151
|
Li X, Olson C, Lu S, Nagy JI. Association of connexin36 with zonula occludens-1 in HeLa cells, betaTC-3 cells, pancreas, and adrenal gland. Histochem Cell Biol 2004; 122:485-98. [PMID: 15558297 DOI: 10.1007/s00418-004-0718-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2004] [Indexed: 11/26/2022]
Abstract
The PDZ domain-containing protein zonula occludens-1 (ZO-1), a well-established component of tight junctions, has recently been shown to interact with various connexin proteins that form gap junctions. We investigated the association of connexin36 (Cx36) with ZO-1 in various cultured cells and tissues. Punctate immunofluorescence labeling for Cx36 was detected in Cx36-transfected HeLa cells, betaTC-3 cells, pancreatic islets, and adrenal medulla. Immunofluorescence for ZO-1 was also punctate in cells and tissues, and was colocalized with Cx36 at points of cell-cell contact. Immunoprecipitation of either Cx36 or ZO-1 from cell lysates and tissue homogenates resulted in immunoblot detection of ZO-1 or Cx36, respectively, in immunoprecipitates. A 14-amino acid peptide corresponding to the carboxy-terminus of Cx36 showed binding capacity to the PDZ1 domain of ZO-1, which was eliminated after removal of the last 4 carboxy-terminus amino acids. Low micromolar concentrations of the 14-amino acid peptide produced up to 85% inhibition of Cx36 interaction with the PDZ1 domain of ZO-1. These results provide evidence for molecular interaction between Cx36 and ZO-1 in vitro, and in vivo, and suggest that the interference with Cx36/ZO-1 interaction by short carboxy-terminus peptides of Cx36 may be of value for functional studies of this interaction.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, R3E 3J7, Canada
| | | | | | | |
Collapse
|
152
|
LI X, IONESCU AV, LYNN BD, LU S, KAMASAWA N, MORITA M, DAVIDSON KGV, YASUMURA T, RASH JE, NAGY JI. Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience 2004; 126:611-30. [PMID: 15183511 PMCID: PMC1817902 DOI: 10.1016/j.neuroscience.2004.03.063] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2004] [Indexed: 10/26/2022]
Abstract
Gap junctions between glial cells in mammalian CNS are known to contain several connexins (Cx), including Cx26, Cx30 and Cx43 at astrocyte-to-astrocyte junctions, and Cx29 and Cx32 on the oligodendrocyte side of astrocyte-to-oligodendrocyte junctions. Recent reports indicating that oligodendrocytes also express Cx47 prompted the present studies of Cx47 localization and relationships to other glial connexins in mouse CNS. In view of the increasing number of connexins reported to interact directly with the scaffolding protein zonula occludens-1 (ZO-1), we investigated ZO-1 expression and Cx47/ZO-1 interaction capabilities in brain, spinal cord and Cx47-transfected HeLa cells. From counts of over 9000 oligodendrocytes labeled by immunofluorescence in various brain regions, virtually all of these cells were found to express Cx29, Cx32 and Cx47. Oligodendrocyte somata displayed robust Cx47-immunopositive puncta that were co-localized with punctate labeling for Cx32 and Cx43. By freeze-fracture replica immunogold labeling, Cx47 was abundant on the oligodendrocyte-side of oligodendrocyte/astrocyte gap junctions. By immunofluorescence, labeling for Cx47 along myelinated fibers was sparse in most brain regions, whereas Cx29 and Cx32 were previously found to be concentrated along these fibers. By immunogold labeling, Cx47 was found in numerous small gap junctions linking myelin to astrocytes, but not within deeper layers of myelin. Brain subcellular fractionation revealed a lack of Cx47 enrichment in myelin fractions, which nevertheless contained an enrichment of Cx32 and Cx29. Oligodendrocytes were immunopositive for ZO-1, and displayed almost total Cx47/ZO-1 co-localization. ZO-1 was found to co-immunoprecipitate with Cx47, and pull-down assays indicated binding of Cx47 to the second PDZ domain of ZO-1. Our results indicate widespread expression of Cx47 by oligodendrocytes, but with a distribution pattern in relative levels inverse to the abundance of Cx29 in myelin and paucity of Cx29 in oligodendrocyte somata. Further, our findings suggest a scaffolding and/or regulatory role of ZO-1 at the oligodendrocyte side of astrocyte-to-oligodendrocyte gap junctions.
Collapse
Affiliation(s)
- X. LI
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - A. V. IONESCU
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - B. D. LYNN
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - S. LU
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - N. KAMASAWA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - M. MORITA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - K. G. V. DAVIDSON
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - T. YASUMURA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J. E. RASH
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J. I. NAGY
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
- *Corresponding author. Tel: +1-204-789-3767; fax: +1-204-789-3934. E-mail address: (J. I. Nagy)
| |
Collapse
|
153
|
Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M. Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci U S A 2004; 101:12364-9. [PMID: 15297615 PMCID: PMC514481 DOI: 10.1073/pnas.0402044101] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Indexed: 11/18/2022] Open
Abstract
Recently, great interest has been shown in understanding the functional roles of specific gap junction proteins (connexins) in brain, lens, retina, and elsewhere. Some progress has been made by studying knockout mice with targeted connexin deletions. For example, such studies have implicated the gap junction protein Cx36 in synchronizing rhythmic activity of neurons in several brain regions. Although knockout strategies are informative, they can be problematic, because compensatory changes sometimes occur during development. Therefore, it would be extremely useful to have pharmacological agents that block specific connexins, without major effects on other gap junctions or membrane channels. We show that mefloquine, an antimalarial drug, is one such agent. It blocked Cx36 channels, expressed in transfected N2A neuroblastoma cells, at low concentrations (IC(50) approximately 300 nM). Mefloquine also blocked channels formed by the lens gap junction protein, Cx50 (IC(50) approximately 1.1 microM). However, other gap junctions (e.g., Cx43, Cx32, and Cx26) were only affected at concentrations 10- to 100-fold higher. To further examine the utility and specificity of this compound, we characterized its effects in acute brain slices. Mefloquine, at 25 microM, blocked gap junctional coupling between interneurons in neocortical slices, with minimal nonspecific actions. At this concentration, the only major side effect was an increase in spontaneous synaptic activity. Mefloquine (25 microM) caused no significant change in evoked excitatory or inhibitory postsynaptic potentials, and intrinsic cellular properties were also mostly unaffected. Thus, mefloquine is expected to be a useful tool to study the functional roles of Cx36 and Cx50.
Collapse
Affiliation(s)
- Scott J Cruikshank
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
154
|
Fuentealba P, Crochet S, Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M. Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo. Eur J Neurosci 2004; 20:111-9. [PMID: 15245484 PMCID: PMC2905213 DOI: 10.1111/j.1460-9568.2004.03462.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thalamic reticular (RE) neurons are crucially implicated in brain rhythms. Here, we report that RE neurons of adult cats, recorded and stained intracellularly in vivo, displayed spontaneously occurring spikelets, which are characteristic of central neurons that are coupled electrotonically via gap junctions. Spikelets occurred spontaneously during spindles, an oscillation in which RE neurons play a leading role, as well as during interspindle lulls. They were significantly different from excitatory postsynaptic potentials and also distinct from fast prepotentials that are presumably dendritic spikes generated synaptically. Spikelets were strongly reduced by halothane, a blocker of gap junctions. Multi-site extracellular recordings performed before, during and after administration of halothane demonstrated a role for electrical coupling in the synchronization of spindling activity within the RE nucleus. Finally, computational models of RE neurons predicted that gap junctions between these neurons could mediate the spread of low-frequency activity at great distances. These experimental and modeling data suggest that electrotonic coupling within the RE nucleus plays an important role in the generation and synchronization of low-frequency (spindling) activities in the thalamus.
Collapse
Affiliation(s)
- Pablo Fuentealba
- Laboratory of Neurophysiology, Faculty of Medicine, Laval University, Quebec City, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
155
|
Zhang XL, Zhang L, Carlen PL. Electrotonic coupling between stratum oriens interneurones in the intact in vitro mouse juvenile hippocampus. J Physiol 2004; 558:825-39. [PMID: 15194737 PMCID: PMC1665026 DOI: 10.1113/jphysiol.2004.065649] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Using the isolated juvenile (7-14 days) mouse whole hippocampus preparation, which contains intact complex local circuitry, 145 dual whole cell recordings were made from stratum oriens (s.o.) interneurones under infrared microscopy. In 11.7% of paired recordings, evidence for direct electrotonic coupling between the s.o. interneurones was obtained from the response of one interneurone to a long (400-600 ms) constant current pulse passed into the coupled interneurone. When specifically orienting the dual recordings in the transectional plane of the hippocampus, 18.5% of paired recordings showed electrotonic coupling. The coupling coefficient, estimated from averaged data, was 6.9 +/- 4.7%, ranging from 1.3 to 17.6%. The time constant of the electrotonically transmitted hyperpolarization was inversely related to the coupling coefficient between the two neurones. The electrotonic responses of one neurone to constant current pulses injected into the other coupled neurone were intermittent. Spikes in one of the coupled neurones were associated with small electrotonic EPSPs (spikelets) in the other coupled neurone, in those neuronal pairs with coupling coefficients greater than 10%. Failure of spikelet production following a spike in the coupled cell occurred 5-10% of the time. Electrotonic coupling and spikelets persisted in the presence of chemical synaptic transmission blockade by CNQX, APV and bicuculline, or in zero Ca(2+) perfusate, but were abolished by carbenoxolone (100 microm), a gap junctional blocker. These data confirm the existence of electrotonic coupling between s.o. interneurones, presumably via gap junctions located in dendrites.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
156
|
Degen J, Meier C, Van Der Giessen RS, Söhl G, Petrasch-Parwez E, Urschel S, Dermietzel R, Schilling K, De Zeeuw CI, Willecke K. Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice. J Comp Neurol 2004; 473:511-25. [PMID: 15116387 DOI: 10.1002/cne.20085] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Targeted deletion of the connexin36 (Cx36) gene in the mouse genome leads to visual transmission defects, weakened synchrony of rhythmic inhibitory potentials in the neocortex, and disruption of gamma-frequency network oscillations. We have generated transgenic mice in which a reporter protein consisting of the exon1 coded N-terminal part of Cx36 fused to beta-galactosidase (N36-beta-gal) is expressed instead of Cx36. Here, we have used these mice for a detailed analysis of the reporter gene expression. By beta-gal staining of adult retina, we found expression of the lacZ reporter gene in the ganglion cell layer, in two rows of the inner nuclear layer, and in the photoreceptor layer. In the brain, beta-gal staining was present in gamma-aminobutyric acid (GABA)ergic neurons of the cerebellar nuclei, in non-GABAergic neurons of the inferior olive, in mitral cells of the olfactory bulb, and in parvalbumin-positive cells of the cerebral cortex. Outside the central nervous system, N36-beta-gal signals were detected in insulin producing beta-cells of the pancreas and in the medulla of the adrenal gland of adult Cx36(+/del[LacZ]) mice. This expression pattern suggests that Cx36 fulfills functional roles not only in several types of neurons in the retina and central nervous system but also in excitable cells of the pancreas and adrenal gland.
Collapse
Affiliation(s)
- Joachim Degen
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, D-53117 Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
|
158
|
Altevogt BM, Paul DL. Four classes of intercellular channels between glial cells in the CNS. J Neurosci 2004; 24:4313-23. [PMID: 15128845 PMCID: PMC6729442 DOI: 10.1523/jneurosci.3303-03.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 02/03/2004] [Accepted: 03/09/2004] [Indexed: 11/21/2022] Open
Abstract
Astrocytes form extensive gap junctions with other astrocytes and with oligodendrocytes. Junctional communication between CNS glia is likely of critical importance because loss of the gap junction channel-forming proteins, connexins Cx32 and Cx47, result in severe demyelination. However, CNS glia express at least six connexins, and the cellular origins and relationships of these proteins have not been determined. We produced a Cx29 reporter mouse in which the connexin coding sequence was replaced with a histological marker, which was used to demonstrate that Cx29, Cx32, and Cx47 are expressed specifically in oligodendrocytes. To determine the relationships between astrocyte and oligodendrocyte connexins, we used double- and triple-immunofluorescence microscopy using semithin sections (<1 microm) of adult mouse spinal cord. Astrocytes form two distinct classes of gap junctions with each other; those composed of Cx26 and those composed of Cx43 and Cx30. In addition, astrocytes establish two classes of intercellular channels with oligodendrocytes, heterotypic Cx26-Cx32 channels and heterotypic Cx30/Cx43-Cx47 channels that may also be heteromeric. In contrast, Cx29 does not colocalize with any of the other five connexins. The data provide the first in vivo demonstration of heterotypic intercellular channels and reveal an unexpected complexity in the composition of glial gap junctions.
Collapse
Affiliation(s)
- Bruce M Altevogt
- Program in Neuroscience and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
159
|
Placantonakis DG, Bukovsky AA, Zeng XH, Kiem HP, Welsh JP. Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. Proc Natl Acad Sci U S A 2004; 101:7164-9. [PMID: 15103021 PMCID: PMC406483 DOI: 10.1073/pnas.0400322101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 03/16/2004] [Indexed: 11/18/2022] Open
Abstract
Inferior olive (IO) neurons are electrically coupled by cytosolic pores formed by the neuron-specific connexin 36 (Cx36). Electrical coupling in the IO figures prominently in current views about brain control of movement. However, a role for Cx36 in movement has been questioned and not definitively demonstrated. Previous reports have shown that embryonic deletion of the Cx36 gene resulted in almost complete loss of cytosolic and electrical coupling in the IO without an obvious deficit in movement, possibly due to developmental compensations in ionic conductances that can confound the approach of embryonic gene deletion. We used a replication-incompetent lentiviral vector to stably express a dominant-negative Cx36 mutant in the IO of adult rats. We show that interneuronal cytosolic coupling is severely reduced by the mutant Cx36, without effect on neuron morphology or electrical properties. Multisite electromyography revealed that blocking Cx36 in the IO impaired the coherence of muscle firing during harmaline tremor without affecting its rhythm. The data demonstrate that gap junction coupling within the IO mediated by Cx36 adds 10-20 ms of precision to the fine temporal coordination of muscle firing during movement.
Collapse
Affiliation(s)
- Dimitris G Placantonakis
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
160
|
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:113-37. [PMID: 15033583 DOI: 10.1016/j.bbamem.2003.10.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 01/25/2023]
Abstract
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Collapse
Affiliation(s)
- Sheriar G Hormuzdi
- Department of Clinical Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
161
|
Placantonakis DG, Bukovsky AA, Zeng XH, Kiem HP, Welsh JP. Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. Proc Natl Acad Sci U S A 2004. [PMID: 15103021 DOI: 10.1073/pnas.04003221010400322101[pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Inferior olive (IO) neurons are electrically coupled by cytosolic pores formed by the neuron-specific connexin 36 (Cx36). Electrical coupling in the IO figures prominently in current views about brain control of movement. However, a role for Cx36 in movement has been questioned and not definitively demonstrated. Previous reports have shown that embryonic deletion of the Cx36 gene resulted in almost complete loss of cytosolic and electrical coupling in the IO without an obvious deficit in movement, possibly due to developmental compensations in ionic conductances that can confound the approach of embryonic gene deletion. We used a replication-incompetent lentiviral vector to stably express a dominant-negative Cx36 mutant in the IO of adult rats. We show that interneuronal cytosolic coupling is severely reduced by the mutant Cx36, without effect on neuron morphology or electrical properties. Multisite electromyography revealed that blocking Cx36 in the IO impaired the coherence of muscle firing during harmaline tremor without affecting its rhythm. The data demonstrate that gap junction coupling within the IO mediated by Cx36 adds 10-20 ms of precision to the fine temporal coordination of muscle firing during movement.
Collapse
Affiliation(s)
- Dimitris G Placantonakis
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
162
|
Li X, Olson C, Lu S, Kamasawa N, Yasumura T, Rash JE, Nagy JI. Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1. Eur J Neurosci 2004; 19:2132-2146. [PMID: 15090040 PMCID: PMC1805788 DOI: 10.1111/j.l460-9568.2004.03283.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among the 20 members in the connexin family of gap junction proteins, only connexin36 (Cx36) is firmly established to be expressed in neurons and to form electrical synapses at widely distributed interneuronal gap junctions in mammalian brain. Several connexins have recently been reported to interact with the PDZ domain-containing protein zonula occludens-1 (ZO-1), which was originally considered to be associated only with tight junctions, but has recently been reported to associate with other structures including gap junctions in various cell types. Based on the presence of sequence corresponding to a putative PDZ binding motif in Cx36, we investigated anatomical relationships and molecular association of Cx36 with ZO-1. By immunofluorescence, punctate Cx36/ZO-1 colocalization was observed throughout the central nervous system of wild-type mice, whereas labelling for Cx36 was absent in Cx36 knockout mice, confirming the specificity of the anti-Cx36 antibodies employed. By freeze-fracture replica immunogold labelling, Cx36 and ZO-1 in brain were found colocalized within individual ultrastructurally identified gap junction plaques, although some plaques contained only Cx36 whereas others contained only ZO-1. Cx36 from mouse brain and Cx36-transfected HeLa cells was found to coimmunoprecipitate with ZO-1. Unlike other connexins that bind the second of the three PDZ domains in ZO-1, glutathione S-transferase-PDZ pull-down and mutational analyses indicated Cx36 interaction with the first PDZ domain of ZO-1, which required at most the presence of the four c-terminus amino acids of Cx36. These results demonstrating a Cx36/ZO-1 association suggest a regulatory and/or scaffolding role of ZO-1 at gap junctions that form electrical synapses between neurons in mammalian brain.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba, Canada R3E 3J7
| | - Carl Olson
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba, Canada R3E 3J7
| | - Shijun Lu
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba, Canada R3E 3J7
| | - Naomi Kamasawa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John E. Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba, Canada R3E 3J7
| |
Collapse
|
163
|
Li X, Olson C, Lu S, Kamasawa N, Yasumura T, Rash JE, Nagy JI. Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1. Eur J Neurosci 2004; 19:2132-46. [PMID: 15090040 PMCID: PMC1805788 DOI: 10.1111/j.0953-816x.2004.03283.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Among the 20 members in the connexin family of gap junction proteins, only connexin36 (Cx36) is firmly established to be expressed in neurons and to form electrical synapses at widely distributed interneuronal gap junctions in mammalian brain. Several connexins have recently been reported to interact with the PDZ domain-containing protein zonula occludens-1 (ZO-1), which was originally considered to be associated only with tight junctions, but has recently been reported to associate with other structures including gap junctions in various cell types. Based on the presence of sequence corresponding to a putative PDZ binding motif in Cx36, we investigated anatomical relationships and molecular association of Cx36 with ZO-1. By immunofluorescence, punctate Cx36/ZO-1 colocalization was observed throughout the central nervous system of wild-type mice, whereas labelling for Cx36 was absent in Cx36 knockout mice, confirming the specificity of the anti-Cx36 antibodies employed. By freeze-fracture replica immunogold labelling, Cx36 and ZO-1 in brain were found colocalized within individual ultrastructurally identified gap junction plaques, although some plaques contained only Cx36 whereas others contained only ZO-1. Cx36 from mouse brain and Cx36-transfected HeLa cells was found to coimmunoprecipitate with ZO-1. Unlike other connexins that bind the second of the three PDZ domains in ZO-1, glutathione S-transferase-PDZ pull-down and mutational analyses indicated Cx36 interaction with the first PDZ domain of ZO-1, which required at most the presence of the four c-terminus amino acids of Cx36. These results demonstrating a Cx36/ZO-1 association suggest a regulatory and/or scaffolding role of ZO-1 at gap junctions that form electrical synapses between neurons in mammalian brain.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba, Canada R3E 3J7
| | - Carl Olson
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba, Canada R3E 3J7
| | - Shijun Lu
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba, Canada R3E 3J7
| | - Naomi Kamasawa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John E. Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Ave, Winnipeg, Manitoba, Canada R3E 3J7
| |
Collapse
|
164
|
Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Söhl G, Willecke K, Ammermüller J, Weiler R. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci 2004; 24:3325-34. [PMID: 15056712 PMCID: PMC6730041 DOI: 10.1523/jneurosci.5598-03.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/22/2004] [Accepted: 01/23/2004] [Indexed: 11/21/2022] Open
Abstract
Transgenic technology, immunocytochemistry, electrophysiology, intracellular injection techniques, and reverse transcription PCR were combined to study the expression of neuronal connexin36 (Cx36) in the outer plexiform layer of the mouse retina. Transgenic animals expressed either a fusion protein of full-length Cx36 with enhanced green fluorescent protein (EGFP) attached at the C terminus or exon 2 of Cx36 was replaced bybeta-galactosidase (beta-gal). In the outer nuclear layer,beta-gal-positive cell bodies, which were confined to the most distal region close to the outer limiting membrane, displayed immunoreactivity against S-cone opsin. Cx36-EGFP puncta colocalized with cone pedicles, which were visualized by intracellular injection. In reverse transcriptase PCR experiments, Cx36 mRNA was never detected in samples of rods harvested from the outer nuclear layer. These results strongly suggest expression of Cx36 in cones but not in rods. In vertical sections, Cx36 expression in the vitreal part of the outer plexiform layer was characterized by a patchy distribution. Immunocytochemistry with antibodies against the neurokinin-3 receptor and the potassium channel HCN4 (hyperpolarization-activated cyclic nucleotide-gated potassium channel) displayed clusters of the Cx36 label on the dendrites of OFF-cone bipolar cells. In horizontal sections, these clusters of Cx36 appeared as round or oval-shaped groups of individual puncta, and they were always aligned with the base of cone pedicles. Double-labeling experiments and single-cell reverse transcriptase PCR ruled out expression of Cx36 in horizontal cells and rod bipolar cells. At light microscopic resolution, we found close association of Cx36-EGFP with the AMPA-type glutamate receptor subunit GluR1 but not with GluR2-GluR4, the kainate receptor subunit GluR5, or the metabotropic glutamate receptor mGluR6.
Collapse
Affiliation(s)
- Andreas Feigenspan
- Institute of Biology, University of Oldenburg, D-26111 Oldenburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Certain neurons in the mammalian brain have long been known to be joined by gap junctions, which are the most common type of electrical synapse. More recently, cloning of neuron-specific connexins, increased capability of visualizing cells within brain tissue, labeling of cell types by transgenic methods, and generation of connexin knockouts have spurred a rapid increase in our knowledge of the role of gap junctions in neural activity. This article reviews the many subtleties of transmission mediated by gap junctions and the mechanisms whereby these junctions contribute to synchronous firing.
Collapse
Affiliation(s)
- Michael V L Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
166
|
Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72:111-27. [PMID: 15063528 DOI: 10.1016/j.pneurobio.2004.02.001] [Citation(s) in RCA: 350] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 02/04/2004] [Indexed: 12/21/2022]
Abstract
Astrocytes, the most abundant glial cell types in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions can critically influence neuronal survival. Recent studies show that astrocyte apoptosis may contribute to pathogenesis of many acute and chronic neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease and Parkinson's disease. We found that incubation of cultured rat astrocytes in a Ca(2+)-containing medium after exposure to a Ca(2+)-free medium causes an increase in intracellular Ca(2+) concentration followed by apoptosis, and that NF-kappa B, reactive oxygen species, and enzymes such as calpain, xanthine oxidase, calcineurin and caspase-3 are involved in reperfusion-induced apoptosis. Furthermore, we demonstrated that heat shock protein, mitogen-activated protein/extracellular signal-regulated kinase, phosphatidylinositol-3 kinase and cyclic GMP phosphodiesterase are target molecules for anti-apoptotic drugs. This review summarizes (1) astrocytic functions in neuroprotection, (2) current evidence of astrocyte apoptosis in both in vitro and in vivo studies including its molecular pathways such as Ca(2+) overload, oxidative stress, NF-kappa B activation, mitochondrial dysfunction, endoplasmic reticulum stress, and protease activation, and (3) several drugs preventing astrocyte apoptosis. As a whole, this article provides new insights into the potential role of astrocytes as targets for neuroprotection. In addition, the advance in the knowledge of molecular mechanisms of astrocyte apoptosis may lead to the development of novel therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | |
Collapse
|
167
|
Honma S, De S, Li D, Shuler CF, Turman JE. Developmental regulation of connexins 26, 32, 36, and 43 in trigeminal neurons. Synapse 2004; 52:258-71. [PMID: 15103692 DOI: 10.1002/syn.20022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transition from sucking to chewing during postnatal development is accompanied by changes in masticatory muscle activity patterns. We previously demonstrated that changes in numerous parameters of chemical synapses among neurons, and intrinsic membrane properties of neurons, comprising brainstem oral-motor circuits are coincident with changes in masticatory muscle activity patterns. Considering recent findings that implicate a role for gap junctions in early locomotor and respiratory behaviors, our present study focuses on the developmental regulation of connexin proteins in trigeminal neurons as a first step in understanding a role for gap junctions in developing oral-motor circuits used for ingestive behaviors. We conducted immunohistochemistry studies to examine connexin (Cx) 26, 32, 36, and 43 expression in trigeminal motor and mesencephalic trigeminal nuclei during postnatal development at the light and electron microscopic levels. Postnatal days (P) 1, 6, 14, 21, and adult mice were used. Cx32, 36, and 43 expression was developmentally regulated in the trigeminal motor nucleus, while Cx26 expression remained high throughout postnatal development. In the mesencephalic trigeminal nucleus, Cx26, 32, and 43 expression was intense throughout development, with only Cx36 showing a developmental regulation. Ultrastructural examination of neonatal trigeminal motoneurons and mesencephalic trigeminal neurons revealed connexin expression in cell membranes, cytoplasm, and cell nuclei (Cx43, Cx32). Our results show that connexin proteins are differentially regulated between trigeminal motoneurons and mesencephalic trigeminal neurons during development, and suggest a possible role for gap junctions in the development of trigeminal neurons and the function and maturation of oral-motor circuits.
Collapse
Affiliation(s)
- Shiho Honma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
168
|
Traub RD, Michelson-Law H, Bibbig AEJ, Buhl EH, Whittington MA. Gap Junctions, Fast Oscillations and the Initiation of Seizures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:110-22. [PMID: 15250590 DOI: 10.1007/978-1-4757-6376-8_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roger D Traub
- Department of Pshysiology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | | | | | | |
Collapse
|
169
|
Zukin RS, Jover T, Yokota H, Calderone A, Simionescu M, Lau CG. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50049-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
170
|
Abstract
Many neurons in the mammalian central nervous system communicate through electrical synapses, defined here as gap junction-mediated connections. Electrical synapses are reciprocal pathways for ionic current and small organic molecules. They are often strong enough to mediate close synchronization of subthreshold and spiking activity among clusters of neurons. The most thoroughly studied electrical synapses occur between excitatory projection neurons of the inferior olivary nucleus and between inhibitory interneurons of the neocortex, hippocampus, and thalamus. All these synapses require the gap junction protein connexin36 (Cx36) for robust electrical coupling. Cx36 appears to interconnect neurons exclusively, and it is expressed widely along the mammalian neuraxis, implying that there are undiscovered electrical synapses throughout the central nervous system. Some central neurons may be electrically coupled by other connexin types or by pannexins, a newly described family of gap junction proteins. Electrical synapses are a ubiquitous yet underappreciated feature of neural circuits in the mammalian brain.
Collapse
Affiliation(s)
- Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
171
|
Rash JE, Pereda A, Kamasawa N, Furman CS, Yasumura T, Davidson KGV, Dudek FE, Olson C, Li X, Nagy JI. High-resolution proteomic mapping in the vertebrate central nervous system: close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO-1). JOURNAL OF NEUROCYTOLOGY 2004; 33:131-51. [PMID: 15173637 PMCID: PMC1892218 DOI: 10.1023/b:neur.0000029653.34094.0b] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Combined confocal microscopy and freeze-fracture replica immunogold labeling (FRIL) were used to examine the connexin identity at electrical synapses in goldfish brain and rat retina, and to test for "co-localization" vs. "close proximity" of connexins to other functionally interacting proteins in synapses of goldfish and mouse brain and rat retina. In goldfish brain, confocal microscopy revealed immunofluorescence for connexin35 (Cx35) and NMDA-R1 (NR1) glutamate receptor protein in Mauthner Cell/Club Ending synapses. By FRIL double labeling, NR1 glutamate receptors were found in clusters of intramembrane particles in the postsynaptic membrane extraplasmic leaflets, and these distinctive postsynaptic densities were in close proximity (0.1-0.3 microm) to neuronal gap junctions labeled for Cx35, which is the fish ortholog of connexin36 (Cx36) found at neuronal gap junctions in mammals. Immunogold labeling for Cx36 in adult rat retina revealed abundant gap junctions, including several previously unrecognized morphological types. As in goldfish hindbrain, immunogold double labeling revealed NR1-containing postsynaptic densities localized near Cx36-labeled gap junction in rat inferior olive. Confocal immunofluorescence microscopy revealed widespread co-localization of Cx36 and ZO-1, particularly in the reticular thalamic nucleus and amygdala of mouse brain. By FRIL, ZO-1 immunoreactivity was co-localized with Cx36 at individual gap junction plaques in rat retinal neurons. As cytoplasmic accessory proteins, ZO-1 and possibly related members of the membrane-associated guanylate kinase (MAGUK) family represent scaffolding proteins that may bind to and regulate the activity of many neuronal gap junctions. These data document the power of combining immunofluorescence confocal microscopy with FRIL ultrastructural imaging and immunogold labeling to determine the relative proximities of proteins that are involved in short- vs. intermediate-range molecular interactions in the complex membrane appositions at synapses between neurons.
Collapse
Affiliation(s)
- J E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Martin D, Tawadros T, Meylan L, Abderrahmani A, Condorelli DF, Waeber G, Haefliger JA. Critical role of the transcriptional repressor neuron-restrictive silencer factor in the specific control of connexin36 in insulin-producing cell lines. J Biol Chem 2003; 278:53082-9. [PMID: 14565956 DOI: 10.1074/jbc.m306861200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Connexin36 (Cx36) is specifically expressed in neurons and in pancreatic beta-cells. Cx36 functions as a critical regulator of insulin secretion and content in beta-cells. In order to identify the molecular mechanisms that control the beta-cell expression of Cx36, we initiated the characterization of the human 5' regulatory region of the CX36 gene. A 2043-bp fragment of the human CX36 promoter was identified from a human BAC library and fused to a luciferase reporter gene. This promoter region was sufficient to confer specific expression to the reporter gene in insulin-secreting cell lines. Within this 5' regulatory region, a putative neuron-restrictive silencer element conserved between rodent and human species was recognized and binds the neuron-restrictive silencing factor (NRSF/REST). This factor is not expressed in insulin-secreting cells and neurons; it functions as a potent repressor through the recruitment of histone deacetylase to the promoter of neuronal genes. The NRSF-mediated repression of Cx36 in HeLa cells was abolished by trichostatin A, confirming the functional importance of histone deacetylase activity. Ectopic expression, by viral gene transfer, of NRSF/REST in different insulin-secreting beta-cell lines induced a marked reduction in Cx36 mRNA and protein content. Moreover, mutations in the Cx36 neuron-restrictive silencer element relieved the low transcriptional activity of the human CX36 promoter observed in HeLa cells and in INS-1 cells expressing NRSF/REST. The data showed that cx36 gene expression in insulin-producing beta-cell lines is strictly controlled by the transcriptional repressor NRSF/REST indicating that Cx36 participates to the neuronal phenotype of the pancreatic beta-cells.
Collapse
Affiliation(s)
- David Martin
- Department of Internal Medicine, University Hospital, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
173
|
Solomon IC. Connexin36 distribution in putative CO2-chemosensitive brainstem regions in rat. Respir Physiol Neurobiol 2003; 139:1-20. [PMID: 14637306 DOI: 10.1016/j.resp.2003.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent work from our laboratory has demonstrated that the gap junction proteins connexin26 (Cx26) and connexin32 (Cx32) are expressed in neurons in putative CO2-chemosensitive brainstem regions in both neonatal and adult rats. Whether the recently identified neuron-specific gap junction protein connexin36 (Cx36) is also present in these brainstem regions remains to be determined. Therefore, in the current experiments, immunoblot and immunohistochemical protocols were used to investigate the regional distribution and cellular localization of Cx36 in putative CO2-chemosensitive brainstem regions in both neonatal and adult rats. Immunoblot analyses revealed Cx36 expression in putative CO2-chemosensitive brainstem regions in each of the age groups examined, although both regional and developmental differences in the relative expression levels were detected. Immunohistochemical analyses confirmed Cx36 expression in neurons in each of the putative CO2-chemosensitive brainstem regions and revealed both somal and dendritic labeling patterns. These findings provide additional morphological evidence supporting the potential for gap junctional communication in these regions in both neonatal and adult rats. We propose that the gap junction protein Cx36 also contributes to the neuroanatomical substrate for gap junctional communication, which is hypothesized to play a role in central CO2 chemoreception.
Collapse
Affiliation(s)
- Irene C Solomon
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Basic Science Tower, Health Science Center, Level 6, Rm. 140, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
174
|
Liu XB, Jones EG. Fine structural localization of connexin-36 immunoreactivity in mouse cerebral cortex and thalamus. J Comp Neurol 2003; 466:457-67. [PMID: 14566942 DOI: 10.1002/cne.10901] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mounting physiological evidence for low-resistance electrical coupling between thalamic and cortical neurons contrasts with a lack of morphological data on gap junctions in thalamus and cortex. Connexin-36 is a neuronally specific protein associated with low-resistance gap junctions in the central nervous system. Connexin-36 localization was studied in the mouse somatosensory cortex and thalamus by using immunocytochemistry and immunoelectron microscopy. Expression of connexin-36 immunoreactivity is widespread in the forebrain and significantly enhanced in the barrel cortex and thalamic reticular nucleus during the second postnatal week, but it extends to other thalamic nuclei as well. At the electron microscopic level, pre- and postembedding immunogold labeling revealed that 70-76% of connexin-36-immunolabeled particles were localized at focal sites on apposed plasma membranes of cortical and thalamic dendrites; approximately 5% of the particles were associated with parasynaptic membranes; but on no occasion could overt, morphologically identifiable gap junctions be demonstrated in association with connexin-36 immunoreactivity. The widespread distribution of focal concentrations of connexin-36 subunits could provide a basis for the electrical coupling that exists between cortical and reticular thalamic neurons, but morphologically definable gap junctions may be too small to be adequately visualized by conventional immunoelectron microscopy.
Collapse
Affiliation(s)
- Xiao-Bo Liu
- Center for Neuroscience, University of California, Davis, California 95616, USA
| | | |
Collapse
|
175
|
LeBeau FEN, Traub RD, Monyer H, Whittington MA, Buhl EH. The role of electrical signaling via gap junctions in the generation of fast network oscillations. Brain Res Bull 2003; 62:3-13. [PMID: 14596887 DOI: 10.1016/j.brainresbull.2003.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, several key studies have shed new light on the roles of electrical signaling via gap junctions between neurons in the adult brain. In particular, it is now clear that electrical signaling is important, if not essential, for the generation of a wide variety of different network interactions which may underlie rhythmic activity, of cognitive relevance, seen in EEG recordings. Two types of such rhythmic activity observed in the hippocampus both in vivo and in vitro are gamma frequency (30-80Hz) oscillations and ultrafast (>80Hz) "ripple" oscillations. Several lines of work, discussed here, show that gap junction-mediated signaling plays a central role in the generation of both these types of network activity. Recent work also now suggests that a number of different, anatomically discrete, gap junction-mediated networks may exist which could both function and be modulated independently.
Collapse
Affiliation(s)
- Fiona E N LeBeau
- School of Biomedical Sciences, University of Leeds, LS2 9NQ, Leeds, UK.
| | | | | | | | | |
Collapse
|
176
|
Fukuda T, Kosaka T. Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience 2003; 120:5-20. [PMID: 12849736 DOI: 10.1016/s0306-4522(03)00328-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parvalbumin (PV)-containing GABAergic neurons in the hippocampus form dual networks linked by both dendrodendritic gap junctions and mutual inhibitory synapses. Recent physiological studies have demonstrated similar functional connectivity among cortical GABAergic neurons, but the corresponding structures have not been fully analyzed at the electron microscopic level. In this study we examined detailed ultrastructural features of gap junctions between PV neurons in the mature neocortex. Light microscopic observations and confocal laser scanning microscopy revealed frequent dendrodendritic contacts between PV neurons. Electron microscopic analysis provided direct morphological evidence for the existence of gap junctions between 22 pairs of PV-immunoreactive dendrites in the visual, auditory, and somatosensory cortices. Their ultrastructural features that were characteristic of immunolabeled profiles were consistent with the general structure of gap junctions. In one case a gap junction coexisted with a dendrodendritic chemical synapse, making a mixed synapse. Importantly, we also encountered a gap junction between PV positive and negative, presumptive non-principal cell-derived, dendrites. Quantitative analysis was made in 16 pairs of PV positive dendrites forming gap junctions in the infragranular layers of the somatosensory cortex. Diameters of these dendrites ranged from 0.3 to 2.7 microm, suggesting diverse locations of gap junctions along the proximal-distal axis of dendritic trees, but the majority (81%) were less than 1 microm. The mean size of gap junctions along apposing membranes was 0.22+/-0.09 microm. By using this size, the theoretical value of a junctional conductance was estimated to be 2.1-5.3 nS. Dendrites of PV neurons in the infragranular layers of the somatosensory cortex were reconstructed light microscopically and the sites of contacts with other PV neurons were mapped. Although these contacts do not necessarily imply gap junctional coupling, their number (5.3+/-2.3 per cell, n=11) suggested the degree of connectivity of less than 10 coupling from single PV neurons with others. Sholl analysis revealed that only 38% of their dendrites occurred within 200 microm from the soma. The present study demonstrated detailed ultrastructural features of gap junctions between mature cortical PV neurons. These features will facilitate not only identification of gap junctions in variously labeled neurons but also analysis of their functional aspects by enabling theoretical estimate of their junctional conductances.
Collapse
Affiliation(s)
- T Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
177
|
Condorelli DF, Trovato-Salinaro A, Mudò G, Mirone MB, Belluardo N. Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal cells. Eur J Neurosci 2003; 18:1807-27. [PMID: 14622215 DOI: 10.1046/j.1460-9568.2003.02910.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The identification of connexins (Cxs) expressed in neuronal cells represents a crucial step for understanding the direct communication between neurons and between neuron and glia. In the present work, using a double-labelling method combining in situ hybridization for Cx mRNAs with immunohistochemical detection for neuronal markers, we provide evidence that, among cerebral connexins (Cx26, Cx32, Cx36, Cx37, Cx40, Cx43, Cx45 and Cx47), only Cx45 and Cx36 mRNAs are localized in neuronal cells in both developing and adult rat brain. In order to establish whether connexin expression is influenced in vivo by abnormal neuronal activity, we examined the short-term effects of kainate-induced seizures. The results revealed an unexpected expression of Cx26 and Cx45 mRNA in neuronal cells undergoing apoptotic cell death in the CA3-CA4, in the hilus of the hippocampus and in other brain regions involved in seizure-induced lesion. However, the expression of Cx26 and Cx45 mRNAs was not associated with detectable expression of corresponding proteins as evaluated by immunohistochemistry with specific antibodies. Moreover, in the same brain regions Cx32 and Cx43 were up-regulated in non-neruronal cells whereas the neuronal Cx36 was down-regulated. Taken together the present results provide novel information regarding the specific subpopulation of neurons expressing Cx45 and raise the question of the meaning of connexin mRNA expression in the neuronal apoptotic process.
Collapse
Affiliation(s)
- Daniele F Condorelli
- Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
178
|
Lin JY, van Wyk M, Bowala TK, Teo MY, Lipski J. Dendritic projections and dye-coupling in dopaminergic neurons of the substantia nigra examined in horizontal brain slices from young rats. J Neurophysiol 2003; 90:2531-5. [PMID: 12815027 DOI: 10.1152/jn.00020.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the rostro-caudal dendritic spread of striatally projecting dopaminergic neurons of the Substantia Nigra pars compacta (SNc) and investigated the presence of dye-coupling after labeling these cells with a mixture of lucifer yellow (LY) and neurobiotin (NB) or with LY alone. Whole cell recordings were made from horizontal brain slices (400 microm) obtained from P5-P20 rats. SNc neurons retrogradely labeled with Fluoro-Gold and located in the region containing tyrosine hydroxylase-immunoreactive cells displayed Ih current and other properties characteristic of SNc neurons. To prevent extracellular leakage, dyes were introduced into patch pipettes after the establishment of whole cell configuration, and cells were filled under visual control. In contrast to previous studies conducted in coronal sections that identified dendritic projections of SNc neurons mainly in the medio-lateral and ventral directions, almost all neurons labeled in our study (53/54) additionally displayed a large rostro-caudal dendritic span (649 +/- 219 microm). Dye-coupling between SNc neurons was not observed under basal conditions, in the presence of gap junction "openers" (forskolin, trimethylamine), or after neurons were filled with LY using sharp intracellular microelectrodes. As a "positive control," dye-coupling was demonstrated in four hippocampal dentate gyrus neurons that were filled using the same patch pipette technique. In addition, none of the tested SNc cells (n = 12) showed expression of connexin 36 (the "neuronal" connexin) when tested with single-cell RT-PCR. In conclusion, this study revealed extensive rostro-caudal dendritic projections of SNc neurons. Under our in vitro conditions, no evidence was found for dye-coupling among these neurons.
Collapse
Affiliation(s)
- John Y Lin
- Division of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, Private Bag 92-019, New Zealand
| | | | | | | | | |
Collapse
|
179
|
Rouach N, Segal M, Koulakoff A, Giaume C, Avignone E. Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions. J Physiol 2003; 553:729-45. [PMID: 14514879 PMCID: PMC2343628 DOI: 10.1113/jphysiol.2003.053439] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Spontaneous activity in the central nervous system is strongly suppressed by blockers of gap junctions (GJs), suggesting that GJs contribute to network activity. However, the lack of selective GJ blockers prohibits the determination of their site of action, i.e. neuronal versus glial. Astrocytes are strongly coupled through GJs and have recently been shown to modulate synaptic transmission, yet their role in neuronal network activity was not analysed. The present study investigated the effects and site of action of the GJ blocker, carbenoxolone (CBX), on neuronal network activity. To this end, we used cultures of hippocampal or cortical neurons, plated on astrocytes. In these cultures neurons display spontaneous synchronous activity and GJs are found only in astrocytes. CBX induced in these neurons a reversible suppression of spontaneous action potential discharges, synaptic currents and synchronised calcium oscillations. Moreover, CBX inhibited oscillatory activity induced by the GABAA antagonist, bicuculline. These effects were not due to blockade of astrocytic GJs, since they were not mimicked nor occluded by endothelin-1 (ET-1), a peptide known to block astrocytic GJs. Also, these effects were still present in co-cultures of wild-type neurons plated on astrocytes originating from connexin-43 (Cx43) knockout mice, and in neuronal cultures which contain few isolated astrocytes. CBX was not likely to exert its effect through neuronal GJs either, as immunostaining for major neuronal connexins (Cx) as well as dye or electrical coupling, were not detected in the different models of cultured neurons examined. Finally while CBX (at 100 microM) did not modify presynaptic transmitter release and postsynaptic responses to glutamate, it did cause an increase in the action potential threshold and strongly decreased the firing rate in response to a sustained depolarising current. These data demonstrate that CBX does not exert its action on network activity of cultured neurons through astrocytic GJs and suggest that it has direct effects on neurons, not involving GJs.
Collapse
Affiliation(s)
- N Rouach
- Department of Neurobiology, The Weizmann Institute, Rehovot, 76100 Israel
| | | | | | | | | |
Collapse
|
180
|
Nagy JI, Ionescu AV, Lynn BD, Rash JE. Connexin29 and connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. J Comp Neurol 2003; 464:356-70. [PMID: 12900929 PMCID: PMC1859856 DOI: 10.1002/cne.10797] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cellular localization, relation to other glial connexins (Cx30, Cx32, and Cx43), and developmental expression of Cx29 were investigated in the mouse central nervous system (CNS) with an anti-Cx29 antibody. Cx29 was enriched in subcellular fractions of myelin, and immunofluorescence for Cx29 was localized to oligodendrocytes and myelinated fibers throughout the brain and spinal cord. Oligodendrocyte somata displayed minute Cx29-immunopositive puncta around their periphery and intracellularly. In developing brain, Cx29 levels increased during the first few postnatal weeks and were highest in the adult brain. Immunofluorescence labeling for Cx29 in oligodendrocyte somata was intense at young ages and was dramatically shifted in localization primarily to myelinated fibers in mature CNS. Labeling for Cx32 also was localized to oligodendrocyte somata and myelin and absent in Cx32 knockout mice. Cx29 and Cx32 were minimally colocalized on oligodendrocytes somata and partly colocalized along myelinated fibers. At gap junctions on oligodendrocyte somata, Cx43/Cx32 and Cx30/Cx32 were strongly associated, but there was minimal association of Cx29 and Cx43. Cx32 was very sparsely associated with astrocytic connexins along myelinated fibers. With Cx26, Cx30, and Cx43 expressed in astrocytes and Cx29, Cx32, and Cx47 expressed in oligodendrocytes, the number of connexins localized to gap junctions of glial cells is increased to six. The results suggested that Cx29 in mature CNS contributes minimally to gap junctional intercellular communication in oligodendrocyte cell bodies but rather is targeted to myelin, where it, with Cx32, may contribute to connexin-mediated communication between adjacent layers of uncompacted myelin.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3J7, Canada.
| | | | | | | |
Collapse
|
181
|
McLachlan E, White TW, Ugonabo C, Olson C, Nagy JI, Valdimarsson G. Zebrafish Cx35: cloning and characterization of a gap junction gene highly expressed in the retina. J Neurosci Res 2003; 73:753-64. [PMID: 12949901 DOI: 10.1002/jnr.10712] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The vertebrate connexin gene family encodes protein subunits of gap junction channels, which provide a route for direct intercellular communication. Consequently, gap junctions play a vital role in many developmental and homeostatic processes. Aberrant functioning of gap junctions is implicated in many human diseases. Zebrafish are an ideal vertebrate model to study development of the visual system as they produce transparent embryos that develop rapidly, thereby facilitating morphological and behavioral testing. In this study, zebrafish connexin35 has been cloned from a P1 artificial chromosome (PAC) library. Sequence analysis shows a high degree of similarity to the Cx35/36 orthologous group, which are expressed primarily in nervous tissue, including the retina. The gene encodes a 304-amino acid protein with a predicted molecular weight of approximately 35 kDa. Injection of zebrafish Cx35 RNA into paired Xenopus oocytes elicited intercellular electrical coupling with weak voltage sensitivity. In development, Cx35 is first detectable by Northern analysis and RT-PCR, at 2 days post-fertilization (2 dpf), and in the adult it is expressed in the brain and retina. Immunohistochemical analysis revealed that the Cx35 protein is expressed in two sublaminae of the inner plexiform layer of the adult retina. A similar pattern was seen in the 4 and 5 dpf retina, but no labeling was detected in the retina of earlier embryos.
Collapse
|
182
|
Samoilova M, Li J, Pelletier MR, Wentlandt K, Adamchik Y, Naus CC, Carlen PL. Epileptiform activity in hippocampal slice cultures exposed chronically to bicuculline: increased gap junctional function and expression. J Neurochem 2003; 86:687-99. [PMID: 12859682 DOI: 10.1046/j.1471-4159.2003.01893.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic (18 h) exposure of cultured hippocampal slices to the type-A GABA receptor blocker, bicuculline methiodide (BMI) 10 micro m increased the levels of connexin 43 (Cx43) and connexin 32 (Cx32) mRNAs, but not connexin 26 and connexin 36, as demonstrated by RNase protection assays. The levels of Cx43 and Cx32 proteins in membrane fractions detected by western blotting were also significantly increased. Immunoblotting indicated that BMI also promoted a significant expression of the transcription protein c-fos. The rate of fluorescence recovery after photobleaching, an index of gap junctional coupling, was also significantly increased, whereas it was blocked by the gap junctional blocker, carbenoxolone (100 micro m). Extracellular recordings in CA1 stratum pyramidale, performed in BMI-free solution, demonstrated that BMI-exposed cultures possessed synaptic responses characteristic of epileptiform discharges: (i) significantly greater frequency of spontaneous epileptiform discharges, (ii) post-synaptic potentials with multiple population spikes, and (iii) significantly longer duration of primary afterdischarges. Carbenoxolone (100 micro m), but not its inactive analog, oleanolic acid (100 micro m), reversibly inhibited spontaneous and evoked epileptiform discharges. The findings of BMI-induced parallel increases in levels of gap junction expression and function, and the increase in epileptiform discharges, which were sensitive to gap junctional blockers, are consistent with the hypothesis that increased gap junctional communication plays an intrinsic role in the epileptogenic process.
Collapse
Affiliation(s)
- Marina Samoilova
- Bloorview Epilepsy Research Laboratory, Division of Cellular and Molecular Biology, Toronto Western Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
183
|
Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 2003. [PMID: 12805309 DOI: 10.1523/jneurosci.23-11-04700.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compensatory mechanisms after genetic manipulations have been documented extensively for the nervous system. In many cases, these mechanisms involve genetic regulation at the transcription or expression level of existing isoforms. We report a novel mechanism by which single neurons compensate for changes in network connectivity by retuning their intrinsic electrical properties. We demonstrate this mechanism in the inferior olive, in which widespread electrical coupling is mediated by abundant gap junctions formed by connexin 36 (Cx36). It has been shown in various mammals that this electrical coupling supports the generation of subthreshold oscillations, but recent work revealed that rhythmic activity is sustained in knock-outs of Cx36. Thus, these results raise the question of whether the olivary oscillations in Cx36 knock-outs simply reflect the status of wild-type neurons without gap junctions or the outcome of compensatory mechanisms. Here, we demonstrate that the absence of Cx36 results in thicker dendrites with gap-junction-like structures with an abnormally wide interneuronal gap that prevents electrotonic coupling. The mutant olivary neurons show unusual voltage-dependent oscillations and an increased excitability that is attributable to a combined decrease in leak conductance and an increase in voltage-dependent calcium conductance. Using dynamic-clamp techniques, we demonstrated that these changes are sufficient to transform a wild-type neuron into a knock-out-like neuron. We conclude that the absence of Cx36 in the inferior olive is not compensated by the formation of other gap-junction channels but instead by changes in the cytological and electroresponsive properties of its neurons, such that the capability to produce rhythmic activity is maintained.
Collapse
|
184
|
Pereda A, O'Brien J, Nagy JI, Smith M, Bukauskas F, Davidson KGV, Kamasawa N, Yasumura T, Rash JE. Short-range functional interaction between connexin35 and neighboring chemical synapses. CELL COMMUNICATION & ADHESION 2003; 10:419-23. [PMID: 14681051 PMCID: PMC1803252 DOI: 10.1080/15419060390263254] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Auditory afferents terminating as mixed, electrical, and chemical, synapses on the goldfish Mauthner cells constitute an ideal experimental model to study the properties of gap junctions in the nervous system as well as to explore possible functional interactions with the other major form of interneuronal communication--chemically mediated synapses. By combining confocal microscopy and freeze-fracture replica immunogold labeling (FRIL), we found that gap junctions at these synapses contain connexin35 (Cx35), the fish ortholog of the neuron-specific human and mouse connexin36 (Cx36). Conductance of gap junction channels at these endings is known to be dynamically modulated by the activity of their co-localized chemically mediated glutamatergic synapses. By using simultaneous pre- and postsynaptic recordings at these single terminals, we demonstrate that such functional interaction takes place in the same ending, within a few micrometers. Accordingly, we also found evidence by confocal and FRIL double-immunogold labeling that the NR1 subunit of the NMDA glutamate receptor, proposed to be a key regulatory element, is present at postsynaptic densities closely associated with gap junction plaques containing Cx35. Given the widespread distribution of Cx35- and Cx36-mediated electrical synapses and glutamatergic synapses, our data suggest that the local functional interactions observed at these identifiable junctions may also apply to other electrical synapses, including those in mammalian brain.
Collapse
Affiliation(s)
- A Pereda
- Department of Neuroscience, Albert Einstein College of Medicine, NY 10465, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Theis M, Söhl G, Speidel D, Kühn R, Willecke K. Connexin43 is not expressed in principal cells of mouse cortex and hippocampus. Eur J Neurosci 2003; 18:267-74. [PMID: 12887408 DOI: 10.1046/j.1460-9568.2003.02740.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous immunofluorescence analyses in mice and rats showed a mainly astrocytic expression of the gap junction protein connexin43 (Cx43) in brain. However, in situ hybridization of murine brain sections suggested strong expression of Cx43 mRNA in hippocampal and cortical pyramidal neurons and Purkinje cells. These findings contrast with recent immunoelectron microscopic studies that excluded prominent Cx43 protein expression in neurons. Both contrasting results could be explained by post-transcriptional control mechanisms. Here we demonstrate by conditional replacement of the Cx43 coding region by a lacZ reporter gene, mimicking transcriptional activity of the Cx43 gene, that Cx43 is not expressed in principal cells of murine brain. This histochemical approach used is not prone to cross-reactivity of mRNA probes or antibodies. Furthermore, we show that in situ hybridization signals, suggested to be specific for Cx43 in mouse neurons, are retained even when the Cx43 coding DNA in neurons is removed by cre-mediated deletion. Our results confirm the previous findings of a mainly astrocytic expression of Cx43 in adult mouse brain and underscore the importance of connexin-deficient mice as controls for in situ hybridization studies. We found no evidence for post-transcriptional control of the Cx43 gene in principal neurons. Thus, the synchronized activity of neuronal networks cannot depend on Cx43 containing gap junctions in these cells.
Collapse
Affiliation(s)
- Martin Theis
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, Römerstrasse 164, D-53117 Bonn, Germany
| | | | | | | | | |
Collapse
|
186
|
De Zeeuw CI, Chorev E, Devor A, Manor Y, Van Der Giessen RS, De Jeu MT, Hoogenraad CC, Bijman J, Ruigrok TJH, French P, Jaarsma D, Kistler WM, Meier C, Petrasch-Parwez E, Dermietzel R, Sohl G, Gueldenagel M, Willecke K, Yarom Y. Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J Neurosci 2003; 23:4700-11. [PMID: 12805309 PMCID: PMC6740782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Revised: 03/17/2003] [Accepted: 03/26/2003] [Indexed: 03/03/2023] Open
Abstract
Compensatory mechanisms after genetic manipulations have been documented extensively for the nervous system. In many cases, these mechanisms involve genetic regulation at the transcription or expression level of existing isoforms. We report a novel mechanism by which single neurons compensate for changes in network connectivity by retuning their intrinsic electrical properties. We demonstrate this mechanism in the inferior olive, in which widespread electrical coupling is mediated by abundant gap junctions formed by connexin 36 (Cx36). It has been shown in various mammals that this electrical coupling supports the generation of subthreshold oscillations, but recent work revealed that rhythmic activity is sustained in knock-outs of Cx36. Thus, these results raise the question of whether the olivary oscillations in Cx36 knock-outs simply reflect the status of wild-type neurons without gap junctions or the outcome of compensatory mechanisms. Here, we demonstrate that the absence of Cx36 results in thicker dendrites with gap-junction-like structures with an abnormally wide interneuronal gap that prevents electrotonic coupling. The mutant olivary neurons show unusual voltage-dependent oscillations and an increased excitability that is attributable to a combined decrease in leak conductance and an increase in voltage-dependent calcium conductance. Using dynamic-clamp techniques, we demonstrated that these changes are sufficient to transform a wild-type neuron into a knock-out-like neuron. We conclude that the absence of Cx36 in the inferior olive is not compensated by the formation of other gap-junction channels but instead by changes in the cytological and electroresponsive properties of its neurons, such that the capability to produce rhythmic activity is maintained.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Medical Faculty, Erasmus MC, 3000DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Zhang C, Restrepo D. Heterogeneous expression of connexin 36 in the olfactory epithelium and glomerular layer of the olfactory bulb. J Comp Neurol 2003; 459:426-39. [PMID: 12687708 DOI: 10.1002/cne.10617] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gap junctions regulate a variety of cell functions by directly connecting two cells through intercellular channels. Connexins are gap junction channel-forming protein subunits. In this study, we studied the expression of connexin 36 (Cx36) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNA for Cx36 was expressed in the olfactory sensory epithelium, main olfactory bulb and accessory olfactory bulb. Expression of mRNA encoding Cx36 was observed in the olfactory epithelium mainly in ventral and lateral regions of the turbinates. Immunohistochemical determination of Cx36 protein expression showed sparse punctuate staining in the olfactory epithelial layer. Intense Cx36-like immunostaining was found in the olfactory nerve bundles underlying the olfactory epithelium and in the olfactory nerve layer and glomerular layer of the olfactory bulb. Mapping of the intensity of Cx36-like immunofluorescence in glomeruli throughout the main olfactory bulb indicated a heterogeneous distribution. A set of approximately 50 glomeruli located in the anterior and posterior limits of the olfactory bulb was more intensely labeled than other glomeruli. There was intense immunofluorescence signal in the glomerular layer of the accessory olfactory bulb and in the vomeronasal nerve. beta-Galactosidase distribution in the olfactory epithelium and olfactory bulb in Cx36 knockout mice (Deans et al. [2001] Neuron 31:477-485) supported the findings with immunofluorescence. Cx36-like immunofluorescence was absent in the olfactory nerve bundles in Cx36 knockout mice. The immunolocalization of Cx36 to the olfactory and vomeronasal nerves, and a subset of olfactory glomeruli suggest a functional role for Cx36 in odor coding.
Collapse
Affiliation(s)
- Chunbo Zhang
- Department of Cellular and Structural Biology, the Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | |
Collapse
|
188
|
Abstract
Most electrically coupled neurons also receive numerous chemical synaptic inputs. Whereas chemical synapses are known to be highly dynamic, gap junction-mediated electrical transmission often is considered to be less modifiable and variable. By using simultaneous pre- and postsynaptic recordings, we demonstrate at single mixed electrical and chemical synapses that fast chemical transmission interacts with gap junctions within the same ending to regulate their conductance. Such localized interaction is activity-dependent and could account for the large variation in strength of electrical coupling at auditory afferent synapses terminating on the Mauthner cell lateral dendrite. Thus, interactions between chemical and electrical synapses can regulate the degree of electrical coupling, making it possible for a given neuron to independently modify coupling at different electrical synapses with its neighbors.
Collapse
Affiliation(s)
- Mackenzie Smith
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10465, USA
| | | |
Collapse
|
189
|
Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 2003. [PMID: 12574405 DOI: 10.1523/jneurosci.23-03-00766.2003] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using a human glial fibrillary acidic protein (hGFAP) promoter-driven cre transgene, we have achieved efficient inactivation of a floxed connexin43 (Cx43) gene in astrocytes of adult mice. The loss of Cx43 expression was monitored in a cell-autonomous manner via conditional replacement of the Cx43-coding region by a lacZ reporter gene. In this way, we bypassed the early postnatal lethality previously reported for Cx43 null mice and characterized the phenotypic consequences of Cx43 deficiency in the CNS. Mice lacking Cx43 in astrocytes were viable and showed no evidence of either neurodegeneration or astrogliosis. Spreading depression (SD) is a pathophysiological phenomenon observed in the CNS that is characterized by a propagating wave of depolarization followed by neuronal inactivation. Inhibitors of gap junctional communication have previously been shown to block initiation and propagation of SD. In contrast, we observed an increase in the velocity of hippocampal SD in the stratum radiatum of mice lacking Cx43 in astrocytes. In the same brain subregion, dye-coupling experiments revealed a reduction in overall astrocytic intercellular communication by approximately 50%. This strongly suggests separate and different neuronal and glial contributions of gap junctional intercellular communication to SD. Concomitant with increased velocity of spreading depression, we observed enhanced locomotory activity in mice lacking Cx43 in astrocytes.
Collapse
|
190
|
Pastor AM, Mentis GZ, De La Cruz RR, Díaz E, Navarrete R. Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat. J Neurophysiol 2003; 89:793-805. [PMID: 12574457 DOI: 10.1152/jn.00498.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effect of early postnatal blockade of neuromuscular transmission using botulinum neurotoxin (BoNT) type A on motoneuron gap junctional coupling was studied by means of intracellular recordings and biocytin labeling using the in vitro hemisected spinal cord preparation of neonatal rats. The somata of tibialis anterior (TA) motoneurons were retrogradely labeled at birth (P0) by intramuscular injection of fluorescent tracers. Two days later, BoNT was injected unilaterally into the TA muscle. The toxin blocked neuromuscular transmission for the period studied (P4-P7) as shown by tension recordings of the TA muscle. Retrograde horseradish peroxidase tracing in animals reared to adulthood demonstrated no significant cell death or changes in the soma size of BoNT-treated TA motoneurons. Intracellular recordings were carried out in prelabeled control and BoNT-treated TA motoneurons from P4 to P7. Graded stimulation of the ventral root at subthreshold intensities elicited short-latency depolarizing (SLD) potentials that consisted of several discrete components reflecting electrotonic coupling between two or more motoneurons. BoNT treatment produced a significant increase (67%) in the maximum amplitude of the SLD and in the number of SLD components as compared with control (3.1 +/- 1.7 vs. 1.4 +/- 0.7; means +/- SD). The morphological correlates of electrotonic coupling were investigated at the light microscope level by studying the transfer of biocytin to other motoneurons and the putative sites of gap junctional interaction. The dye-coupled neurons clustered around the injected cell with close somato-somatic, dendro-somatic and -dendritic appositions that might represent the sites of electrotonic coupling. The size of the motoneuron cluster was, on average, 2.2 times larger after BoNT treatment. Our findings demonstrate that a short-lasting functional disconnection of motoneurons from their target muscle delays motoneuron maturation by halting the elimination of gap junctional coupling that normally occurs during early postnatal development.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología y Zoología, Facultad de Biología, 41012-Sevilla, Spain.
| | | | | | | | | |
Collapse
|
191
|
Theis M, Jauch R, Zhuo L, Speidel D, Wallraff A, Döring B, Frisch C, Söhl G, Teubner B, Euwens C, Huston J, Steinhäuser C, Messing A, Heinemann U, Willecke K. Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 2003; 23:766-76. [PMID: 12574405 PMCID: PMC6741919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Using a human glial fibrillary acidic protein (hGFAP) promoter-driven cre transgene, we have achieved efficient inactivation of a floxed connexin43 (Cx43) gene in astrocytes of adult mice. The loss of Cx43 expression was monitored in a cell-autonomous manner via conditional replacement of the Cx43-coding region by a lacZ reporter gene. In this way, we bypassed the early postnatal lethality previously reported for Cx43 null mice and characterized the phenotypic consequences of Cx43 deficiency in the CNS. Mice lacking Cx43 in astrocytes were viable and showed no evidence of either neurodegeneration or astrogliosis. Spreading depression (SD) is a pathophysiological phenomenon observed in the CNS that is characterized by a propagating wave of depolarization followed by neuronal inactivation. Inhibitors of gap junctional communication have previously been shown to block initiation and propagation of SD. In contrast, we observed an increase in the velocity of hippocampal SD in the stratum radiatum of mice lacking Cx43 in astrocytes. In the same brain subregion, dye-coupling experiments revealed a reduction in overall astrocytic intercellular communication by approximately 50%. This strongly suggests separate and different neuronal and glial contributions of gap junctional intercellular communication to SD. Concomitant with increased velocity of spreading depression, we observed enhanced locomotory activity in mice lacking Cx43 in astrocytes.
Collapse
Affiliation(s)
- Martin Theis
- Institut für Genetik, Abteilung Molekulargenetik, Universität Bonn, D-53117 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
Neurons of the inferior olivary nucleus (IO) form the climbing fibers that excite Purkinje cells of the cerebellar cortex. IO neurons are electrically coupled through gap junctions, and they generate synchronous, subthreshold oscillations of membrane potential at approximately 5-10 Hz. Experimental and theoretical studies have suggested that both the rhythmicity and synchrony of IO neurons require electrical coupling. We recorded from pairs of IO neurons in slices of mouse brainstem in vitro. Most pairs of neurons from wild-type (WT) mice were electrically coupled, but coupling was rare and weak between neurons of knock-out (KO) mice for connexin36, a neuronal gap junction protein. IO cells in both WT and KO mice generated rhythmic membrane fluctuations of similar frequency and amplitude. Oscillations in neighboring pairs of WT neurons were strongly synchronized, whereas the oscillations of KO pairs were uncorrelated. Spontaneous oscillations in KO neurons were not blocked by tetrodotoxin. Spontaneously oscillating neurons of both WT and KO mice generated occasional action potentials in phase with their membrane rhythms, but only the action potentials of WT neuron pairs were synchronous. Harmaline, a beta-carboline derivative thought to induce tremor by facilitating rhythmogenesis in the IO, was injected systemically into WT and KO mice. Harmaline-induced tremors were robust and indistinguishable in the two genotypes, suggesting that gap junction-mediated synchrony does not play a role in harmaline-induced tremor. We conclude that electrical coupling is not necessary for the generation of spontaneous subthreshold oscillations in single IO neurons, but that coupling can serve to synchronize rhythmic activity among IO neurons.
Collapse
|
193
|
Long MA, Deans MR, Paul DL, Connors BW. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 2002; 22:10898-905. [PMID: 12486184 PMCID: PMC2834587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Revised: 09/23/2002] [Accepted: 10/03/2002] [Indexed: 02/28/2023] Open
Abstract
Neurons of the inferior olivary nucleus (IO) form the climbing fibers that excite Purkinje cells of the cerebellar cortex. IO neurons are electrically coupled through gap junctions, and they generate synchronous, subthreshold oscillations of membrane potential at approximately 5-10 Hz. Experimental and theoretical studies have suggested that both the rhythmicity and synchrony of IO neurons require electrical coupling. We recorded from pairs of IO neurons in slices of mouse brainstem in vitro. Most pairs of neurons from wild-type (WT) mice were electrically coupled, but coupling was rare and weak between neurons of knock-out (KO) mice for connexin36, a neuronal gap junction protein. IO cells in both WT and KO mice generated rhythmic membrane fluctuations of similar frequency and amplitude. Oscillations in neighboring pairs of WT neurons were strongly synchronized, whereas the oscillations of KO pairs were uncorrelated. Spontaneous oscillations in KO neurons were not blocked by tetrodotoxin. Spontaneously oscillating neurons of both WT and KO mice generated occasional action potentials in phase with their membrane rhythms, but only the action potentials of WT neuron pairs were synchronous. Harmaline, a beta-carboline derivative thought to induce tremor by facilitating rhythmogenesis in the IO, was injected systemically into WT and KO mice. Harmaline-induced tremors were robust and indistinguishable in the two genotypes, suggesting that gap junction-mediated synchrony does not play a role in harmaline-induced tremor. We conclude that electrical coupling is not necessary for the generation of spontaneous subthreshold oscillations in single IO neurons, but that coupling can serve to synchronize rhythmic activity among IO neurons.
Collapse
Affiliation(s)
- Michael A Long
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
194
|
Kistler WM, De Jeu MTG, Elgersma Y, Van Der Giessen RS, Hensbroek R, Luo C, Koekkoek SKE, Hoogenraad CC, Hamers FPT, Gueldenagel M, Sohl G, Willecke K, De Zeeuw CI. Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann N Y Acad Sci 2002; 978:391-404. [PMID: 12582068 DOI: 10.1111/j.1749-6632.2002.tb07582.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrotonic coupling by gap junctions between neurons in the inferior olive has been claimed to underly complex spike (CS) synchrony of Purkinje cells in the cerebellar cortex and thereby to play a role in the coordination of movements. Here, we investigated the motor performance of mice that lack connexin36 (Cx36), which appears necessary for functional olivary gap junctions. Cx36 null-mutants are not ataxic, they show a normal performance on the accelerating rotorod, and they have a regular walking pattern. In addition, they show normal compensatory eye movements during sinusoidal visual and/or vestibular stimulation. To find out whether the normal motor performance in mutants reflects normal CS activity or some compensatory mechanism downstream of the cerebellar cortex, we determined the CS firing rate, climbing-fiber pause, and degree of CS synchrony. None of these parameters in the mutants differed from those in wildtype littermates. Finally, we investigated whether the role of coupling becomes apparent under challenging conditions, such as during application of the tremorgenic drug harmaline, which specifically turns olivary neurons into an oscillatory state at a high frequency. In both the mutants and wildtypes this application induced tremors of a similar duration with similar peak frequencies and amplitudes. Thus surprisingly, the present data does not support the notion that electrotonic coupling by gap junctions underlies synchronization of olivary spike activity and that these gap junctions are essential for normal motor performance.
Collapse
Affiliation(s)
- W M Kistler
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, 3000DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Kistler WM, De Zeeuw CI. Dynamical working memory and timed responses: the role of reverberating loops in the olivo-cerebellar system. Neural Comput 2002; 14:2597-626. [PMID: 12433292 DOI: 10.1162/089976602760407991] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This article explores dynamical properties of the olivo-cerebellar system that arise from the specific wiring of inferior olive (IO), cerebellar cortex, and deep cerebellar nuclei (DCN). We show that the irregularity observed in the firing pattern of the IO neurons is not necessarily produced by noise but can instead be the result of a purely deterministic network effect. We propose that this effect can serve as a dynamical working memory or as a neuronal clock with a characteristic timescale of about 100 ms that is determined by the slow calcium dynamics of IO and DCN neurons. This concept provides a novel explanation of how the cerebellum can solve timing tasks on a timescale that is two orders of magnitude longer than the millisecond timescale usually attributed to neuronal dynamics. One of the key ingredients of our model is the observation that due to postinhibitory rebound, DCN neurons can be driven by GABAergic ("inhibitory") input from cerebellar Purkinje cells. Topographic projections from the DCN to the IO form a closed reverberating loop with an overall synaptic transmission delay of about 100 ms that is in resonance with the intrinsic oscillatory properties of the inferior olive. We use a simple time-discrete model based on McCulloch-Pitts neurons in order to investigate in a first step some of the fundamental properties of a network with delayed reverberating projections. The macroscopic behavior is analyzed by means of a mean-field approximation. Numerical simulations, however, show that the microscopic dynamics has a surprisingly rich structure that does not show up in a mean-field description. We have thus performed extensive numerical experiments in order to quantify the ability of the network to serve as a dynamical working memory and its vulnerability by noise. In a second step, we develop a more realistic conductance-based network model of the inferior olive consisting of about 20 multicompartment neurons that are coupled by gap junctions and receive excitatory and inhibitory synaptic input via AMPA and GABAergic synapses. The simulations show that results for the time-discrete model hold true in a time-continuous description.
Collapse
Affiliation(s)
- Werner M Kistler
- Department of Neuroscience, Erasmus University Rotterdam, The Netherlands.
| | | |
Collapse
|
196
|
Dean JB, Ballantyne D, Cardone DL, Erlichman JS, Solomon IC. Role of gap junctions in CO(2) chemoreception and respiratory control. Am J Physiol Lung Cell Mol Physiol 2002; 283:L665-70. [PMID: 12225940 DOI: 10.1152/ajplung.00142.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junctions are composed of connexins, which are organized into intercellular channels that form transmembrane pathways between neurons (cell-cell coupling), and in some cases, neurons and glia, for exchange of ions and small molecules (metabolic coupling) and ionic current (electrical coupling). Cell-cell coupling via gap junctions has been identified in brain stem neurons that function in CO(2)/H(+) chemoreception and respiratory rhythmogenesis; however, the exact roles of gap junctions in respiratory control are undetermined. Here we review the methods commonly used to study gap junctions in the mammalian brain stem under in vitro and in vivo conditions and briefly summarize the anatomical, pharmacological, and electrophysiological evidence to date supporting roles for cell-cell coupling in respiratory rhythmogenesis and central chemoreception. Specific research questions related to the role of gap junctions in respiratory control are suggested for future research.
Collapse
Affiliation(s)
- Jay B Dean
- Department of Physiology and Biophysics, Environmental and Hyperbaric Cell Biology Facility, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | |
Collapse
|
197
|
Li X, Lynn BD, Olson C, Meier C, Davidson KGV, Yasumura T, Rash JE, Nagy JI. Connexin29 expression, immunocytochemistry and freeze-fracture replica immunogold labelling (FRIL) in sciatic nerve. Eur J Neurosci 2002; 16:795-806. [PMID: 12372015 PMCID: PMC1803218 DOI: 10.1046/j.1460-9568.2002.02149.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recently discovered connexin29 (Cx29) was reported to be present in the central and peripheral nervous systems (CNS and PNS), and its mRNA was found in particular abundance in peripheral nerve. The expression and localization of Cx29 protein in sciatic nerve were investigated using an antibody against Cx29. The antibody recognized Cx29 in HeLa cells transfected with Cx29 cDNA, while nontransfected HeLa cells were devoid of Cx29. Immunoblotting of sciatic nerve homogenate revealed monomeric and possibly higher molecular weight forms of Cx29. These were distinguished from connexin32 (Cx32), which also is expressed in peripheral nerve. Double immunofluorescence labelling for Cx29 and Cx32 revealed only partial colocalization of the two connexins, with codistribution at intermittent, conical-shaped striations along nerve fibers. By freeze-fracture replica immunogold labelling (FRIL), Cx32 was found in gap junctions in the outermost layers of myelin, whereas Cx29-immunogold labelling was found only in the innermost layer of myelin in close association with hexagonally arranged intramembrane particle (IMP) 'rosettes' and gap junction-like clusters of IMPs. Although both Cx32 and Cx29 were detected in myelin of normal mice, only Cx29 was present in Schwann cell membranes in Cx32 knockout mice. The results confirm that Cx29 is a second connexin expressed in Schwann cells of sciatic nerve. In addition, Cx29 is present in distinctive IMP arrays in the inner most layer of myelin, adjacent to internodal axonal plasma membranes, where this connexin may have previously unrecognized functions.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - B. D. Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - C. Olson
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | - C. Meier
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Universitaetsstrasse 150, D-44780 Bochum, Germany
| | - K. G. V. Davidson
- Department of Anatomy and Neurobiology and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, USA
| | - T. Yasumura
- Department of Anatomy and Neurobiology and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J. E. Rash
- Department of Anatomy and Neurobiology and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, USA
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| |
Collapse
|
198
|
Zoidl G, Meier C, Petrasch-Parwez E, Zoidl C, Habbes HW, Kremer M, Srinivas M, Spray DC, Dermietzel R. Evidence for a role of the N-terminal domain in subcellular localization of the neuronal connexin36 (Cx36). J Neurosci Res 2002; 69:448-65. [PMID: 12210839 DOI: 10.1002/jnr.10284] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The expression and functional properties of connexin36 (Cx36) have been investigated in two neuroblastoma cell lines (Neuro2A, RT4-AC) and primary hippocampal neurons transfected with a Cx36-enhanced green fluorescent protein (EGFP) expression vector. Transfected cells express Cx36-EGFP mRNA, and Cx36-EGFP protein is localized in the perinuclear area and cell membrane. Upon differentiation of cell lines, Cx36-EGFP protein was detectable in processes with both axonal and dendritic characteristics. Small gap junction plaques were found between adjacent cells, and electrophysiological recordings demonstrated that the electrical properties of these gap junctions were virtually indistinguishable from those reported for native Cx36. Mutagenesis of Cx36 led to the identification of a structural element that interferes with normal protein localization. In contrast, site directed mutagenesis of putative protein phosphorylation motifs did not alter subcellular localization. This excludes phosphorylation/dephosphorylation as a major regulatory step in Cx36 protein transport.
Collapse
Affiliation(s)
- G Zoidl
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University-Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Hidaka S, Kato T, Miyachi EI. Expression of gap junction connexin36 in adult rat retinal ganglion cells. J Integr Neurosci 2002; 1:3-22. [PMID: 15011262 DOI: 10.1142/s0219635202000025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Accepted: 04/29/2002] [Indexed: 11/18/2022] Open
Abstract
Electrophysiological and ultrastructural studies have demonstrated that gap junctions connect diverse types of neurons in the central nervous system, permitting direct electrical and metabolic coupling. A member of gap junction channel subunit connexin36 (Cx36), is probed for the location of cell-to-cell communication in the mammalian retina, where gap junction networks of major classes of neurons are present. We present an analysis of the expression and localization of Cx36 protein in adult Wistar rat retina, using a newly generated polyclonal antibody against a sequence in the predicted cytoplasmic loop of the Cx36 amino acid alignment, deduced from the cDNA sequence. The affinity-purified antibody, recognizing a single 36-kDa protein, consistently labeled discrete puncta of subcellular structures likely to be associated with gap junctions in the inner plexiform layer, and also cytoplasm within somata and dendrites of retinal amacrine and ganglion cells, following examination with various fixation protocols and double labeling immuno-fluorescence. These results provide that prominent cell-to-cell communication appears in mature excitatory neurons such as retinal ganglion cells, in addition to inhibitory amacrine cells, mediated by gap junctions in the adult retina.
Collapse
Affiliation(s)
- Soh Hidaka
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192 Japan.
| | | | | |
Collapse
|
200
|
Devor A, Yarom Y. Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings. J Neurophysiol 2002; 87:3048-58. [PMID: 12037207 DOI: 10.1152/jn.2002.87.6.3048] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrotonic coupling in the inferior olivary (IO) nucleus is assumed to play a crucial role in generating the subthreshold membrane potential oscillations in olivary neurons and in synchronizing climbing fiber input into the cerebellar cortex. We studied the strength and spatial distribution of the coupling by simultaneous double patch recordings from olivary neurons in the brain slice preparation. Electrotonic coupling was observed in 50% of the cell pairs. The coupling coefficient (CC), defined as the ratio between voltage responses of the post- and the prejunctional cell, varied between 0.002 and 0.17; most of the pairs were weakly coupled. In more than 75% of the pairs, the CC was <0.05. The coupling resistance varied between 0.7 to 19.8 G(Omega), and 68% of the values fell between 0.7 to 8 G(Omega). The difference between the coupling coefficient measured on stimulation of cell 1 or cell 2 of a coupled pair was 27 +/- 16%. Direct calculation of the coupling resistance revealed an asymmetry of 24 +/- 12%, suggesting a directional preference of coupling. The coupling was voltage independent, although depolarization of either the pre- or the postjunctional neuron reduced the CC. The chance of a cell pair being coupled was 80% in immediate neighboring cells, but dropped to about 30% at a distance of 40 microm. No coupled pairs were observed at distances larger than 70 microm. In 52% of staining experiments neurobiotin injection into an olivary neuron produced indirect labeling of 1-11 nearby cells with an average of 3.8 +/- 2.9. All indirectly labeled cells were found in, or immediately adjacent, to the dendritic field of the directly stained neuron. Two distinct morphological types of olivary neurons, "curly" and "straight" cells, were found. In each case all neurons stained indirectly by dye passage through gap junctions belonged to the same type. Using the physiological data we estimated that each olivary neuron is directly coupled to about 50 neurons. Since somatic recordings may not reveal coupling through remote dendrites, we conclude that each neuron is directly connected to > or =50 neurons forming two distinct networks of curly and straight cells.
Collapse
Affiliation(s)
- Anna Devor
- Department of Neurobiology, Institute of Life Sciences and the Interdisciplinary Center for Neuronal Computation, Hebrew University, Jerusalem 91904, Israel
| | | |
Collapse
|