151
|
Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol 2016; 38:163-73. [PMID: 27525816 DOI: 10.1016/j.sbi.2016.07.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment.
Collapse
Affiliation(s)
- Mark L Chiu
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Gary L Gilliland
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
152
|
Klein C, Schaefer W, Regula JT. The use of CrossMAb technology for the generation of bi- and multispecific antibodies. MAbs 2016; 8:1010-20. [PMID: 27285945 PMCID: PMC4968094 DOI: 10.1080/19420862.2016.1197457] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The major challenge in the generation of bispecific IgG antibodies is enforcement of the correct heavy and light chain association. The correct association of generic light chains can be enabled using immunoglobulin domain crossover, known as CrossMAb technology, which can be combined with approaches enabling correct heavy chain association such as knobs-into-holes (KiH) technology or electrostatic steering. Since its development, this technology has proven to be very versatile, allowing the generation of various bispecific antibody formats, not only heterodimeric/asymmetric bivalent 1+1 CrossMAbs, but also tri- (2+1), tetravalent (2+2) bispecific and multispecific antibodies. Numerous CrossMAbs have been evaluated in preclinical studies, and, so far, 4 different tailor-made bispecific antibodies based on the CrossMAb technology have entered clinical studies. Here, we review the properties and activities of bispecific CrossMAbs and give an overview of the variety of CrossMAb-enabled antibody formats that differ from heterodimeric 1+1 bispecific IgG antibodies.
Collapse
Affiliation(s)
- Christian Klein
- a Roche Innovation Center Zurich , Roche Pharmaceutical Research & Early Development, Wagistrasse , Schlieren , Switzerland
| | - Wolfgang Schaefer
- b Roche Innovation Center Munich , Roche Pharmaceutical Research & Early Development, Nonnenwald , Penzberg , Germany
| | - Jörg T Regula
- b Roche Innovation Center Munich , Roche Pharmaceutical Research & Early Development, Nonnenwald , Penzberg , Germany
| |
Collapse
|
153
|
Abstract
Cancer immunotherapy has recently generated much excitement after the continuing success of the immunomodulating anti-CTLA-4 and anti-PD-1 antibodies against various types of cancers. Aside from these immunomodulating antibodies, bispecific antibodies, chimeric antigen receptor T cells, and other technologies are being actively studied. Among the various approaches to cancer immunotherapy, 2 bispecific antibodies are currently approved for patient care. Many more bispecific antibodies are now in various phases of clinical development and will become the next generation of antibody-based therapies. Further understanding of immunology and advances in protein engineering will help to generate a greater variety of bispecific antibodies to fight cancer. Here, we focus on bispecific antibodies that recruit immune cells to engage and kill tumor cells.
Collapse
Affiliation(s)
- Siqi Chen
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Jing Li
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Qing Li
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Zhong Wang
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
154
|
A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun 2016; 7:11505. [PMID: 27230681 PMCID: PMC4894982 DOI: 10.1038/ncomms11505] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Inhibition of the Wnt antagonist sclerostin increases bone mass in patients with osteoporosis and in preclinical animal models. Here we show increased levels of the Wnt antagonist Dickkopf-1 (DKK-1) in animals treated with sclerostin antibody, suggesting a negative feedback mechanism that limits Wnt-driven bone formation. To test our hypothesis that co-inhibition of both factors further increases bone mass, we engineer a first-in-class bispecific antibody with single residue pair mutations in the Fab region to promote efficient and stable cognate light–heavy chain pairing. We demonstrate that dual inhibition of sclerostin and DKK-1 leads to synergistic bone formation in rodents and non-human primates. Furthermore, by targeting distinct facets of fracture healing, the bispecific antibody shows superior bone repair activity compared with monotherapies. This work supports the potential of this agent both for treatment and prevention of fractures and offers a promising therapeutic approach to reduce the burden of low bone mass disorders. Antibodies that block the Wnt inhibitors sclerostin and DKK- 1 enhance bone formation and fracture repair. Here the authors show these monospecific antibodies induce compensatory mechanisms that limit efficacy, and have designed a sclerostin/DKK-1 bispecific antibody that promotes superior fracture repair in rodents and bone formation in primates.
Collapse
|
155
|
Leaver-Fay A, Froning KJ, Atwell S, Aldaz H, Pustilnik A, Lu F, Huang F, Yuan R, Hassanali S, Chamberlain AK, Fitchett JR, Demarest SJ, Kuhlman B. Computationally Designed Bispecific Antibodies using Negative State Repertoires. Structure 2016; 24:641-651. [PMID: 26996964 DOI: 10.1016/j.str.2016.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/04/2016] [Accepted: 02/17/2016] [Indexed: 12/27/2022]
Abstract
A challenge in the structure-based design of specificity is modeling the negative states, i.e., the complexes that you do not want to form. This is a difficult problem because mutations predicted to destabilize the negative state might be accommodated by small conformational rearrangements. To overcome this challenge, we employ an iterative strategy that cycles between sequence design and protein docking in order to build up an ensemble of alternative negative state conformations for use in specificity prediction. We have applied our technique to the design of heterodimeric CH3 interfaces in the Fc region of antibodies. Combining computationally and rationally designed mutations produced unique designs with heterodimer purities greater than 90%. Asymmetric Fc crystallization was able to resolve the interface mutations; the heterodimer structures confirmed that the interfaces formed as designed. With these CH3 mutations, and those made at the heavy-/light-chain interface, we demonstrate one-step synthesis of four fully IgG-bispecific antibodies.
Collapse
Affiliation(s)
- Andrew Leaver-Fay
- Department of Biochemistry, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Campus Box 7260, Chapel Hill, NC 27599, USA
| | - Karen J Froning
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Shane Atwell
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Hector Aldaz
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Anna Pustilnik
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Frances Lu
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Flora Huang
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Richard Yuan
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Saleema Hassanali
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Aaron K Chamberlain
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Jonathan R Fitchett
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA
| | - Stephen J Demarest
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, CA 92121, USA.
| | - Brian Kuhlman
- Department of Biochemistry, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Campus Box 7260, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, USA.
| |
Collapse
|
156
|
Steinmetz A, Vallée F, Beil C, Lange C, Baurin N, Beninga J, Capdevila C, Corvey C, Dupuy A, Ferrari P, Rak A, Wonerow P, Kruip J, Mikol V, Rao E. CODV-Ig, a universal bispecific tetravalent and multifunctional immunoglobulin format for medical applications. MAbs 2016; 8:867-78. [PMID: 26984268 DOI: 10.1080/19420862.2016.1162932] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bispecific immunoglobulins (Igs) typically contain at least two distinct variable domains (Fv) that bind to two different target proteins. They are conceived to facilitate clinical development of biotherapeutic agents for diseases where improved clinical outcome is obtained or expected by combination therapy compared to treatment by single agents. Almost all existing formats are linear in their concept and differ widely in drug-like and manufacture-related properties. To overcome their major limitations, we designed cross-over dual variable Ig-like proteins (CODV-Ig). Their design is akin to the design of circularly closed repeat architectures. Indeed, initial results showed that the traditional approach of utilizing (G4S)x linkers for biotherapeutics design does not identify functional CODV-Igs. Therefore, we applied an unprecedented molecular modeling strategy for linker design that consistently results in CODV-Igs with excellent biochemical and biophysical properties. CODV architecture results in a circular self-contained structure functioning as a self-supporting truss that maintains the parental antibody affinities for both antigens without positional effects. The format is universally suitable for therapeutic applications targeting both circulating and membrane-localized proteins. Due to the full functionality of the Fc domains, serum half-life extension as well as antibody- or complement-dependent cytotoxicity may support biological efficiency of CODV-Igs. We show that judicious choice in combination of epitopes and paratope orientations of bispecific biotherapeutics is anticipated to be critical for clinical outcome. Uniting the major advantages of alternative bispecific biotherapeutics, CODV-Igs are applicable in a wide range of disease areas for fast-track multi-parametric drug optimization.
Collapse
Affiliation(s)
- Anke Steinmetz
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - François Vallée
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Christian Beil
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Christian Lange
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Nicolas Baurin
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Jochen Beninga
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Cécile Capdevila
- b Sanofi R&D, Global Biotherapeutics, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Carsten Corvey
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Alain Dupuy
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Paul Ferrari
- b Sanofi R&D, Global Biotherapeutics, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Alexey Rak
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Peter Wonerow
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Jochen Kruip
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Vincent Mikol
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Ercole Rao
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| |
Collapse
|
157
|
Zhao H, Shen A, Xiang YK, Corey DP. Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity. PLoS One 2016; 11:e0150125. [PMID: 26943906 PMCID: PMC4778845 DOI: 10.1371/journal.pone.0150125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 12/03/2022] Open
Abstract
We describe three recombinant engineered antibodies against three recombinant epitope tags, constructed with divalent binding arms to recognize divalent epitopes and so achieve high affinity and specificity. In two versions, an epitope is inserted in tandem into a protein of interest, and a homodimeric antibody is constructed by fusing a high-affinity epitope-binding domain to a human or mouse Fc domain. In a third, a heterodimeric antibody is constructed by fusing two different epitope-binding domains which target two different binding sites in GFP, to polarized Fc fragments. These antibody/epitope pairs have affinities in the low picomolar range and are useful tools for many antibody-based applications.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ao Shen
- Department of Pharmacology, School of Medicine, University of California, Davis, California, United States of America
| | - Yang K. Xiang
- Department of Pharmacology, School of Medicine, University of California, Davis, California, United States of America
| | - David P. Corey
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
158
|
Golay J, Choblet S, Iwaszkiewicz J, Cérutti P, Ozil A, Loisel S, Pugnière M, Ubiali G, Zoete V, Michielin O, Berthou C, Kadouche J, Mach JP, Duonor-Cérutti M. Design and Validation of a Novel Generic Platform for the Production of Tetravalent IgG1-like Bispecific Antibodies. THE JOURNAL OF IMMUNOLOGY 2016; 196:3199-211. [PMID: 26921308 DOI: 10.4049/jimmunol.1501592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/28/2016] [Indexed: 01/01/2023]
Abstract
We have designed and validated a novel generic platform for production of tetravalent IgG1-like chimeric bispecific Abs. The VH-CH1-hinge domains of mAb2 are fused through a peptidic linker to the N terminus of mAb1 H chain, and paired mutations at the CH1-CL interface mAb1 are introduced that force the correct pairing of the two different free L chains. Two different sets of these CH1-CL interface mutations, called CR3 and MUT4, were designed and tested, and prototypic bispecific Abs directed against CD5 and HLA-DR were produced (CD5xDR). Two different hinge sequences between mAb1 and mAb2 were also tested in the CD5xDR-CR3 or -MUT4 background, leading to bispecific Ab (BsAbs) with a more rigid or flexible structure. All four Abs produced bound with good specificity and affinity to CD5 and HLA-DR present either on the same target or on different cells. Indeed, the BsAbs were able to efficiently redirect killing of HLA-DR(+) leukemic cells by human CD5(+) cytokine-induced killer T cells. Finally, all BsAbs had a functional Fc, as shown by their capacity to activate human complement and NK cells and to mediate phagocytosis. CD5xDR-CR3 was chosen as the best format because it had overall the highest functional activity and was very stable in vitro in both neutral buffer and in serum. In vivo, CD5xDR-CR3 was shown to have significant therapeutic activity in a xenograft model of human leukemia.
Collapse
Affiliation(s)
- Josée Golay
- Centro di Terapia Cellulare "G. Lanzani," Divisione di Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24122 Bergamo, Italy;
| | - Sylvie Choblet
- Centre National de la Recherche Scientifique UPS3044 "Baculovirus et Thérapie," F-30380 Saint-Christol-Lèz Alès, France
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pierre Cérutti
- Centre National de la Recherche Scientifique UPS3044 "Baculovirus et Thérapie," F-30380 Saint-Christol-Lèz Alès, France
| | - Annick Ozil
- Centre National de la Recherche Scientifique UPS3044 "Baculovirus et Thérapie," F-30380 Saint-Christol-Lèz Alès, France
| | - Séverine Loisel
- Animalerie, Faculté de Médecine, Université de Bretagne Occidentale-Université Européenne de Bretagne, 29238 Brest, France
| | - Martine Pugnière
- INSERM, U1194, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, Institut du Cancer de Montpellier, Institut Régional du Cancer, 34298 Montpellier, France
| | - Greta Ubiali
- Centro di Terapia Cellulare "G. Lanzani," Divisione di Ematologia, Azienda Ospedaliera Papa Giovanni XXIII, 24122 Bergamo, Italy
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland; Ludwig Center for Cancer Research, University of Lausanne, CH-1011 Lausanne, Switzerland; Département d'oncologie, Université de Lausanne-Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | | | - Jean Kadouche
- MAT Biopharma, 91030 Evry, France; Immune Pharmaceuticals Inc., New York, NY 10016
| | - Jean-Pierre Mach
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland; and Biomunex Pharmaceuticals, 75006 Paris, France
| | - Martine Duonor-Cérutti
- Centre National de la Recherche Scientifique UPS3044 "Baculovirus et Thérapie," F-30380 Saint-Christol-Lèz Alès, France
| |
Collapse
|
159
|
Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening. PLoS One 2015; 10:e0145349. [PMID: 26675656 PMCID: PMC4682967 DOI: 10.1371/journal.pone.0145349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
Immunoglobulin Fc heterodimers, which are useful scaffolds for the generation of bispecific antibodies, have been mostly generated through structure-based rational design methods that introduce asymmetric mutations into the CH3 homodimeric interface to favor heterodimeric Fc formation. Here, we report an approach to generate heterodimeric Fc variants through directed evolution combined with yeast surface display. We developed a combinatorial heterodimeric Fc library display system by mating two haploid yeast cell lines, one haploid cell line displayed an Fc chain library (displayed FcCH3A) with mutations in one CH3 domain (CH3A) on the yeast cell surface, and the other cell line secreted an Fc chain library (secreted FcCH3B) with mutations in the other CH3 domain (CH3B). In the mated cells, secreted FcCH3B is displayed on the cell surface through heterodimerization with the displayed FcCH3A, the detection of which enabled us to screen the library for heterodimeric Fc variants. We constructed combinatorial heterodimeric Fc libraries with simultaneous mutations in the homodimer-favoring electrostatic interaction pairs K370-E357/S364 or D399-K392/K409 at the CH3 domain interface. High-throughput screening of the libraries using flow cytometry yielded heterodimeric Fc variants with heterodimer-favoring CH3 domain interface mutation pairs, some of them showed high heterodimerization yields (~80-90%) with previously unidentified CH3 domain interface mutation pairs, such as hydrogen bonds and cation-π interactions. Our study provides a new approach for engineering Fc heterodimers that could be used to engineer other heterodimeric protein-protein interactions through directed evolution combined with yeast surface display.
Collapse
|
160
|
A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys. Sci Rep 2015; 5:17943. [PMID: 26659273 PMCID: PMC4675964 DOI: 10.1038/srep17943] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022] Open
Abstract
Bispecific antibodies, while showing great therapeutic potential, pose formidable challenges with respect to their assembly, stability, immunogenicity, and pharmacodynamics. Here we describe a novel class of bispecific antibodies with native human immunoglobulin format. The design exploits differences in the affinities of the immunoglobulin isotypes for Protein A, allowing efficient large-scale purification. Using this format, we generated a bispecific antibody, REGN1979, targeting the B cell marker, CD20, and the CD3 component of the T cell receptor, which triggers redirected killing of B cells. In mice, this antibody prevented growth of B cell tumors and also caused regression of large established tumors. In cynomolgus monkeys, low doses of REGN1979 caused prolonged depletion of B cells in peripheral blood with a serum half-life of approximately 14 days. Further, the antibody induced a deeper depletion of B cells in lymphoid organs than rituximab. This format has broad applicability for development of clinical bispecific antibodies.
Collapse
|
161
|
Mazor Y, Oganesyan V, Yang C, Hansen A, Wang J, Liu H, Sachsenmeier K, Carlson M, Gadre DV, Borrok MJ, Yu XQ, Dall'Acqua W, Wu H, Chowdhury PS. Improving target cell specificity using a novel monovalent bispecific IgG design. MAbs 2015; 7:377-89. [PMID: 25621507 PMCID: PMC4622537 DOI: 10.1080/19420862.2015.1007816] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Monovalent bispecific IgGs cater to a distinct set of mechanisms of action but are difficult to engineer and manufacture because of complexities associated with correct heavy and light chain pairing. We have created a novel design, “DuetMab,” for efficient production of these molecules. The platform uses knobs-into-holes (KIH) technology for heterodimerization of 2 distinct heavy chains and increases the efficiency of cognate heavy and light chain pairing by replacing the native disulfide bond in one of the CH1-CL interfaces with an engineered disulfide bond. Using two pairs of antibodies, cetuximab (anti-EGFR) and trastuzumab (anti-HER2), and anti-CD40 and anti-CD70 antibodies, we demonstrate that DuetMab antibodies can be produced in a highly purified and active form, and show for the first time that monovalent bispecific IgGs can concurrently bind both antigens on the same cell. This last property compensates for the loss of avidity brought about by monovalency and improves selectivity toward the target cell.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Biotechnology
- CDR, complementarity determining region
- CH1, 2 and 3-heavy chain constant domain 1, 2 and 3
- CL-, light chain constant domain
- DSC-differential scanning calorimetry
- E:T, ratio of effector to target cells
- EGFR
- EGFR, epidermal growth factor receptor
- FcRn, neonatal Fc receptor
- FcγR, receptor for IgG Fc
- HER2
- IGFR, insulin like growth factor receptor
- IL-6, interleukin 6
- IgG, Immunoglobulin G
- PNGase, protein N-glycanase
- Q1q, first component of complement 1
- RAGE, receptor for advanced glycosylation
- antibody engineering
- bispecific antibody
- cancer
- disulfide
- mAbs, monoclonal antibodies
- multi-targeting
Collapse
Affiliation(s)
- Yariv Mazor
- a Department of Antibody Discovery and Protein Engineering ; MedImmune ; Gaithersburg , MD USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Schaefer W, Völger HR, Lorenz S, Imhof-Jung S, Regula JT, Klein C, Mølhøj M. Heavy and light chain pairing of bivalent quadroma and knobs-into-holes antibodies analyzed by UHR-ESI-QTOF mass spectrometry. MAbs 2015; 8:49-55. [PMID: 26496506 DOI: 10.1080/19420862.2015.1111498] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The quadroma antibody represents the first attempt to produce a bispecific heterodimeric IgG antibody by somatic fusion of 2 hybridoma cells each expressing monoclonal antibodies with distinctive specificities. However, because of random heavy and light chain pairing, the desired functional bispecific antibody represents only a small fraction of the protein produced. Subsequently, the knobs-into-holes (KiH) approach was developed to enforce correct heavy chain heterodimerization. Assuming equimolar expression of 4 unmodified chains comprising 2 heavy and 2 light chains, the statistical distribution of all paired combinations can be calculated. With equimolar expression as the goal, we transfected HEK cells with 1:1:1:1 plasmid ratios and analyzed the protein A affinity-purified antibodies from the quadroma and KiH approaches qualitatively and quantitatively with regard to the estimated relative amounts of the products using electrospray quadrupole time-of-flight mass spectrometry. Our results show that all expected species are formed, and that, within the methodological limits, the species distribution in the mixtures corresponds approximately to the statistical distribution.
Collapse
Affiliation(s)
- Wolfgang Schaefer
- a Roche Pharma Research and Early Development; Large Molecule Research, Roche Innovation Center Penzberg ; Penzberg , Germany
| | - Hans R Völger
- a Roche Pharma Research and Early Development; Large Molecule Research, Roche Innovation Center Penzberg ; Penzberg , Germany
| | - Stefan Lorenz
- a Roche Pharma Research and Early Development; Large Molecule Research, Roche Innovation Center Penzberg ; Penzberg , Germany
| | - Sabine Imhof-Jung
- a Roche Pharma Research and Early Development; Large Molecule Research, Roche Innovation Center Penzberg ; Penzberg , Germany
| | - Jörg T Regula
- a Roche Pharma Research and Early Development; Large Molecule Research, Roche Innovation Center Penzberg ; Penzberg , Germany
| | - Christian Klein
- b Oncology Discovery & Translational Area, Roche Innovation Center Zurich ; Schlieren , Switzerland
| | - Michael Mølhøj
- a Roche Pharma Research and Early Development; Large Molecule Research, Roche Innovation Center Penzberg ; Penzberg , Germany
| |
Collapse
|
163
|
Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015; 67:95-106. [DOI: 10.1016/j.molimm.2015.01.003] [Citation(s) in RCA: 458] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022]
|
164
|
Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, Yang J, Stafford RL, Steiner AR, Sato AK, Hallam TJ, Yin G. Production of bispecific antibodies in "knobs-into-holes" using a cell-free expression system. MAbs 2015; 7:231-42. [PMID: 25427258 PMCID: PMC4623329 DOI: 10.4161/19420862.2015.989013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a “knob” or a “hole” in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer.
Collapse
Key Words
- BiTE, bispecific T-cell engager
- BiTE-KIH
- CHO, Chinese hamster ovary
- ELISA, enzyme-linked immunosorbent assay
- EpCAM, epithelial cell adhesion molecule
- FACS, fluorescence-activated cell sorting
- Fab, antigen-binding fragment
- Fc, fragment crystallizable
- FcR, Fc receptor
- HC, immunoglobulin heavy chain
- HER2, human epidermal growth factor receptor 2
- IgG, immunoglobulin G
- KIH, knob-into-hole
- LC, immunoglobulin light chain
- LC-MS, liquid chromatography-mass spectrometry
- PK, pharmacokinetics
- bispecific antibody
- cell-free protein expression
- knob-into-hole
- prefabrication
- scFv, single-chain fragment variable
- scFv-KIH
Collapse
Affiliation(s)
- Yiren Xu
- a Sutro Biopharma, Inc. ; South San Francisco , CA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody-drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Peter M Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| |
Collapse
|
166
|
Rotman M, Welling MM, van den Boogaard ML, Moursel LG, van der Graaf LM, van Buchem MA, van der Maarel SM, van der Weerd L. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nucl Med Biol 2015; 42:695-702. [PMID: 25960433 DOI: 10.1016/j.nucmedbio.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Llama single domain antibody fragments (VHH), which can pass endothelial barriers, are being investigated for targeting amyloid plaque load in Alzheimer's disease (AD). Contrary to conventional human or murine antibodies consisting of IgG or F(ab')2 antibody fragments, VHH are able to effectively pass the blood brain barrier (BBB) in vitro. However, in earlier in vivo studies, anti-amyloid VHH showed poor BBB passage due to their short serum half-lives. It would be of interest to develop a VHH based protein with elongated serum half-life to enhance BBB passage, allowing the VHH to more easily reach the cerebral amyloid deposits. METHODS To increase serum persistence, the Fc portion of the human IgG1 antibody (hinge plus CH2 and CH3 domains) was fused to the C-terminus of the VHH (VHH-pa2H-Fc). To determine the pharmacokinetics and biodistribution profile of the fusion protein, the chelator p-SCN-Bz-DTPA was linked to the protein and thereafter labeled with radioactive indium-111 ((111)In). Double transgenic APPswe/PS1dE9 and wild type littermates were injected with 20 μg VHH-pa2H-Fc-DTPA-(111)In (10-20 MBq). Pharmacokinetics of the tracer was determined in blood samples at 10 intervals after injection and imaging using microSPECT was performed. The biodistribution of the radioactivity in various excised tissues was measured at 48 h after injection. RESULTS We succeeded in the expression of the fusion protein VHH-pa2H-Fc in HEK293T cells with a yield of 50mg/L growth medium. The fusion protein showed homodimerization - necessary for successful Fc neonatal receptor recycling. Compared to VHH-pa2H, the Fc tailed protein retained high affinity for amyloid beta on human AD patient brain tissue sections, and significantly improved serum retention of the VHH. However, at 48 h after systemic injection of the non-fused VHH-DTPA-(111)In and the VHH-Fc-DTPA-(111)In fusion protein in transgenic mice, the specific brain uptake of VHH-Fc-DTPA-(111)In was not improved compared to non-fused VHH-DTPA-(111)In. CONCLUSION Using VHH-Fc conjugates increases the blood half-life of the protein. However, purely extending the time window for brain uptake does not increase BBB passage. Nevertheless, VHH-Fc holds promise for therapeutic applications where a sustained systemic circulation of VHH is advantageous.
Collapse
Affiliation(s)
- Maarten Rotman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mick M Welling
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Laure Grand Moursel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Louise van der Weerd
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
167
|
Liu T, Du J, Luo X, Schultz PG, Wang F. Homogeneously modified immunoglobulin domains for therapeutic application. Curr Opin Chem Biol 2015; 28:66-74. [PMID: 26117722 DOI: 10.1016/j.cbpa.2015.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/02/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
The field of therapeutic antibodies has been revolutionized over the past decade, led by the development of novel antibody-modification technologies. Besides the huge success achieved by therapeutic monoclonal antibodies, a diversity of antibody derivatives have emerged with hope to outperform their parental antibodies. Here we review the recent development of methodologies to modify immunoglobulin domains and their therapeutic applications. The innovative genetic and chemical approaches enable novel and controllable modifications on immunoglobulin domains, producing homogeneous therapeutics with new functionalities or enhanced therapeutic profiles. Such therapeutics, including antibody-drug conjugates, bispecific antibodies, and antibody/Fc fusion proteins, have demonstrated great prospects in the treatment of cancer, auto-immune diseases, infectious diseases, and many other disorders.
Collapse
Affiliation(s)
- Tao Liu
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Juanjuan Du
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Xiaozhou Luo
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States; Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | - Feng Wang
- California Institute for Biomedical Research (Calibr), 11119 N. Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
168
|
|
169
|
Choi HJ, Seok SH, Kim YJ, Seo MD, Kim YS. Crystal structures of immunoglobulin Fc heterodimers reveal the molecular basis for heterodimer formation. Mol Immunol 2015; 65:377-83. [PMID: 25743157 DOI: 10.1016/j.molimm.2015.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/16/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
We determined the X-ray crystal structure of an immunoglobulin fragment crystallizable (Fc) heterodimer, EW-RVT, at a resolution of 2.5Å and found that the designed asymmetric interaction residues located in the heterodimeric CH3 interface favor Fc heterodimer formation. We further generated an inter-CH3 disulfide-bonded heterodimeric Fc variant, EW-RVT(S-S), which exhibited improved heterodimer formation and thermodynamic stability compared with the parent EW-RVT variant. The crystal structure of EW-RVTS-S superimposed very closely with the wild-type Fc structure. Our results provide the detailed structure of heterodimeric Fc scaffolds, which will be useful for the generation of immunoglobulin G (IgG)-like bispecific antibodies.
Collapse
Affiliation(s)
- Hye-Ji Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Seung-Hyeon Seok
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea; College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea
| | - Ye-Jin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea; College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea.
| |
Collapse
|
170
|
Bispecific antibodies. Drug Discov Today 2015; 20:838-47. [PMID: 25728220 DOI: 10.1016/j.drudis.2015.02.008] [Citation(s) in RCA: 444] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Bispecific antibodies (bsAbs) combine specificities of two antibodies and simultaneously address different antigens or epitopes. BsAbs with 'two-target' functionality can interfere with multiple surface receptors or ligands associated, for example with cancer, proliferation or inflammatory processes. BsAbs can also place targets into close proximity, either to support protein complex formation on one cell, or to trigger contacts between cells. Examples of 'forced-connection' functionalities are bsAbs that support protein complexation in the clotting cascade, or tumor-targeted immune cell recruiters and/or activators. Following years of research and development (R&D), the first bsAb was approved in 2009. Another bsAb entered the market in December 2014 and several more are in clinical trials. Here, we describe the potentials of bsAbs to become the next wave of antibody-based therapies, focusing on molecules in clinical development.
Collapse
|
171
|
Prentice KM, Wallace A, Eakin CM. Inline Protein A Mass Spectrometry for Characterization of Monoclonal Antibodies. Anal Chem 2015; 87:2023-8. [PMID: 25647041 DOI: 10.1021/ac504502e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kenneth M. Prentice
- Department of Analytical
Sciences, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119, United States
| | - Alison Wallace
- Department of Analytical
Sciences, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119, United States
| | - Catherine M. Eakin
- Department of Analytical
Sciences, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 98119, United States
| |
Collapse
|
172
|
Liu Z, Leng EC, Gunasekaran K, Pentony M, Shen M, Howard M, Stoops J, Manchulenko K, Razinkov V, Liu H, Fanslow W, Hu Z, Sun N, Hasegawa H, Clark R, Foltz IN, Yan W. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem 2015; 290:7535-62. [PMID: 25583986 DOI: 10.1074/jbc.m114.620260] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Producing pure and well behaved bispecific antibodies (bsAbs) on a large scale for preclinical and clinical testing is a challenging task. Here, we describe a new strategy for making monovalent bispecific heterodimeric IgG antibodies in mammalian cells. We applied an electrostatic steering mechanism to engineer antibody light chain-heavy chain (LC-HC) interface residues in such a way that each LC strongly favors its cognate HC when two different HCs and two different LCs are co-expressed in the same cell to assemble a functional bispecific antibody. We produced heterodimeric IgGs from transiently and stably transfected mammalian cells. The engineered heterodimeric IgG molecules maintain the overall IgG structure with correct LC-HC pairings, bind to two different antigens with comparable affinity when compared with their parental antibodies, and retain the functionality of parental antibodies in biological assays. In addition, the bispecific heterodimeric IgG derived from anti-HER2 and anti-EGF receptor (EGFR) antibody was shown to induce a higher level of receptor internalization than the combination of two parental antibodies. Mouse xenograft BxPC-3, Panc-1, and Calu-3 human tumor models showed that the heterodimeric IgGs strongly inhibited tumor growth. The described approach can be used to generate tools from two pre-existent antibodies and explore the potential of bispecific antibodies. The asymmetrically engineered Fc variants for antibody-dependent cellular cytotoxicity enhancement could be embedded in monovalent bispecific heterodimeric IgG to make best-in-class therapeutic antibodies.
Collapse
Affiliation(s)
- Zhi Liu
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119,
| | - Esther C Leng
- From the Departments of Therapeutic Discovery and Amgen Inc., Burnaby, British Columbia V5A 1V7, Canada
| | - Kannan Gunasekaran
- From the Departments of Therapeutic Discovery and Amgen Inc., Thousand Oaks, California 91320, and
| | - Martin Pentony
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119
| | - Min Shen
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119
| | - Monique Howard
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119
| | - Janelle Stoops
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119
| | - Kathy Manchulenko
- From the Departments of Therapeutic Discovery and Amgen Inc., Burnaby, British Columbia V5A 1V7, Canada
| | - Vladimir Razinkov
- Amgen Inc., Seattle, Washington 98119, Process and Product Development
| | - Hua Liu
- Amgen Inc., Seattle, Washington 98119, Therapeutic Innovation Unit
| | - William Fanslow
- Amgen Inc., Seattle, Washington 98119, Therapeutic Innovation Unit
| | - Zhonghua Hu
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119
| | - Nancy Sun
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119
| | - Haruki Hasegawa
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119
| | - Rutilio Clark
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119
| | - Ian N Foltz
- From the Departments of Therapeutic Discovery and Amgen Inc., Burnaby, British Columbia V5A 1V7, Canada
| | - Wei Yan
- From the Departments of Therapeutic Discovery and Amgen Inc., Seattle, Washington 98119,
| |
Collapse
|
173
|
Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proc Natl Acad Sci U S A 2014; 111:16820-5. [PMID: 25385586 DOI: 10.1073/pnas.1408605111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bispecific antibodies have therapeutic potential by expanding the functions of conventional antibodies. Many different formats of bispecific antibodies have meanwhile been developed. Most are genetic modifications of the antibody backbone to facilitate incorporation of two different variable domains into a single molecule. Here, we present a bispecific format where we have fused two full-sized IgG antibodies via their C termini using sortase transpeptidation and click chemistry to create a covalently linked IgG antibody heterodimer. By linking two potent anti-influenza A antibodies together, we have generated a full antibody dimer with bispecific activity that retains the activity and stability of the two fusion partners.
Collapse
|
174
|
|
175
|
Luo H, Hong H, Yang SP, Cai W. Design and applications of bispecific heterodimers: molecular imaging and beyond. Mol Pharm 2014; 11:1750-61. [PMID: 24738564 PMCID: PMC4051252 DOI: 10.1021/mp500115x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ligand-based molecular imaging probes have been designed with high affinity and specificity for monitoring biological process and responses. Single-target recognition by traditional probes can limit their applicability for disease detection and therapy because synergistic action between disease mediators and different receptors is often involved in disease progression. Consequently, probes that can recognize multiple targets should demonstrate higher targeting efficacy and specificity than their monospecific peers. This concept has been validated by multiple bispecific heterodimer-based imaging probes that have demonstrated promising results in several animal models. This review summarizes the design strategies for bispecific peptide- and antibody-based heterodimers and their applications in molecular targeting and imaging. The design and application of bispecific heterodimer-conjugated nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haiming Luo
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | | | |
Collapse
|
176
|
Stafford RL, Matsumoto ML, Yin G, Cai Q, Fung JJ, Stephenson H, Gill A, You M, Lin SH, Wang WD, Masikat MR, Li X, Penta K, Steiner AR, Baliga R, Murray CJ, Thanos CD, Hallam TJ, Sato AK. In vitro Fab display: a cell-free system for IgG discovery. Protein Eng Des Sel 2014; 27:97-109. [PMID: 24586053 PMCID: PMC3966677 DOI: 10.1093/protein/gzu002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF.
Collapse
Affiliation(s)
- Ryan L Stafford
- Sutro Biopharma, Inc., 310 Utah Ave Suite 150, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Antiparallel conformation of knob and hole aglycosylated half-antibody homodimers is mediated by a CH2-CH3 hydrophobic interaction. J Mol Biol 2014; 426:1947-57. [PMID: 24576605 DOI: 10.1016/j.jmb.2014.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/04/2014] [Accepted: 02/18/2014] [Indexed: 11/21/2022]
Abstract
Bispecific antibody and antibody-like molecules are of wide interest as potential therapeutics that can recognize two distinct targets. Among the variety of ways such molecules have been engineered is by creating "knob" and "hole" heterodimerization sites in the CH3 domains of two antibody heavy chains. The molecules produced in this manner maintain their biological activities while differing very little from the native human IgG sequence. To better understand the knob-into-hole interface, the molecular mechanism of heterodimerization, and to engineer Fc domains that could improve the assembly and purity of heterodimeric reaction products, we sought crystal structures of aglycosylated heterodimeric and homodimeric "knob" and "hole" Fc fragments derived from bacterial expression. The structure of the knob-into-hole Fc was determined at 2.64 Å. Except for the sites of mutation, the structure is very similar to that of the native human IgG1 Fc, consistent with a heterodimer interaction kinetic K(D) of <1 nM. Homodimers of the "knob" and "hole" mutants were also obtained, and their X-ray structures were determined at resolutions 2.5 Å and 2.1 Å, respectively. Both kinds of homodimers adopt a head-to-tail quaternary structure and thus do not contain direct knob/knob or hole/hole CH3 interactions. The head-to-tail arrangement was disfavored by adding site-directed mutations at F241 and F243 in the CH2 domains, leading to increases in both rate and efficiency of bispecific (heterodimer) assembly.
Collapse
|
178
|
|
179
|
Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol 2014; 32:191-8. [PMID: 24463572 DOI: 10.1038/nbt.2797] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain-light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.
Collapse
|
180
|
Abstract
ABSTRACT
Advanced molecular biology techniques developed during the past few decades have allowed the industry to exploit and commercialize the natural defense mechanisms that antibodies provide. This review discusses the latest advances in antibody-engineering technologies to enhance clinical efficacy and outcomes. For the constant regions, the choice of the antibody class and isotype has to be made carefully to suit the therapeutic applications. Engineering of the Fc region, either by direct targeted mutagenesis or by modifying the nature of its
N
-glycan, has played an important role in recent years in increasing half-life or controlling effector functions. The variable regions of the antibody are responsible for binding affinity and exquisite specificity to the target molecule, which together with the Fc determine the drug's efficacy and influence the drug dose required to obtain the desired effectiveness. A key requirement during antibody development is therefore to affinity mature the variable regions when necessary, so that they bind the therapeutic target with sufficiently high affinity to guarantee effective occupancy over prolonged periods. If the antibody was obtained from a non-human source, such as rodents, a humanization process has to be applied to minimize immunogenicity while maintaining the desired binding affinity and selectivity. Finally, we discuss the next next-generation antibodies, such as antibody-drug conjugates, bispecific antibodies, and immunocytokines, which are being developed to meet future challenges.
Collapse
|
181
|
Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies. Methods 2014; 65:95-104. [DOI: 10.1016/j.ymeth.2013.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 01/09/2023] Open
|
182
|
LaFleur DW, Abramyan D, Kanakaraj P, Smith RG, Shah RR, Wang G, Yao XT, Kankanala S, Boyd E, Zaritskaya L, Nam V, Puffer BA, Buasen P, Kaithamana S, Burnette AF, Krishnamurthy R, Patel D, Roschke VV, Kiener PA, Hilbert DM, Barbas CF. Monoclonal antibody therapeutics with up to five specificities: functional enhancement through fusion of target-specific peptides. MAbs 2013; 5:208-18. [PMID: 23575268 PMCID: PMC3893231 DOI: 10.4161/mabs.23043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences. The sequences are selected for binding to a particular target from combinatorial libraries that express linear, disulfide-constrained, or domain-based structures. The potential for fusion of peptides to the N- and C- termini of both the heavy and light chains affords the bivalent expression of up to four different peptides. The resulting molecules, called zybodies, can gain up to four additional specificities, while retaining the original functionality and specificity of the scaffold antibody. We explore the use of two clinically significant oncology antibodies, trastuzumab and cetuximab, as zybody scaffolds and demonstrate functional enhancements in each case. The affect of fusion position on both peptide and scaffold function is explored, and penta-specific zybodies are demonstrated to simultaneously engage five targets (ErbB2, EGFR, IGF-1R, Ang2 and integrin αvβ3). Bispecific, trastuzumab-based zybodies targeting ErbB2 and Ang2 are shown to exhibit superior efficacy to trastuzumab in an angiogenesis-dependent xenograft tumor model. A cetuximab-based bispecific zybody that targeting EGFR and ErbB3 simultaneously disrupted multiple intracellular signaling pathways; inhibited tumor cell proliferation; and showed efficacy superior to that of cetuximab in a xenograft tumor model.
Collapse
|
183
|
Liu Z, Gunasekaran K, Wang W, Razinkov V, Sekirov L, Leng E, Sweet H, Foltz I, Howard M, Rousseau AM, Kozlosky C, Fanslow W, Yan W. Asymmetrical Fc engineering greatly enhances antibody-dependent cellular cytotoxicity (ADCC) effector function and stability of the modified antibodies. J Biol Chem 2013; 289:3571-90. [PMID: 24311787 DOI: 10.1074/jbc.m113.513366] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is mediated through the engagement of the Fc segment of antibodies with Fcγ receptors (FcγRs) on immune cells upon binding of tumor or viral antigen. The co-crystal structure of FcγRIII in complex with Fc revealed that Fc binds to FcγRIII asymmetrically with two Fc chains contacting separate regions of the FcγRIII by utilizing different residues. To fully explore this asymmetrical nature of the Fc-FcγR interaction, we screened more than 9,000 individual clones in Fc heterodimer format in which different mutations were introduced at the same position of two Fc chains using a high throughput competition AlphaLISA® assay. To this end, we have identified a panel of novel Fc variants with significant binding improvement to FcγRIIIA (both Phe-158 and Val-158 allotypes), increased ADCC activity in vitro, and strong tumor growth inhibition in mice xenograft human tumor models. Compared with previously identified Fc variants in conventional IgG format, Fc heterodimers with asymmetrical mutations can achieve similar or superior potency in ADCC-mediated tumor cell killing and demonstrate improved stability in the CH2 domain. Fc heterodimers also allow more selectivity toward activating FcγRIIA than inhibitory FcγRIIB. Afucosylation of Fc variants further increases the affinity of Fc to FcγRIIIA, leading to much higher ADCC activity. The discovery of these Fc variants will potentially open up new opportunities of building the next generation of therapeutic antibodies with enhanced ADCC effector function for the treatment of cancers and infectious diseases.
Collapse
Affiliation(s)
- Zhi Liu
- From the Departments of Therapeutic Discovery and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Doerner A, Rhiel L, Zielonka S, Kolmar H. Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 2013; 588:278-87. [PMID: 24291259 DOI: 10.1016/j.febslet.2013.11.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/11/2022]
Abstract
In recent years, several cell-based screening technologies for the isolation of antibodies with prescribed properties emerged. They rely on the multi-copy display of antibodies or antibody fragments on a cell surface in functional form followed by high through put screening and isolation of cell clones that carry an antibody variant with the desired affinity, specificity, and stability. Particularly yeast surface display in combination with high-throughput fluorescence-activated cell sorting has proven successful in the last fifteen years as a very powerful technology that has some advantages over classical generation of monoclonals using the hybridoma technology or bacteriophage-based antibody display and screening. Cell-based screening harbours the benefit of single-cell online and real-time analysis and characterisation of individual library candidates. Moreover, when using eukaryotic expression hosts, intrinsic quality control machineries for proper protein folding and stability exist that allow for co-selection of high-level expression and stability simultaneously to the binding functionality. Recently, promising technologies emerged that directly rely on antibody display on higher eukaryotic cell lines using lentiviral transfection or direct screening on B-cells. The combination of immunisation, B-cell screening and next generation sequencing may open new avenues for the isolation of therapeutic antibodies with prescribed physicochemical and functional characteristics.
Collapse
Affiliation(s)
- Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Laura Rhiel
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
185
|
Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering. Methods 2013; 65:77-94. [PMID: 24211748 DOI: 10.1016/j.ymeth.2013.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/12/2013] [Accepted: 10/25/2013] [Indexed: 11/23/2022] Open
Abstract
Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs.
Collapse
|
186
|
Choi HJ, Kim YJ, Lee S, Kim YS. A heterodimeric Fc-based bispecific antibody simultaneously targeting VEGFR-2 and Met exhibits potent antitumor activity. Mol Cancer Ther 2013; 12:2748-59. [PMID: 24132142 DOI: 10.1158/1535-7163.mct-13-0628] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heterodimeric Fc designed by engineering the CH3 homodimeric interface of immunoglobulin G1 serves as an attractive scaffold for the generation of bispecific antibodies (bsAb) due to the favorable properties of the Fc region. In this study, we describe a heterodimeric Fc generated by substituting the conserved electrostatic interactions at the CH3 core interface with asymmetric hydrophobic interactions and introducing asymmetric, long-range electrostatic interactions at the rim of the CH3 interface. Coexpression of Fc proteins carrying the combined CH3 variant pairs in HEK293F cells produced the heterodimer, which was purified with more than 90% yield, and retained wild-type Fc biophysical properties. The heterodimeric Fc was exploited to generate a bsAb simultaneously targeting both the Met receptor tyrosine kinase and the VEGF receptor 2 (VEGFR-2), with two respective antigen-specific, single-chain variable fragments (scFv) into the N-terminus. The Met × VEGFR-2 bsAb bound concurrently to the two target antigens, efficiently inhibited the downstream signaling and tube formation stimulated by the two receptors in human endothelial cells, and exhibited more potent antitumor efficacy in MKN45 human gastric cancer xenograft models than both the parent monospecific antibody alone. Collectively, based on the newly designed heterodimeric Fc-based bsAb, our results provide the therapeutic potential of bsAb targeting both Met and VEGFR-2 simultaneously for the treatment of human cancers.
Collapse
Affiliation(s)
- Hye-Ji Choi
- Corresponding Author: Yong-Sung Kim, Department of Molecular Science and Technology, Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, Korea.
| | | | | | | |
Collapse
|
187
|
Gramer MJ, van den Bremer ETJ, van Kampen MD, Kundu A, Kopfmann P, Etter E, Stinehelfer D, Long J, Lannom T, Noordergraaf EH, Gerritsen J, Labrijn AF, Schuurman J, van Berkel PHC, Parren PWHI. Production of stable bispecific IgG1 by controlled Fab-arm exchange: scalability from bench to large-scale manufacturing by application of standard approaches. MAbs 2013; 5:962-73. [PMID: 23995617 PMCID: PMC3896610 DOI: 10.4161/mabs.26233] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The manufacturing of bispecific antibodies can be challenging for a variety of reasons. For example, protein expression problems, stability issues, or the use of non-standard approaches for manufacturing can result in poor yield or poor facility fit. In this paper, we demonstrate the use of standard antibody platforms for large-scale manufacturing of bispecific IgG1 by controlled Fab-arm exchange. Two parental antibodies that each contain a single matched point mutation in the CH3 region were separately expressed in Chinese hamster ovary cells and manufactured at 1000 L scale using a platform fed-batch and purification process that was designed for standard antibody production. The bispecific antibody was generated by mixing the two parental molecules under controlled reducing conditions, resulting in efficient Fab-arm exchange of >95% at kg scale. The reductant was removed via diafiltration, resulting in spontaneous reoxidation of interchain disulfide bonds. Aside from the bispecific nature of the molecule, extensive characterization demonstrated that the IgG1 structural integrity was maintained, including function and stability. These results demonstrate the suitability of this bispecific IgG1 format for commercial-scale manufacturing using standard antibody manufacturing techniques.
Collapse
|
188
|
Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A 2013; 110:E2987-96. [PMID: 23882082 DOI: 10.1073/pnas.1302725110] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coli-derived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion. Onartuzumab potently inhibits HGF binding and receptor phosphorylation and signaling and has antibody-like pharmacokinetics and antitumor activity. Biochemical data and a crystal structure of a ternary complex of onartuzumab antigen-binding fragment bound to a MET extracellular domain fragment, consisting of the MET Sema domain fused to the adjacent Plexins, Semaphorins, Integrins domain (MET Sema-PSI), and the HGF β-chain demonstrate that onartuzumab acts specifically by blocking HGF α-chain (but not β-chain) binding to MET. These data suggest a likely binding site of the HGF α-chain on MET, which when dimerized leads to MET signaling. Onartuzumab, therefore, represents the founding member of a class of therapeutic monovalent antibodies that overcomes limitations of antibody bivalency for targets impacted by antibody crosslinking.
Collapse
|
189
|
Spiess C, Bevers J, Jackman J, Chiang N, Nakamura G, Dillon M, Liu H, Molina P, Elliott JM, Shatz W, Scheer JM, Giese G, Persson J, Zhang Y, Dennis MS, Giulianotti J, Gupta P, Reilly D, Palma E, Wang J, Stefanich E, Scheerens H, Fuh G, Wu LC. Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. J Biol Chem 2013; 288:26583-93. [PMID: 23880771 DOI: 10.1074/jbc.m113.480483] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human bispecific antibodies have great potential for the treatment of human diseases. Although human IgG1 bispecific antibodies have been generated, few attempts have been reported in the scientific literature that extend bispecific antibodies to other human antibody isotypes. In this paper, we report our work expanding the knobs-into-holes bispecific antibody technology to the human IgG4 isotype. We apply this approach to generate a bispecific antibody that targets IL-4 and IL-13, two cytokines that play roles in type 2 inflammation. We show that IgG4 bispecific antibodies can be generated in large quantities with equivalent efficiency and quality and have comparable pharmacokinetic properties and lung partitioning, compared with the IgG1 isotype. This work broadens the range of published therapeutic bispecific antibodies with natural surface architecture and provides additional options for the generation of bispecific antibodies with differing effector functions through the use of different antibody isotypes.
Collapse
|
190
|
Fournier P, Schirrmacher V. Bispecific antibodies and trispecific immunocytokines for targeting the immune system against cancer: preparing for the future. BioDrugs 2013; 27:35-53. [PMID: 23329400 DOI: 10.1007/s40259-012-0008-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monoclonal anti-tumor antibodies (mAbs) that are clinically effective usually recruit, via their constant fragment (Fc) domain, Fc receptor (FcR)-positive accessory cells of the immune system and engage these additionally against the tumor. Since T cells are FcR negative, these important cells are not getting involved. In contrast to mAbs, bispecific antibodies (bsAbs) can be designed in such a way that they involve T cells. bsAbs are artificially designed molecules that bind simultaneously to two different antigens, one on the tumor cell, the other one on an immune effector cell such as CD3 on T cells. Such dual antibody constructs can cross-link tumor cells and T cells. Many such bsAb molecules at the surface of tumor cells can thus build a bridge to T cells and aggregate their CD3 molecules, thereby activating them for cytotoxic activity. BsAbs can also contain a third binding site, for instance a Fc domain or a cytokine that would bind to its respective cytokine receptor. The present review discusses the pros and cons for the use of the Fc fragment during the development of bsAbs using either cell-fusion or recombinant DNA technologies. The recombinant antibody technology allows the generation of very efficient bsAbs containing no Fc domain such as the bi-specific T-cell engager (BiTE). The strong antitumor activity of these molecules makes them very interesting new cancer therapeutics. Over the last decade, we have developed another concept, namely to combine bsAbs and multivalent immunocytokines with a tumor cell vaccine. The latter are patient-derived tumor cells modified by infection with a virus. The virus-Newcastle Disease Virus (NDV)-introduces, at the surface of the tumor cells, viral molecules that can serve as general anchors for the bsAbs. Our strategy aims at redirecting, in an Fc-independent fashion, activities of T cells and accessory cells against autologous tumor antigens. It creates very promising perspectives for a new generation of efficient and safe cancer therapeutics that should confer long-lasting anti-tumor immunity.
Collapse
Affiliation(s)
- Philippe Fournier
- German Cancer Research Center DKFZ, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | |
Collapse
|
191
|
Von Kreudenstein TS, Escobar-Carbrera E, Lario PI, D'Angelo I, Brault K, Kelly J, Durocher Y, Baardsnes J, Woods RJ, Xie MH, Girod PA, Suits MDL, Boulanger MJ, Poon DKY, Ng GYK, Dixit SB. Improving biophysical properties of a bispecific antibody scaffold to aid developability: quality by molecular design. MAbs 2013; 5:646-54. [PMID: 23924797 DOI: 10.4161/mabs.25632] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
While the concept of Quality-by-Design is addressed at the upstream and downstream process development stages, we questioned whether there are advantages to addressing the issues of biologics quality early in the design of the molecule based on fundamental biophysical characterization, and thereby reduce complexities in the product development stages. Although limited number of bispecific therapeutics are in clinic, these developments have been plagued with difficulty in producing materials of sufficient quality and quantity for both preclinical and clinical studies. The engineered heterodimeric Fc is an industry-wide favorite scaffold for the design of bispecific protein therapeutics because of its structural, and potentially pharmacokinetic, similarity to the natural antibody. Development of molecules based on this concept, however, is challenged by the presence of potential homodimer contamination and stability loss relative to the natural Fc. We engineered a heterodimeric Fc with high heterodimeric specificity that also retains natural Fc-like biophysical properties, and demonstrate here that use of engineered Fc domains that mirror the natural system translates into an efficient and robust upstream stable cell line selection process as a first step toward a more developable therapeutic.
Collapse
|
192
|
Spiess C, Merchant M, Huang A, Zheng Z, Yang NY, Peng J, Ellerman D, Shatz W, Reilly D, Yansura DG, Scheer JM. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat Biotechnol 2013; 31:753-8. [DOI: 10.1038/nbt.2621] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/20/2013] [Indexed: 11/09/2022]
|
193
|
Rosati S, Thompson NJ, Heck AJ, Rosati S, Thompson NJ, Heck AJ. Tackling the increasing complexity of therapeutic monoclonal antibodies with mass spectrometry. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
194
|
Woods RJ, Xie MH, Von Kreudenstein TS, Ng GYK, Dixit SB. LC-MS characterization and purity assessment of a prototype bispecific antibody. MAbs 2013; 5:711-22. [PMID: 23884083 PMCID: PMC3851224 DOI: 10.4161/mabs.25488] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bispecific IgG asymmetric (heterodimeric) antibodies offer enhanced therapeutic efficacy, but present unique challenges for drug development. These challenges are related to the proper assembly of heavy and light chains. Impurities such as symmetric (homodimeric) antibodies can arise with improper assembly. A new method to assess heterodimer purity of such bispecific antibody products is needed because traditional separation-based purity assays are unable to separate or quantify homodimer impurities. This paper presents a liquid chromatography-mass spectrometry (LC-MS)-based method for evaluating heterodimeric purity of a prototype asymmetric antibody containing two different heavy chains and two identical light chains. The heterodimer and independently expressed homodimeric standards were characterized by two complementary LC-MS techniques: Intact protein mass measurement of deglycosylated antibody and peptide map analyses. Intact protein mass analysis was used to check molecular integrity and composition. LC-MSE peptide mapping of Lys-C digests was used to verify protein sequences and characterize post-translational modifications, including C-terminal truncation species. Guided by the characterization results, a heterodimer purity assay was demonstrated by intact protein mass analysis of pure deglycosylated heterodimer spiked with each deglycosylated homodimeric standard. The assay was capable of detecting low levels (2%) of spiked homodimers in conjunction with co-eluting half antibodies and multiple mass species present in the homodimer standards and providing relative purity differences between samples. Detection of minor homodimer and half-antibody C-terminal truncation species at levels as low as 0.6% demonstrates the sensitivity of the method. This method is suitable for purity assessment of heterodimer samples during process and purification development of bispecific antibodies, e.g., clone selection.
Collapse
|
195
|
Conjugation site heterogeneity causes variable electrostatic properties in Fc conjugates. Bioconjug Chem 2013; 24:1008-16. [PMID: 23777335 DOI: 10.1021/bc4000564] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunoconjugates, including antibody-drug conjugates and Fc-conjugates, represent a rapidly growing class of therapeutics undergoing clinical development. Despite their growing popularity, the high intrinsic heterogeneity of immunoconjugates often complicates the development process and limits their widespread application. In particular, immunoconjugate charge variants exhibit markedly different colloidal stabilities, solubilities, pharmacokinetics, and tissue distributions. Charge variants arise spontaneously due to degradation and, depending on the type of drug, linker, and conjugation site, through drug conjugation. Electrostatic changes in naked antibodies often result in poor performance characteristics, and therefore, charge alterations due to degradation are critical to control. Charge properties are expected to be equally important to producing well-behaved ADCs. Charge-based methods of analysis, such as isoelectric focusing and ion exchange chromatography, are capable of probing the underlying complexities within immunoconjugate drug products. Despite the utility of these methods, there are only a few published reports of charge-based assays applied to immunoconjugates. In the present study, we sought to identify the effects of chemical conjugation on the electrostatic properties of Fc-conjugates. In order to minimize the effects of post-translational modifications (e.g., deamidation), a single Fc charge variant was isolated prior to conjugation of a fluorescent probe, Alexa Fluor 350, to the side chains of lysine residues. The resulting Fc-conjugates were assessed by a variety of analytical techniques, including isoelectric focusing and ion exchange chromatography, to determine their charge properties.
Collapse
|
196
|
Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc Natl Acad Sci U S A 2013; 110:5145-50. [PMID: 23479652 DOI: 10.1073/pnas.1220145110] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The promise of bispecific antibodies (bsAbs) to yield more effective therapeutics is well recognized; however, the generation of bsAbs in a practical and cost-effective manner has been a formidable challenge. Here we present a technology for the efficient generation of bsAbs with normal IgG structures that is amenable to both antibody drug discovery and development. The process involves separate expression of two parental antibodies, each containing single matched point mutations in the CH3 domains. The parental antibodies are mixed and subjected to controlled reducing conditions in vitro that separate the antibodies into HL half-molecules and allow reassembly and reoxidation to form highly pure bsAbs. The technology is compatible with standard large-scale antibody manufacturing and ensures bsAbs with Fc-mediated effector functions and in vivo stability typical of IgG1 antibodies. Proof-of-concept studies with HER2×CD3 (T-cell recruitment) and HER2×HER2 (dual epitope targeting) bsAbs demonstrate superior in vivo activity compared with parental antibody pairs.
Collapse
|
197
|
Thompson NJ, Rosati S, Rose RJ, Heck AJR. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem Commun (Camb) 2012. [PMID: 23183499 DOI: 10.1039/c2cc36755f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoclonal antibodies (mAbs) are important therapeutics, targeting a variety of diseases ranging from cancers to neurodegenerative disorders. In developmental stages and prior to clinical use, these molecules require thorough structural characterisation, but their large size and heterogeneity present challenges for most analytical techniques. Over the past 20 years, mass spectrometry (MS) has transformed from a tool for small molecule analysis to a technique that can be used to study large intact proteins and non-covalent protein complexes. Here, we review several MS-based techniques that have emerged for the analysis of intact mAbs and discuss the prospects of using these technologies for the analysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Natalie J Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
198
|
Vincent KJ, Zurini M. Current strategies in antibody engineering: Fc engineering and pH-dependent antigen binding, bispecific antibodies and antibody drug conjugates. Biotechnol J 2012; 7:1444-50. [DOI: 10.1002/biot.201200250] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/13/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022]
|
199
|
Wranik BJ, Christensen EL, Schaefer G, Jackman JK, Vendel AC, Eaton D. LUZ-Y, a novel platform for the mammalian cell production of full-length IgG-bispecific antibodies. J Biol Chem 2012; 287:43331-9. [PMID: 23118228 DOI: 10.1074/jbc.m112.397869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of bispecific antibodies to simultaneously bind two unique antigens has great clinical potential. However, most approaches utilized to generate bispecific antibodies yield antibody-like structures that diverge significantly from the structure of archetype human IgG, and those that do approach structural similarity to native antibodies are often challenging to engineer and manufacture. Here, we present a novel platform for the mammalian cell production of bispecific antibodies that differ from their parental mAbs by only a single point mutation per heavy chain. Central to this platform is the addition of a leucine zipper to the C terminus of the C(H)3 domain of the antibody that is sufficient to drive the heterodimeric assembly of antibody heavy chains and can be readily removed post-purification. Using this approach, we developed various antibody constructs including one-armed Abs, bispecific antibodies that utilize a common light chain, and bispecific antibodies that pair light chains to their cognate heavy chains via peptide tethers. We have applied this technology to various antibody pairings and will demonstrate the engineering, purification, and biological activity of these antibodies herein.
Collapse
Affiliation(s)
- Bernd J Wranik
- Department of Protein Chemistry, Genentech, South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
200
|
Klein C, Sustmann C, Thomas M, Stubenrauch K, Croasdale R, Schanzer J, Brinkmann U, Kettenberger H, Regula JT, Schaefer W. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs 2012; 4:653-63. [PMID: 22925968 DOI: 10.4161/mabs.21379] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The development of bispecific antibodies has attracted substantial interest, and many different formats have been described. Those specifically containing an Fc part are mostly tetravalent, such as stabilized IgG-scFv fusions or dual-variable domain (DVD) IgGs. However, although they exhibit IgG-like properties and technical developability, these formats differ in size and geometry from classical IgG antibodies. Thus, considerable efforts focus on bispecific heterodimeric IgG antibodies that more closely mimic natural IgG molecules. The inherent chain association problem encountered when producing bispecific heterodimeric IgG antibodies can be overcome by several methods. While technologies like knobs-into-holes (KiH) combined with a common light chain or the CrossMab technology enforce the correct chain association, other approaches, e.g., the dual-acting Fab (DAF) IgGs, do not rely on a heterodimeric Fc part. This review discusses the state of the art in bispecific heterodimeric IgG antibodies, with an emphasis on recent progress.
Collapse
Affiliation(s)
- Christian Klein
- Discovery Oncology, Roche Pharma Research and Early Development pRED, Roche Glycart AG, Schlieren, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|