151
|
HD domain of SAMHD1 influences Vpx-induced degradation at a post-interaction step. Biochem Biophys Res Commun 2016; 470:690-696. [PMID: 26779819 DOI: 10.1016/j.bbrc.2016.01.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
Primate SAMHD1 proteins are potent inhibitors of viruses, including retroviruses such as HIV-1, HIV-2, and SIV. Vpx, a distinctive viral protein expressed by HIV-2 and some SIVs, induces SAMHD1 degradation by forming a Vpx-DCAF1-based ubiquitin ligase complex. Either the N- or the C-terminus of SAMHD1 is critical for Vpx-induced degradation, depending on the types of SAMHD1 and Vpx proteins. However, it was not fully understood whether other regions of SAMHD1 also contribute to its depletion by Vpx. In the present study, we report that SAMHD1 from chicken (SAMHD1GG) was not degraded by SIVmac Vpx, in contrast with results for human SAMHD1 (SAMHD1HS). Results regarding to SAMHD1HS and SAMHD1GG fusion proteins supported previous findings that the C-terminus of SAMHD1HS is essential for Vpx-induced degradation. Internal domain substitution, however, revealed that the HD domain also contributes to Vpx-mediated SAMHD1 degradation. Interestingly, the HD domain influenced Vpx-mediated SAMHD1 degradation without affecting Vpx-SAMHD1 interaction. Therefore, our findings revealed that factors in addition to Vpx-SAMHD1 binding influence the efficiency of Vpx-mediated SAMHD1 degradation.
Collapse
|
152
|
Wittmann S, Behrendt R, Eissmann K, Volkmann B, Thomas D, Ebert T, Cribier A, Benkirane M, Hornung V, Bouzas NF, Gramberg T. Phosphorylation of murine SAMHD1 regulates its antiretroviral activity. Retrovirology 2015; 12:103. [PMID: 26667483 PMCID: PMC4678485 DOI: 10.1186/s12977-015-0229-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human SAMHD1 is a triphosphohydrolase that restricts the replication of retroviruses, retroelements and DNA viruses in noncycling cells. While modes of action have been extensively described for human SAMHD1, only little is known about the regulation of SAMHD1 in the mouse. Here, we characterize the antiviral activity of murine SAMHD1 with the help of knockout mice to shed light on the regulation and the mechanism of the SAMHD1 restriction and to validate the SAMHD1 knockout mouse model for the use in future infectivity studies. RESULTS We found that endogenous mouse SAMHD1 restricts not only HIV-1 but also MLV reporter virus infection at the level of reverse transcription in primary myeloid cells. Similar to the human protein, the antiviral activity of murine SAMHD1 is regulated through phosphorylation at threonine 603 and is limited to nondividing cells. Comparing the susceptibility to infection with intracellular dNTP levels and SAMHD1 phosphorylation in different cell types shows that both functions are important determinants of the antiviral activity of murine SAMHD1. In contrast, we found the proposed RNase activity of SAMHD1 to be less important and could not detect any effect of mouse or human SAMHD1 on the level of incoming viral RNA. CONCLUSION Our findings show that SAMHD1 in the mouse blocks retroviral infection at the level of reverse transcription and is regulated through cell cycle-dependent phosphorylation. We show that the antiviral restriction mediated by murine SAMHD1 is mechanistically similar to what is known for the human protein, making the SAMHD1 knockout mouse model a valuable tool to characterize the influence of SAMHD1 on the replication of different viruses in vivo.
Collapse
Affiliation(s)
- Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Kristin Eissmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
| | - Bianca Volkmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
| | - Dominique Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Thomas Ebert
- Institute of Molecular Medicine, University Hospital, University of Bonn, Bonn, Germany.
| | - Alexandra Cribier
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, 34000, France.
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, 34000, France.
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, Bonn, Germany.
| | - Nerea Ferreirós Bouzas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany.
| |
Collapse
|
153
|
Welbourn S, Strebel K. Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1. Virology 2015; 488:271-7. [PMID: 26655245 DOI: 10.1016/j.virol.2015.11.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/14/2022]
Abstract
SAMHD1 is a cellular dNTPase that restricts lentiviral infection presumably by lowering cellular dNTP levels to below a critical threshold required for reverse transcription; however, lowering cellular dNTP levels may not be the sole mechanism of restriction. In particular, an exonuclease activity of SAMHD1 was reported to contribute to virus restriction. We further investigated the requirements for SAMHD1 restriction activity in both differentiated U937 and cycling HeLa cells. Using hydroxyurea treatment to lower baseline dNTP levels in HeLa cells, we were able to document efficient SAMHD1 restriction without significant further reduction in dNTP levels by SAMHD1. These results argue against a requirement for additional myeloid-specific host factors for SAMHD1 function but further support the notion that SAMHD1 possesses an additional dNTP-independent function contributing to lentiviral restriction. However, our own experiments failed to associate this presumed additional SAMHD1 antiviral activity with a reported nuclease activity.
Collapse
Affiliation(s)
- Sarah Welbourn
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Building 4, Room 310, 4 Center Drive, MSC 0460, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
154
|
Rampazzo C, Tozzi MG, Dumontet C, Jordheim LP. The druggability of intracellular nucleotide-degrading enzymes. Cancer Chemother Pharmacol 2015; 77:883-93. [PMID: 26614508 DOI: 10.1007/s00280-015-2921-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
Nucleotide metabolism is the target of a large number of anticancer drugs including antimetabolites and specific enzyme inhibitors. We review scientific findings that over the last 10-15 years have allowed the identification of several intracellular nucleotide-degrading enzymes as cancer drug targets, and discuss further potential therapeutic applications for Rcl, SAMHD1, MTH1 and cN-II. We believe that enzymes involved in nucleotide metabolism represent potent alternatives to conventional cancer chemotherapy targets.
Collapse
Affiliation(s)
- Chiara Rampazzo
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | - Charles Dumontet
- Université de Lyon, 69000, Lyon, France.,Université de Lyon 1, 69622, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Centre Léon Bérard, 69008, Lyon, France.,Hospices Civils de Lyon, 69000, Lyon, France
| | - Lars Petter Jordheim
- Université de Lyon, 69000, Lyon, France. .,Université de Lyon 1, 69622, Lyon, France. .,Université de Lyon 1, 69000, Lyon, France. .,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,Centre Léon Bérard, 69008, Lyon, France. .,Equipe Anticorps-Anticancer, INSERM U1052 - CNRS UMR 5286, Faculté Rockefeller, Centre de Recherche en Cancérologie de Lyon, 8 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
155
|
Dragin L, Munir-Matloob S, Froehlich J, Morel M, Sourisce A, Lahouassa H, Bailly K, Mangeney M, Ramirez BC, Margottin-Goguet F. Evidence that HIV-1 restriction factor SAMHD1 facilitates differentiation of myeloid THP-1 cells. Virol J 2015; 12:201. [PMID: 26606981 PMCID: PMC4660839 DOI: 10.1186/s12985-015-0425-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022] Open
Abstract
Background SAMHD1 counteracts HIV-1 or HIV-2/SIVsmm that lacks Vpx by depleting the intracellular pool of nucleotides in myeloid cells and CD4+ quiescent T cells, thereby inhibiting the synthesis of retroviral DNA by reverse transcriptase. Depletion of nucleotides has been shown to underline the establishment of quiescence in certain cellular systems. These observations led us to investigate whether SAMHD1 could control the transition between proliferation and quiescence using the THP-1 cell model. Findings The entry of dividing THP-1 myeloid cells into a non-dividing differentiated state was monitored after addition of phorbol-12-myristate-13-acetate (PMA), an inducer of differentiation. Under PMA treatment, cells overexpressing SAMHD1 display stronger and faster adhesion to their support, compared to cells expressing a catalytically inactive form of SAMHD1, or cells depleted of SAMHD1, which appear less differentiated. After PMA removal, cells overexpressing SAMHD1 maintain low levels of cyclin A, in contrast to other cell lines. Interestingly, SAMHD1 overexpression slightly increases cell adhesion even in the absence of the differentiation inducer PMA. Finally, we found that levels of SAMHD1 are reduced in proliferating primary CD4+ T cells after T cell receptor activation, suggesting that SAMHD1 may also be involved in the transition from a quiescent state to a dividing state in primary T cells. Conclusions Altogether, we provide evidence that SAMHD1 may facilitate some aspects of THP-1 cell differentiation. Restriction of HIV-1 by SAMHD1 may rely upon its ability to modify cell cycle parameters, in addition to the direct inhibition of reverse transcription. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0425-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loic Dragin
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Soundasse Munir-Matloob
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Jeanne Froehlich
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marina Morel
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Adèle Sourisce
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Hichem Lahouassa
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Karine Bailly
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Marianne Mangeney
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Bertha Cecilia Ramirez
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
156
|
Wang F, St Gelais C, de Silva S, Zhang H, Geng Y, Shepard C, Kim B, Yount JS, Wu L. Phosphorylation of mouse SAMHD1 regulates its restriction of human immunodeficiency virus type 1 infection, but not murine leukemia virus infection. Virology 2015; 487:273-84. [PMID: 26580513 DOI: 10.1016/j.virol.2015.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 11/29/2022]
Abstract
Human SAMHD1 (hSAMHD1) restricts HIV-1 infection in non-dividing cells by depleting intracellular dNTPs to limit viral reverse transcription. Phosphorylation of hSAMHD1 at threonine (T) 592 by cyclin-dependent kinase (CDK) 1 and CDK2 negatively regulates HIV-1 restriction. Mouse SAMHD1 (mSAMHD1) restricts HIV-1 infection in non-dividing cells, but whether its phosphorylation regulates retroviral restriction is unknown. Here we identified six phospho-sites of mSAMHD1, including T634 that is homologous to T592 of hSAMHD1 and phosphorylated by CDK1 and CDK2. We found that wild-type (WT) mSAMHD1 and a phospho-ablative mutant, but not a phospho-mimetic mutant, restricted HIV-1 infection in differentiated U937 cells. Murine leukemia virus (MLV) infection of dividing NIH3T3 cells was modestly restricted by mSAMHD1 WT and phospho-mutants, but not by a dNTPase-defective mutant. Our results suggest that phosphorylation of mSAMHD1 at T634 by CDK1/2 negatively regulates its HIV-1 restriction in differentiated cells, but does not affect its MLV restriction in dividing cells.
Collapse
Affiliation(s)
- Feifei Wang
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Corine St Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Suresh de Silva
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Hong Zhang
- ProSci, Inc., 12170 Flint Place, Poway, CA, USA
| | - Yu Geng
- ProSci, Inc., 12170 Flint Place, Poway, CA, USA
| | - Caitlin Shepard
- Department of Pediatrics, Center for Drug Discovery, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, USA
| | - Baek Kim
- Department of Pediatrics, Center for Drug Discovery, Emory University School of Medicine, 1760 Haygood Drive, Atlanta, GA, USA
| | - Jacob S Yount
- Center for Microbial Interface Biology, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA; Center for Microbial Interface Biology, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
157
|
Hollenbaugh JA, Schader SM, Schinazi RF, Kim B. Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4(+) T cells. Virology 2015; 485:313-21. [PMID: 26319213 PMCID: PMC4619155 DOI: 10.1016/j.virol.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/27/2015] [Accepted: 08/08/2015] [Indexed: 01/05/2023]
Abstract
Vpx encoded by HIV-2 and SIVsm enhances retroviral reverse transcription in macrophages in vitro by mediating the degradation of the host SAMHD1 protein that hydrolyzes dNTPs and by elevating cellular dNTP levels. Here we employed RT-SHIV constructs (SIV encoding HIV-1 RT) to investigate the contribution of Vpx to the potency of NRTIs, which compete against dNTPs, in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells. Relative to HIV-1, both SIV and RT-SHIV exhibited reduced sensitivities to AZT, 3TC and TDF in MDMs but not in activated CD4(+) T cells. However, when SIV and RT-SHIV constructs not coding for Vpx were utilized, we observed greater sensitivities to all NRTIs tested using activated CD4(+) T cells relative to the Vpx-coding counterparts. This latter phenomenon was observed for AZT only when using MDMs. Our data suggest that Vpx in RT-SHIVs may underestimate the antiviral efficacy of NRTIs in a cell type dependent manner.
Collapse
Affiliation(s)
- Joseph A Hollenbaugh
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Susan M Schader
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
158
|
Li Y, Kong J, Peng X, Hou W, Qin X, Yu XF. Structural Insights into the High-efficiency Catalytic Mechanism of the Sterile α-Motif/Histidine-Aspartate Domain-containing Protein. J Biol Chem 2015; 290:29428-37. [PMID: 26438820 DOI: 10.1074/jbc.m115.663658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Sterile α-motif/histidine-aspartate domain-containing protein (SAMHD1), a homo-tetrameric GTP/dGTP-dependent dNTP triphosphohydrolase, catalyzes the conversion of dNTP into deoxynucleoside and triphosphate. As the only characterized dNTP triphosphohydrolase in human cells, SAMHD1 plays an important role in human innate immunity, autoimmunity, and cell cycle control. Previous biochemical studies and crystal structures have revealed that SAMHD1 interconverts between an inactive monomeric or dimeric form and a dGTP/GTP-induced active tetrameric form. Here, we describe a novel state of SAMHD1 (109-626 amino acids, SAMHD1C) that is characterized by a rapid initial hydrolysis rate. Interestingly, the crystal structure showed that this novel SAMHD1 tetramer contains only GTP and has structural features distinct from the GTP/dNTP-bound SAMHD1 tetramer. Our work thus reveals structural features of SAMHD1 that may represent one of its biological assembly states in cells. The biochemical and structural information generated by the present study not only provides an ordered pathway for the assembly and activation of SAMHD1 but also provides insights into the potential mechanisms of the high-efficiency catalytic activity of this enzyme family in vivo.
Collapse
Affiliation(s)
- Yanhong Li
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Jia Kong
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xin Peng
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Wen Hou
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xiaohong Qin
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xiao-Fang Yu
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and the Institute of Virology and AIDS Research, First Hospital of Jilin University, 519 East Minzhu Avenue, Changchun 130061, Jilin Province, China
| |
Collapse
|
159
|
Li W, Xin B, Yan J, Wu Y, Hu B, Liu L, Wang Y, Ahn J, Skowronski J, Zhang Z, Wang Y, Wang H. SAMHD1 Gene Mutations Are Associated with Cerebral Large-Artery Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:739586. [PMID: 26504826 PMCID: PMC4609382 DOI: 10.1155/2015/739586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND To investigate whether one or more SAMHD1 gene mutations are associated with cerebrovascular disease in the general population using a Chinese stroke cohort. METHODS Patients with a Chinese Han background (N = 300) diagnosed with either cerebral large-artery atherosclerosis (LAA, n = 100), cerebral small vessel disease (SVD, n = 100), or other stroke-free neurological disorders (control, n = 100) were recruited. Genomic DNA from the whole blood of each patient was isolated, and direct sequencing of the SAMHD1 gene was performed. Both wild type and mutant SAMHD1 proteins identified from the patients were expressed in E. coli and purified; then their dNTPase activities and ability to form stable tetramers were analysed in vitro. RESULTS Three heterozygous mutations, including two missense mutations c.64C>T (P22S) and c.841G>A (p.E281K) and one splice site mutation c.696+2T>A, were identified in the LAA group with a prevalence of 3%. No mutations were found in the patients with SVD or the controls (p = 0.05). The mutant SAMHD1 proteins were functionally impaired in terms of their catalytic activity as a dNTPase and ability to assemble stable tetramers. CONCLUSIONS Heterozygous SAMHD1 gene mutations might cause genetic predispositions that interact with other risk factors, resulting in increased vulnerability to stroke.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Baozhong Xin
- DDC Clinic-Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Junpeng Yan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44193, USA
| | - Ying Wu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 45358, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44193, USA
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 45358, USA
| | - Jacek Skowronski
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44193, USA
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Centre for Neurological Diseases, Centre of Stroke, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100050, China
| | - Heng Wang
- DDC Clinic-Center for Special Needs Children, Middlefield, OH 44062, USA
- Department of Pediatrics, Case Western Reserve University Medical School, Cleveland, OH 44193, USA
- Rainbow Babies & Children's Hospital, Cleveland, OH 44193, USA
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
160
|
Ballana E, Esté JA. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol 2015; 23:680-692. [PMID: 26439297 DOI: 10.1016/j.tim.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
SAMHD1 is a triphosphohydrolase enzyme that controls the intracellular level of deoxyribonucleoside triphosphates (dNTPs) and plays a role in innate immune sensing and autoimmune disease. SAMHD1 has also been identified as an intrinsic virus restriction factor, inactivated through degradation by HIV-2 Vpx or through a post-transcriptional regulatory mechanism. Phosphorylation of SAMHD1 by cyclin-dependent kinases has been strongly associated with inactivation of the virus restriction mechanism, providing an association between virus replication and cell proliferation. Tight regulation of cell proliferation suggests that viruses, particularly HIV-1 replication, latency, and reactivation, may be similarly controlled by multiple checkpoint mechanisms that, in turn, regulate dNTP levels. In this review, we discuss how SAMHD1 is a viral restriction factor, the mechanism associated with viral restriction, the pathway leading to its inactivation in proliferating cells, and how strategies aimed at controlling virus restriction could lead to a functional cure for HIV.
Collapse
Affiliation(s)
- Ester Ballana
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - José A Esté
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
161
|
Kohnken R, Kodigepalli KM, Wu L. Regulation of deoxynucleotide metabolism in cancer: novel mechanisms and therapeutic implications. Mol Cancer 2015; 14:176. [PMID: 26416562 PMCID: PMC4587406 DOI: 10.1186/s12943-015-0446-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
Regulation of intracellular deoxynucleoside triphosphate (dNTP) pool is critical to genomic stability and cancer development. Imbalanced dNTP pools can lead to enhanced mutagenesis and cell proliferation resulting in cancer development. Therapeutic agents that target dNTP synthesis and metabolism are commonly used in treatment of several types of cancer. Despite several studies, the molecular mechanisms that regulate the intracellular dNTP levels and maintain their homeostasis are not completely understood. The discovery of SAMHD1 as the first mammalian dNTP triphosphohydrolase provided new insight into the mechanisms of dNTP regulation. SAMHD1 maintains the homeostatic dNTP levels that regulate DNA replication and damage repair. Recent progress indicates that gene mutations and epigenetic mechanisms lead to downregulation of SAMHD1 activity or expression in multiple cancers. Impaired SAMHD1 function can cause increased dNTP pool resulting in genomic instability and cell-cycle progression, thereby facilitating cancer cell proliferation. This review summarizes the latest advances in understanding the importance of dNTP metabolism in cancer development and the novel function of SAMHD1 in regulating this process.
Collapse
Affiliation(s)
- Rebecca Kohnken
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, 43210, USA
| | - Karthik M Kodigepalli
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, 43210, USA
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH, 43210, USA. .,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
162
|
Zhu M, Lu J, Dong X, Zheng N, Li T, Chen Z, Pan X, Zhu Y, Yan H, Shen Y, Ying S, Hu C. Interferon-stimulated gene factor 3 complex is required for the induction of sterile α motif and HD domain-containing protein 1 expression by interferon-α in SMMC-7721 cells. Mol Med Rep 2015; 12:7176-80. [PMID: 26397446 DOI: 10.3892/mmr.2015.4332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
Abstract
Sterile α motif and HD domain-containing protein 1 (SAMHD1) is a novel intrinsic restriction factor that inhibits the replication of certain retroviruses and DNA viruses through its deoxynucleoside triphosphate triphosphohydrolase activity. A previous study by our group showed that SAMHD1 restrained hepatitis B virus replication and interferon (IFN)‑α induced SAMHD1 expression in liver cells. However the mechanisms of SAMHD1 upregulation by IFN‑α in liver cells have remained elusive. The present study demonstrated that IFN‑α treatment increased SAMHD1 mRNA levels in SMMC‑7721 cells in a time‑dependent manner. Knockdown of STAT1 inhibited the induction of SAMHD1 expression by IFN‑α in SMMC‑7721 cells. STAT2 silencing also suppressed the induction of SAMHD1 expression by IFN‑α in SMMC‑7721 cells. Furthermore, the induction of SAMHD1 expression in SMMC‑7721 cells by IFN‑α was found to be dependent on IFN‑regulatory factor 9 (IRF9). In conclusion, these results suggested that the interferon‑stimulated gene factor 3 complex, which consists of STAT1, STAT2 and IRF9, is required for the induction of SAMHD1 expression by IFN-α in SMMC-7721 cells.
Collapse
Affiliation(s)
- Mengying Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinsen Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaowan Dong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Nan Zheng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tingting Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangming Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiang Pan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yongji Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hai Yan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuxian Shen
- Department of Pharmacology, School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chunsong Hu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
163
|
Franzolin E, Salata C, Bianchi V, Rampazzo C. The Deoxynucleoside Triphosphate Triphosphohydrolase Activity of SAMHD1 Protein Contributes to the Mitochondrial DNA Depletion Associated with Genetic Deficiency of Deoxyguanosine Kinase. J Biol Chem 2015; 290:25986-96. [PMID: 26342080 PMCID: PMC4646252 DOI: 10.1074/jbc.m115.675082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
The dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase. The deoxyguanosine released by SAMHD1 from dGTP can be phosphorylated inside mitochondria by deoxyguanosine kinase (dGK) or degraded in the cytosol by purine nucleoside phosphorylase. Genetic mutations of dGK cause mitochondrial (mt) DNA depletion in noncycling cells and hepato-cerebral mtDNA depletion syndrome in humans. We studied if SAMHD1 and dGK interact in the regulation of the dGTP pool during quiescence employing dGK-mutated skin fibroblasts derived from three unrelated patients. In the presence of SAMHD1 quiescent mutant fibroblasts manifested mt dNTP pool imbalance and mtDNA depletion. When SAMHD1 was silenced by siRNA transfection the composition of the mt dNTP pool approached that of the controls, and mtDNA copy number increased, compensating the depletion to various degrees in the different mutant fibroblasts. Chemical inhibition of purine nucleoside phosphorylase did not improve deoxyguanosine recycling by dGK in WT cells. We conclude that the activity of SAMHD1 contributes to the pathological phenotype of dGK deficiency. Our results prove the importance of SAMHD1 in the regulation of all dNTP pools and suggest that dGK inside mitochondria has the function of recycling the deoxyguanosine derived from endogenous dGTP degraded by SAMHD1 in the nucleus.
Collapse
Affiliation(s)
- Elisa Franzolin
- From the Department of Biology, University of Padova, 35131 Padova, Italy and
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Vera Bianchi
- From the Department of Biology, University of Padova, 35131 Padova, Italy and
| | - Chiara Rampazzo
- From the Department of Biology, University of Padova, 35131 Padova, Italy and
| |
Collapse
|
164
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
165
|
Tang C, Ji X, Wu L, Xiong Y. Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592. J Biol Chem 2015; 290:26352-9. [PMID: 26294762 DOI: 10.1074/jbc.m115.677435] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/02/2023] Open
Abstract
SAMHD1 is a cellular protein that plays key roles in HIV-1 restriction and regulation of cellular dNTP levels. Mutations in SAMHD1 are also implicated in the pathogenesis of chronic lymphocytic leukemia and Aicardi-Goutières syndrome. The anti-HIV-1 activity of SAMHD1 is negatively modulated by phosphorylation at residue Thr-592. The mechanism underlying the effect of phosphorylation on anti-HIV-1 activity remains unclear. SAMHD1 forms tetramers that possess deoxyribonucleotide triphosphate triphosphohydrolase (dNTPase) activity, which is allosterically controlled by the combined action of GTP and all four dNTPs. Here we demonstrate that the phosphomimetic mutation T592E reduces the stability of the SAMHD1 tetramer and the dNTPase activity of the enzyme. To better understand the underlying mechanisms, we determined the crystal structures of SAMHD1 variants T592E and T592V. Although the neutral substitution T592V does not perturb the structure, the charged T592E induces large conformational changes, likely triggered by electrostatic repulsion from a distinct negatively charged environment surrounding Thr-592. The phosphomimetic mutation results in a significant decrease in the population of active SAMHD1 tetramers, and hence the dNTPase activity is substantially decreased. These results provide a mechanistic understanding of how SAMHD1 phosphorylation at residue Thr-592 may modulate its cellular and antiviral functions.
Collapse
Affiliation(s)
- Chenxiang Tang
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Xiaoyun Ji
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Li Wu
- the Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210
| | - Yong Xiong
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
166
|
Hu S, Li J, Xu F, Mei S, Le Duff Y, Yin L, Pang X, Cen S, Jin Q, Liang C, Guo F. SAMHD1 Inhibits LINE-1 Retrotransposition by Promoting Stress Granule Formation. PLoS Genet 2015; 11:e1005367. [PMID: 26134849 PMCID: PMC4489885 DOI: 10.1371/journal.pgen.1005367] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 06/17/2015] [Indexed: 01/17/2023] Open
Abstract
The SAM domain and HD domain containing protein 1 (SAMHD1) inhibits retroviruses, DNA viruses and long interspersed element 1 (LINE-1). Given that in dividing cells, SAMHD1 loses its antiviral function yet still potently restricts LINE-1, we propose that, instead of blocking viral DNA synthesis by virtue of its dNTP triphosphohydrolase activity, SAMHD1 may exploit a different mechanism to control LINE-1. Here, we report a new activity of SAMHD1 in promoting cellular stress granule assembly, which correlates with increased phosphorylation of eIF2α and diminished eIF4A/eIF4G interaction. This function of SAMHD1 enhances sequestration of LINE-1 RNP in stress granules and consequent blockade to LINE-1 retrotransposition. In support of this new mechanism of action, depletion of stress granule marker proteins G3BP1 or TIA1 abrogates stress granule formation and overcomes SAMHD1 inhibition of LINE-1. Together, these data reveal a new mechanism for SAMHD1 to control LINE-1 by activating cellular stress granule pathway.
Collapse
Affiliation(s)
- Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jian Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Fengwen Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Mei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yann Le Duff
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Lijuan Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiaojing Pang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Fei Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
167
|
Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT. SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 2015; 43:6486-99. [PMID: 26101257 PMCID: PMC4513882 DOI: 10.1093/nar/gkv633] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 restriction factor SAMHD1 is a tetrameric enzyme activated by guanine nucleotides with dNTP triphosphate hydrolase activity (dNTPase). In addition to this established activity, there have been a series of conflicting reports as to whether the enzyme also possesses single-stranded DNA and/or RNA 3′-5′ exonuclease activity. SAMHD1 was purified using three chromatography steps, over which the DNase activity was largely separated from the dNTPase activity, but the RNase activity persisted. Surprisingly, we found that catalytic and nucleotide activator site mutants of SAMHD1 with no dNTPase activity retained the exonuclease activities. Thus, the exonuclease activity cannot be associated with any known dNTP binding site. Monomeric SAMHD1 was found to bind preferentially to single-stranded RNA, while the tetrameric form required for dNTPase action bound weakly. ssRNA binding, but not ssDNA, induces higher-order oligomeric states that are distinct from the tetrameric form that binds dNTPs. We conclude that the trace exonuclease activities detected in SAMHD1 preparations arise from persistent contaminants that co-purify with SAMHD1 and not from the HD active site. An in vivo model is suggested where SAMHD1 alternates between the mutually exclusive functions of ssRNA binding and dNTP hydrolysis depending on dNTP pool levels and the presence of viral ssRNA.
Collapse
Affiliation(s)
- Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| |
Collapse
|
168
|
Choi J, Ryoo J, Oh C, Hwang S, Ahn K. SAMHD1 specifically restricts retroviruses through its RNase activity. Retrovirology 2015; 12:46. [PMID: 26032178 PMCID: PMC4450836 DOI: 10.1186/s12977-015-0174-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human SAMHD1 possesses dual enzymatic functions. It acts as both a dGTP-dependent triphosphohydrolase and as an exoribonuclease. The dNTPase function depletes the cellular dNTP pool, which is required for retroviral reverse transcription in differentiated myeloid cells and resting CD4(+) T cells; thus this activity mainly plays a role in SAMHD1-mediated retroviral restriction. However, a recent study demonstrated that SAMHD1 directly targets HIV-1 genomic RNA via its RNase activity, and that this function (rather than dNTPase activity) is sufficient for HIV-1 restriction. While HIV-1 genomic RNA is a potent target for SAMHD1 during viral infection, the specificity of SAMHD1-mediated RNase activity during infection by other viruses is unclear. RESULTS The results of the present study showed that SAMHD1 specifically degrades retroviral genomic RNA in monocyte-derived macrophage-like cells and in primary monocyte-derived macrophages. Consistent with this, SAMHD1 selectively restricted retroviral replication, but did not affect the replication of other common non-retro RNA genome viruses, suggesting that the RNase-mediated antiviral function of SAMHD1 is limited to retroviruses. In addition, neither inhibiting reverse transcription by treatment with several reverse transcriptase inhibitors nor infection with reverse transcriptase-defective HIV-1 altered RNA levels after viral challenge, indicating that the retrovirus-specific RNase function is not dependent on processes associated with retroviral reverse transcription. CONCLUSIONS The results presented herein suggest that the RNase activity of SAMHD1 is sufficient to control the replication of retroviruses, but not that of non-retro RNA viruses.
Collapse
Affiliation(s)
- Jongsu Choi
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Jeongmin Ryoo
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of the Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Changhoon Oh
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of the Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Sungyeon Hwang
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Kwangseog Ahn
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
169
|
Li J, Xu F, Hu S, Zhou J, Mei S, Zhao X, Cen S, Jin Q, Liang C, Guo F. Characterization of the interactions between SIVrcm Vpx and red-capped mangabey SAMHD1. Biochem J 2015; 468:303-313. [PMID: 25791246 DOI: 10.1042/bj20141331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
SAMHD1 (SAM domain- and HD domain-containing protein 1) inhibits HIV-1 infection of myeloid cells and resting CD4+ T-cells. Two lineages of primate lentiviruses, the sooty mangabey SIV (simian immunodeficiency virus) (SIVsm)/macaque SIV (SIVmac)/HIV-2 lineage and the red-capped mangabey SIV (SIVrcm) lineage, carry a SAMHD1 antagonist called Vpx. Vpx recognizes SAMHD1 and recruits a ubiquitin E3 ligase complex that is composed of CUL4 (Cullin4), DDB1 (damaged DNA-binding protein 1) and a member of the DCAF (DDB1/CUL4-associated factor) family called DCAF1. This E3 ligase complex polyubiquitinates SAMHD1, which leads to proteasomal degradation of SAMHD1. As opposed to the well-characterized interaction of SIVmac Vpx with human SAMHD1 and DCAF1, SIVrcm Vpx adopts a different mode of interaction with SAMHD1 of red-capped mangabeys. In the present study, we have characterized the interactions that are essential for SIVrcm Vpx-mediated degradation of rcmSAMHD1 (red-capped mangabey SAMHD1). Using mutagenesis and molecular modelling, we have determined the key role of the W23LHR26 peptide of SIVrcm Vpx in recognizing rcmSAMHD1. The amino acids Phe15, Leu36, Phe52, Arg55 and Arg56 at the N-terminal domain (NtD) of rcmSAMHD1 are involved in interaction with Vpxrcm (red-capped mangabey Vpx). The molecular model of rcmSAMHD1-NtD, Vpxrcm and C-terminal domain (CtD) of DCAF1 (DCAF1-CtD) complex reveals further that rcmSAMHD1-NtD and Vpxrcm utilize an interaction interface that is different from that used by human SAMHD1-CtD and Vpxsm. These findings provide further insights into the different modes of interaction between Vpx and SAMHD1 as the result of the 'arms race' of virus and host cell.
Collapse
Affiliation(s)
- Jian Li
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Fengwen Xu
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Siqi Hu
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Jinming Zhou
- †Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Mei
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoxiao Zhao
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Shan Cen
- †Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Qi Jin
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Chen Liang
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Fei Guo
- *MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
170
|
Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 2015; 16:546-53. [PMID: 25988886 PMCID: PMC6908429 DOI: 10.1038/ni.3156] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023]
Abstract
To replicate in their hosts, viruses have to navigate the complexities of the mammalian cell, co-opting mechanisms of cellular physiology while defeating restriction factors that are dedicated to halting their progression. Primate lentiviruses devote a relatively large portion of their coding capacity to counteracting restriction factors by encoding accessory proteins dedicated to neutralizing the antiviral function of these intracellular inhibitors. Research into the roles of the accessory proteins has revealed the existence of previously undetected intrinsic defenses, provided insight into the evolution of primate lentiviruses as they adapt to new species and uncovered new targets for the development of therapeutics. This Review discusses the biology of the restriction factors APOBEC3, SAMHD1 and tetherin and the viral accessory proteins that counteract them.
Collapse
Affiliation(s)
- Viviana Simon
- Department of Microbiology, The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicolin Bloch
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
171
|
Mutational analysis of HIV-2 Vpx shows that proline residue 109 in the poly-proline motif regulates degradation of SAMHD1. FEBS Lett 2015; 589:1505-14. [DOI: 10.1016/j.febslet.2015.04.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 11/22/2022]
|
172
|
Schwefel D, Boucherit VC, Christodoulou E, Walker PA, Stoye JP, Bishop KN, Taylor IA. Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx. Cell Host Microbe 2015; 17:489-99. [PMID: 25856754 PMCID: PMC4400269 DOI: 10.1016/j.chom.2015.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/31/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
The SAMHD1 triphosphohydrolase inhibits HIV-1 infection of myeloid and resting T cells by depleting dNTPs. To overcome SAMHD1, HIV-2 and some SIVs encode either of two lineages of the accessory protein Vpx that bind the SAMHD1 N or C terminus and redirect the host cullin-4 ubiquitin ligase to target SAMHD1 for proteasomal degradation. We present the ternary complex of Vpx from SIV that infects mandrills (SIVmnd-2) with the cullin-4 substrate receptor, DCAF1, and N-terminal and SAM domains from mandrill SAMHD1. The structure reveals details of Vpx lineage-specific targeting of SAMHD1 N-terminal "degron" sequences. Comparison with Vpx from SIV that infects sooty mangabeys (SIVsmm) complexed with SAMHD1-DCAF1 identifies molecular determinants directing Vpx lineages to N- or C-terminal SAMHD1 sequences. Inspection of the Vpx-DCAF1 interface also reveals conservation of Vpx with the evolutionally related HIV-1/SIV accessory protein Vpr. These data suggest a unified model for how Vpx and Vpr exploit DCAF1 to promote viral replication.
Collapse
Affiliation(s)
- David Schwefel
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Virginie C Boucherit
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Evangelos Christodoulou
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Philip A Walker
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Jonathan P Stoye
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK; Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Kate N Bishop
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Ian A Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
173
|
Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J, Skowronski J. CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain. J Biol Chem 2015; 290:13279-92. [PMID: 25847232 DOI: 10.1074/jbc.m115.646588] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 11/06/2022] Open
Abstract
SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication.
Collapse
Affiliation(s)
- Junpeng Yan
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Caili Hao
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | | | - Selene Swanson
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and
| | - Laurence Florens
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and
| | - Michael P Washburn
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Jinwoo Ahn
- the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jacek Skowronski
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
174
|
Degradation of SAMHD1 by Vpx Is Independent of Uncoating. J Virol 2015; 89:5701-13. [PMID: 25762741 DOI: 10.1128/jvi.03575-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Sterile alpha motif domain and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in myeloid and resting T cells. Lentiviruses such as HIV-2 and some simian immunodeficiency viruses (SIVs) counteract the restriction by encoding Vpx or Vpr, accessory proteins that are packaged in virions and which, upon entry of the virus into the cytoplasm, induce the proteasomal degradation of SAMHD1. As a tool to study these mechanisms, we generated HeLa cell lines that express a fusion protein termed NLS.GFP.SAM595 in which the Vpx binding domain of SAMHD1 is fused to the carboxy terminus of green fluorescent protein (GFP) and a nuclear localization signal is fused to the amino terminus of GFP. Upon incubation of Vpx-containing virions with the cells, the NLS.GFP.SAM595 fusion protein was degraded over several hours and the levels remained low over 5 days as the result of continued targeting of the CRL4 E3 ubiquitin ligase. Degradation of the fusion protein required that it contain a nuclear localization sequence. Fusion to the cytoplasmic protein muNS rendered the protein resistant to Vpx-mediated degradation, confirming that SAMHD1 is targeted in the nucleus. Virions treated with protease inhibitors failed to release Vpx, indicating that Gag processing was required for Vpx release from the virion. Mutations in the capsid protein that altered the kinetics of virus uncoating and the Gag binding drug PF74 had no effect on the Vpx-mediated degradation. These results suggest that Vpx is released from virions without a need for uncoating of the capsid, allowing Vpx to transit to the nucleus rapidly upon entry into the cytoplasm. IMPORTANCE SAMHD1 restricts lentiviral replication in myeloid cells and resting T cells. Its importance is highlighted by the fact that viruses such as HIV-2 encode an accessory protein that is packaged in the virion and is dedicated to inducing SAMHD1 degradation. Vpx needs to act rapidly upon infection to allow reverse transcription to proceed. The limited number of Vpx molecules in a virion also needs to clear the cell of SAMHD1 over a prolonged period of time. Using an engineered HeLa cell line that expresses a green fluorescent protein (GFP)-SAMHD1 fusion protein, we showed that the Vpx-dependent degradation occurs without a need for viral capsid uncoating. In addition, the fusion protein was degraded only when it was localized to the nucleus, confirming that SAMHD1 is targeted in the nucleus and thus explaining why Vpx also localizes to the nucleus.
Collapse
|
175
|
Kretschmer S, Wolf C, König N, Staroske W, Guck J, Häusler M, Luksch H, Nguyen LA, Kim B, Alexopoulou D, Dahl A, Rapp A, Cardoso MC, Shevchenko A, Lee-Kirsch MA. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis 2015; 74:e17. [PMID: 24445253 PMCID: PMC4345975 DOI: 10.1136/annrheumdis-2013-204845] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The HIV restriction factor, SAMHD1 (SAM domain and HD domain-containing protein 1), is a triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs). Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory disorder that shares phenotypic similarity with systemic lupus erythematosus, including activation of antiviral type 1 interferon (IFN). To further define the pathomechanisms underlying autoimmunity in AGS due to SAMHD1 mutations, we investigated the physiological properties of SAMHD1. METHODS Primary patient fibroblasts were examined for dNTP levels, proliferation, senescence, cell cycle progression and DNA damage. Genome-wide transcriptional profiles were generated by RNA sequencing. Interaction of SAMHD1 with cyclin A was assessed by coimmunoprecipitation and fluorescence cross-correlation spectroscopy. Cell cycle-dependent phosphorylation of SAMHD1 was examined in synchronised HeLa cells and using recombinant SAMHD1. SAMHD1 was knocked down by RNA interference. RESULTS We show that increased dNTP pools due to SAMHD1 deficiency cause genome instability in fibroblasts of patients with AGS. Constitutive DNA damage signalling is associated with cell cycle delay, cellular senescence, and upregulation of IFN-stimulated genes. SAMHD1 is phosphorylated by cyclin A/cyclin-dependent kinase 1 in a cell cycle-dependent manner, and its level fluctuates during the cell cycle, with the lowest levels observed in G1/S phase. Knockdown of SAMHD1 by RNA interference recapitulates activation of DNA damage signalling and type 1 IFN activation. CONCLUSIONS SAMHD1 is required for genome integrity by maintaining balanced dNTP pools. dNTP imbalances due to SAMHD1 deficiency cause DNA damage, leading to intrinsic activation of IFN signalling. These findings establish a novel link between DNA damage signalling and innate immune activation in the pathogenesis of autoimmunity.
Collapse
Affiliation(s)
- Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja König
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Wolfgang Staroske
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Martin Häusler
- Department of Pediatrics, University Hospital, University of Aachen, Aachen, Germany
| | - Hella Luksch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Laura A Nguyen
- Department of Pediatrics, Center for Drug Discovery, Emory University, Atlanta, Georgia, USA
| | - Baek Kim
- Department of Pediatrics, Center for Drug Discovery, Emory University, Atlanta, Georgia, USA
- College of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Dimitra Alexopoulou
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, Germany
| | | | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
176
|
Zhu CF, Wei W, Peng X, Dong YH, Gong Y, Yu XF. The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. ACTA ACUST UNITED AC 2015; 71:516-24. [PMID: 25760601 DOI: 10.1107/s1399004714027527] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022]
Abstract
SAMHD1 is the only known eukaryotic deoxynucleoside triphosphate triphosphohydrolase (dNTPase) and is a major regulator of intracellular dNTP pools. It has been reported to be a potent inhibitor of retroviruses such as HIV-1 and endogenous retrotransposons. Previous crystal structures have revealed that SAMHD1 is activated by dGTP-dependent tetramer formation. However, recent data have indicated that the primary activator of SAMHD1 is GTP, not dGTP. Therefore, how its dNTPase activity is regulated needs to be further clarified. Here, five crystal structures of the catalytic core of SAMHD1 in complex with different combinations of GTP and dNTPs are reported, including a GTP-bound dimer and four GTP/dNTP-bound tetramers. The data show that human SAMHD1 contains two unique activator-binding sites in the allosteric pocket. The primary activator GTP binds to one site and the substrate dNTP (dATP, dCTP, dUTP or dTTP) occupies the other. Consequently, both GTP and dNTP are required for tetramer activation of the enzyme. In the absence of substrate binding, SAMHD1 adopts an inactive dimer conformation even when complexed with GTP. Furthermore, SAMHD1 activation is regulated by the concentration of dNTP. Thus, the level of dNTP pools is elegantly regulated by the self-sensing ability of SAMHD1 through a novel activation mechanism.
Collapse
Affiliation(s)
- Chun Feng Zhu
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Wei Wei
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Yu Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Xiao Fang Yu
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
177
|
Singh D, Gawel D, Itsko M, Hochkoeppler A, Krahn JM, London RE, Schaaper RM. Structure of Escherichia coli dGTP triphosphohydrolase: a hexameric enzyme with DNA effector molecules. J Biol Chem 2015; 290:10418-29. [PMID: 25694425 DOI: 10.1074/jbc.m115.636936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 01/23/2023] Open
Abstract
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present study, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNA with high affinity (Kd ∼ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent Km for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.
Collapse
Affiliation(s)
- Deepa Singh
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Damian Gawel
- the Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, 01-813 Warsaw, Poland, and
| | - Mark Itsko
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | - Juno M Krahn
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Robert E London
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Roel M Schaaper
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
178
|
Schmidt S, Schenkova K, Adam T, Erikson E, Lehmann-Koch J, Sertel S, Verhasselt B, Fackler OT, Lasitschka F, Keppler OT. SAMHD1's protein expression profile in humans. J Leukoc Biol 2015; 98:5-14. [PMID: 25646359 PMCID: PMC7166976 DOI: 10.1189/jlb.4hi0714-338rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022] Open
Abstract
First cross‐sectional expression profile of SAMHD1 in human tissue provides insight into its regulation on HIV target cells and effects its expression or phosphorylation state by proinflammatory cytokines. The deoxynucleoside triphosphate triphosphohydrolase and 3′ → 5′ exonuclease SAMHD1 restricts HIV‐1 infection in noncycling hematopoietic cells in vitro, and SAMHD1 mutations are associated with AGS. Little is known about the in vivo expression and functional regulation of this cellular factor. Here, we first assessed the SAMHD1 protein expression profile on a microarray of 25 human tissues from >210 donors and in purified primary cell populations. In vivo, SAMHD1 was expressed in the majority of nucleated cells of hematopoietic origin, including tissue‐resident macrophages, DCs, pDCs, all developmental stages of thymic T cells, monocytes, NK cells, as well as at lower levels in B cells. Of note, SAMHD1 was abundantly expressed in HIV target cells residing in the anogenital mucosa, providing a basis for its evaluation as a cellular factor that may impact the efficiency of HIV transmission. Next, we examined the effect of the activation status and proinflammatory cytokine treatment of cells on expression and phosphorylation of SAMHD1. Activated, HIV‐susceptible CD4+ T cells carried pSAMHD1(T592), whereas resting CD4+ T cells and macrophages expressed the unphosphorylated protein with HIV‐restrictive activity. Surprisingly, stimulation of these primary cells with IFN‐α, IFN‐γ, IL‐4, IL‐6, IL‐12, IL‐18, IL‐27, or TNF‐α affected neither SAMHD1 expression levels nor threonine 592 phosphorylation. Only IL‐1β moderately down‐regulated SAMHD1 in activated CD4+ T cells. Taken together, this study establishes the first cross‐sectional protein expression profile of SAMHD1 in human tissues and provides insight into its cell cycle‐dependent phosphorylation and unresponsiveness to multiple proinflammatory cytokines.
Collapse
Affiliation(s)
- Sarah Schmidt
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Kristina Schenkova
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Tarek Adam
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Elina Erikson
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Judith Lehmann-Koch
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Serkan Sertel
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Oliver T Fackler
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Felix Lasitschka
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Oliver T Keppler
- *Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Germany; Department of Infectious Diseases, Integrative Virology, Institute of Pathology, and Department of Otolaryngology, Head and Neck Surgery, University of Heidelberg, Germany; German Centre for Infection Research, Heidelberg, Germany; and Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| |
Collapse
|
179
|
Sabbatucci M, Covino DA, Purificato C, Mallano A, Federico M, Lu J, Rinaldi AO, Pellegrini M, Bona R, Michelini Z, Cara A, Vella S, Gessani S, Andreotti M, Fantuzzi L. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology 2015; 12:4. [PMID: 25608886 PMCID: PMC4314729 DOI: 10.1186/s12977-014-0132-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Macrophages are key targets of HIV-1 infection. We have previously described that the expression of CC chemokine ligand 2 (CCL2) increases during monocyte differentiation to macrophages and it is further up-modulated by HIV-1 exposure. Moreover, CCL2 acts as an autocrine factor that promotes viral replication in infected macrophages. In this study, we dissected the molecular mechanisms by which CCL2 neutralization inhibits HIV-1 replication in monocyte-derived macrophages (MDM), and the potential involvement of the innate restriction factors protein sterile alpha motif (SAM) histidine/aspartic acid (HD) domain containing 1 (SAMHD1) and apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family members. RESULTS CCL2 neutralization potently reduced the number of p24 Gag+ cells during the course of either productive or single cycle infection with HIV-1. In contrast, CCL2 blocking did not modify entry of HIV-1 based Virus Like Particles, thus demonstrating that the restriction involves post-entry steps of the viral life cycle. Notably, the accumulation of viral DNA, both total, integrated and 2-LTR circles, was strongly impaired by neutralization of CCL2. Looking for correlates of HIV-1 DNA accumulation inhibition, we found that the antiviral effect of CCL2 neutralization was independent of the modulation of SAMHD1 expression or function. Conversely, a strong and selective induction of APOBEC3A expression, to levels comparable to those of freshly isolated monocytes, was associated with the inhibition of HIV-1 replication mediated by CCL2 blocking. Interestingly, the CCL2 neutralization mediated increase of APOBEC3A expression was type I IFN independent. Moreover, the transcriptome analysis of the effect of CCL2 blocking on global gene expression revealed that the neutralization of this chemokine resulted in the upmodulation of additional genes involved in the defence response to viruses. CONCLUSIONS Neutralization of endogenous CCL2 determines a profound restriction of HIV-1 replication in primary MDM affecting post-entry steps of the viral life cycle with a mechanism independent of SAMHD1. In addition, CCL2 blocking is associated with induction of APOBEC3A expression, thus unravelling a novel mechanism which might contribute to regulate the expression of innate intracellular viral antagonists in vivo. Thus, our study may potentially lead to the development of new therapeutic strategies for enhancing innate cellular defences against HIV-1 and protecting macrophages from infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Laura Fantuzzi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
180
|
The susceptibility of primate lentiviruses to nucleosides and Vpx during infection of dendritic cells is regulated by CA. J Virol 2015; 89:4030-4. [PMID: 25609804 DOI: 10.1128/jvi.03315-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The block toward human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) can be relieved by Vpx (viral protein X), which degrades sterile alpha motif-hydroxylase domain 1 (SAMHD1) or by exogenously added deoxynucleosides (dNs), lending support to the hypothesis that SAMHD1 acts by limiting deoxynucleoside triphosphates (dNTPs). This notion has, however, been questioned. We show that while dNs and Vpx increase the infectivity of HIV-1, only the latter restores the infectivity of a simian immunodeficiency virus of macaques variant, SIVMACΔVpx virus. This distinct behavior seems to map to CA, suggesting that species-specific CA interactors modulate infection of DCs.
Collapse
|
181
|
Blondot ML, Dragin L, Lahouassa H, Margottin-Goguet F. How SLX4 cuts through the mystery of HIV-1 Vpr-mediated cell cycle arrest. Retrovirology 2014; 11:117. [PMID: 25496524 PMCID: PMC4271344 DOI: 10.1186/s12977-014-0117-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 11/27/2014] [Indexed: 01/16/2023] Open
Abstract
Vpr is one of the most enigmatic viral auxiliary proteins of HIV. During the past twenty years, several activities have been ascribed to this viral protein, but one, its ability to mediate cell cycle arrest at the G2 to M transition has been the most extensively studied. Nonetheless, the genuine role of Vpr and its pathophysiological relevance in the viral life cycle have remained mysterious. Recent work by Laguette et al. (Cell 156:134-145, 2014) provides important insight into the molecular mechanism of Vpr-mediated G2 arrest. This study highlights for the first time how Vpr recruits the SLX4 endonuclease complex and how Vpr-induced inappropriate activation of this complex leads to G2 arrest. Here, we will discuss these findings in the light of previous work to show how they change the view of Vpr’s mechanism of action. We will also discuss how these findings open new questions towards the understanding of the biological function of Vpr regarding innate immune sensing.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Inserm, U1016, Institut Cochin, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, France.
| | - Loic Dragin
- Inserm, U1016, Institut Cochin, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, France.
| | - Hichem Lahouassa
- Inserm, U1016, Institut Cochin, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, France.
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, Paris, France. .,Cnrs, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, France.
| |
Collapse
|
182
|
Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun 2014; 455:229-33. [PMID: 25449277 DOI: 10.1016/j.bbrc.2014.10.153] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
Abstract
The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.
Collapse
Affiliation(s)
- Jia-lei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Fan-zhen Lu
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xiao-Yong Shen
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Yun Wu
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - Li-ting Zhao
- Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
183
|
Abstract
Restriction factors are host cell proteins that inhibit retroviral infection. A new study using mutants of human HIV-1 restriction factor SAMHD1 suggests that it inhibits infection through degradation of viral RNA rather than through its dNTPase activity as previously suggested.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Gladstone Institute of Virology and Immunology and the University of California-San Francisco, San Francisco, California, USA
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology and the University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
184
|
Koharudin LMI, Wu Y, DeLucia M, Mehrens J, Gronenborn AM, Ahn J. Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates. J Biol Chem 2014; 289:32617-27. [PMID: 25288794 DOI: 10.1074/jbc.m114.591958] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) plays a critical role in inhibiting HIV infection, curtailing the pool of dNTPs available for reverse transcription of the viral genome. Recent structural data suggested a compelling mechanism for the regulation of SAMHD1 enzymatic activity and revealed dGTP-induced association of two inactive dimers into an active tetrameric enzyme. Here, we present the crystal structures of SAMHD1 catalytic core (residues 113-626) tetramers, complexed with mixtures of nucleotides, including dGTP/dATP, dGTP/dCTP, dGTP/dTTP, and dGTP/dUTP. The combined structural and biochemical data provide insight into dNTP promiscuity at the secondary allosteric site and how enzymatic activity is modulated. In addition, we present biochemical analyses of GTP-induced SAMHD1 full-length tetramerization and the structure of SAMHD1 catalytic core tetramer in complex with GTP/dATP, revealing the structural basis of GTP-mediated SAMHD1 activation. Altogether, the data presented here advance our understanding of SAMHD1 function during cellular homeostasis.
Collapse
Affiliation(s)
- Leonardus M I Koharudin
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Ying Wu
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Maria DeLucia
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jennifer Mehrens
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Angela M Gronenborn
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jinwoo Ahn
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
185
|
Abstract
The sterile alpha motif and HD domain-containing protein 1 (SAMHD1), a dNTPase, prevents the infection of nondividing cells by retroviruses, including HIV, by depleting the cellular dNTP pool available for viral reverse transcription. SAMHD1 is a major regulator of cellular dNTP levels in mammalian cells. Mutations in SAMHD1 are associated with chronic lymphocytic leukemia (CLL) and the autoimmune condition Aicardi Goutières syndrome (AGS). The dNTPase activity of SAMHD1 can be regulated by dGTP, with which SAMHD1 assembles into catalytically active tetramers. Here we present extensive biochemical and structural data that reveal an exquisite activation mechanism of SAMHD1 via combined action of both GTP and dNTPs. We obtained 26 crystal structures of SAMHD1 in complex with different combinations of GTP and dNTP mixtures, which depict the full spectrum of GTP/dNTP binding at the eight allosteric and four catalytic sites of the SAMHD1 tetramer. Our data demonstrate how SAMHD1 is activated by binding of GTP or dGTP at allosteric site 1 and a dNTP of any type at allosteric site 2. Our enzymatic assays further reveal a robust regulatory mechanism of SAMHD1 activity, which bares resemblance to that of the ribonuclease reductase responsible for cellular dNTP production. These results establish a complete framework for a mechanistic understanding of the important functions of SAMHD1 in the regulation of cellular dNTP levels, as well as in HIV restriction and the pathogenesis of CLL and AGS.
Collapse
|
186
|
van Montfoort N, Olagnier D, Hiscott J. Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors. Cytokine Growth Factor Rev 2014; 25:657-68. [PMID: 25240798 DOI: 10.1016/j.cytogfr.2014.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retroviruses can selectively trigger an array of innate immune responses through various PRR. The identification and the characterization of the molecular basis of retroviral DNA sensing by the DNA sensors IFI16 and cGAS has been one of the most exciting developments in viral immunology in recent years. DNA sensing by these cytosolic sensors not only leads to the initiation of the type I interferon (IFN) antiviral response and the induction of the inflammatory response, but also triggers cell death mechanisms including pyroptosis and apoptosis in retrovirus-infected cells, thereby providing important insights into the pathophysiology of chronic retroviral infection. Host restriction factors such as SAMHD1 and Trex1 play important roles in regulating innate immune sensing, and have led to the idea that innate immune defense and host restriction actually converge at different levels to determine the outcome of retroviral infection. In this review, we discuss the sensing of retroviruses by cytosolic DNA sensors, the relevance of host factors during retroviral infection, and the interplay between host factors and the innate antiviral response in different cell types, within the context of two human pathogenic retroviruses - human immunodeficiency virus (HIV-1) and human T cell-leukemia virus type I (HTLV-1).
Collapse
Affiliation(s)
- Nadine van Montfoort
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA
| | - David Olagnier
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA
| | - John Hiscott
- Vaccine & Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
187
|
Hollenbaugh JA, Tao S, Lenzi GM, Ryu S, Kim DH, Diaz-Griffero F, Schinazi RF, Kim B. dNTP pool modulation dynamics by SAMHD1 protein in monocyte-derived macrophages. Retrovirology 2014; 11:63. [PMID: 25158827 PMCID: PMC4161909 DOI: 10.1186/s12977-014-0063-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/18/2014] [Indexed: 02/03/2023] Open
Abstract
Background SAMHD1 degrades deoxyribonucleotides (dNTPs), suppressing viral DNA synthesis in macrophages. Recently, viral protein X (Vpx) of HIV-2/SIVsm was shown to target SAMHD1 for proteosomal degradation and led to elevation of dNTP levels, which in turn accelerated proviral DNA synthesis of lentiviruses in macrophages. Results We investigated both time-dependent and quantitative interplays between SAMHD1 level and dNTP concentrations during multiple exposures of Vpx in macrophages. The following were observed. First, SAMHD1 level was rapidly reduced by Vpx + VLP to undetectable levels by Western blot analysis. Recovery of SAMHD1 was very slow with less than 3% of the normal macrophage level detected at day 6 post Vpx treatment and only ~30% recovered at day 14. Second, dGTP, dCTP and dTTP levels peaked at day 1 post Vpx treatment, whereas dATP peaked at day 2. However, all dNTPs rapidly decreased starting at day 3, while SAMHD1 level was below the level of detection. Third, when Vpx pretreated macrophages were re-exposed to a second Vpx treatment at day 7, we observed dNTP elevation that had faster kinetics than the first Vpx + VLP treatment. Moreover, we performed a short kinetic analysis of the second Vpx treatment to find that dATP and dGTP levels peaked at 8 hours post secondary VLP treatment. dGTP peak was consistently higher than the primary, whereas peak dATP concentration was basically equivalent to the first Vpx + VLP treatment. Lastly, HIV-1 replication kinetics were faster in macrophages treated after the secondary Vpx treatments when compared to the initial single Vpx treatment. Conclusion This study reveals that a very low level of SAMHD1 sufficiently modulates the normally low dNTP levels in macrophages and proposes potential diverse mechanisms of Vpx-mediated dNTP regulation in macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0063-2) contains supplementary material, which is available to authorized users.
Collapse
|
188
|
Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim S, Seo D, Kim J, White TE, Brandariz-Nunez A, Diaz-Griffero F, Yun CH, Hollenbaugh JA, Kim B, Baek D, Ahn K. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 2014; 20:936-41. [PMID: 25038827 PMCID: PMC4318684 DOI: 10.1038/nm.3626] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/03/2014] [Indexed: 01/21/2023]
Abstract
The HIV-1 restriction factor SAM domain- and HD domain-containing protein 1 (SAMHD1) is proposed to inhibit HIV-1 replication by depleting the intracellular dNTP pool. However, phosphorylation of SAMHD1 regulates its ability to restrict HIV-1 without decreasing cellular dNTP levels, which is not consistent with a role for SAMHD1 dNTPase activity in HIV-1 restriction. Here, we show that SAMHD1 possesses RNase activity and that the RNase but not the dNTPase function is essential for HIV-1 restriction. By enzymatically characterizing Aicardi-Goutières syndrome (AGS)-associated SAMHD1 mutations and mutations in the allosteric dGTP-binding site of SAMHD1 for defects in RNase or dNTPase activity, we identify SAMHD1 point mutants that cause loss of one or both functions. The RNase-positive and dNTPase-negative SAMHD1D137N mutant is able to restrict HIV-1 infection, whereas the RNase-negative and dNTPase-positive SAMHD1Q548A mutant is defective for HIV-1 restriction. SAMHD1 associates with HIV-1 RNA and degrades it during the early phases of cell infection. SAMHD1 silencing in macrophages and CD4(+) T cells from healthy donors increases HIV-1 RNA stability, rendering the cells permissive for HIV-1 infection. Furthermore, phosphorylation of SAMHD1 at T592 negatively regulates its RNase activity in cells and impedes HIV-1 restriction. Our results reveal that the RNase activity of SAMHD1 is responsible for preventing HIV-1 infection by directly degrading the HIV-1 RNA.
Collapse
Affiliation(s)
- Jeongmin Ryoo
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul 151-747, Republic of Korea
- Department of the Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jongsu Choi
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul 151-747, Republic of Korea
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Changhoon Oh
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul 151-747, Republic of Korea
- Department of the Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 151-747, Republic of Korea
| | - Sungchul Kim
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul 151-747, Republic of Korea
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Minji Seo
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul 151-747, Republic of Korea
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Seokyoung Kim
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul 151-747, Republic of Korea
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Daekwan Seo
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jongkyu Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul 151-747, Republic of Korea
| | - Tommy E. White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alberto Brandariz-Nunez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Joseph A. Hollenbaugh
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia, USA
| | - Daehyun Baek
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
- Bioinformatics Institute, Seoul National University, Seoul 151-747, Republic of Korea
- Center for RNA Research, Institute for Basic Science, Seoul 151-747, Republic of Korea
| | - Kwangseog Ahn
- Creative Research Initiative Center for Antigen Presentation, Seoul National University, Seoul 151-747, Republic of Korea
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
189
|
Huber AD, Michailidis E, Schultz ML, Ong YT, Bloch N, Puray-Chavez MN, Leslie MD, Ji J, Lucas AD, Kirby KA, Landau NR, Sarafianos SG. SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 58:4915-9. [PMID: 24867973 PMCID: PMC4136039 DOI: 10.1128/aac.02745-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/13/2014] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways.
Collapse
Affiliation(s)
- Andrew D Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Eleftherios Michailidis
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Megan L Schultz
- Microbiology Department, New York University School of Medicine, New York, New York, USA
| | - Yee T Ong
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nicolin Bloch
- Microbiology Department, New York University School of Medicine, New York, New York, USA
| | - Maritza N Puray-Chavez
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Maxwell D Leslie
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Juan Ji
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Anthony D Lucas
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Karen A Kirby
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nathaniel R Landau
- Microbiology Department, New York University School of Medicine, New York, New York, USA
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
190
|
Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X, Zhang L, Dong Y, Zhang W, Li P, Wei W, Gong Y, Yu XF. Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat Commun 2014; 4:2722. [PMID: 24217394 DOI: 10.1038/ncomms3722] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/07/2013] [Indexed: 01/20/2023] Open
Abstract
SAMHD1 is a dGTP-activated deoxynucleoside triphosphate triphosphohydrolase (dNTPase) whose dNTPase activity has been linked to HIV/SIV restriction. The mechanism of its dGTP-activated dNTPase function remains unclear. Recent data also indicate that SAMHD1 regulates retrotransposition of LINE-1 elements. Here we report the 1.8-Å crystal structure of homotetrameric SAMHD1 in complex with the allosteric activator and substrate dGTP/dATP. The structure indicates the mechanism of dGTP-dependent tetramer formation, which requires the cooperation of three subunits and two dGTP/dATP molecules at each allosteric site. Allosteric dGTP binding induces conformational changes at the active site, allowing a more stable interaction with the substrate and explaining the dGTP-induced SAMHD1 dNTPase activity. Mutations of dGTP binding residues in the allosteric site affect tetramer formation, dNTPase activity and HIV-1 restriction. dGTP-triggered tetramer formation is also important for SAMHD1-mediated LINE-1 regulation. The structural and functional information provided here should facilitate future investigation of SAMHD1 function, including dNTPase activity, LINE-1 modulation and HIV-1 restriction.
Collapse
Affiliation(s)
- Chunfeng Zhu
- 1] School of Life Sciences, Tianjin University, Tianjin 300072, China [2]
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Chen Z, Zhu M, Pan X, Zhu Y, Yan H, Jiang T, Shen Y, Dong X, Zheng N, Lu J, Ying S, Shen Y. Inhibition of Hepatitis B virus replication by SAMHD1. Biochem Biophys Res Commun 2014; 450:1462-8. [PMID: 25019997 DOI: 10.1016/j.bbrc.2014.07.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/03/2014] [Indexed: 12/30/2022]
Abstract
Sterile alpha motif and HD-domain containing protein 1 (SAMHD1) is a newly identified intracellular antiviral factor. By depleting the dNTPs pool of host cells to a low level that cannot support the efficient synthesis of viral cDNA, it restricts replication of some retroviruses. As a DNA virus, Hepatitis B virus (HBV) experiences a process of reverse transcription in its life cycle akin to that of retroviruses. However, whether SAMHD1 can restrict HBV replication in liver cells is unknown. Here, we reported that SAMHD1 expression was detectable in four liver cell lines. Exogenous expression of SAMHD1 in SMMC-7721 cells restrained HBV replication. Similarly, SAMHD1 impeded HBV replication in another liver cell line, BEL-7402. Remarkably, the catalytically inactive mutant, SAMHD1 HD/AA also hampered HBV replication. Additionally, HBV replication reduced SAMHD1 expression in HepG2 cells. Moreover, it was found that IFN-α induced expression of SAMHD1 in liver cells. Together, these findings suggested that IFN-α-inducible SAMHD1 inhibited HBV replication in liver cells.
Collapse
Affiliation(s)
- Zhangming Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Mengying Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Xiang Pan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yongji Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Hai Yan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Tongcui Jiang
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Xiaowan Dong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Nan Zheng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Jinsen Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
192
|
Volkman HE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 2014; 15:415-22. [PMID: 24747712 DOI: 10.1038/ni.2872] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/21/2014] [Indexed: 02/07/2023]
Abstract
Inappropriate or chronic detection of self nucleic acids by the innate immune system underlies many human autoimmune diseases. We discuss here an unexpected source of endogenous immunostimulatory nucleic acids: the reverse-transcribed cDNA of endogenous retroelements. The interplay between innate immune sensing and clearance of retroelement cDNA has important implications for the understanding of immune responses to infectious retroviruses such as human immunodeficiency virus (HIV). Furthermore, the detection of cDNA by the innate immune system reveals an evolutionary tradeoff: selection for a vigorous, sensitive response to infectious retroviruses may predispose the inappropriate detection of endogenous retroelements. We propose that this tradeoff has placed unique constraints on the sensitivity of the DNA-activated antiviral response, with implications for the interactions of DNA viruses and retroviruses with their hosts. Finally, we discuss how better understanding of the intersection of retroelement biology and innate immunity can guide the way to novel therapies for specific autoimmune diseases.
Collapse
Affiliation(s)
- Hannah E Volkman
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
193
|
Mathews CK. Deoxyribonucleotides as genetic and metabolic regulators. FASEB J 2014; 28:3832-40. [PMID: 24928192 DOI: 10.1096/fj.14-251249] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
Abstract
For >35 yr, we have known that the accuracy of DNA replication is controlled in large part by the relative concentrations of the 4 canonical deoxyribonucleoside 5'-triphosphates (dNTPs) at the replisome. Since this field was last reviewed, ∼8 yr ago, there has been increased understanding of the mutagenic pathways as they occur in living cells. At the same time, aspects of deoxyribonucleotide metabolism have been shown to be critically involved in processes as diverse as cell cycle control, protooncogene expression, cellular defense against HIV infection, replication rate control, telomere length control, and mitochondrial function. Evidence supports a relationship between dNTP pools and microsatellite repeat instability. Relationships between dNTP synthesis and breakdown in controlling steady-state pools have become better defined. In addition, new experimental approaches have allowed definitive analysis of mutational pathways induced by dNTP pool abnormalities, both in Escherichia coli and in yeast. Finally, ribonucleoside triphosphate (rNTP) pools have been shown to be critical determinants of DNA replication fidelity. These developments are discussed in this review article.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
194
|
White TE, Brandariz-Nuñez A, Valle-Casuso JC, Knowlton C, Kim B, Sawyer SL, Diaz-Griffero F. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility. Virology 2014; 460-461:34-44. [PMID: 25010268 DOI: 10.1016/j.virol.2014.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/11/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022]
Abstract
SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition.
Collapse
Affiliation(s)
- Tommy E White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Jose Carlos Valle-Casuso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA
| | - Caitlin Knowlton
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Baek Kim
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sara L Sawyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park - Price Center 501, New York, NY 10461, USA.
| |
Collapse
|
195
|
Mouse knockout models for HIV-1 restriction factors. Cell Mol Life Sci 2014; 71:3749-66. [PMID: 24854580 PMCID: PMC4160573 DOI: 10.1007/s00018-014-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
Infection of cells with human immunodeficiency virus 1 (HIV-1) is controlled by restriction factors, host proteins that counteract a variety of steps in the life cycle of this lentivirus. These include SAMHD1, APOBEC3G and tetherin, which block reverse transcription, hypermutate viral DNA and prevent progeny virus release, respectively. These and other HIV-1 restriction factors are conserved and have clear orthologues in the mouse. This review summarises studies in knockout mice lacking HIV-1 restriction factors. In vivo experiments in such animals have not only validated in vitro data obtained from cultured cells, but have also revealed new findings about the biology of these proteins. Indeed, genetic ablation of HIV-1 restriction factors in the mouse has provided evidence that restriction factors control retroviruses and other viruses in vivo and has led to new insights into the mechanisms by which these proteins counteract infection. For example, in vivo experiments in knockout mice demonstrate that virus control exerted by restriction factors can shape adaptive immune responses. Moreover, the availability of animals lacking restriction factors opens the possibility to study the function of these proteins in other contexts such as autoimmunity and cancer. Further in vivo studies of more recently identified HIV-1 restriction factors in gene targeted mice are, therefore, justified.
Collapse
|
196
|
Miazzi C, Ferraro P, Pontarin G, Rampazzo C, Reichard P, Bianchi V. Allosteric regulation of the human and mouse deoxyribonucleotide triphosphohydrolase sterile α-motif/histidine-aspartate domain-containing protein 1 (SAMHD1). J Biol Chem 2014; 289:18339-46. [PMID: 24828500 PMCID: PMC4140260 DOI: 10.1074/jbc.m114.571091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deoxyribonucleotide triphosphohydrolase SAMHD1 restricts lentiviral infection by depleting the dNTPs required for viral DNA synthesis. In cultured human fibroblasts SAMHD1 is expressed maximally during quiescence preventing accumulation of dNTPs outside S phase. siRNA silencing of SAMHD1 increases dNTP pools, stops cycling human cells in G1, and blocks DNA replication. Surprisingly, knock-out of the mouse gene does not affect the well being of the animals. dNTPs are both substrates and allosteric effectors for SAMHD1. In the crystal structure each subunit of the homotetrameric protein contains one substrate-binding site and two nonidentical effector-binding sites, site 1 binding dGTP, site 2 dGTP or dATP. Here we compare allosteric properties of pure recombinant human and mouse SAMHD1. Both enzymes are activated 3–4-fold by allosteric effectors. We propose that in quiescent cells where SAMHD1 is maximally expressed GTP binds to site 1 with very high affinity, stabilizing site 2 of the tetrameric structure. Any canonical dNTP can bind to site 2 and activate SAMHD1, but in cells only dATP or dTTP are present at sufficient concentrations. The apparent Km for dATP at site 2 is ∼10 μm for mouse and 1 μm for human SAMHD1, for dTTP the corresponding values are 50 and 2 μm. Tetrameric SAMHD1 is activated for the hydrolysis of any dNTP only after binding of a dNTP to site 2. The lower Km constants for human SAMHD1 induce activation at lower cellular concentrations of dNTPs thereby limiting the size of dNTP pools more efficiently in quiescent human cells.
Collapse
Affiliation(s)
- Cristina Miazzi
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Paola Ferraro
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Giovanna Pontarin
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Chiara Rampazzo
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Peter Reichard
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Vera Bianchi
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
197
|
Itsko M, Schaaper RM. dGTP starvation in Escherichia coli provides new insights into the thymineless-death phenomenon. PLoS Genet 2014; 10:e1004310. [PMID: 24810600 PMCID: PMC4014421 DOI: 10.1371/journal.pgen.1004310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Starvation of cells for the DNA building block dTTP is strikingly lethal (thymineless death, TLD), and this effect is observed in all organisms. The phenomenon, discovered some 60 years ago, is widely used to kill cells in anticancer therapies, but many questions regarding the precise underlying mechanisms have remained. Here, we show for the first time that starvation for the DNA precursor dGTP can kill E. coli cells in a manner sharing many features with TLD. dGTP starvation is accomplished by combining up-regulation of a cellular dGTPase with a deficiency of the guanine salvage enzyme guanine-(hypoxanthine)-phosphoribosyltransferase. These cells, when grown in medium without an exogenous purine source like hypoxanthine or adenine, display a specific collapse of the dGTP pool, slow-down of chromosomal replication, the generation of multi-branched nucleoids, induction of the SOS system, and cell death. We conclude that starvation for a single DNA building block is sufficient to bring about cell death.
Collapse
Affiliation(s)
- Mark Itsko
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Roel M. Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
198
|
Maelfait J, Seiradake E, Rehwinkel J. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS. Bioessays 2014; 36:649-57. [PMID: 24782340 PMCID: PMC4190646 DOI: 10.1002/bies.201400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
HIV-1 infects dendritic cells (DCs) without triggering an effective innate antiviral immune response. As a consequence, the induction of adaptive immune responses controlling virus spread is limited. In a recent issue of Immunity, Lahaye and colleagues show that intricate interactions of HIV capsid with the cellular cofactor cyclophilin A (CypA) control infection and innate immune activation in DCs. Manipulation of HIV-1 capsid to increase its affinity for CypA results in reduced virus infectivity and facilitates access of the cytosolic DNA sensor cGAS to reverse transcribed DNA. This in turn induces a strong host response. Here, we discuss these findings in the context of recent developments in innate immunity and consider the implications for disease control and vaccine design.
Collapse
Affiliation(s)
- Jonathan Maelfait
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
199
|
GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state. Proc Natl Acad Sci U S A 2014; 111:E1843-51. [PMID: 24753578 DOI: 10.1073/pnas.1401706111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 restriction factor sterile α-motif/histidine-aspartate domain-containing protein 1 (SAMHD1) is a tetrameric protein that catalyzes the hydrolysis of all dNTPs to the deoxynucleoside and tripolyphosphate, which effectively depletes the dNTP substrates of HIV reverse transcriptase. Here, we establish that SAMHD1 is activated by GTP binding to guanine-specific activator sites (A1) as well as coactivation by substrate dNTP binding to a distinct set of nonspecific activator sites (A2). Combined activation by GTP and dNTPs results in a long-lived tetrameric form of SAMHD1 that persists for hours, even after activating nucleotides are withdrawn from the solution. These results reveal an ordered model for assembly of SAMHD1 tetramer from its inactive monomer and dimer forms, where GTP binding to the A1 sites generates dimer and dNTP binding to the A2 and catalytic sites generates active tetramer. Thus, cellular regulation of active SAMHD1 is not determined by GTP alone but instead, the levels of all dNTPs and the generation of a persistent tetramer that is not in equilibrium with free activators. The significance of the long-lived activated state is that SAMHD1 can remain active long after dNTP pools have been reduced to a level that would lead to inactivation. This property would be important in resting CD4(+) T cells, where dNTP pools are reduced to nanomolar levels to restrict infection by HIV-1.
Collapse
|
200
|
Schaller T, Bauby H, Hué S, Malim MH, Goujon C. New insights into an X-traordinary viral protein. Front Microbiol 2014; 5:126. [PMID: 24782834 PMCID: PMC3986551 DOI: 10.3389/fmicb.2014.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 11/13/2022] Open
Abstract
Vpx is a protein encoded by members of the HIV-2/SIVsmm and SIVrcm/SIVmnd-2 lineages of primate lentiviruses, and is packaged into viral particles. Vpx plays a critical role during the early steps of the viral life cycle and has been shown to counteract SAMHD1, a restriction factor in myeloid and resting T cells. However, it is becoming evident that Vpx is a multifunctional protein in that SAMHD1 antagonism is likely not its sole role. This review summarizes the current knowledge on this X-traordinary protein.
Collapse
Affiliation(s)
- Torsten Schaller
- Department of Infectious Diseases, King's College London London, UK
| | - Hélène Bauby
- Department of Infectious Diseases, King's College London London, UK
| | - Stéphane Hué
- Department of Infection, Division of Infection and Immunity, Centre for Medical Molecular Virology, University College London London, UK
| | - Michael H Malim
- Department of Infectious Diseases, King's College London London, UK
| | - Caroline Goujon
- Department of Infectious Diseases, King's College London London, UK
| |
Collapse
|