151
|
Rasoolizadeh A, Goulet MC, Guay JF, Cloutier C, Michaud D. Population-associated heterogeneity of the digestive Cys protease complement in Colorado potato beetle, Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:125-133. [PMID: 28267460 DOI: 10.1016/j.jinsphys.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/19/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Herbivorous insects use complex protease complements to process plant proteins, useful to adjust their digestive functions to the plant diet and to elude the antidigestive effects of dietary protease inhibitors. We here assessed whether basic profiles and diet-related adjustments of the midgut protease complement may vary among populations of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). Two laboratory colonies of this insect were used as models, derived from insect samples collected in potato fields ∼1200km distant from each other in North America. Synchronized 4th-instar larvae reared on potato were kept on this plant, or switched to tomato or eggplant, to compare their midgut cathepsin activities and content of intestain Cys proteases under different diet regimes. Cathepsin D activity, cathepsin L activity, cathepsin B activity and total intestain content shortly after larval molting on potato leaves were about two times lower in one population compared to the other. By comparison, cathepsin D activity, cathepsin B activity, total intestain content and relative abundance of the most prominent intestain families were similar in the two populations after three days regardless of the plant diet, unlike cathepsin L activity and less prominent intestain families showing population-associated variability. Variation in Cys protease profiles translated into the differential efficiency of a Cys protease inhibitor, tomato cystatin SlCYS8, to inhibit cathepsin L activity in midgut extracts of the two insect groups. Despite quantitative differences, SlCYS8 single variants engineered to strongly inhibit Cys proteases showed improved potency against cathepsin L activity of either population. These data suggest the feasibility of designing cystatins to control L. decemlineata that are effective against different populations of this insect. They underline, on the other hand, the practical relevance of considering natural variability of the protease complement among L. decemlineata target populations, eventually determinant in the success or failure of cystatin-based control strategies on a large-scale basis.
Collapse
Affiliation(s)
- Asieh Rasoolizadeh
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Claire Goulet
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Conrad Cloutier
- Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dominique Michaud
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
152
|
Warmoes M, Lam SW, van der Groep P, Jaspers JE, Smolders YHCM, de Boer L, Pham TV, Piersma SR, Rottenberg S, Boven E, Jonkers J, van Diest PJ, Jimenez CR. Secretome proteomics reveals candidate non-invasive biomarkers of BRCA1 deficiency in breast cancer. Oncotarget 2018; 7:63537-63548. [PMID: 27566577 PMCID: PMC5325383 DOI: 10.18632/oncotarget.11535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
Breast cancer arising in female BRCA1 mutation carriers is characterized by an aggressive phenotype and early age of onset. We performed tandem mass spectrometry-based proteomics of secretomes and exosome-like extracellular vesicles from BRCA1-deficient and BRCA1-proficient murine breast tumor models to identify extracellular protein biomarkers, which can be used as an adjunct to current diagnostic modalities in patients with BRCA1-deficient breast cancer. We identified 2,107 proteins, of which 215 were highly enriched in the BRCA1-deficient secretome. We demonstrated that BRCA1-deficient secretome proteins could cluster most human BRCA1- and BRCA2-related breast carcinomas at the transcriptome level. Topoisomerase I (TOP1) and P-cadherin (CDH3) expression was investigated by immunohistochemistry on tissue microarrays of a large panel of 253 human breast carcinomas with and without BRCA1/2 mutations. We showed that expression of TOP1 and CDH3 was significantly increased in human BRCA1-related breast carcinomas relative to sporadic cases (p = 0.002 and p < 0.001, respectively). Multiple logistic regression showed that TOP1 (adjusted odds ratio [OR] 3.75; 95% confidence interval [95% CI], 1.85 - 7.71, p < 0.001) as well as CDH3 positivity (adjusted OR 2.45; 95% CI, 1.08 - 5.49, p = 0.032) were associated with BRCA1/2-related breast carcinomas after adjustment for triple-negative phenotype and age. In conclusion, proteome profiling of secretome using murine breast tumor models is a powerful strategy to identify non-invasive candidate biomarkers of BRCA1-deficient breast cancer. We demonstrate that TOP1 and CDH3 are closely associated to BRCA1-deficient breast cancer. These data merit further investigation for early detection of tumors arising in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Marc Warmoes
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Siu W Lam
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Petra van der Groep
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janneke E Jaspers
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yvonne H C M Smolders
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leon de Boer
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Thang V Pham
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Epie Boven
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Connie R Jimenez
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
153
|
Lamy J, Nogues P, Combes-Soia L, Tsikis G, Labas V, Mermillod P, Druart X, Saint-Dizier M. Identification by proteomics of oviductal sperm-interacting proteins. Reproduction 2018. [PMID: 29540510 DOI: 10.1530/rep-17-0712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interactions between oviductal fluid (OF) proteins and spermatozoa play major roles in sperm selection, storage and capacitation before fertilization. However, only a few sperm-interacting proteins in the OF has been identified and very little is known about the regulation of sperm-oviduct interactions across the estrous cycle. Samples of bovine frozen-thawed sperm from three bulls were incubated with OF at pre-, post-ovulatory stages (Pre-/Post-ov) or luteal phase (LP) of the estrous cycle (7 mg/mL proteins, treated groups) or with a protein-free media (control). The proteomes of sperm cells were assessed by nanoLC-MS/MS and quantified by label-free methods. A total of 27 sperm-interacting proteins originating in the OF were identified. Among those, 14 were detected at all stages, eight at Post-ov and LP and five only at LP. The sperm-interacting proteins detected at all stages or at LP and Post-ov were on average more abundant at LP than at other stages (P < 0.05). At Pre-ov, OVGP1 was the most abundant sperm-interacting protein while at Post-ov, ACTB, HSP27, MYH9, MYH14 and OVGP1 were predominant. Different patterns of abundance of sperm-interacting proteins related to the stage were evidenced, which greatly differed from those previously reported in the bovine OF. In conclusion, this study highlights the important regulations of sperm-oviduct interactions across the estrous cycle and provides new protein candidates that may modulate sperm functions.
Collapse
Affiliation(s)
- Julie Lamy
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Perrine Nogues
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Lucie Combes-Soia
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France.,INRACIRE (Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement), PAIB (Pôle d'Analyse et d'Imagerie des Biomolécules), Nouzilly, France
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Valérie Labas
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France.,INRACIRE (Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement), PAIB (Pôle d'Analyse et d'Imagerie des Biomolécules), Nouzilly, France
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Marie Saint-Dizier
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France .,University of ToursFaculty of Sciences and Techniques, Tours, France
| |
Collapse
|
154
|
Zou C, Han C, Zhao M, Yu J, Bai L, Yao Y, Gao S, Cao H, Zheng Z. Change of ranibizumab-induced human vitreous protein profile in patients with proliferative diabetic retinopathy based on proteomics analysis. Clin Proteomics 2018. [PMID: 29541006 PMCID: PMC5844103 DOI: 10.1186/s12014-018-9187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Preoperative treatment of anti-vascular endothelial growth factor (VEGF) agents is extensively used in proliferative diabetic retinopathy (PDR), but the molecular mechanism is not fully understood. The objective of this research is to observe change of protein profile induced by ranibizumab (an anti-VEGF agent) in vitreous humor from PDR patients and reveal the effects of anti-VEGF treatment on PDR. Methods A proteomic method was used to identify differentially expressed proteins in vitreous humor. Untreated PDR patients were defined as PDR group, while those who treated with intravitreal injection of ranibizumab (IVR) were defined as IVR. Gene Ontology (GO) annotation and REACTOME pathways were obtained from DAVID Bioinformatics Resources. Intravitreal level of apolipoprotein C-I (APOC1), serpin peptidase inhibitor clade A member 5 (SERPINA5), tissue inhibitor of metalloproteinases (TIMP2), and keratin 1 (KRT1) were determined by enzyme-linked immuno sorbent assay (ELISA). Results 339 differentially expressed proteins were identified in response to IVR. The most notable GO annotation describes the altered proteins was “innate immune response”. The most notable REACTOME pathway was “platelet degranulation”. ELISA result showed increased level of APOC1, SERPINA5, KRT1 and a decreased level of TIMP2 in PDR group compared with IVR. Conclusions In addition to decreasing VEGF level, ranibizumab is associated with change of human vitreous protein profile in patients with PDR, in which the differential proteins are involved in immune response, platelet degranulation, complement activation etc., suggesting that the effects of VEGF are involved in these signaling pathways. Electronic supplementary material The online version of this article (10.1186/s12014-018-9187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Zou
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Changjing Han
- 2Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004 Shaanxi Province China
| | - Minjie Zhao
- 3Department of Ophthalmology, Yixing People's Hospital, Jiangsu University, No.75 Tongzhenguan Road, Yixing, 214200 Jiangsu China
| | - Jingjing Yu
- Department of Ophthalmology, Changshu the 2nd People's Hospital, Changshu, 215500 Jiangsu China
| | - Lin Bai
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Yuan Yao
- 5Public Health, Stanford University, Stanford, CA 94305 USA
| | - Shuaixin Gao
- 6National Center for Protein Science Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210 China
| | - Hui Cao
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| | - Zhi Zheng
- 1Department of Ophthalmology, Shanghai General Hospital, Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
155
|
Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy. Sci Rep 2018; 8:4049. [PMID: 29511296 PMCID: PMC5840295 DOI: 10.1038/s41598-018-21371-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/02/2018] [Indexed: 02/08/2023] Open
Abstract
To understand how mutations in Matrin 3 (MATR3) cause amyotrophic lateral sclerosis (ALS) and distal myopathy, we used transcriptome and interactome analysis, coupled with microscopy. Over-expression of wild-type (WT) or F115C mutant MATR3 had little impact on gene expression in neuroglia cells. Only 23 genes, expressed at levels of >100 transcripts showed ≥1.6-fold changes in expression by transfection with WT or mutant MATR3:YFP vectors. We identified ~123 proteins that bound MATR3, with proteins associated with stress granules and RNA processing/splicing being prominent. The interactome of myopathic S85C and ALS-variant F115C MATR3 were virtually identical to WT protein. Deletion of RNA recognition motif (RRM1) or Zn finger motifs (ZnF1 or ZnF2) diminished the binding of a subset of MATR3 interacting proteins. Remarkably, deletion of the RRM2 motif caused enhanced binding of >100 hundred proteins. In live cells, MATR3 lacking RRM2 (ΔRRM2) formed intranuclear spherical structures that fused over time into large structures. Our findings in the cell models used here suggest that MATR3 with disease-causing mutations is not dramatically different from WT protein in modulating gene regulation or in binding to normal interacting partners. The intra-nuclear localization and interaction network of MATR3 is strongly modulated by its RRM2 domain.
Collapse
|
156
|
Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 2018; 7:86999-87015. [PMID: 27894104 PMCID: PMC5341331 DOI: 10.18632/oncotarget.13569] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
Packed with biological information, extracellular vesicles (EVs) offer exciting promise for biomarker discovery and applications in therapeutics and non-invasive diagnostics. Currently, our understanding of EV contents is confined by the limited cells from which vesicles have been characterized utilizing the same enrichment method. Using sixty cell lines from the National Cancer Institute (NCI-60), here we provide the largest proteomic profile of EVs in a single study, identifying 6,071 proteins with 213 common to all isolates. Proteins included established EV markers, and vesicular trafficking proteins such as Rab GTPases and tetraspanins. Differentially-expressed proteins offer potential for cancer diagnosis and prognosis. Network analysis of vesicle quantity and proteomes identified EV components associated with vesicle secretion, including CD81, CD63, syntenin-1, VAMP3, Rab GTPases, and integrins. Integration of vesicle proteomes with whole-cell molecular profiles revealed similarities, suggesting EVs provide a reliable reflection of their progenitor cell content, and are therefore excellent indicators of disease.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mark A Rider
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Joseph L Bundy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Xia Liu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Rakesh K Singh
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| |
Collapse
|
157
|
La Favor JD, Fu Z, Venkatraman V, Bivalacqua TJ, Van Eyk JE, Burnett AL. Molecular Profile of Priapism Associated with Low Nitric Oxide Bioavailability. J Proteome Res 2018; 17:1031-1040. [PMID: 29394072 DOI: 10.1021/acs.jproteome.7b00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Priapism is a disorder in which prolonged penile erection persists uncontrollably, potentially leading to tissue damage. Priapism commonly afflicts patient populations with severely low nitric oxide (NO) bioavailability. Because NO is a primary mediator of erection, the molecular mechanisms involved in priapism pathophysiology associated with low NO bioavailability are not well-understood. The objective of this study was to identify dysregulated molecular targets and signaling pathways in penile tissue of a mouse model of low NO bioavailability that have potential relevance to priapism. Neuronal plus endothelial NO synthase double knockout mice (NOS1/3-/-) were used as a model of low NO bioavailability. Priapic-like activity was demonstrated in the NOS1/3-/- mice relative to wild-type (WT) mice by the measurement of prolonged erections following cessation of electrical stimulation of the cavernous nerve. Penile tissue was processed and analyzed by reverse-phase liquid chromatography tandem mass spectrometry. As a result, 1279 total proteins were identified and quantified by spectral counting, 46 of which were down-regulated and 110 of which were up-regulated in NOS1/3-/- versus WT (P < 0.05). Ingenuity Pathway Analysis of differentially expressed proteins revealed increased protein kinase A and G-protein coupled receptor signaling in NOS1/3-/- penises, which represent potential mechanisms contributing to priapism for secondary to low NO bioavailability.
Collapse
Affiliation(s)
| | | | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Department of Medicine and The Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California 90048, United States
| | | | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Department of Medicine and The Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California 90048, United States
| | | |
Collapse
|
158
|
Adams KR, Chauhan S, Patel DB, Clements VK, Wang Y, Jay SM, Edwards NJ, Ostrand-Rosenberg S, Fenselau C. Ubiquitin Conjugation Probed by Inflammation in Myeloid-Derived Suppressor Cell Extracellular Vesicles. J Proteome Res 2018; 17:315-324. [PMID: 29061044 PMCID: PMC6137330 DOI: 10.1021/acs.jproteome.7b00585] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitinated proteins carried by the extracellular vesicles (EV) released by myeloid-derived suppressor cells (MDSC) have been investigated using proteomic strategies to examine the effect of tumor-associated inflammation. EV were collected from MDSC directly following isolation from tumor-bearing mice with low and high inflammation. Among the 1092 proteins (high inflammation) and 925 proteins (low inflammation) identified, more than 50% were observed as ubiquitinated proteoforms. More than three ubiquitin-attachment sites were characterized per ubiquitinated protein, on average. Multiple ubiquitination sites were identified in the pro-inflammatory proteins S100 A8 and S100 A9, characteristic of MDSC and in histones and transcription regulators among other proteins. Spectral counting and pathway analysis suggest that ubiquitination occurs independently of inflammation. Some ubiquitinated proteins were shown to cause the migration of MDSC, which has been previously connected with immune suppression and tumor progression. Finally, MDSC EV are found collectively to carry all the enzymes required to catalyze ubiquitination, and the hypothesis is presented that a portion of the ubiquitinated proteins are produced in situ.
Collapse
Affiliation(s)
- Katherine R. Adams
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sitara Chauhan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Divya B. Patel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Virginia K. Clements
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Yan Wang
- Proteomic Core Facility, College of Mathematics and Natural Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nathan J. Edwards
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington D.C. 20057, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
159
|
Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci 2018; 13:174-200. [PMID: 33817083 PMCID: PMC7874700 DOI: 10.1515/biol-2018-0023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
This work describes the current state of research on the potential relationship between protein content in human saliva and dental caries, which remains among the most common oral diseases and causes irreversible damage in the oral cavity. An understanding the whole saliva proteome in the oral cavity could serve as a prerequisite to obtaining insight into the etiology of tooth decay at early stages. To date, however, there is no comprehensive evidence showing that salivary proteins could serve as potential indicators for the early diagnosis of the risk factors causing dental caries. Therefore, proteomics indicates the promising direction of future investigations of such factors, including diagnosis and thus prevention in dental therapy.
Collapse
Affiliation(s)
- Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Vladimíra Schwartzová
- 1st Department of Stomatology, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Juraj Bánovčin
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik in Košice, Rastislavova 43, Košice, 041 90, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
160
|
Abstract
Peptidomics is the detection and identification of the peptides present in a sample, while quantitative peptidomics provides additional information about the amounts of these peptides. Comparison of peptide levels among two or more samples is termed relative quantitation. It is also possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards, which requires a separate standard for each peptide. In contrast, relative quantitation can compare levels of all peptides that are detectable in a sample, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.
Collapse
Affiliation(s)
- Lloyd Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
161
|
|
162
|
Kupniewska A, Szymanska K, Demkow U. Proteomics in the Diagnosis of Inborn Encephalopathies of Unknown Origin: A Myth or Reality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1040:83-99. [PMID: 28983862 DOI: 10.1007/5584_2017_104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Synaptopathy underlies a great variety of neurological or neurodevelopmental disorders, including neurodegenerative diseases and the highly complex neuropsychiatric syndromes. Standard diagnostic assays in the majority of synaptopathies are insufficient to make an appropriate and fast diagnosis, which has spurred a search for more accurate diagnostic methods using recent technological advances. As synaptopathy phenotypes strictly depend on genetics and environmental factors, the best way to approach these diseases is the investigation of entire sets of protein characteristics. Thus, proteomics has emerged as a mainstay in the studies on synaptopathies, with mass spectrometry as a technology of choice. This review is an update on the proteomic methods and achievements in the understanding, diagnostics, and novel biomarkers of synaptopathies. The article also provides a critical point of view and future perspectives on the application of neuroproteomics in clinical practice.
Collapse
Affiliation(s)
- Anna Kupniewska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63A Zwirki and Wigury Street, 02-091, Warsaw, Poland.
| | - Krystyna Szymanska
- Department of Clinical and Experimental Neuropathology, The Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
- Department of Child Psychiatry, Warsaw Medical University, Warsaw, 24 Marszalkowska Street, 00-576, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63A Zwirki and Wigury Street, 02-091, Warsaw, Poland
| |
Collapse
|
163
|
Wunschel DS, Hutchison JR, Deatherage Kaiser BL, Merkley ED, Hess BM, Lin A, Warner MG. Proteomic signatures differentiating Bacillus anthracis Sterne sporulation on soil relative to laboratory media. Analyst 2017; 143:123-132. [PMID: 29165439 DOI: 10.1039/c7an01412k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of sporulation is vital for the stability and infectious cycle of Bacillus anthracis. The spore is the infectious form of the organism and therefore relevant to biodefense. While the morphological and molecular events occurring during sporulation have been well studied, the influence of growth medium and temperature on the proteins expressed in sporulated cultures is not well understood. Understanding the features of B. anthracis sporulation specific to natural vs. laboratory production will address an important question in microbial forensics. In an effort to bridge this knowledge gap, a system for sporulation on two types of agar-immobilized soils was used for comparison to cultures sporulated on two common types of solid laboratory media, and one liquid sporulation medium. The total number of proteins identified as well as their identity differed between samples generated in each medium and growth temperature, demonstrating that sporulation environment significantly impacts the protein content of the spore. In addition, a subset of proteins common in all of the soil-cultivated samples was distinct from the expression profiles in laboratory medium (and vice versa). These differences included proteins involved in thiamine and phosphate metabolism in the sporulated cultures produced on soils with a notable increase in expression of ATP binding cassette (ABC) transporters annotated to be for phosphate and antimicrobial peptides. A distinct set of ABC transporters for amino acids, sugars and oligopeptides were found in cultures produced on laboratory media as well as increases in carbon and amino acid metabolism-related proteins. These protein expression changes indicate that the sporulation environment impacts the protein profiles in specific ways that are reflected in the metabolic and membrane transporter proteins present in sporulated cultures.
Collapse
Affiliation(s)
- D S Wunschel
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | |
Collapse
|
164
|
Yamamoto T, Nakanishi S, Mitamura K, Taga A. Shotgun label-free proteomic analysis for identification of proteins in HaCaT human skin keratinocytes regulated by the administration of collagen from soft-shelled turtle. J Biomed Mater Res B Appl Biomater 2017; 106:2403-2413. [PMID: 29193735 PMCID: PMC6175320 DOI: 10.1002/jbm.b.34034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
Abstract
Soft‐shelled turtles (Pelodiscus sinensis) are widely distributed in some Asian countries, and we previously reported that soft‐shelled turtle tissue could be a useful material for collagen. In the present study, we performed shotgun liquid chromatography (LC)/mass spectrometry (MS)‐based global proteomic analysis of collagen‐administered human keratinocytes to examine the functional effects of collagen from soft‐shelled turtle on human skin. Using a semiquantitative method based on spectral counting, we were able to successfully identify 187 proteins with expression levels that were changed more than twofold by the administration of collagen from soft‐shelled turtle. Based on Gene Ontology analysis, the functions of these proteins closely correlated with cell–cell adhesion. In addition, epithelial–mesenchymal transition was induced by the administration of collagen from soft‐shelled turtle through the down‐regulation of E‐cadherin expression. Moreover, collagen‐administered keratinocytes significantly facilitated wound healing compared with nontreated cells in an in vitro scratch wound healing assay. These findings suggest that collagen from soft‐shelled turtle provides significant benefits for skin wound healing and may be a useful material for pharmaceuticals and medical care products. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2403–2413, 2018.
Collapse
Affiliation(s)
- Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Saori Nakanishi
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
165
|
Geis-Asteggiante L, Belew AT, Clements VK, Edwards NJ, Ostrand-Rosenberg S, El-Sayed NM, Fenselau C. Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and Their Exosomes May Mediate Distinct Immune Suppressive Functions. J Proteome Res 2017; 17:486-498. [PMID: 29139296 DOI: 10.1021/acs.jproteome.7b00646] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells that accumulate in the circulation and the tumor microenvironment of most cancer patients. There, MDSC suppress both adaptive and innate immunity, hindering immunotherapies. The inflammatory milieu often present in cancers facilitates MDSC suppressive activity, causing aggressive tumor progression and metastasis. MDSC from tumor-bearing mice release exosomes, which carry biologically active proteins and mediate some of the immunosuppressive functions characteristic of MDSC. Studies on other cell types have shown that exosomes may also carry RNAs which can be transferred to local and distant cells, yet the mRNA and microRNA cargo of MDSC-derived exosomes has not been studied to date. Here, the cargo of MDSC and their exosomes was interrogated with the goal of identifying and characterizing molecules that may facilitate MDSC suppressive potency. Because inflammation is an established driving force for MDSC suppressive activity, we used the well-established 4T1 mouse mammary carcinoma system, which includes "conventional" as well as "inflammatory" MDSC. We provide evidence that MDSC-derived exosomes carry proteins, mRNAs, and microRNAs with different quantitative profiles than those of their parental cells. Several of these molecules have known or predicted functions consistent with MDSC suppressive activity, suggesting a potential mechanistic redundancy.
Collapse
Affiliation(s)
- Lucía Geis-Asteggiante
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Ashton T Belew
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Virginia K Clements
- Department of Biological Sciences, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Nathan J Edwards
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center , Washington, D.C. 20007, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
166
|
Zhou JY, Chen L, Zhang B, Tian Y, Liu T, Thomas SN, Chen L, Schnaubelt M, Boja E, Hiltke T, Kinsinger CR, Rodriguez H, Davies SR, Li S, Snider JE, Erdmann-Gilmore P, Tabb DL, Townsend RR, Ellis MJ, Rodland KD, Smith RD, Carr SA, Zhang Z, Chan DW, Zhang H. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues. J Proteome Res 2017; 16:4523-4530. [PMID: 29124938 DOI: 10.1021/acs.jproteome.7b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical proteomics requires large-scale analysis of human specimens to achieve statistical significance. We evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomics strategy using one channel for reference across all samples in different iTRAQ sets. A total of 148 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating six 2D LC-MS/MS data sets for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assess the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we derived a quantification confidence score based on the quality of each peptide-spectrum match to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS data sets collected over a 7-month period. This study provides the first quality assessment on long-term stability and technical considerations for study design of a large-scale clinical proteomics project.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Bai Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Stefani N Thomas
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Li Chen
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Sherri R Davies
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Jacqueline E Snider
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - David L Tabb
- Department of Biomedical Informatics, Vanderbilt University Medical School , Nashville, Tennessee 37232, United States
| | - R Reid Townsend
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Matthew J Ellis
- Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Steven A Carr
- The Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University , Baltimore, Maryland 21231, United States
| |
Collapse
|
167
|
Williams BJ, Ciavarini SJ, Devlin C, Cohn SM, Xie R, Vissers JPC, Martin LB, Caswell A, Langridge JI, Geromanos SJ. Multi-mode acquisition (MMA): An MS/MS acquisition strategy for maximizing selectivity, specificity and sensitivity of DIA product ion spectra. Proteomics 2017; 16:2284-301. [PMID: 27296928 DOI: 10.1002/pmic.201500492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023]
Abstract
In proteomics studies, it is generally accepted that depth of coverage and dynamic range is limited in data-directed acquisitions. The serial nature of the method limits both sensitivity and the number of precursor ions that can be sampled. To that end, a number of data-independent acquisition (DIA) strategies have been introduced with these methods, for the most part, immune to the sampling issue; nevertheless, some do have other limitations with respect to sensitivity. The major limitation with DIA approaches is interference, i.e., MS/MS spectra are highly chimeric and often incapable of being identified using conventional database search engines. Utilizing each available dimension of separation prior to ion detection, we present a new multi-mode acquisition (MMA) strategy multiplexing both narrowband and wideband DIA acquisitions in a single analytical workflow. The iterative nature of the MMA workflow limits the adverse effects of interference with minimal loss in sensitivity. Qualitative identification can be performed by selected ion chromatograms or conventional database search strategies.
Collapse
Affiliation(s)
| | | | | | | | - Rong Xie
- Waters Corporation, Milford, MA, USA
| | | | | | | | | | | |
Collapse
|
168
|
Yoo MW, Park J, Han HS, Yun YM, Kang JW, Choi DY, Lee JW, Jung JH, Lee KY, Kim KP. Discovery of gastric cancer specific biomarkers by the application of serum proteomics. Proteomics 2017; 17. [PMID: 28133907 DOI: 10.1002/pmic.201600332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 11/07/2022]
Abstract
Current diagnostic markers for gastric cancer are not sufficiently specific or sensitive for use in clinical practice. The aims of this study are to compare the proteomes of serum samples from patients with gastric cancers and normal controls, and to develop useful tumor markers of gastric cancer by quantitative proteomic analysis. We identified a total of 388 proteins with a ≤1% FDR and with at least two unique peptides from the sera of each group. Among them, 215, 251, and 260 proteins were identified in serum samples of patients in an advanced cancer group, early cancer group, and normal control group, respectively. We selected differentially expressed proteins in cancer patients compared with those of normal controls via semiquantitative analyses comparing the spectral counts of identified proteins. These differentially expressed proteins were successfully verified using an MS-based quantitative assay, multiple reactions monitoring analysis. Four proteins (vitronectin, clusterin isoform 1, thrombospondin 1, and tyrosine-protein kinase SRMS) were shown to have significant changes between the cancer groups and the normal control group. These four serum proteins were able to discriminate gastric cancer patients from normal controls with sufficient specificity and selectivity.
Collapse
Affiliation(s)
- Moon-Won Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jisook Park
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Hye-Seung Han
- Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yeo-Min Yun
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jeong Won Kang
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Do-Young Choi
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Joon Won Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Jae Hun Jung
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Kyung-Yung Lee
- Department of Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| |
Collapse
|
169
|
Lu F, Shao G, Wang Y, Guan S, Burlingame AL, Liu X, Liang X, Knox R, Ferriero DM, Jiang X. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol 2017; 299:65-74. [PMID: 28993251 DOI: 10.1016/j.expneurol.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
The N-methyl-d-aspartate-type glutamate receptor (NMDAR)-associated multiprotein complexes are indispensable for synaptic plasticity and cognitive functions. While purification and proteomic analyses of these signaling complexes have been performed in adult rodent and human brain, much less is known about the protein composition of NMDAR complexes in the developing brain and their modifications by neonatal hypoxic-ischemic (HI) brain injury. In this study, the postsynaptic density proteins were prepared from postnatal day 9 naïve, sham-operated and HI-injured mouse cortex. The GluN2B-containing NMDAR complexes were purified by immunoprecipitation with a mouse GluN2B antibody and subjected to mass spectrometry analysis for determination of the GluN2B binding partners. A total of 71 proteins of different functional categories were identified from the naïve animals as native GluN2B-interacting partners in the developing mouse brain. Neonatal HI reshaped the postsynaptic GluN2B interactome by recruiting new proteins, including multiple kinases, into the complexes; and modifying the existing associations within 1h of reperfusion. The early responses of postsynaptic NMDAR complexes and their related signaling networks may contribute to molecular processes leading to cell survival or death, brain damage and/or neurological disorders in term infants with neonatal encephalopathy.
Collapse
Affiliation(s)
- Fuxin Lu
- Department of Pediatrics, University of California San Francisco, CA, USA
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Yongqiang Wang
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Shenheng Guan
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA, USA
| | - Xuemei Liu
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Liang
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, CA, USA; Department of Neurology, University of California San Francisco, CA, USA
| | - Xiangning Jiang
- Department of Pediatrics, University of California San Francisco, CA, USA.
| |
Collapse
|
170
|
Wu J, Guo Z, Gao Y. Dynamic changes of urine proteome in a Walker 256 tumor-bearing rat model. Cancer Med 2017; 6:2713-2722. [PMID: 28980450 PMCID: PMC5673914 DOI: 10.1002/cam4.1225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 01/11/2023] Open
Abstract
Despite advances in cancer treatments, early diagnosis of cancer is still the most promising way to improve outcomes. Without homeostatic control, urine reflects systemic changes in the body and can potentially be used for early detection of cancer. In this study, a tumor-bearing rat model was established by subcutaneous injection of Walker 256 cells. Urine samples from tumor-bearing rats were collected at five time points during cancer development. Dynamic urine proteomes were profiled using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Several urine proteins that changed at multiple time points were selected as candidate cancer biomarkers and were further validated by multiple reaction monitoring (MRM) analysis. It was found that the urinary protein patterns changed significantly with cancer development in a tumor-bearing rat model. A total of 10 urinary proteins (HPT, APOA4, CO4, B2MG, A1AG, CATC, VCAM1, CALB1, CSPG4, and VTDB) changed significantly even before a tumor mass was palpable, and these early changes in urine could also be identified with differential abundance at late stages of cancer. Our results indicate that urine proteins could enable early detection of cancer at an early onset of tumor growth and monitoring of cancer progression.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Youhe Gao
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.,Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
171
|
Qin W, Zhao C, Zhang L, Wang T, Gao Y. A Dry Method for Preserving Tear Protein Samples. Biopreserv Biobank 2017; 15:417-421. [DOI: 10.1089/bio.2016.0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Weiwei Qin
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing, China
| | - Chan Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Linpei Zhang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing, China
| | - Ting Wang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing, China
| |
Collapse
|
172
|
Nagai N, Yamamoto T, Mitamura K, Taga A. Proteomic profile of the lens in a streptozotocin-induced diabetic rat model using shotgun proteomics. Biomed Rep 2017; 7:445-450. [PMID: 29181156 DOI: 10.3892/br.2017.988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023] Open
Abstract
Streptozotocin (STZ)-induced diabetic rats (STZ rats) were used to investigate diabetic cataracts. In the current study, a shotgun liquid chromatography (LC)/mass spectrometry (MS)-based global proteomic analysis method was used to examine the mechanism of lens opacification as a result of hyperglycemia in STZ rats. The 6-week old Wistar rats were injected with STZ for 2 days (100 mg/kg/day, i.p.) and housed for 3 weeks. The plasma glucose levels were identified to be significantly higher when compared with the normal rats and insulin was not detected in the STZ rats. Furthermore, opacification of the cortical epithelium was observed in the lenses of STZ rats. A total of 235 proteins were identified in the lenses of the STZ rats and 229 in the lenses of the normal rats. A label-free semi-quantitative method, based on spectral counting, identified 52 proteins that were differentially expressed in the lenses of STZ rats compared with normal rats. In particular, superoxide dismutase, which is a critical antioxidant enzyme that detoxifies superoxide through redox cycling, was downregulated when analyzed by the semi-quantitative method. In addition, phosphorylated-p38, which is important in the signaling pathway involved in the oxidative stress response, was significantly increased in the lenses of STZ rats when compared with normal rats (P<0.05). Thus, the changes in protein expression were evaluated in the lenses of STZ rats using a shotgun LC/MS-based global proteomic analysis approach, and a decrease in antioxidant enzymes and an increase in oxidative stress were identified in the lenses of STZ rats. Further studies are required to examine the role of these proteins in the onset or progression of diabetic cataracts.
Collapse
Affiliation(s)
- Noriaki Nagai
- Department of Advanced Design for Pharmaceuticals, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
173
|
Meysman P, Titeca K, Eyckerman S, Tavernier J, Goethals B, Martens L, Valkenborg D, Laukens K. Protein complex analysis: From raw protein lists to protein interaction networks. MASS SPECTROMETRY REVIEWS 2017; 36:600-614. [PMID: 26709718 DOI: 10.1002/mas.21485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
The elucidation of molecular interaction networks is one of the pivotal challenges in the study of biology. Affinity purification-mass spectrometry and other co-complex methods have become widely employed experimental techniques to identify protein complexes. These techniques typically suffer from a high number of false negatives and false positive contaminants due to technical shortcomings and purification biases. To support a diverse range of experimental designs and approaches, a large number of computational methods have been proposed to filter, infer and validate protein interaction networks from experimental pull-down MS data. Nevertheless, this expansion of available methods complicates the selection of the most optimal ones to support systems biology-driven knowledge extraction. In this review, we give an overview of the most commonly used computational methods to process and interpret co-complex results, and we discuss the issues and unsolved problems that still exist within the field. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:600-614, 2017.
Collapse
Affiliation(s)
- Pieter Meysman
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Kevin Titeca
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Sven Eyckerman
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Bart Goethals
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- IBioStat, Hasselt University, Hasselt, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
174
|
Choksawangkarn W, Graham LM, Burke M, Lee SB, Ostrand-Rosenberg S, Fenselau C, Edwards NJ. Peptide-based systems analysis of inflammation induced myeloid-derived suppressor cells reveals diverse signaling pathways. Proteomics 2017; 16:1881-8. [PMID: 27193397 DOI: 10.1002/pmic.201500102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/03/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
A better understanding of molecular signaling between myeloid-derived suppressor cells (MDSC), tumor cells, T-cells, and inflammatory mediators is expected to contribute to more effective cancer immunotherapies. We focus on plasma membrane associated proteins, which are critical in signaling and intercellular communication, and investigate changes in their abundance in MDSC of tumor-bearing mice subject to heightened versus basal inflammatory conditions. Using spectral counting, we observed statistically significant differential abundances for 35 proteins associated with the plasma membrane, most notably the pro-inflammatory proteins S100A8 and S100A9 which induce MDSC and promote their migration. We also tested whether the peptides associated with canonical pathways showed a statistically significant increase or decrease subject to heightened versus basal inflammatory conditions. Collectively, these studies used bottom-up proteomic analysis to identify plasma membrane associated pro-inflammatory molecules and pathways that drive MDSC accumulation, migration, and suppressive potency.
Collapse
Affiliation(s)
- Waeowalee Choksawangkarn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.,Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Lauren M Graham
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Meghan Burke
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Sang Bok Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.,Graduate School of Nanoscience and Technology (WCU), Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Nathan J Edwards
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
175
|
Proteomic Analysis of Vibrio parahaemolyticus Under Cold Stress. Curr Microbiol 2017; 75:20-26. [PMID: 28831596 DOI: 10.1007/s00284-017-1345-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
Vibrio parahaemolyticus is a kind of food-borne pathogenic bacterium, which can seriously infect food, especially seafood causing gastroenteritis and other disease. We studied the global proteome responses of V. parahaemolyticus under cold stress by nano-liquid chromatography-tandem mass spectrometry to improve the present understanding of V. parahaemolyticus proteomics events under cold stress. A total of 1151 proteins were identified and 101 proteins were differentially expressed, of which 69 were significantly up-regulated and 32 were downregulated. Functional categorization of these proteins revealed distinct differences between cold-stressed and control cells. These proteins were grouped into 21 functional categories by the clusters of orthologous groups (COG) analysis. The most of up-regulated proteins were functionally categorized as nucleotide transport and metabolism, transcription, function unknown, and defense mechanisms. These up-regulated proteins play an important role under cold stress.
Collapse
|
176
|
Pamir N, Hutchins PM, Ronsein GE, Wei H, Tang C, Das R, Vaisar T, Plow E, Schuster V, Koschinsky ML, Reardon CA, Weinberg R, Dichek DA, Marcovina S, Getz GS, Heinecke JW. Plasminogen promotes cholesterol efflux by the ABCA1 pathway. JCI Insight 2017; 2:92176. [PMID: 28768900 DOI: 10.1172/jci.insight.92176] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Using genetic and biochemical approaches, we investigated proteins that regulate macrophage cholesterol efflux capacity (CEC) and ABCA1-specific CEC (ABCA1 CEC), 2 functional assays that predict cardiovascular disease (CVD). Macrophage CEC and the concentration of HDL particles were markedly reduced in mice deficient in apolipoprotein A-I (APOA1) or apolipoprotein E (APOE) but not apolipoprotein A-IV (APOA4). ABCA1 CEC was markedly reduced in APOA1-deficient mice but was barely affected in mice deficient in APOE or APOA4. High-resolution size-exclusion chromatography of plasma produced 2 major peaks of ABCA1 CEC activity. The early-eluting peak, which coeluted with HDL, was markedly reduced in APOA1- or APOE-deficient mice. The late-eluting peak was modestly reduced in APOA1-deficient mice but little affected in APOE- or APOA4-deficient mice. Ion-exchange chromatography and shotgun proteomics suggested that plasminogen (PLG) accounted for a substantial fraction of the ABCA1 CEC activity in the peak not associated with HDL. Human PLG promoted cholesterol efflux by the ABCA1 pathway, and PLG-dependent efflux was inhibited by lipoprotein(a) [Lp(a)]. Our observations identify APOA1, APOE, and PLG as key determinants of CEC. Because PLG and Lp(a) associate with human CVD risk, interplay among the proteins might affect atherosclerosis by regulating cholesterol efflux from macrophages.
Collapse
Affiliation(s)
- Nathalie Pamir
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Patrick M Hutchins
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Hao Wei
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Riku Das
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Edward Plow
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Volker Schuster
- Hospital for Children and Adolescents, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Richard Weinberg
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Santica Marcovina
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
177
|
Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites. PLoS Negl Trop Dis 2017; 11:e0005791. [PMID: 28759593 PMCID: PMC5552340 DOI: 10.1371/journal.pntd.0005791] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/10/2017] [Accepted: 07/10/2017] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates. However, P. vivax malaria affects more people in a wider global range. Furthermore, unlike P. falciparum, P. vivax can persist in the liver as dormant hypnozoites that can be activated weeks to years after primary infection, causing relapse of symptomatic blood stages. This feature makes P. vivax unique and difficult to eliminate with the standard tools of vector control and treatment of symptomatic blood stage infection with antimalarial drugs. Infection by Plasmodium is initiated by the mosquito-transmitted sporozoite stage, a highly motile invasive cell that targets hepatocytes in the liver. The most advanced malaria vaccine for P. falciparum (RTS,S, a subunit vaccine containing of a portion of the major sporozoite surface protein) conferred limited protection in Phase III trials, falling short of WHO-established vaccine efficacy goals. However, blocking the sporozoite stage of infection in P. vivax, before the establishment of the chronic liver infection, might be an effective malaria vaccine strategy to reduce the occurrence of relapsing blood stages. It is also thought that a multivalent vaccine comprising multiple sporozoite surface antigens will provide better protection, but a comprehensive analysis of proteins in P. vivax sporozoites is not available. To inform sporozoite-based vaccine development, we employed mass spectrometry-based proteomics to identify nearly 2,000 proteins present in P. vivax salivary gland sporozoites. Analysis of protein post-translational modifications revealed extensive phosphorylation of glideosome proteins as well as regulators of transcription and translation. Additionally, the sporozoite surface proteins CSP and TRAP, which were recently discovered to be glycosylated in P. falciparum salivary gland sporozoites, were also observed to be similarly modified in P. vivax sporozoites. Quantitative comparison of the P. vivax and P. falciparum salivary gland sporozoite proteomes revealed a high degree of similarity in protein expression levels, including among invasion-related proteins. Nevertheless, orthologs with significantly different expression levels between the two species could be identified, as well as highly abundant, species-specific proteins with no known orthologs. Finally, we employed chemical labeling of live sporozoites to isolate and identify 36 proteins that are putatively surface-exposed on P. vivax salivary gland sporozoites. In addition to identifying conserved sporozoite surface proteins identified by similar analyses of other Plasmodium species, our analysis identified several as-yet uncharacterized proteins, including a putative 6-Cys protein with no known ortholog in P. falciparum. Malaria is one of the most important infectious diseases in the world with hundreds of millions of new cases every year. Malaria is caused by parasites of the genus Plasmodium which have a complex life cycle, alternating between mosquito and mammalian hosts. Human infections are initiated with a sporozoite inoculum deposited into the skin by parasite-infected mosquitoes as they probe for blood. Sporozoites must locate blood vessels and enter the circulation to reach the liver where they invade and grow in hepatocytes. In the case of Plasmodium vivax, one of the two Plasmodium species responsible for the majority of the disease burden in the world, the parasite has the ability to persist for months in the liver after the initial infection and its activation causes the recurring appearance of the parasite in the blood. Though all clinical symptoms are attributable to the blood stages, it is only by attacking the transmission stages before the formation of hypnozoites (the persisting parasites in the liver) that an impact on the burden of vivax malaria can be achieved. We used state-of-the-art mass spectrometry-based proteomics tools to identify the total protein make-up of P. vivax sporozoites. By analyzing which proteins are exposed to the parasite surface and determining the degree of protein’s post-translational modifications, our investigation will aid the understanding of the novel biology of sporozoites and importantly, advise the development of potential vaccine candidates targeting this parasite stage.
Collapse
|
178
|
Zavašnik-Bergant T, Vidmar R, Sekirnik A, Fonović M, Salát J, Grunclová L, Kopáček P, Turk B. Salivary Tick Cystatin OmC2 Targets Lysosomal Cathepsins S and C in Human Dendritic Cells. Front Cell Infect Microbiol 2017; 7:288. [PMID: 28713775 PMCID: PMC5492865 DOI: 10.3389/fcimb.2017.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 11/14/2022] Open
Abstract
To ensure successful feeding tick saliva contains a number of inhibitory proteins that interfere with the host immune response and help to create a permissive environment for pathogen transmission. Among the potential targets of the salivary cystatins are two host cysteine proteases, cathepsin S, which is essential for antigen- and invariant chain-processing, and cathepsin C (dipeptidyl peptidase 1, DPP1), which plays a critical role in processing and activation of the granule serine proteases. Here, the effect of salivary cystatin OmC2 from Ornithodoros moubata was studied using differentiated MUTZ-3 cells as a model of immature dendritic cells of the host skin. Following internalization, cystatin OmC2 was initially found to inhibit the activity of several cysteine cathepsins, as indicated by the decreased rates of degradation of fluorogenic peptide substrates. To identify targets, affinity chromatography was used to isolate His-tagged cystatin OmC2 together with the bound proteins from MUTZ-3 cells. Cathepsins S and C were identified in these complexes by mass spectrometry and confirmed by immunoblotting. Furthermore, reduced increase in the surface expression of MHC II and CD86, which are associated with the maturation of dendritic cells, was observed. In contrast, human inhibitor cystatin C, which is normally expressed and secreted by dendritic cells, did not affect the expression of CD86. It is proposed that internalization of salivary cystatin OmC2 by the host dendritic cells targets cathepsins S and C, thereby affecting their maturation.
Collapse
Affiliation(s)
- Tina Zavašnik-Bergant
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Andreja Sekirnik
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia
| | - Jiří Salát
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Lenka Grunclová
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesČeské Budějovice, Czechia
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan InstituteLjubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of ProteinsLjubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
179
|
Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep 2017; 33:681-708. [PMID: 27098809 PMCID: PMC5063044 DOI: 10.1039/c6np00001k] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on chemical probes to identify the protein binding partners of natural products in living systems.
Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.
Collapse
Affiliation(s)
- M H Wright
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - S A Sieber
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
180
|
Park J, Lee E, Park KJ, Park HD, Kim JW, Woo HI, Lee KH, Lee KT, Lee JK, Park JO, Park YS, Heo JS, Choi SH, Choi DW, Jang KT, Lee SY. Large-scale clinical validation of biomarkers for pancreatic cancer using a mass spectrometry-based proteomics approach. Oncotarget 2017; 8:42761-42771. [PMID: 28514751 PMCID: PMC5522104 DOI: 10.18632/oncotarget.17463] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/15/2017] [Indexed: 01/02/2023] Open
Abstract
We performed an integrated analysis of proteomic and transcriptomic datasets to develop potential diagnostic markers for early pancreatic cancer. In the discovery phase, a multiple reaction monitoring assay of 90 proteins identified by either gene expression analysis or global serum proteome profiling was established and applied to 182 clinical specimens. Nine proteins (P < 0.05) were selected for the independent validation phase and quantified using stable isotope dilution-multiple reaction monitoring-mass spectrometry in 456 specimens. Of these proteins, four proteins (apolipoprotein A-IV, apolipoprotein CIII, insulin-like growth factor binding protein 2 and tissue inhibitor of metalloproteinase 1) were significantly altered in pancreatic cancer in both the discovery and validation phase (P < 0.01). Moreover, a panel including carbohydrate antigen 19-9, apolipoprotein A-IV and tissue inhibitor of metalloproteinase 1 showed better performance for distinguishing early pancreatic cancer from pancreatitis (Area under the curve = 0.934, 86% sensitivity at fixed 90% specificity) than carbohydrate antigen 19-9 alone (71% sensitivity).Overall, we present the panel of robust biomarkers for early pancreatic cancer diagnosis through bioinformatics analysis that combined transcriptomic and proteomic data as well as rigorous validation on a large number of independent clinical samples.
Collapse
Affiliation(s)
- Jisook Park
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eunjung Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kyoung-Jin Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye In Woo
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kwang Hyuck Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu-Taek Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon-Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Ho Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Wook Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
181
|
Lim TKY, Anderson KM, Hari P, Di Falco M, Reihsen TE, Wilcox GL, Belani KG, LaBoissiere S, Pinto MR, Beebe DS, Kehl LJ, Stone LS. Evidence for a Role of Nerve Injury in Painful Intervertebral Disc Degeneration: A Cross-Sectional Proteomic Analysis of Human Cerebrospinal Fluid. THE JOURNAL OF PAIN 2017; 18:1253-1269. [PMID: 28652204 DOI: 10.1016/j.jpain.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Intervertebral disc degeneration (DD) is a cause of low back pain (LBP) in some individuals. However, although >30% of adults have DD, LBP only develops in a subset of individuals. To gain insight into the mechanisms underlying nonpainful versus painful DD, human cerebrospinal fluid (CSF) was examined using differential expression shotgun proteomic techniques comparing healthy control participants, subjects with nonpainful DD, and patients with painful DD scheduled for spinal fusion surgery. Eighty-eight proteins were detected, 27 of which were differentially expressed. Proteins associated with DD tended to be related to inflammation (eg, cystatin C) regardless of pain status. In contrast, most differentially expressed proteins in DD-associated chronic LBP patients were linked to nerve injury (eg, hemopexin). Cystatin C and hemopexin were selected for further examination using enzyme-linked immunosorbent assay in a larger cohort. While cystatin C correlated with DD severity but not pain or disability, hemopexin correlated with pain intensity, physical disability, and DD severity. This study shows that CSF can be used to study mechanisms underlying painful DD in humans, and suggests that while painful DD is associated with nerve injury, inflammation itself is not sufficient to develop LBP. PERSPECTIVE CSF was examined for differential protein expression in healthy control participants, pain-free adults with asymptomatic intervertebral DD, and LBP patients with painful intervertebral DD. While DD was related to inflammation regardless of pain status, painful degeneration was associated with markers linked to nerve injury.
Collapse
Affiliation(s)
- Tony K Y Lim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal, McGill University, Quebec, Canada
| | - Kathleen M Anderson
- Program in Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota
| | - Pawan Hari
- Department of Epidemiology, University of Minnesota, Minneapolis, Minnesota
| | - Marcos Di Falco
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | - Troy E Reihsen
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Sylvie LaBoissiere
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | | | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Lois J Kehl
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Minnesota Head & Neck Pain Clinic, St. Paul, Minnesota
| | - Laura S Stone
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
182
|
Sekelova Z, Stepanova H, Polansky O, Varmuzova K, Faldynova M, Fedr R, Rychlik I, Vlasatikova L. Differential protein expression in chicken macrophages and heterophils in vivo following infection with Salmonella Enteritidis. Vet Res 2017. [PMID: 28623956 PMCID: PMC5473982 DOI: 10.1186/s13567-017-0439-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study we compared the proteomes of macrophages and heterophils isolated from the spleen 4 days after intravenous infection of chickens with Salmonella Enteritidis. Heterophils were characterized by expression of MMP9, MRP126, LECT2, CATHL1, CATHL2, CATHL3, LYG2, LYZ and RSFR. Macrophages specifically expressed receptor proteins, e.g. MRC1L, LRP1, LGALS1, LRPAP1 and a DMBT1L. Following infection, heterophils decreased ALB and FN1, and released MMP9 to enable their translocation to the site of infection. In addition, the endoplasmic reticulum proteins increased in heterophils which resulted in the release of granular proteins. Since transcription of genes encoding granular proteins did not decrease, these genes remained continuously transcribed and translated even after initial degranulation. Macrophages increased amounts of fatty acid elongation pathway proteins, lysosomal and phagosomal proteins. Macrophages were less responsive to acute infection than heterophils and an increase in proteins like CATHL1, CATHL2, RSFR, LECT2 and GAL1 in the absence of any change in their expression at RNA level could even be explained by capturing these proteins from the external environment into which these could have been released by heterophils.
Collapse
Affiliation(s)
- Zuzana Sekelova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Hana Stepanova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Ondrej Polansky
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | | | - Marcela Faldynova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the CAS, Kralovopolska 135, 612 65, Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International, Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Lenka Vlasatikova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| |
Collapse
|
183
|
Seu L, Mobley JA, Goepfert PA. CD4+ T cells from HIV-1 patients with impaired Th1 effector responses to Mycobacterium tuberculosis exhibit diminished histone and nucleoprotein signatures. Clin Immunol 2017; 181:16-23. [PMID: 28552470 DOI: 10.1016/j.clim.2017.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/26/2017] [Accepted: 05/23/2017] [Indexed: 01/10/2023]
Abstract
HIV+ patients have an increased risk for tuberculosis disease despite clinical management with ARTs. We established a culture model of Mtb-infection in PBMCs from HIV+ PPD+ donors on suppressive ART (median 6.4years) with negligible viral loads (median<50copies/mL) and stable CD4+ T cell counts (517cells/mm^3). We observed that HIV+ patient lymphocytes harbored a recruitment defect to Mtb-infected monocytes. To investigate these immune defects on a per cell basis, purified CD4+ T cells from HIV patients were assessed by label-free quantification protein mass spectrometry. CD4+ T cells from HIV patients displayed diminished nucleoprotein levels - notably of histone variant H2a.Z and ribonucleoprotein A1. Only within healthy donors, transcriptional regulatory histone variant H2a.Z expression was correlated to the extent of IFN-γ induction upon Mtb-infection. Our findings may explain why HIV patients exhibit prolonged immune cell dysfunction despite suppressive ART, and implicate a per cell defect of CD4+ T cells.
Collapse
Affiliation(s)
- Lillian Seu
- Division of Infectious Disease and Department of Surgery, Division of Gastroenterology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - James A Mobley
- Division of Infectious Disease and Department of Surgery, Division of Gastroenterology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Paul A Goepfert
- Division of Infectious Disease and Department of Surgery, Division of Gastroenterology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
184
|
An M, Ni Y, Li X, Gao Y. Effects of arginine vasopressin on the urine proteome in rats. PeerJ 2017; 5:e3350. [PMID: 28560103 PMCID: PMC5444365 DOI: 10.7717/peerj.3350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/24/2017] [Indexed: 12/14/2022] Open
Abstract
Biomarkers are the measurable changes associated with a physiological or pathophysiological process. The content of urine frequently changes because it is not controlled by homeostatic mechanisms, and these alterations can be a source of biomarkers. However, urine is affected by many factors. In this study, vasoconstrictor and antidiuretic arginine vasopressin (AVP) were infused into rats using an osmotic pump. The rats’ urinary proteome after one week of infusion was analyzed by label-free LC-MS/MS. A total of 408 proteins were identified; among these proteins, eight and 10 proteins had significantly altered expression in the low and high dose groups, respectively, compared with the control group using the one-way ANOVA analysis followed by post hoc analysis with the least significant difference (LSD) test or Dunnett’s T3 test. Three differential proteins were described in prior studies as related to AVP physiological processes, and nine differential proteins are known disease biomarkers. Sixteen of the 17 differential proteins have human orthologs. These results suggest that we should consider the effects of AVP on urinary proteins in future urinary disease biomarker researches. The study data provide clues regarding underlying mechanisms associated with AVP for future physiological researches on AVP. This study provide a sensitive changes associated with AVP. However, the limitation of this result is that the candidate biomarkers should be further verified and filtered. Large clinical samples must be examined to verify the differential proteins identified in this study before these proteins are used as biomarkers for pathological AVP increased diseases, such as syndrome of inappropriate antidiuretic hormone secretion (SIADH).
Collapse
Affiliation(s)
- Manxia An
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanying Ni
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xundou Li
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Youhe Gao
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
185
|
Sullenberger C, Piqué D, Ogata Y, Mensa-Wilmot K. AEE788 Inhibits Basal Body Assembly and Blocks DNA Replication in the African Trypanosome. Mol Pharmacol 2017; 91:482-498. [PMID: 28246189 PMCID: PMC5399642 DOI: 10.1124/mol.116.106906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis (HAT). The pyrrolopyrimidine AEE788 (a hit for anti-HAT drug discovery) associates with three trypanosome protein kinases. Herein we delineate the effects of AEE788 on T. brucei using chemical biology strategies. AEE788 treatment inhibits DNA replication in the kinetoplast (mitochondrial nucleoid) and nucleus. In addition, AEE788 blocks duplication of the basal body and the bilobe without affecting mitosis. Thus, AEE788 prevents entry into the S-phase of the cell division cycle. To study the kinetics of early events in trypanosome division, we employed an "AEE788 block and release" protocol to stage entry into the S-phase. A time-course of DNA synthesis (nuclear and kinetoplast DNA), duplication of organelles (basal body, bilobe, kinetoplast, nucleus), and cytokinesis was obtained. Unexpected findings include the following: 1) basal body and bilobe duplication are concurrent; 2) maturation of probasal bodies, marked by TbRP2 recruitment, is coupled with nascent basal body assembly, monitored by localization of TbSAS6 at newly forming basal bodies; and 3) kinetoplast division is observed in G2 after completion of nuclear DNA synthesis. Prolonged exposure of trypanosomes to AEE788 inhibited transferrin endocytosis, altered cell morphology, and decreased cell viability. To discover putative effectors for the pleiotropic effects of AEE788, proteome-wide changes in protein phosphorylation induced by the drug were determined. Putative effectors include an SR protein kinase, bilobe proteins, TbSAS4, TbRP2, and BILBO-1. Loss of function of one or more of these effectors can, from published literature, explain the polypharmacology of AEE788 on trypanosome biology.
Collapse
Affiliation(s)
- Catherine Sullenberger
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia (C.S., D.P., K.M.-W.); and the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington (Y.O.)
| | - Daniel Piqué
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia (C.S., D.P., K.M.-W.); and the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington (Y.O.)
| | - Yuko Ogata
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia (C.S., D.P., K.M.-W.); and the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington (Y.O.)
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia (C.S., D.P., K.M.-W.); and the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington (Y.O.)
| |
Collapse
|
186
|
Fukuda T, Nomura M, Kato Y, Tojo H, Fujii K, Nagao T, Bando Y, Fehniger TE, Marko-Varga G, Nakamura H, Kato H, Nishimura T. A selected reaction monitoring mass spectrometric assessment of biomarker candidates diagnosing large-cell neuroendocrine lung carcinoma by the scaling method using endogenous references. PLoS One 2017; 12:e0176219. [PMID: 28448532 PMCID: PMC5407814 DOI: 10.1371/journal.pone.0176219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
Selected reaction monitoring mass spectrometry (SRM-MS) -based semi-quantitation was performed to assess the validity of 46 selected candidate proteins for specifically diagnosing large-cell neuroendocrine lung carcinoma (LCNEC) and differentiating it from other lung cancer subtypes. The scaling method was applied in this study using specific SRM peak areas (AUCs) derived from the endogenous reference protein that normalizes all SRM AUCs obtained for the candidate proteins. In a screening verification study, we found that seven out of the 46 candidate proteins were statistically significant for the LCNEC phenotype, including 4F2hc cell surface antigen heavy chain (4F2hc/CD98) (p-ANOVA ≤ 0.0012), retinal dehydrogenase 1 (p-ANOVA ≤ 0.0029), apolipoprotein A-I (p-ANOVA ≤ 0.0004), β-enolase (p-ANOVA ≤ 0.0043), creatine kinase B-type (p-ANOVA ≤ 0.0070), and galectin-3-binding protein (p-ANOVA = 0.0080), and phosphatidylethanolamine-binding protein 1 (p-ANOVA ≤ 0.0012). In addition, we also identified candidate proteins specific to the small-cell lung carcinoma (SCLC) subtype. These candidates include brain acid soluble protein 1 (p-ANOVA < 0.0001) and γ-enolase (p-ANOVA ≤ 0.0013). This new relative quantitation-based approach utilizing the scaling method can be applied to assess hundreds of protein candidates obtained from discovery proteomic studies as a first step of the verification phase in biomarker development processes.
Collapse
Affiliation(s)
| | - Masaharu Nomura
- Department of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yasufumi Kato
- Department of Thoracic Surgery, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Hiromasa Tojo
- Department of Biophysics and Biochemistry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyonaga Fujii
- Department of Translational Medicine Informatics, St. Mariana University School of Medicine, Kawasaki, Japan
| | - Toshitaka Nagao
- Department of Clinical Pathology, Tokyo Medical University, Tokyo, Japan
| | | | - Thomas E. Fehniger
- Center of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, Sweden
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - György Marko-Varga
- Center of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, Sweden
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Haruhiko Nakamura
- Department of Translational Medicine Informatics, St. Mariana University School of Medicine, Kawasaki, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Harubumi Kato
- Department of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan
- Chest Surgery, Niizashiki Central General Hospital, Saitama, Japan
| | - Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Mariana University School of Medicine, Kawasaki, Japan
- Center of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, Sweden
| |
Collapse
|
187
|
Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget 2017; 8:73793-73809. [PMID: 29088746 PMCID: PMC5650301 DOI: 10.18632/oncotarget.17379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/22/2017] [Indexed: 01/01/2023] Open
Abstract
Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro, indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.
Collapse
|
188
|
Xing L, Yuan C, Wang M, Lin Z, Shen B, Hu Z, Zou Z. Dynamics of the Interaction between Cotton Bollworm Helicoverpa armigera and Nucleopolyhedrovirus as Revealed by Integrated Transcriptomic and Proteomic Analyses. Mol Cell Proteomics 2017; 16:1009-1028. [PMID: 28404795 DOI: 10.1074/mcp.m116.062547] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/17/2017] [Indexed: 01/23/2023] Open
Abstract
Over the past decades, Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been widely used for biocontrol of cotton bollworm, which is one of the most destructive pest insects in agriculture worldwide. However, the molecular mechanism underlying the interaction between HearNPV and host insects remains poorly understood. In this study, high-throughput RNA-sequencing was integrated with label-free quantitative proteomics analysis to examine the dynamics of gene expression in the fat body of H. armigera larvae in response to challenge with HearNPV. RNA sequencing-based transcriptomic analysis indicated that host gene expression was substantially altered, yielding 3,850 differentially expressed genes (DEGs), whereas no global transcriptional shut-off effects were observed in the fat body. Among the DEGs, 60 immunity-related genes were down-regulated after baculovirus infection, a finding that was consistent with the results of quantitative real-time RT-PCR. Gene ontology and functional classification demonstrated that the majority of down-regulated genes were enriched in gene cohorts involved in energy, carbohydrate, and amino acid metabolic pathways. Proteomics analysis identified differentially expressed proteins in the fat body, among which 76 were up-regulated, whereas 373 were significantly down-regulated upon infection. The down-regulated proteins are involved in metabolic pathways such as energy metabolism, carbohydrate metabolism (CM), and amino acid metabolism, in agreement with the RNA-sequence data. Furthermore, correlation analysis suggested a strong association between the mRNA level and protein abundance in the H. armigera fat body. More importantly, the predicted gene interaction network indicated that a large subset of metabolic networks was significantly negatively regulated by viral infection, including CM-related enzymes such as aldolase, enolase, malate dehydrogenase, and triose-phosphate isomerase. Taken together, transcriptomic data combined with proteomic data elucidated that baculovirus established systemic infection of host larvae and manipulated the host mainly by suppressing the host immune response and down-regulating metabolism to allow viral self-replication and proliferation. Therefore, this study provided important insights into the mechanism of host-baculovirus interaction.
Collapse
Affiliation(s)
- Longsheng Xing
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,§University of Chinese Academy of Sciences, Beijing 100049
| | - Chuanfei Yuan
- §University of Chinese Academy of Sciences, Beijing 100049.,¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Manli Wang
- ¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Zhe Lin
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Benchang Shen
- ‖Guangzhou Medical University, Guangzhou 510182, China
| | - Zhihong Hu
- ¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Zhen Zou
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; .,§University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
189
|
Goeminne LJE, Gevaert K, Clement L. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob. J Proteomics 2017; 171:23-36. [PMID: 28391044 DOI: 10.1016/j.jprot.2017.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). SIGNIFICANCE The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments.
Collapse
Affiliation(s)
- Ludger J E Goeminne
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biochemistry, Ghent University, Belgium; Bioinformatics Institute Ghent, Ghent University, Belgium.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biochemistry, Ghent University, Belgium; Bioinformatics Institute Ghent, Ghent University, Belgium.
| | - Lieven Clement
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium; Bioinformatics Institute Ghent, Ghent University, Belgium.
| |
Collapse
|
190
|
Cho JY, Lee HJ, Jeong SK, Paik YK. Epsilon-Q: An Automated Analyzer Interface for Mass Spectral Library Search and Label-Free Protein Quantification. J Proteome Res 2017; 16:4435-4445. [DOI: 10.1021/acs.jproteome.6b01019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
191
|
Shao G, Wang Y, Guan S, Burlingame AL, Lu F, Knox R, Ferriero DM, Jiang X. Proteomic Analysis of Mouse Cortex Postsynaptic Density following Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2017; 39:66-81. [PMID: 28315865 PMCID: PMC5519436 DOI: 10.1159/000456030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Proteomics of the synapses and postsynaptic densities (PSDs) have provided a deep understanding of protein composition and signal networks in the adult brain, which underlie neuronal plasticity and neurodegenerative or psychiatric disorders. However, there is a paucity of knowledge about the architecture and organization of PSDs in the immature brain, and how it is modified by brain injury in an early developing stage. Mass spectrometry (MS)-based proteomic analysis was performed on PSDs prepared from cortices of postnatal day 9 naïve mice or pups which had suffered hypoxic-ischemic (HI) brain injury. 512 proteins of different functional groups were identified from PSDs collected 1 h after HI injury, among which 60 have not been reported previously. Seven newly identified proteins involved in neural development were highlighted. HI injury increased the yield of PSDs at early time points upon reperfusion, and multiple proteins were recruited into PSDs following the insult. Quantitative analysis was performed using spectral counting, and proteins whose relative expression was more than 50% up- or downregulated compared to the sham animals 1 h after HI insult were reported. Validation with Western blotting demonstrated changes in expression and phosphorylation of the N-methyl-D-aspartate receptor, activation of a series of postsynaptic protein kinases and dysregulation of scaffold and adaptor proteins in response to neonatal HI insult. This work, along with other recent studies of synaptic protein profiling in the immature brain, builds a foundation for future investigation on the molecular mechanisms underlying developing plasticity. Furthermore, it provides insights into the biochemical changes of PSDs following early brain hypoxia-ischemia, which is helpful for understanding not only the injury mechanisms, but also the process of repair or replenishment of neuronal circuits during recovery from brain damage.
Collapse
Affiliation(s)
- Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins. Drug Discov Today 2017; 22:848-869. [PMID: 28284830 DOI: 10.1016/j.drudis.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule.
Collapse
|
193
|
Nuzzo D, Inguglia L, Walters J, Picone P, Di Carlo M. A Shotgun Proteomics Approach Reveals a New Toxic Role for Alzheimer's Disease Aβ Peptide: Spliceosome Impairment. J Proteome Res 2017; 16:1526-1541. [PMID: 28157316 DOI: 10.1021/acs.jproteome.6b00925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteomic changes have been described in many neurodegenerative diseases, including Alzheimer's disease (AD). However, the early events in the onset of the pathology are yet to be fully elucidated. A cell model system in which LAN5 neuroblastoma cells were incubated for a short time with a recombinant form of Aβ42 was utilized. Proteins extracted from these cells were subjected to shotgun proteomics analysis by LTQ-Orbitrap-MS followed by label-free quantitation. By bioinformatics tools we found that the most significant of those found to be up-regulated were related to cytoskeletal dynamics (Rho related) and membrane-related processes. The most significant of the down-regulated proteins were hnRNP-related. In particular, hnRNPs involved in ribosomal biogenesis and in splicing were down-regulated. The latter of these processes stood out as it was highlighted ubiquitously and with the highest significance in the results of every analysis. Furthermore, our findings revealed down-regulation at every stage of the splicing process through down-regulation of every subunit of the spliceosome. Dysregulation of the spliceosome was also confirmed using a Western blot. In conclusion, these data suggest dysregulation of the proteins and processes identified as early events in pathogenesis of AD following Aβ accumulation.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Luigi Inguglia
- Istituto di Biofisica (IBF) , Via Ugo La Malfa 153, 90146 Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology , 90146 Palermo, Italy
| | - Jessica Walters
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Marta Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare "A. Monroy" (IBIM) , Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
194
|
Zhao Y, Jamaluddin M, Zhang Y, Sun H, Ivanciuc T, Garofalo RP, Brasier AR. Systematic Analysis of Cell-Type Differences in the Epithelial Secretome Reveals Insights into the Pathogenesis of Respiratory Syncytial Virus-Induced Lower Respiratory Tract Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:3345-3364. [PMID: 28258195 DOI: 10.4049/jimmunol.1601291] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Lower respiratory tract infections from respiratory syncytial virus (RSV) are due, in part, to secreted signals from lower airway cells that modify the immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea versus small airway bronchiolar cells. A workflow was established using telomerase-immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in secreted proteins and nanoparticles (exosomes). Approximately one third of secretome proteins are exosomal; the remainder are from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea versus bronchioles. A total of 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate. Fifteen proteins unique to RSV-infected primary human cultures from trachea were regulated by epithelial-specific ets homologous factor. A total of 106 proteins unique to RSV-infected human small airway epithelial cells was regulated by the transcription factor NF-κB. In this latter group, we validated the differential expression of CCL20/macrophage-inducible protein 3α, thymic stromal lymphopoietin, and CCL3-like 1 because of their roles in Th2 polarization. CCL20/macrophage-inducible protein 3α was the most active mucin-inducing factor in the RSV-infected human small airway epithelial cell secretome and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses and regional differences in the epithelial secretome participating in RSV lower respiratory tract infection-induced airway remodeling.
Collapse
Affiliation(s)
- Yingxin Zhao
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Mohammad Jamaluddin
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Roberto P Garofalo
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Allan R Brasier
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| |
Collapse
|
195
|
Identification and quantification of myosin heavy chain isoforms in bovine and porcine longissimus muscles by LC-MS/MS analysis. Meat Sci 2017; 125:143-151. [DOI: 10.1016/j.meatsci.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/02/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023]
|
196
|
Al Shweiki MR, Mönchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W. Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance. J Proteome Res 2017; 16:1410-1424. [PMID: 28217993 DOI: 10.1021/acs.jproteome.6b00645] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.
Collapse
Affiliation(s)
- Mhd Rami Al Shweiki
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Majovsky
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Domenika Thieme
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Diana Trutschel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen , Stockumer Straße. 12, 58453 Witten, Germany.,Martin-Luther-University Halle-Wittenberg , Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
197
|
Zhong L, Zhou J, Chen X, Liu J, Liu Z, Chen Y, Bai Y. Quantitative proteomics reveals EVA1A-related proteins involved in neuronal differentiation. Proteomics 2017; 17. [PMID: 28044434 DOI: 10.1002/pmic.201600294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/24/2016] [Accepted: 12/22/2016] [Indexed: 11/07/2022]
Abstract
EVA1A is an autophagy-related protein, which plays an important role in embryonic neurogenesis. In this study, we found that loss of EVA1A could decrease neural differentiation in the brain of adult Eva1a-/- mice. To determine the mechanism underlying this phenotype, we performed label-free quantitative proteomics and bioinformatics analysis using the brains of Eva1a-/- and wild-type mice. We identified 11 proteins that were up-regulated and 17 that were down-regulated in the brains of the knockout mice compared to the wild-type counterparts. Bioinformatics analysis indicated that biological processes, including ATP synthesis, oxidative phosphorylation, and the TCA cycle, are involved in the EVA1A regulatory network. In addition, gene set enrichment analysis showed that neurodegenerative diseases, such as Alzheimer's disease and Huntington's disease, were strongly associated with Eva1a knockout. Western blot experiments showed changes in the expression of nicotinamide nucleotide transhydrogenase, an important mitochondrial enzyme involved in the TCA cycle, in the brains of Eva1a knockout mice. Our study provides valuable information on the molecular functions and regulatory network of the Eva1a gene, as well as new perspectives on the relationship between autography-related proteins and neural differentiation.
Collapse
Affiliation(s)
- Lijun Zhong
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, P. R. China
| | - Juntuo Zhou
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| | - Xi Chen
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, P. R. China
| | - Jiao Liu
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, P. R. China
| | - Zhen Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China.,Peking University Center for Human Disease Genomics, Beijing, P. R. China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| |
Collapse
|
198
|
Chupani L, Zusková E, Niksirat H, Panáček A, Lünsmann V, Haange SB, von Bergen M, Jehmlich N. Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1504-1511. [PMID: 27916310 DOI: 10.1016/j.scitotenv.2016.11.154] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 05/20/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) have been dramatically used in industry, biology, and medicine. Despite their interesting physico-chemical properties for application in various industrial, medical, and consumer products, safe use of ZnO NPs are under challenges due to the inadequate information related to their toxicological endpoints. Proteomics was applied to evaluate the sub-lethal effects of dietary exposure to ZnO NPs on serum proteome profile of juvenile common carp, (Cyprinus carpio). Therefore, ZnO NPs solution (500mgkg-1 of feed) was added to a commercial carp feed for six weeks. We compared the serum proteome profile from 7 controls and 7 treated fish. In addition, zinc accumulation were measured in intestine, liver, gill and brain. In total, we were able to identify 326 proteins from 6845 distinct peptides. As a result of the data analysis, the abundance levels of four proteins were significantly altered (fold change (fc) ≥2 and p<0.05) after dietary exposure to ZnO NPs. The protein levels of the complement component C4-2 (fc 2.5) and the uncharacterised protein encoded by kng1 (fc 5.8) were increased and major histocompatibility class I (fc 4.9) and the uncharacterised protein encoded by lum (fc 3.5) were decreased (fc 2.5). Molecular pathway analysis revealed four canonical pathways including acute-phase response signalling, liver and retinoid X receptors activation, and intrinsic and extrinsic prothrombin activation pathways as significantly regulated in the treated fish. No significant difference was observed for zinc accumulation in exposed fish compared to controls. In summary, despite no apparent accumulation, ZnO NPs exposure to common carp probably disturbs the fish homeostasis by affecting proteins of the haematological and the immune systems.
Collapse
Affiliation(s)
- Latifeh Chupani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic.
| | - Eliška Zusková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic
| | - Aleš Panáček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Vanessa Lünsmann
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Leipzig, Germany; Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| |
Collapse
|
199
|
Transcriptome and proteome analysis of nitrogen starvation responses in Synechocystis 6803 ΔglgC, a mutant incapable of glycogen storage. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
200
|
Bober P, Alexovic M, Talian I, Tomkova Z, Viscorova Z, Benckova M, Andrasina I, Ciccocioppo R, Petrovic D, Adamek M, Kruzliak P, Sabo J. Proteomic analysis of the vitamin C effect on the doxorubicin cytotoxicity in the MCF-7 breast cancer cell line. J Cancer Res Clin Oncol 2017; 143:35-42. [PMID: 27620743 DOI: 10.1007/s00432-016-2259-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Doxorubicin is an anthracycline drug which inhibits the growth of breast cancer cell lines. However, a major factor limiting its use is a cumulative, dose-dependent cardiotoxicity, resulting in a permanent loss of cardiomyocytes. Vitamin C was found to potentiate the cytotoxic effects of a variety of chemotherapeutic drugs including doxorubicin. The aim of the study was to describe the changes in protein expression and proliferation of the MCF-7 cells induced by the vitamin C applied with doxorubicin. METHODS Label-free quantitative proteomics and real-time cell analysis methods were used to search for proteome and cell proliferation changes. These changes were induced by the pure DOX and by DOX combined with vitamin C applied on the MCF-7 cell line. RESULTS From the real-time cell analysis experiments, it is clear that the highest anti-proliferative effect occurs with the addition of 200 µM of vitamin C to 1 µM of doxorubicin. By applying both the label-free protein quantification method and total ion current assay, we found statistically significant changes (p ≤ 0.05) of 26 proteins induced by the addition of vitamin C to doxorubicin on the MCF-7 cell line. These differentially expressed proteins are involved in processes such as structural molecule activity, transcription and translation, immune system process and antioxidant, cellular signalling and transport. CONCLUSION The detected proteins may be capable of predicting response to DOX therapy. This is a key tool in the treatment of breast cancer, and the combination with vit C seems to be of particular interest due to the fact that it can potentiate anti-proliferative effect of DOX.
Collapse
Affiliation(s)
- Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Michal Alexovic
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Zuzana Tomkova
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Zuzana Viscorova
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
- Department of Radiotherapy and Oncology, Faculty of Medicine, Pavol Jozef Safarik University, East Slovakia Oncology Institute, Kosice, Slovakia
| | - Maria Benckova
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia
| | - Igor Andrasina
- Department of Radiotherapy and Oncology, Faculty of Medicine, Pavol Jozef Safarik University, East Slovakia Oncology Institute, Kosice, Slovakia
| | - Rachele Ciccocioppo
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Daniel Petrovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Peter Kruzliak
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia.
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | - Jan Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovakia.
| |
Collapse
|