was observed in the co-transfected group, as compared with the other groups at passages 2, 4, 6 and 8. Western blotting demonstrated that the transfected groups exhibited a simultaneous increase in phosphorylation of the AKT and extracellular signal-regulated kinases (ERK) signaling pathway. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of transfected BMSCs.
Collapse
Affiliation(s)
- Yang Hu
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yan Zhang
- Institute of Cancer Stem Cells, Cancer Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Kang Tian
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chong Xun
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shouyu Wang
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Decheng Lv
- Department of Orthopedics, The First Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
196
|
Jeon YJ, Kim J, Cho JH, Chung HM, Chae JI. Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy. J Cell Biochem 2015; 117:1112-25. [PMID: 26448537 DOI: 10.1002/jcb.25395] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
Various source-derived mesenchymal stem cells (MSCs) with multipotent capabilities were considered for cell therapeutics of incurable diseases. The applicability of MSCs depends on the cellular source and on their different in vivo functions, despite having similar phenotypic and cytological characteristics. We characterized MSCs from different sources, including human bone marrow (BM), placenta (PL), and adipose tissue (AT), in terms of the phenotype, surface antigen expression, differentiation ability, proteome reference map, and blood flow recovery in a hindlimb ischemic disease model. The MSCs exhibit different differentiation potentials depending on the cellular source despite having similar phenotypic and surface antigen expression. We identified approximately 90 differentially regulated proteins. Most up- or down-regulated proteins show cytoskeletal or oxidative stress, peroxiredoxin, and apoptosis roles according to their functional involvement. In addition, the PL-MSCs retained a higher therapeutic efficacy than the BM- and AT-MSCs in the hindlimb ischemic disease model. In summary, we examined differentially expressed key regulatory factors for MSCs that were obtained from several cellular sources and demonstrated their differentially expressed proteome profiles. Our results indicate that primitive PL-MSCs have biological advantages relative to those from other sources, making PL-MSCs a useful model for clinical applications of cell therapy.
Collapse
Affiliation(s)
- Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Jumi Kim
- Samsung Advanced Institute of Technology, Well Aging Research Center, Suwon, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| |
Collapse
|
197
|
Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, Li T, Chen J. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain 2015; 8:65. [PMID: 26475712 PMCID: PMC4609057 DOI: 10.1186/s13041-015-0157-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/10/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic brain damage (HIBD) is a major cause of infant mortality and neurological disability in children. Many studies have demonstrated that mesenchymal stem cell (MSC) transplantation facilitates the restoration of the biological function of injured tissue following HIBD via immunomodulation. This study aimed to elucidate the mechanisms by which MSCs mediate immunomodulation via the key effectors Toll-like receptor 2 (TLR2) and interleukin-10 (IL-10). RESULTS We showed that TLR2 expression in the brain of HIBD rats was upregulated following HIBD and that MSC transplantation suppressed the expression of TLR2 and the release of IL-10, thereby alleviating the learning-memory deficits of HIBD rats. Following treatment with the specific TLR2 agonist Pam3CSK4 to activate TLR2, learning-memory function became further impaired, and the levels of nuclear factor kappa B (NFκB) and Bax expression and IL-10 release were significantly increased compared with those in HIBD rats that did not receive Pam3CSK4. In vitro, we found that MSC co-culture downregulated TLR2/NFκB signaling and repressed Bax expression and IL-10 secretion in oxygen and glucose deprivation (OGD)-injured adrenal pheochromocytoma (PC12) cells. Furthermore, NFκB and Bax expression and IL-10 release were enhanced following Pam3CSK4 treatment and were decreased following siTLR2 treatment in OGD-injured PC12 cells in the presence or absence of MSCs. CONCLUSIONS Our data indicate that TLR2 is involved in HIBD and that MSCs decrease apoptosis and improve learning-memory function in HIBD rats by suppressing the TLR2/NFκB signaling pathway via a feedback mechanism that reduces IL-10 release. These findings strongly suggest that MSC transplantation improves HIBD via the inhibition of the TLR2/NFκB pathway.
Collapse
Affiliation(s)
- Yan Gu
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Yun Zhang
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Yang Bi
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Jingjing Liu
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Bin Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Min Gong
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Tingyu Li
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China.
| | - Jie Chen
- Children Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Stem Cell Therapy Engineering Technical Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
198
|
Transplantation of human mesenchymal stem cells into the cisterna magna and its neuroprotective effects in a parkinsonian animal model. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
199
|
Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 2015; 99:62-8. [PMID: 26384580 DOI: 10.1016/j.ymeth.2015.09.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/14/2015] [Accepted: 09/15/2015] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. Although they were originally identified in bone marrow and described as 'marrow stromal cells', they have since been identified in many other anatomical locations in the body. MSCs can be isolated from bone marrow, adipose tissue, umbilical cord and other tissues but the richest tissue source of MSCs is fat. Since they are adherent to plastic, they may be expanded in vitro. MSCs have a distinct morphology and express a specific set of CD (cluster of differentiation) molecules. The phenotypic pattern for the identification of MSCs cells requires expression of CD73, CD90, and CD105 and lack of CD34, CD45, and HLA-DR antigens. Under appropriate micro-environmental conditions MSCs can proliferate and give rise to other cell types. Therefore, they are ideally suited for the treatment of systemic inflammatory and autoimmune conditions. They have also been implicated as key players in regenerating injured tissue following injury and trauma. MSC populations isolated from adipose tissue may also contain regulatory T (Treg) cells, which have the capacity for modulating the immune system. The immunoregulatory and regenerative properties of MSCs make them ideal for use as therapeutic agents in vivo. In this paper we review the literature on the identification, phenotypic characterization and biological properties of MSCs and discuss their potential for applications in cell therapy and regenerative medicine. We also discuss strategies for biomaterial micro-engineering of the stem cell niche.
Collapse
Affiliation(s)
| | - Andras Dinnyes
- Biotalentum Ltd., Gödöllö 2100, Hungary; Szent István University, Gödöllö 2100, Hungary; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, The Netherlands.
| | - Adnan Memic
- Center for Nanotechnology, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
200
|
Okolicsanyi RK, Camilleri ET, Oikari LE, Yu C, Cool SM, van Wijnen AJ, Griffiths LR, Haupt LM. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion. PLoS One 2015; 10:e0137255. [PMID: 26356539 PMCID: PMC4565666 DOI: 10.1371/journal.pone.0137255] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/13/2015] [Indexed: 12/21/2022] Open
Abstract
The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair.
Collapse
Affiliation(s)
- Rachel K. Okolicsanyi
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emily T. Camilleri
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Lotta E Oikari
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Simon M. Cool
- Institute of Medical Biology, Glycotherapeutics Group, A*STAR, Singapore, Singapore
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Lyn R. Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M. Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- * E-mail:
| |
Collapse
|