151
|
Crispatzu G, Rehimi R, Pachano T, Bleckwehl T, Cruz-Molina S, Xiao C, Mahabir E, Bazzi H, Rada-Iglesias A. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat Commun 2021; 12:4344. [PMID: 34272393 PMCID: PMC8285398 DOI: 10.1038/s41467-021-24641-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Poised enhancers (PEs) represent a genetically distinct set of distal regulatory elements that control the expression of major developmental genes. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally characterized in embryonic stem cells (ESC), it is currently unknown whether PEs are functionally conserved in vivo. Here, we show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that the interactions between PEs and their target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation within specific vertebrate clades, with only a few being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential roles during the induction of major developmental genes in vivo.
Collapse
Affiliation(s)
- Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Internal Medicine II, University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tomas Pachano
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sara Cruz-Molina
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cally Xiao
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Esther Mahabir
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain.
| |
Collapse
|
152
|
M33 condenses chromatin through nuclear body formation and methylation of both histone H3 lysine 9 and lysine 27. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119100. [PMID: 34274396 DOI: 10.1016/j.bbamcr.2021.119100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022]
Abstract
Heterochromatin, a type of condensed DNA in eukaryotic cells, has two main categories: Constitutive heterochromatin, which contains H3K9 methylation, and facultative heterochromatin, which contains H3K27 methylation. Methylated H3K9 and H3K27 serve as docking sites for chromodomain-containing proteins that compact chromatin. M33 (also known as CBX2) is a chromodomain-containing protein that binds H3K27me3 and compacts chromatin in vitro. However, whether M33 mediates chromatin compaction in cellulo remains unknown. Here we show that M33 compacts chromatin into DAPI-intense heterochromatin domains in cells. The formation of these heterochromatin domains requires H3K27me3, which recruits M33 to form nuclear bodies. G9a and SUV39H1 are sequentially recruited into M33 nuclear bodies to create H3K9 methylated chromatin in a process that is independent of HP1α. Finally, M33 decreases progerin-induced nuclear envelope disruption caused by loss of heterochromatin. Our findings demonstrate that M33 mediates the formation of condensed chromatin by forming nuclear bodies containing both H3K27me3 and H3K9me3. Our model of M33-dependent chromatin condensation suggests H3K27 methylation corroborates with H3K9 methylation during the formation of facultative heterochromatin and provides the theoretical basis for developing novel therapies to treat heterochromatin-related diseases.
Collapse
|
153
|
Lin X, Leicher R, Liu S, Zhang B. Cooperative DNA looping by PRC2 complexes. Nucleic Acids Res 2021; 49:6238-6248. [PMID: 34057467 PMCID: PMC8216278 DOI: 10.1093/nar/gkab441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/14/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is an essential protein complex that silences gene expression via post-translational modifications of chromatin. This paper combined homology modeling, atomistic and coarse-grained molecular dynamics simulations, and single-molecule force spectroscopy experiments to characterize both its full-length structure and PRC2-DNA interactions. Using free energy calculations with a newly parameterized protein-DNA force field, we studied a total of three potential PRC2 conformations and their impact on DNA binding and bending. Consistent with cryo-EM studies, we found that EZH2, a core subunit of PRC2, provides the primary interface for DNA binding, and its curved surface can induce DNA bending. Our simulations also predicted the C2 domain of the SUZ12 subunit to contact DNA. Multiple PRC2 complexes bind with DNA cooperatively via allosteric communication through the DNA, leading to a hairpin-like looped configuration. Single-molecule experiments support PRC2-mediated DNA looping and the role of AEBP2 in regulating such loop formation. The impact of AEBP2 can be partly understood from its association with the C2 domain, blocking C2 from DNA binding. Our study suggests that accessory proteins may regulate the genomic location of PRC2 by interfering with its DNA interactions.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rachel Leicher
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA.,Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
154
|
Li W, Jiang H. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression. J Mol Biol 2021; 434:167151. [PMID: 34271007 DOI: 10.1016/j.jmb.2021.167151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Abstract
Our understanding of the spatiotemporal regulation of eukaryotic gene expression has recently been greatly stimulated by the findings that many of the regulators of chromatin, transcription, and RNA processing form biomolecular condensates often assembled through liquid-liquid phase separation. Increasing number of reports suggest that these condensates functionally regulate gene expression, largely by concentrating the relevant biomolecules in the liquid-like micro-compartments. However, it remains poorly understood how the physicochemical properties, especially the material properties, of the condensates regulate gene expression activity. In this review, we discuss current data on various nuclear condensates and their biophysical properties with the underlying molecular interactions, and how they may functionally impact gene expression at the level of chromatin organization and activities, transcription, and RNA processing.
Collapse
Affiliation(s)
- Wei Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
155
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
156
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
157
|
Razin SV, Gavrilov AA. Non-coding RNAs in chromatin folding and nuclear organization. Cell Mol Life Sci 2021; 78:5489-5504. [PMID: 34117518 PMCID: PMC11072467 DOI: 10.1007/s00018-021-03876-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term "architectural RNAs" was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
158
|
Wang S, Alpsoy A, Sood S, Ordonez-Rubiano SC, Dhiman A, Sun Y, Jiao G, Krusemark CJ, Dykhuizen EC. A Potent, Selective CBX2 Chromodomain Ligand and Its Cellular Activity During Prostate Cancer Neuroendocrine Differentiation. Chembiochem 2021; 22:2335-2344. [PMID: 33950564 PMCID: PMC8358665 DOI: 10.1002/cbic.202100118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic regulators that facilitate both embryonic development and cancer progression. PcG proteins form Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). PRC2 trimethylates histone H3 lysine 27 (H3K27me3), a histone mark recognized by the N-terminal chromodomain (ChD) of the CBX subunit of canonical PRC1. There are five PcG CBX paralogs in humans. CBX2 in particular is upregulated in a variety of cancers, particularly in advanced prostate cancers. Using CBX2 inhibitors to understand and target CBX2 in prostate cancer is highly desirable; however, high structural similarity among the CBX ChDs has been challenging for developing selective CBX ChD inhibitors. Here, we utilize selections of focused DNA encoded libraries (DELs) for the discovery of a selective CBX2 chromodomain probe, SW2_152F. SW2_152F binds to CBX2 ChD with a Kd of 80 nM and displays 24-1000-fold selectivity for CBX2 ChD over other CBX paralogs in vitro. SW2_152F is cell permeable, selectively inhibits CBX2 chromatin binding in cells, and blocks neuroendocrine differentiation of prostate cancer cell lines in response to androgen deprivation.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
- Purdue Life Science Interdisciplinary Graduate Program, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Surbhi Sood
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
- Purdue Life Science Interdisciplinary Graduate Program, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Sandra Carolina Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Yixing Sun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
- Purdue Center for Cancer Research, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
- Purdue Center for Cancer Research, 201 S. University St. West Lafayette, IN, 47907 USA
| |
Collapse
|
159
|
Mazzocca M, Fillot T, Loffreda A, Gnani D, Mazza D. The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes. Biochem Soc Trans 2021; 49:1121-1132. [PMID: 34003257 PMCID: PMC8286828 DOI: 10.1042/bst20200709] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) regulate transcription of their target genes by identifying and binding to regulatory regions of the genome among billions of potential non-specific decoy sites, a task that is often presented as a 'needle in the haystack' challenge. The TF search process is now well understood in bacteria, but its characterization in eukaryotes needs to account for the complex organization of the nuclear environment. Here we review how live-cell single molecule tracking is starting to shed light on the TF search mechanism in the eukaryotic cell and we outline the future challenges to tackle in order to understand how nuclear organization modulates the TF search process in physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Mazzocca
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tom Fillot
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Gnani
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
160
|
Tet1 regulates epigenetic remodeling of the pericentromeric heterochromatin and chromocenter organization in DNA hypomethylated cells. PLoS Genet 2021; 17:e1009646. [PMID: 34166371 PMCID: PMC8263065 DOI: 10.1371/journal.pgen.1009646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/07/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
Pericentromeric heterochromatin (PCH), the constitutive heterochromatin of pericentromeric regions, plays crucial roles in various cellular events, such as cell division and DNA replication. PCH forms chromocenters in the interphase nucleus, and chromocenters cluster at the prophase of meiosis. Chromocenter clustering has been reported to be critical for the appropriate progression of meiosis. However, the molecular mechanisms underlying chromocenter clustering remain elusive. In this study, we found that global DNA hypomethylation, 5hmC enrichment in PCH, and chromocenter clustering of Dnmt1-KO ESCs were similar to those of the female meiotic germ cells. Tet1 is essential for the deposition of 5hmC and facultative histone marks of H3K27me3 and H2AK119ub at PCH, as well as chromocenter clustering. RING1B, one of the core components of PRC1, is recruited to PCH by TET1, and PRC1 plays a critical role in chromocenter clustering. In addition, the rearrangement of the chromocenter under DNA hypomethylated condition was mediated by liquid-liquid phase separation. Thus, we demonstrated a novel role of Tet1 in chromocenter rearrangement in DNA hypomethylated cells.
Collapse
|
161
|
Xu J, Zhao X, Mao F, Basrur V, Ueberheide B, Chait BT, Allis CD, Taverna SD, Gao S, Wang W, Liu Y. A Polycomb repressive complex is required for RNAi-mediated heterochromatin formation and dynamic distribution of nuclear bodies. Nucleic Acids Res 2021; 49:5407-5425. [PMID: 33412588 PMCID: PMC8191774 DOI: 10.1093/nar/gkaa1262] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023] Open
Abstract
Polycomb group (PcG) proteins are widely utilized for transcriptional repression in eukaryotes. Here, we characterize, in the protist Tetrahymena thermophila, the EZL1 (E(z)-like 1) complex, with components conserved in metazoan Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The EZL1 complex is required for histone H3 K27 and K9 methylation, heterochromatin formation, transposable element control, and programmed genome rearrangement. The EZL1 complex interacts with EMA1, a helicase required for RNA interference (RNAi). This interaction is implicated in co-transcriptional recruitment of the EZL1 complex. Binding of H3K27 and H3K9 methylation by PDD1-another PcG protein interacting with the EZL1 complex-reinforces its chromatin association. The EZL1 complex is an integral part of Polycomb bodies, which exhibit dynamic distribution in Tetrahymena development: Their dispersion is driven by chromatin association, while their coalescence by PDD1, likely via phase separation. Our results provide a molecular mechanism connecting RNAi and Polycomb repression, which coordinately regulate nuclear bodies and reorganize the genome.
Collapse
Affiliation(s)
- Jing Xu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaolu Zhao
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Venkatesha Basrur
- Proteomics Resource Facility, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Beatrix Ueberheide
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, the Rockefeller University, New York, NY 10065, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, the Rockefeller University, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, the Rockefeller University, New York, NY 10065, USA
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences and the Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
162
|
Nichols MH, Corces VG. Principles of 3D compartmentalization of the human genome. Cell Rep 2021; 35:109330. [PMID: 34192544 PMCID: PMC8265014 DOI: 10.1016/j.celrep.2021.109330] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin is organized in the nucleus via CTCF loops and compartmental domains. Here, we compare different cell types to identify distinct paradigms of compartmental domain formation in human tissues. We identify and quantify compartmental forces correlated with histone modifications characteristic of transcriptional activity and previously underappreciated roles for distinct compartmental domains correlated with the presence of H3K27me3 and H3K9me3, respectively. We present a computer simulation model capable of predicting compartmental organization based on the biochemical characteristics of independent chromatin features. Using this model, we show that the underlying forces responsible for compartmental domain formation in human cells are conserved and that the diverse compartmentalization patterns seen across cell types are due to differences in chromatin features. We extend these findings to Drosophila to suggest that the same principles are at work beyond humans. These results offer mechanistic insights into the fundamental forces driving the 3D organization of the genome. Using high-resolution Hi-C data and computer simulations, Nichols and Corces show that compartments arise as a consequence of interactions among proteins that correlate with the presence of H3K27ac, H3K27me3, and H3K9me3, suggesting that human cells contain at least three distinct compartments. The same principles apply to other organisms.
Collapse
Affiliation(s)
- Michael H Nichols
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA.
| |
Collapse
|
163
|
Guo Y, Zhao S, Wang GG. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 'Readout', and Phase Separation-Based Compaction. Trends Genet 2021; 37:547-565. [PMID: 33494958 PMCID: PMC8119337 DOI: 10.1016/j.tig.2020.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
Modulation of chromatin structure and/or modification by Polycomb repressive complexes (PRCs) provides an important means to partition the genome into functionally distinct subdomains and to regulate the activity of the underlying genes. Both the enzymatic activity of PRC2 and its chromatin recruitment, spreading, and eviction are exquisitely regulated via interactions with cofactors and DNA elements (such as unmethylated CpG islands), histones, RNA (nascent mRNA and long noncoding RNA), and R-loops. PRC2-catalyzed histone H3 lysine 27 trimethylation (H3K27me3) is recognized by distinct classes of effectors such as canonical PRC1 and BAH module-containing proteins (notably BAHCC1 in human). These effectors mediate gene silencing by different mechanisms including phase separation-related chromatin compaction and histone deacetylation. We discuss recent advances in understanding the structural architecture of PRC2, the regulation of its activity and chromatin recruitment, and the molecular mechanisms underlying Polycomb-mediated gene silencing. Because PRC deregulation is intimately associated with the development of diseases, a better appreciation of Polycomb-based (epi)genomic regulation will have far-reaching implications in biology and medicine.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
164
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
165
|
Zhou J, Chen Z, Zou M, Wan R, Wu T, Luo Y, Wu G, Wang W, Liu T. Prognosis and Immune Infiltration of Chromobox Family Genes in Sarcoma. Front Oncol 2021; 11:657595. [PMID: 34046352 PMCID: PMC8147558 DOI: 10.3389/fonc.2021.657595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background Chromobox family genes (CBXs) are known to play roles in numerous modifications of the chromatin in order to inhibit the transcription of target genes. CBXs have been shown to be expressed at high levels in many types of cancer and can also serve as a target gene for therapeutic purposes. However, little is known about the expression and prognostic value of CBXs in human sarcomas. Methods The transcription level of CBXs was analyzed using the Oncomine dataset, and the differential expression of CBXs in sarcoma was reported by the Gene Expression Profiling Interactive Analysis (GEPIA) dataset. We also used the CCLE dataset to evaluate the expression of CBXs in a sarcoma cell line. The prognostic value of CBXs was analyzed using GEPIA and Kaplan–Meier analysis. In addition, the corrections between CBXs and their co-expressed genes were reported using Oncomine and GEPIA datasets. DAVID was used to perform GO function enrichment analysis for the CBXs and their co-expression genes. Finally, TIMER was used to analyze the immune cell infiltration of CBXs in patients with sarcoma. Results HP1-α/β/γ (CBX1/3/5) and CBX4/6/8 were found to be overexpressed in human sarcoma, and CBXs were upregulated in almost all the sarcoma cell line. The expression levels of HP1-α/β/γ (CBX1/3/5) and CBX7 were associated with overall survival (OS) in patients with sarcoma, while high expression levels of CBX7 were related to disease-free survival (DFS). In addition, the expression levels of CBX2/6/7 were related to recurrence-free survival (RFS). We also found that the CBX family was positively correlated with the infiltration of immune cells, including CD8+ T cells, CD4+ T cells, B cells, macrophages, neutrophils, and dendritic cells, in sarcoma. Conclusions The results from the present study indicated that CBXs were significantly associated with prognosis and immunological status in sarcoma. These data suggest that CBXs could serve as potential biomarkers for prognosis and immune infiltration in human sarcoma.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyuan Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zou
- Department of Orthopedics, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, China
| | - Rongjun Wan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Tong Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Medicine Eight-Year Program, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
166
|
Fan H, Guo Y, Tsai YH, Storey AJ, Kim A, Gong W, Edmondson RD, Mackintosh SG, Li H, Byrum SD, Tackett A, Cai L, Wang GG. A conserved BAH module within mammalian BAHD1 connects H3K27me3 to Polycomb gene silencing. Nucleic Acids Res 2021; 49:4441-4455. [PMID: 33823544 PMCID: PMC8096256 DOI: 10.1093/nar/gkab210] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Trimethylation of histone H3 lysine 27 (H3K27me3) is important for gene silencing and imprinting, (epi)genome organization and organismal development. In a prevalent model, the functional readout of H3K27me3 in mammalian cells is achieved through the H3K27me3-recognizing chromodomain harbored within the chromobox (CBX) component of canonical Polycomb repressive complex 1 (cPRC1), which induces chromatin compaction and gene repression. Here, we report that binding of H3K27me3 by a Bromo Adjacent Homology (BAH) domain harbored within BAH domain-containing protein 1 (BAHD1) is required for overall BAHD1 targeting to chromatin and for optimal repression of the H3K27me3-demarcated genes in mammalian cells. Disruption of direct interaction between BAHD1BAH and H3K27me3 by point mutagenesis leads to chromatin remodeling, notably, increased histone acetylation, at its Polycomb gene targets. Mice carrying an H3K27me3-interaction-defective mutation of Bahd1BAH causes marked embryonic lethality, showing a requirement of this pathway for normal development. Altogether, this work demonstrates an H3K27me3-initiated signaling cascade that operates through a conserved BAH 'reader' module within BAHD1 in mammals.
Collapse
Affiliation(s)
- Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Arum Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, and Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
167
|
Polycomb-group proteins in the initiation and progression of cancer. J Genet Genomics 2021; 48:433-443. [PMID: 34266781 DOI: 10.1016/j.jgg.2021.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
The Polycomb group (PcG) proteins are a family of chromatin regulators and critical for the maintenance of cellular identity. The PcG machinery can be categorized into at least three multi-protein complexes, namely Polycomb Repressive Complex 1 (PRC1), PRC2, and Polycomb Repressive DeUBiquitinase (PR-DUB). Their deregulation has been associated with human cancer initiation and progression. Here we review the updated understanding for PcG proteins in transcription regulation and DNA damage repair and highlight increasing links to the hallmarks in cancer. Accordingly, we discuss some of the recent advances in drug development or strategies against cancers caused by the gain or loss of PcG functions.
Collapse
|
168
|
Guo Q, Shi X, Wang X. RNA and liquid-liquid phase separation. Noncoding RNA Res 2021; 6:92-99. [PMID: 33997539 PMCID: PMC8111091 DOI: 10.1016/j.ncrna.2021.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023] Open
Abstract
Liquid-Liquid Phase Separation (LLPS) is a biological phenomenon that refers to the components of similar properties form droplets condensate in cells. These droplets play an important role in maintaining the stability of order in cells. In the studies of phase separation, weak multivalent interactions between proteins have always been the focus of attentions. With the deepening research of phase separation, more and more evidences show that RNA, especially long noncoding RNA (lncRNA), also plays an important regulatory role in the phase separation. We summarized recent researches between phase separation and RNA, and focused on the function of non-coding RNA (ncRNA) in the process of phase separation. In fact, phase separation and RNA have a two-way regulation relationship. Noncoding RNA usually recruits proteins as molecular scaffolds to drive phase separation. On the other hand, phase separation is also involved in RNA transcription, transport, metabolism and other processes.
Collapse
Affiliation(s)
- Qi Guo
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangmin Shi
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiangting Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
169
|
Sidwell T, Rothenberg EV. Epigenetic Dynamics in the Function of T-Lineage Regulatory Factor Bcl11b. Front Immunol 2021; 12:669498. [PMID: 33936112 PMCID: PMC8079813 DOI: 10.3389/fimmu.2021.669498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Bcl11b is critically required to support the development of diverse cell types, including T lymphocytes, type 2 innate lymphoid cells, neurons, craniofacial mesenchyme and keratinocytes. Although in T cell development its onset of expression is tightly linked to T-lymphoid lineage commitment, the Bcl11b protein in fact regulates substantially different sets of genes in different lymphocyte populations, playing strongly context-dependent roles. Somewhat unusually for lineage-defining transcription factors with site-specific DNA binding activity, much of the reported chromatin binding of Bcl11b appears to be indirect, or guided in large part by interactions with other transcription factors. We describe evidence suggesting that a further way in which Bcl11b exerts such distinct stage-dependent functions is by nucleating changes in regional suites of epigenetic modifications through recruitment of multiple families of chromatin-modifying enzyme complexes. Herein we explore what is - and what remains to be - understood of the roles of Bcl11b, its cofactors, and how it modifies the epigenetic state of the cell to enforce its diverse set of context-specific transcriptional and developmental programs.
Collapse
Affiliation(s)
- Tom Sidwell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
170
|
King JT, Shakya A. Phase separation of DNA: From past to present. Biophys J 2021; 120:1139-1149. [PMID: 33582138 PMCID: PMC8059212 DOI: 10.1016/j.bpj.2021.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Phase separation of biological molecules, such as nucleic acids and proteins, has garnered widespread attention across many fields in recent years. For instance, liquid-liquid phase separation has been implicated not only in membraneless intracellular organization but also in many biochemical processes, including transcription, translation, and cellular signaling. Here, we present a historical background of biological phase separation and survey current work on nuclear organization and its connection to DNA phase separation from the perspective of DNA sequence, structure, and genomic context.
Collapse
Affiliation(s)
- John T King
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| | - Anisha Shakya
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea.
| |
Collapse
|
171
|
Baumann C, Zhang X, De La Fuente R. Loss of CBX2 induces genome instability and senescence-associated chromosomal rearrangements. J Cell Biol 2021; 219:152063. [PMID: 32870972 PMCID: PMC7594495 DOI: 10.1083/jcb.201910149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 08/02/2020] [Indexed: 01/05/2023] Open
Abstract
The polycomb group protein CBX2 is an important epigenetic reader involved in cell proliferation and differentiation. While CBX2 overexpression occurs in a wide range of human tumors, targeted deletion results in homeotic transformation, proliferative defects, and premature senescence. However, its cellular function(s) and whether it plays a role in maintenance of genome stability remain to be determined. Here, we demonstrate that loss of CBX2 in mouse fibroblasts induces abnormal large-scale chromatin structure and chromosome instability. Integrative transcriptome analysis and ATAC-seq revealed a significant dysregulation of transcripts involved in DNA repair, chromocenter formation, and tumorigenesis in addition to changes in chromatin accessibility of genes involved in lateral sclerosis, basal transcription factors, and folate metabolism. Notably, Cbx2−/− cells exhibit prominent decondensation of satellite DNA sequences at metaphase and increased sister chromatid recombination events leading to rampant chromosome instability. The presence of extensive centromere and telomere defects suggests a prominent role for CBX2 in heterochromatin homeostasis and the regulation of nuclear architecture.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| |
Collapse
|
172
|
Li J, Zhang Y, Chen X, Ma L, Li P, Yu H. Protein phase separation and its role in chromatin organization and diseases. Biomed Pharmacother 2021; 138:111520. [PMID: 33765580 DOI: 10.1016/j.biopha.2021.111520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
In the physical sciences, solid, liquid, and gas are the most familiar phase states, whose essence is their existence reflecting the different spatial distribution of molecular components. The biological molecules in the living cell also have differences in spatial distribution. The molecules organized in the form of membrane-bound organelles are well recognized. However, the biomolecules organized in membraneless compartments called biomolecular condensates remain elusive. The liquid-liquid phase separation (LLPS), as a new emerging scientific breakthrough, describes the biomolecules assembled in special distribution and appeared as membraneless condensates in the form of a new "phase" compared with the surrounding liquid milieu. LLPS provides an important theoretical basis for explaining the composition of biological molecules and related biological reactions. Mounting evidence has emerged recently that phase-separated condensates participate in various biological activities. This article reviews the occurrence of LLPS and underlying regulatory mechanisms for understanding how multivalent molecules drive phase transitions to form the biomolecular condensates. And, it also summarizes recent major progress in elucidating the roles of LLPS in chromatin organization and provides clues for the development of new innovative therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Yao Zhang
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Xi Chen
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Lijuan Ma
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Haijie Yu
- Dr. Neher's Laboratory for innovative Drug Discovery, Macau University of Science and Technology, Macao, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
173
|
Pease NA, Nguyen PHB, Woodworth MA, Ng KKH, Irwin B, Vaughan JC, Kueh HY. Tunable, division-independent control of gene activation timing by a polycomb switch. Cell Rep 2021; 34:108888. [PMID: 33761349 PMCID: PMC8024876 DOI: 10.1016/j.celrep.2021.108888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Abstract
During development, progenitors often differentiate many cell generations after receiving signals. These delays must be robust yet tunable for precise population size control. Polycomb repressive mechanisms, involving histone H3 lysine-27 trimethylation (H3K27me3), restrain the expression of lineage-specifying genes in progenitors and may delay their activation and ensuing differentiation. Here, we elucidate an epigenetic switch controlling the T cell commitment gene Bcl11b that holds its locus in a heritable inactive state for multiple cell generations before activation. Integrating experiments and modeling, we identify a mechanism where H3K27me3 levels at Bcl11b, regulated by methyltransferase and demethylase activities, set the time delay at which the locus switches from a compacted, silent state to an extended, active state. This activation delay robustly spans many cell generations, is tunable by chromatin modifiers and transcription factors, and is independent of cell division. With their regulatory flexibility, such timed epigenetic switches may broadly control timing in development.
Collapse
Affiliation(s)
- Nicholas A Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Phuc H B Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Marcus A Woodworth
- Biological Physics, Structure and Design Program, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kenneth K H Ng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Blythe Irwin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
174
|
Pham K, Masoudi N, Leyva-Díaz E, Hobert O. A nervous system-specific subnuclear organelle in Caenorhabditis elegans. Genetics 2021; 217:1-17. [PMID: 33683371 PMCID: PMC8045701 DOI: 10.1093/genetics/iyaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4-10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
175
|
Belaghzal H, Borrman T, Stephens AD, Lafontaine DL, Venev SV, Weng Z, Marko JF, Dekker J. Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics. Nat Genet 2021; 53:367-378. [PMID: 33574602 PMCID: PMC7946813 DOI: 10.1038/s41588-021-00784-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Nuclear compartmentalization of active and inactive chromatin is thought to occur through microphase separation mediated by interactions between loci of similar type. The nature and dynamics of these interactions are not known. We developed liquid chromatin Hi-C to map the stability of associations between loci. Before fixation and Hi-C, chromosomes are fragmented, which removes strong polymeric constraint, enabling detection of intrinsic locus-locus interaction stabilities. Compartmentalization is stable when fragments are larger than 10-25 kb. Fragmentation of chromatin into pieces smaller than 6 kb leads to gradual loss of genome organization. Lamin-associated domains are most stable, whereas interactions for speckle- and polycomb-associated loci are more dynamic. Cohesin-mediated loops dissolve after fragmentation. Liquid chromatin Hi-C provides a genome-wide view of chromosome interaction dynamics.
Collapse
Affiliation(s)
- Houda Belaghzal
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew D Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Denis L Lafontaine
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sergey V Venev
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
176
|
Huseyin MK, Klose RJ. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat Commun 2021; 12:887. [PMID: 33563969 PMCID: PMC7873255 DOI: 10.1038/s41467-021-21130-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) is an essential chromatin-based repressor of gene transcription. How PRC1 engages with chromatin to identify its target genes and achieve gene repression remains poorly defined, representing a major hurdle to our understanding of Polycomb system function. Here, we use genome engineering and single particle tracking to dissect how PRC1 binds to chromatin in live mouse embryonic stem cells. We observe that PRC1 is highly dynamic, with only a small fraction stably interacting with chromatin. By integrating subunit-specific dynamics, chromatin binding, and abundance measurements, we discover that PRC1 exhibits low occupancy at target sites. Furthermore, we employ perturbation approaches to uncover how specific components of PRC1 define its kinetics and chromatin binding. Together, these discoveries provide a quantitative understanding of chromatin binding by PRC1 in live cells, suggesting that chromatin modification, as opposed to PRC1 complex occupancy, is central to gene repression.
Collapse
Affiliation(s)
- Miles K Huseyin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
177
|
Boija A, Klein IA, Young RA. Biomolecular Condensates and Cancer. Cancer Cell 2021; 39:174-192. [PMID: 33417833 PMCID: PMC8721577 DOI: 10.1016/j.ccell.2020.12.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
178
|
Halsall JA, Andrews S, Krueger F, Rutledge CE, Ficz G, Reik W, Turner BM. Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle. Sci Rep 2021; 11:3009. [PMID: 33542322 PMCID: PMC7862352 DOI: 10.1038/s41598-021-82539-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Chromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10-50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1-5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.
Collapse
Affiliation(s)
- John A Halsall
- Chromatin and Gene Regulation Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Simon Andrews
- Bioinformatics, The Babraham Institute, Cambridge, UK
| | - Felix Krueger
- Bioinformatics, The Babraham Institute, Cambridge, UK
| | - Charlotte E Rutledge
- Chromatin and Gene Regulation Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gabriella Ficz
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Bryan M Turner
- Chromatin and Gene Regulation Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
179
|
Harrison RES, Weng K, Wang Y, Peng Q. Phase Separation and Histone Epigenetics in Genome Regulation. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100892. [PMID: 33519290 PMCID: PMC7845916 DOI: 10.1016/j.cossms.2020.100892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-liquid phase separation is increasingly recognized as a phenomenon that affects cell behavior. For example, phase separation of transcription factors and coactivators has been shown to drive efficient transcription. For many years, phase separation of intracellular components has been observed; however, only recently have researchers been able to garner functional significance from such events. Inspired from recent literature that describes phase separation of chromatin in a histone-dependent manner, we review the role and effect of phase separation and histone epigenetics in regulating the genome and discuss how these phenomena can be leveraged to control cell behavior.
Collapse
Affiliation(s)
- Reed E. S. Harrison
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400044, P. R. China
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
180
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
181
|
Grau D, Zhang Y, Lee CH, Valencia-Sánchez M, Zhang J, Wang M, Holder M, Svetlov V, Tan D, Nudler E, Reinberg D, Walz T, Armache KJ. Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nat Commun 2021; 12:714. [PMID: 33514705 PMCID: PMC7846606 DOI: 10.1038/s41467-020-20775-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin. Here, we present two cryo-EM structures of PRC2:EZH1, one as a monomer and a second one as a dimer bound to a nucleosome. When bound to nucleosome substrate, the PRC2:EZH1 dimer undergoes a dramatic conformational change. We demonstrate that mutation of a divergent EZH1/2 loop abrogates the nucleosome-binding and methyltransferase activities of PRC2:EZH1. Finally, we show that PRC2:EZH1 dimers are more effective than monomers at promoting chromatin compaction, and the divergent EZH1/2 loop is essential for this function, thereby tying together the methyltransferase, nucleosome-binding, and chromatin-compaction activities of PRC2:EZH1. We speculate that the conformational flexibility and the ability to dimerize enable PRC2 to act on the varied chromatin substrates it encounters in the cell. Polycomb Repressive Complex 2 (PRC2) is a histone methyltransferase whose silencing activity is regulated in part by the selective incorporation of its catalytic subunits EZH1 or EZH2. Here, the authors capture an EZH1-containing PRC2 dimer on a nucleosome, demonstrating significant conformational changes during the process.
Collapse
Affiliation(s)
- Daniel Grau
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiao Zhang
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Marco Valencia-Sánchez
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jenny Zhang
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Miao Wang
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Marlene Holder
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University Medical School, Stony Brook, NY, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA.
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
182
|
Lionnet T, Wu C. Single-molecule tracking of transcription protein dynamics in living cells: seeing is believing, but what are we seeing? Curr Opin Genet Dev 2021; 67:94-102. [PMID: 33422933 DOI: 10.1016/j.gde.2020.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
A universe of transcription factors (TFs), cofactors, as well as chromatin remodeling and modifying enzymes combine or compete on chromatin to control transcription. Measuring quantitatively how these proteins dynamically interact is required in order to formulate models with predictive ability to elucidate transcription control mechanisms. Single molecule tracking (SMT) provides a powerful tool towards this goal: it is a fluorescence microscopy approach that measures the location and mobility of individual TF molecules, as well as their rates of association with and dissociation from chromatin in the physiological context of the living cell. Here we review SMT principles, and discuss key TF properties uncovered by live-cell SMT, such as fast turnover (seconds), and formation of clusters that locally increase activity.
Collapse
Affiliation(s)
- Timothée Lionnet
- Institute for Systems Genetics, Science Building 807, 435 E 30th Street, NYC, NY 10016, USA.
| | - Carl Wu
- Johns Hopkins University, Department of Biology, 3400 N Charles St, Baltimore, MD 21218, USA.
| |
Collapse
|
183
|
Bizhanova A, Kaufman PD. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194666. [PMID: 33307247 PMCID: PMC7855492 DOI: 10.1016/j.bbagrm.2020.194666] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.
Collapse
Affiliation(s)
- Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
184
|
Xie X, Mahmood SR, Gjorgjieva T, Percipalle P. Emerging roles of cytoskeletal proteins in regulating gene expression and genome organization during differentiation. Nucleus 2020; 11:53-65. [PMID: 32212905 PMCID: PMC7289583 DOI: 10.1080/19491034.2020.1742066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the eukaryotic cell nucleus, cytoskeletal proteins are emerging as essential players in nuclear function. In particular, actin regulates chromatin as part of ATP-dependent chromatin remodeling complexes, it modulates transcription and it is incorporated into nascent ribonucleoprotein complexes, accompanying them from the site of transcription to polyribosomes. The nuclear actin pool is undistinguishable from the cytoplasmic one in terms of its ability to undergo polymerization and it has also been implicated in the dynamics of chromatin, regulating heterochromatin segregation at the nuclear lamina and maintaining heterochromatin levels in the nuclear interiors. One of the next frontiers is, therefore, to determine a possible involvement of nuclear actin in the functional architecture of the cell nucleus by regulating the hierarchical organization of chromatin and, thus, genome organization. Here, we discuss the repertoire of these potential actin functions and how they are likely to play a role in the context of cellular differentiation.
Collapse
Affiliation(s)
- Xin Xie
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - S Raza Mahmood
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Biology, New York University, New York, NY, USA
| | - Tamara Gjorgjieva
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
185
|
Strickfaden H, Tolsma TO, Sharma A, Underhill DA, Hansen JC, Hendzel MJ. Condensed Chromatin Behaves like a Solid on the Mesoscale In Vitro and in Living Cells. Cell 2020; 183:1772-1784.e13. [PMID: 33326747 DOI: 10.1016/j.cell.2020.11.027] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The association of nuclear DNA with histones to form chromatin is essential for temporal and spatial control of eukaryotic genomes. In this study, we examined the physical state of condensed chromatin in vitro and in vivo. Our in vitro studies demonstrate that self-association of nucleosomal arrays under a wide range of solution conditions produces supramolecular condensates in which the chromatin is physically constrained and solid-like. By measuring DNA mobility in living cells, we show that condensed chromatin also exhibits solid-like behavior in vivo. Representative heterochromatin proteins, however, display liquid-like behavior and coalesce around the solid chromatin scaffold. Importantly, euchromatin and heterochromatin show solid-like behavior even under conditions that produce limited interactions between chromatin fibers. Our results reveal that condensed chromatin exists in a solid-like state whose properties resist external forces and create an elastic gel and provides a scaffold that supports liquid-liquid phase separation of chromatin binding proteins.
Collapse
Affiliation(s)
- Hilmar Strickfaden
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas O Tolsma
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ajit Sharma
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - D Alan Underhill
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
186
|
No Easy Way Out for EZH2: Its Pleiotropic, Noncanonical Effects on Gene Regulation and Cellular Function. Int J Mol Sci 2020; 21:ijms21249501. [PMID: 33327550 PMCID: PMC7765048 DOI: 10.3390/ijms21249501] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) plays critical roles in a range of biological processes including organ development and homeostasis, epigenomic and transcriptomic regulation, gene repression and imprinting, and DNA damage repair. A widely known function of EZH2 is to serve as an enzymatic subunit of Polycomb repressive complex 2 (PRC2) and catalyze trimethylation of histone H3 lysine 27 (H3K27me3) for repressing target gene expression. However, an increasing body of evidence demonstrates that EZH2 has many "non-conventional" functions that go beyond H3K27 methylation as a Polycomb factor. First, EZH2 can methylate a number of nonhistone proteins, thereby regulating cellular processes in an H3K27me3-independent fashion. Furthermore, EZH2 relies on both methyltransferase-dependent and methyltransferase-independent mechanisms for modulating gene-expression programs and/or epigenomic patterns of cells. Importantly, independent of PRC2, EZH2 also forms physical interactions with a number of DNA-binding factors and transcriptional coactivators to context-dependently influence gene expression. The purpose of this review is to detail the complex, noncanonical roles of EZH2, which are generally less appreciated in gene and (epi)genome regulation. Because EZH2 deregulation is prevalent in human diseases such as cancer, there is increased dependency on its noncanonical function, which shall have important implications in developing more effective therapeutics.
Collapse
|
187
|
Pelham-Webb B, Murphy D, Apostolou E. Dynamic 3D Chromatin Reorganization during Establishment and Maintenance of Pluripotency. Stem Cell Reports 2020; 15:1176-1195. [PMID: 33242398 PMCID: PMC7724465 DOI: 10.1016/j.stemcr.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Higher-order chromatin structure is tightly linked to gene expression and therefore cell identity. In recent years, the chromatin landscape of pluripotent stem cells has become better characterized, and unique features at various architectural levels have been revealed. However, the mechanisms that govern establishment and maintenance of these topological characteristics and the temporal and functional relationships with transcriptional or epigenetic features are still areas of intense study. Here, we will discuss progress and limitations of our current understanding regarding how the 3D chromatin topology of pluripotent stem cells is established during somatic cell reprogramming and maintained during cell division. We will also discuss evidence and theories about the driving forces of topological reorganization and the functional links with key features and properties of pluripotent stem cell identity.
Collapse
Affiliation(s)
- Bobbie Pelham-Webb
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Dylan Murphy
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
188
|
Grosch M, Ittermann S, Shaposhnikov D, Drukker M. Chromatin-Associated Membraneless Organelles in Regulation of Cellular Differentiation. Stem Cell Reports 2020; 15:1220-1232. [PMID: 33217325 PMCID: PMC7724471 DOI: 10.1016/j.stemcr.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane-free intracellular biocondensates are enclosures of proteins and nucleic acids that form by phase separation. Extensive ensembles of nuclear "membraneless organelles" indicate their involvement in genome regulation. Indeed, nuclear bodies have been linked to regulation of gene expression by formation of condensates made of chromatin and RNA processing factors. Important questions pertain to the involvement of membraneless organelles in determining cell identity through their cell-type-specific composition and function. Paraspeckles provide a prism to these questions because they exhibit striking cell-type-specific patterns and since they are crucial in embryogenesis. Here, we outline known interactions between paraspeckles and chromatin, and postulate how such interactions may be important in regulation of cell fate transitions. Moreover, we propose long non-coding RNAs (lncRNAs) as candidates for similar regulation because many form foci that resemble biocondensates and exhibit dynamic patterns during differentiation. Finally, we outline approaches that could ascertain how chromatin-associated membraneless organelles regulate cellular differentiation.
Collapse
Affiliation(s)
- Markus Grosch
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Sebastian Ittermann
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Dmitry Shaposhnikov
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC RA Leiden, The Netherlands.
| |
Collapse
|
189
|
Ouyang W, Xiong D, Li G, Li X. Unraveling the 3D Genome Architecture in Plants: Present and Future. MOLECULAR PLANT 2020; 13:1676-1693. [PMID: 33065269 DOI: 10.1016/j.molp.2020.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/09/2020] [Accepted: 10/08/2020] [Indexed: 05/02/2023]
Abstract
The eukaryotic genome has a hierarchical three-dimensional (3D) organization with functional implications for DNA replication, DNA repair, and transcriptional regulation. Over the past decade, scientists have endeavored to elucidate the spatial characteristics and functions of plant genome architecture using high-throughput chromatin conformation capturing technologies such as Hi-C, ChIA-PET, and HiChIP. Here, we systematically review current understanding of chromatin organization in plants at multiple scales. We also discuss the emerging opinions and concepts in 3D genome research, focusing on state-of-the-art 3D genome techniques, RNA-chromatin interactions, liquid-liquid phase separation, and dynamic chromatin alterations. We propose the application of single-cell/single-molecule multi-omics, multiway (DNA-DNA, DNA-RNA, and RNA-RNA interactions) chromatin conformation capturing methods, and proximity ligation-independent 3D genome-mapping technologies to explore chromatin organization structure and function in plants. Such methods could reveal the spatial interactions between trait-related SNPs and their target genes at various spatiotemporal resolutions, and elucidate the molecular mechanisms of the interactions among DNA elements, RNA molecules, and protein factors during the formation of key traits in plants.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
190
|
Kim Y, Yu H. Shaping of the 3D genome by the ATPase machine cohesin. Exp Mol Med 2020; 52:1891-1897. [PMID: 33268833 PMCID: PMC8080590 DOI: 10.1038/s12276-020-00526-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
The spatial organization of the genome is critical for fundamental biological processes, including transcription, genome replication, and segregation. Chromatin is compacted and organized with defined patterns and proper dynamics during the cell cycle. Aided by direct visualization and indirect genome reconstruction tools, recent discoveries have advanced our understanding of how interphase chromatin is dynamically folded at the molecular level. Here, we review the current understanding of interphase genome organization with a focus on the major regulator of genome structure, the cohesin complex. We further discuss how cohesin harnesses the energy of ATP hydrolysis to shape the genome by extruding chromatin loops.
Collapse
Affiliation(s)
- Yoori Kim
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
191
|
Tsang B, Pritišanac I, Scherer SW, Moses AM, Forman-Kay JD. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell 2020; 183:1742-1756. [DOI: 10.1016/j.cell.2020.11.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
|
192
|
Durojaye OA, Sedzro DM, Mushiana T, Uzoeto HO, Cosmas S, Ajima JN, Ibiang GO. An in silico LLPS perturbation approach in the design of a novel SARS-CoV-2 spike receptor-binding domain inhibitor. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:65. [PMID: 38624529 PMCID: PMC7685779 DOI: 10.1186/s43042-020-00105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 11/10/2022] Open
Abstract
The reversible process where a homogenous fluid de-mixes into two distinctively separate liquid phases is referred to as LLPS (Liquid-liquid phase separation). The resulting liquid is made up of one dilute phase and one condensed phase. An increasing number of studies have shown that the liquid-liquid phase separation is an important principle that underlies intracellular organization in biological systems, forming liquid condensates without a membrane envelope, otherwise known as MLOs (membraneless organelles). Such organelles include the P bodies, nucleolus and stress granules. Moreover, the regulation of many other biological processes such as signal transduction, chromatin rearrangement and RNA metabolism have been linked to the liquid-liquid phase separation.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- School of Life Sciences, Department of Molecular and Cell Biology, University of Science and Technology of China, Hefei, China
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State Nigeria
- Department of Chemical Sciences, Coal City University, Emene, Enugu State Nigeria
| | - Divine Mensah Sedzro
- School of Life Sciences, Department of Molecular and Cell Biology, University of Science and Technology of China, Hefei, China
| | - Talifhani Mushiana
- School of Chemistry and Material Sciences, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | | | - Samuel Cosmas
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State Nigeria
| | | | - Glory Omini Ibiang
- Department of Biological Sciences, Coal City University, Emene, Enugu State Nigeria
| |
Collapse
|
193
|
Qu W, Wang Z, Zhang H. Phase separation of the C. elegans Polycomb protein SOP-2 is modulated by RNA and sumoylation. Protein Cell 2020; 11:202-207. [PMID: 31894537 PMCID: PMC7026206 DOI: 10.1007/s13238-019-00680-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Wenyan Qu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
194
|
Razin SV, Ulianov SV. Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells 2020; 9:cells9112480. [PMID: 33203115 PMCID: PMC7696541 DOI: 10.3390/cells9112480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The functioning of a cell at various organizational levels is determined by the interactions between macromolecules that promote cellular organelle formation and orchestrate metabolic pathways via the control of enzymatic activities. Although highly specific and relatively stable protein-protein, protein-DNA, and protein-RNA interactions are traditionally suggested as the drivers for cellular function realization, recent advances in the discovery of weak multivalent interactions have uncovered the role of so-called macromolecule condensates. These structures, which are highly divergent in size, composition, function, and cellular localization are predominantly formed by liquid-liquid phase separation (LLPS): a physical-chemical process where an initially homogenous solution turns into two distinct phases, one of which contains the major portion of the dissolved macromolecules and the other one containing the solvent. In a living cell, LLPS drives the formation of membrane-less organelles such as the nucleolus, nuclear bodies, and viral replication factories and facilitates the assembly of complex macromolecule aggregates possessing regulatory, structural, and enzymatic functions. Here, we discuss the role of LLPS in the spatial organization of eukaryotic chromatin and regulation of gene expression in normal and pathological conditions.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-9787
| |
Collapse
|
195
|
Phillips RE, Soshnev AA, Allis CD. Epigenomic Reprogramming as a Driver of Malignant Glioma. Cancer Cell 2020; 38:647-660. [PMID: 32916125 PMCID: PMC8248764 DOI: 10.1016/j.ccell.2020.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are central nervous system tumors and remain among the most treatment-resistant cancers. Exome sequencing has revealed significant heterogeneity and important insights into the molecular pathogenesis of gliomas. Mutations in chromatin modifiers-proteins that shape the epigenomic landscape through remodeling and regulation of post-translational modifications on chromatin-are very frequent and often define specific glioma subtypes. This suggests that epigenomic reprogramming may be a fundamental driver of glioma. Here, we describe the key chromatin regulatory pathways disrupted in gliomas, delineating their physiological function and our current understanding of how their dysregulation may contribute to gliomagenesis.
Collapse
Affiliation(s)
- Richard E Phillips
- Department of Neurology and Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
196
|
Seif E, Kang JJ, Sasseville C, Senkovich O, Kaltashov A, Boulier EL, Kapur I, Kim CA, Francis NJ. Phase separation by the polyhomeotic sterile alpha motif compartmentalizes Polycomb Group proteins and enhances their activity. Nat Commun 2020; 11:5609. [PMID: 33154383 PMCID: PMC7644731 DOI: 10.1038/s41467-020-19435-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Polycomb Group (PcG) proteins organize chromatin at multiple scales to regulate gene expression. A conserved Sterile Alpha Motif (SAM) in the Polycomb Repressive Complex 1 (PRC1) subunit Polyhomeotic (Ph) has been shown to play an important role in chromatin compaction and large-scale chromatin organization. Ph SAM forms helical head to tail polymers, and SAM-SAM interactions between chromatin-bound Ph/PRC1 are believed to compact chromatin and mediate long-range interactions. To understand the underlying mechanism, here we analyze the effects of Ph SAM on chromatin in vitro. We find that incubation of chromatin or DNA with a truncated Ph protein containing the SAM results in formation of concentrated, phase-separated condensates. Ph SAM-dependent condensates can recruit PRC1 from extracts and enhance PRC1 ubiquitin ligase activity towards histone H2A. We show that overexpression of Ph with an intact SAM increases ubiquitylated H2A in cells. Thus, SAM-induced phase separation, in the context of Ph, can mediate large-scale compaction of chromatin into biochemical compartments that facilitate histone modification.
Collapse
Affiliation(s)
- Elias Seif
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Jin Joo Kang
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Charles Sasseville
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, 19555N. 59th St., Glendale, AZ, 85308, USA
| | - Alexander Kaltashov
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Elodie L Boulier
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Ibani Kapur
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Chongwoo A Kim
- Department of Biochemistry and Molecular Genetics, Midwestern University, 19555N. 59th St., Glendale, AZ, 85308, USA
| | - Nicole J Francis
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Département de biochimie et médecine moléculaire Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
197
|
Jiang S, Fagman JB, Chen C, Alberti S, Liu B. Protein phase separation and its role in tumorigenesis. eLife 2020; 9:60264. [PMID: 33138914 PMCID: PMC7609067 DOI: 10.7554/elife.60264] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, but the precise pathological mechanisms underlying tumorigenesis often remain to be elucidated. In recent years, condensates formed by phase separation have emerged as a new principle governing the organization and functional regulation of cells. Increasing evidence links cancer-related mutations to aberrantly altered condensate assembly, suggesting that condensates play a key role in tumorigenesis. In this review, we summarize and discuss the latest progress on the formation, regulation, and function of condensates. Special emphasis is given to emerging evidence regarding the link between condensates and the initiation and progression of cancers.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bourghardt Fagman
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changyan Chen
- Department of Oncology at the Department of Clinical Sciences, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Center for Large-scale cell-based screening, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
198
|
Thakur J, Henikoff S. Architectural RNA in chromatin organization. Biochem Soc Trans 2020; 48:1967-1978. [PMID: 32897323 PMCID: PMC7609026 DOI: 10.1042/bst20191226] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
RNA plays a well-established architectural role in the formation of membraneless interchromatin nuclear bodies. However, a less well-known role of RNA is in organizing chromatin, whereby specific RNAs have been found to recruit chromatin modifier proteins. Whether or not RNA can act as an architectural molecule for chromatin remains unclear, partly because dissecting the architectural role of RNA from its regulatory role remains challenging. Studies that have addressed RNA's architectural role in chromatin organization rely on in situ RNA depletion using Ribonuclease A (RNase A) and suggest that RNA plays a major direct architectural role in chromatin organization. In this review, we will discuss these findings, candidate chromatin architectural long non-coding RNAs and possible mechanisms by which RNA, along with RNA binding proteins might be mediating chromatin organization.
Collapse
Affiliation(s)
- Jitendra Thakur
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, U.S.A
| |
Collapse
|
199
|
Emenecker RJ, Holehouse AS, Strader LC. Emerging Roles for Phase Separation in Plants. Dev Cell 2020; 55:69-83. [PMID: 33049212 PMCID: PMC7577370 DOI: 10.1016/j.devcel.2020.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
The plant cell internal environment is a dynamic, intricate landscape composed of many intracellular compartments. Cells organize some cellular components through formation of biomolecular condensates-non-stoichiometric assemblies of protein and/or nucleic acids. In many cases, phase separation appears to either underly or contribute to the formation of biomolecular condensates. Many canonical membraneless compartments within animal cells form in a manner that is at least consistent with phase separation, including nucleoli, stress granules, Cajal bodies, and numerous additional bodies, regulated by developmental and environmental stimuli. In this Review, we examine the emerging roles for phase separation in plants. Further, drawing on studies carried out in other organisms, we identify cellular phenomenon in plants that might also arise via phase separation. We propose that plants make use of phase separation to a much greater extent than has been previously appreciated, implicating phase separation as an evolutionarily ancient mechanism for cellular organization.
Collapse
Affiliation(s)
- Ryan J Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA; Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA.
| | - Lucia C Strader
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, USA; Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
200
|
Kent S, Brown K, Yang CH, Alsaihati N, Tian C, Wang H, Ren X. Phase-Separated Transcriptional Condensates Accelerate Target-Search Process Revealed by Live-Cell Single-Molecule Imaging. Cell Rep 2020; 33:108248. [PMID: 33053359 PMCID: PMC7593837 DOI: 10.1016/j.celrep.2020.108248] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Compartmentalization by liquid-liquid phase separation is implicated in transcription. It remains unclear whether and how transcriptional condensates accelerate the search of transcriptional regulatory factors for their target sites. Furthermore, the molecular mechanisms by which regulatory factors nucleate on chromatin to assemble transcriptional condensates remain incompletely understood. The CBX-PRC1 complexes compartmentalize key developmental regulators for repression through phase-separated condensates driven by the chromobox 2 (CBX2) protein. Here, by using live-cell single-molecule imaging, we show that CBX2 nucleates on chromatin independently of H3K27me3 and CBX-PRC1. The interactions between CBX2 and DNA are essential for nucleating CBX-PRC1 on chromatin to assemble condensates. The assembled condensates shorten 3D diffusion time and reduce trials for finding specific sites through revisiting the same or adjacent sites repetitively, thereby accelerating CBX2 in searching for target sites. Overall, our data suggest a generic mechanism by which transcriptional regulatory factors nucleate to assemble condensates that accelerate their target-search process. Kent et al. demonstrate that CBX2 phase separates to assemble Polycomb condensates on chromatin through CBX2 interactions with DNA rather than H3K27me3. The assembled condensates accelerate the search of CBX2 for its cognate binding sites by revisiting the same or adjacent sites repetitively, thereby enhancing the genomic occupancy of CBX2.
Collapse
Affiliation(s)
- Samantha Kent
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Kyle Brown
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Chou-Hsun Yang
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Njood Alsaihati
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Christina Tian
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA.
| |
Collapse
|