151
|
Jamali SN, Assadpour E, Jafari SM. Formulation and Application of Nanoemulsions for Nutraceuticals and Phytochemicals. Curr Med Chem 2020; 27:3079-3095. [DOI: 10.2174/0929867326666190620102820] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
:
Recent trends in research and investigation on nanoemulsion based products is the result of
many reasons such as food security as a global concern, increasing demand for highly efficient food and
agricultural products and technological need for products with the ability of manipulation and optimization
in their properties. Nanoemulsions are defined as emulsions made up of nano sized droplets dispersed
in another immiscible liquid which exhibit properties distinguishing them from conventional
emulsions and making them suitable for encapsulation, delivery and formulations of bioactive ingredients
in different fields including drugs, food and agriculture. The objective of this paper is to present a general
overview of nanoemulsions definition, their preparation methods, properties and applications in food and
agricultural sectors. Due to physicochemical properties of the nanoemulsion composition, creating nanosized
droplets requires high/low energy methods that can be supplied by special devices or techniques.
An overview about the mechanisms of these methods is also presented in this paper which are commonly
used to prepare nanoemulsions. Finally, some recent works about the application of nanoemulsions in
food and agricultural sectors along with challenges and legislations restricting their applications is discussed
in the last sections of the current study.
Collapse
Affiliation(s)
- Seyedeh Narges Jamali
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
152
|
|
153
|
Li X, He X, Mao L, Gao Y, Yuan F. Modification of the structural and rheological properties of β-lactoglobulin/κ-carrageenan mixed gels induced by high pressure processing. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
154
|
Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of β-carotene: Protection effect and in vitro digestion study. Food Chem 2020; 315:126288. [DOI: 10.1016/j.foodchem.2020.126288] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
|
155
|
Vorob'ev M, Sinitsyna O. Degradation and assembly of β-casein micelles during proteolysis by trypsin. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
156
|
Rosa MTM, Alvarez VH, Albarelli JQ, Santos DT, Meireles MAA, Saldaña MD. Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: Technical-economic evaluation. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2019.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
157
|
Lordan R, Tsoupras A, Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev 2020; 45:100694. [PMID: 32340775 DOI: 10.1016/j.blre.2020.100694] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Platelets are central to inflammation-related manifestations of cardiovascular diseases (CVD) such as atherosclerosis. Platelet-activating factor (PAF), thrombin, thromboxane A2 (TxA2), and adenosine diphosphate (ADP) are some of the key agonists of platelet activation that are at the intersection between a plethora of inflammatory pathways that modulate pro-inflammatory and coagulation processes. The aim of this article is to review the role of platelets and the relationship between their structure, function, and the interactions of their constituents in systemic inflammation and atherosclerosis. Antiplatelet therapies are discussed with a view to primary prevention of CVD by the clinical reduction of platelet reactivity and inflammation. Current antiplatelet therapies are effective in reducing cardiovascular risk but increase bleeding risk. Novel therapeutic antiplatelet approaches beyond current pharmacological modalities that do not increase the risk of bleeding require further investigation. There is potential for specifically designed nutraceuticals that may become safer alternatives to pharmacological antiplatelet agents for the primary prevention of CVD but there is serious concern over their efficacy and regulation, which requires considerably more research.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
158
|
Baptista-Silva S, Borges S, Ramos OL, Pintado M, Sarmento B. The progress of essential oils as potential therapeutic agents: a review. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1746698] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sara Baptista-Silva
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Sandra Borges
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Oscar L. Ramos
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Manuela Pintado
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Bruno Sarmento
- I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal
- INEB Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU , Gandra, Portugal
| |
Collapse
|
159
|
Vinayak M, Maurya AK. Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development. Anticancer Agents Med Chem 2020; 19:1560-1576. [PMID: 31284873 DOI: 10.2174/1871520619666190705150214] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022]
Abstract
The spread of metastatic cancer cell is the main cause of death worldwide. Cellular and molecular basis of the action of phytochemicals in the modulation of metastatic cancer highlights the importance of fruits and vegetables. Quercetin is a natural bioflavonoid present in fruits, vegetables, seeds, berries, and tea. The cancer-preventive activity of quercetin is well documented due to its anti-inflammatory, anti-proliferative and anti-angiogenic activities. However, poor water solubility and delivery, chemical instability, short half-life, and low-bioavailability of quercetin limit its clinical application in cancer chemoprevention. A better understanding of the molecular mechanism of controlled and regulated drug delivery is essential for the development of novel and effective therapies. To overcome the limitations of accessibility by quercetin, it can be delivered as nanoconjugated quercetin. Nanoconjugated quercetin has attracted much attention due to its controlled drug release, long retention in tumor, enhanced anticancer potential, and promising clinical application. The pharmacological effect of quercetin conjugated nanoparticles typically depends on drug carriers used such as liposomes, silver nanoparticles, silica nanoparticles, PLGA (Poly lactic-co-glycolic acid), PLA (poly(D,L-lactic acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, etc. In this review, we described various delivery systems of nanoconjugated quercetin like liposomes, silver nanoparticles, PLGA (Poly lactic-co-glycolic acid), and polymeric micelles including DOX conjugated micelles, metal conjugated micelles, nucleic acid conjugated micelles, and antibody-conjugated micelles on in vitro and in vivo tumor models; as well as validated their potential as promising onco-therapeutic agents in light of recent updates.
Collapse
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Akhilendra K Maurya
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
160
|
Kleemann C, Schuster R, Rosenecker E, Selmer I, Smirnova I, Kulozik U. In-vitro-digestion and swelling kinetics of whey protein, egg white protein and sodium caseinate aerogels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105534] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
161
|
McClements DJ. Future foods: a manifesto for research priorities in structural design of foods. Food Funct 2020; 11:1933-1945. [PMID: 32141468 DOI: 10.1039/c9fo02076d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A number of major challenges facing modern society are related to the food supply. As the global population grows, it will be critical to feed everyone without damaging the environment. Advances in biotechnology, nanotechnology, structural design, and artificial intelligence are providing farmers and food manufacturers will new tools to address these problems. More and more people are migrating from rural to urban environments, leading to a change in their dietary habits, especially increasing consumption of animal-based products and highly-processed foods. Animal-based foods lead to more greenhouse gas production, land use, water use, and pollution than plant-based ones. Moreover, many animal-based and highly-processed foods have adverse effects on human health and wellbeing. Consumers are therefore being encouraged to consume more plant-based foods, such as fruits, vegetables, cereals, and legumes. Many people, however, do not have the time, money, or inclination to prepare foods from fresh produce. Consequently, there is a need for the food industry to create a new generation of processed foods that are desirable, tasty, inexpensive, and convenient, but that are also healthy and sustainable. This article highlights some of the main food-related challenges faced by modern society and how scientists are developing innovative technologies to address them.
Collapse
|
162
|
Analyses on the binding interaction between rice glutelin and conjugated linoleic acid by multi-spectroscopy and computational docking simulation. Journal of Food Science and Technology 2020; 57:886-894. [PMID: 32123409 DOI: 10.1007/s13197-019-04121-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023]
Abstract
It is an interesting topic to elucidate the interaction among plant proteins and bioactive lipid components. However, there is a shortage of understanding regarding the nature of the interaction between rice protein and conjugated linoleic acid (CLA). In this study, the intrinsic fluorescence intensity of rice glutelin (RG) was quenched upon increasing concentrations of CLA, indicating the occurrence of an interaction between them. Thermodynamic analysis showed that the RG-CLA binding process occurred spontaneously and hydrogen bonds were the primary driving force. Moreover, only one binding site was calculated between RG and CLA by the intrinsic fluorescence data. The surface hydrophobicity of RG was reduced with increasing CLA. Circular dichroism and synchronous fluorescence spectroscopy showed conformational and microenvironmental changes around the chromophores of RG. The α-helical content increased and β-sheet content declined after the binding reaction. The computational docking program displayed the target site in which CLA and amino acid residues of RG might be linked together. This study provides valuable insights into the nature of the interactions between plant proteins and fatty acids.
Collapse
|
163
|
Baskararaj S, Panneerselvam T, Govindaraj S, Arunachalam S, Parasuraman P, Pandian SRK, Sankaranarayanan M, Mohan UP, Palanisamy P, Ravishankar V, Kunjiappan S. Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy. 3 Biotech 2020; 10:136. [PMID: 32158632 DOI: 10.1007/s13205-020-2132-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
This study aimed to formulate and characterize the folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii to enhance the anticancer activity. Twenty valued bioactive compounds (3-hydroxy benzoicacid, gallicacid, chlorogenicacid, cinnamicacid, artemiseole, hydrazine carbothioamide, etc.,) are confirmed from methanol extract of K. alvarezii using analytical techniques like HPLC and GC-MS. The delivery of bioactive compounds of K. alvarezii via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. FR targeted PEGylated liposome was constructed by modified thin-film hydration technique using FA-PEG-DSPE/cholesterol/DSPC (5:40:55) and bioactive compounds of K. alvarezii was encapsulated. Their morphology, size, shape, physiological stability and drug release kinetics were studied. The study reports of K. alvarezii extract-encapsulated PEGylated liposome showed spherical shaped particles with amorphous in nature. The mean diameter of K. alvarezii extract-encapsulated PEGylated and FA-conjugated PEGylated liposomes was found to be 110 ± 6 nm and 140 ± 5 nm, respectively. Based on the stability studies, it could be confirmed that FA-conjugated PEGylated liposome was highly stable in various physiological buffer medium. FA-conjugated PEGylated liposome can steadily release the bioactive compounds of K. alvarezii extract in acidic medium (pH 5.4). MTT assay demonstrated the concentration-dependent cytotoxicity against MCF-7 cells after 24 h with IC50 of 81 µg/mL. Also, PEGylated liposome enhanced the delivery of K. alvarezii extract in MCF-7 cells. After treatment, typical apoptotic morphology of condensed nuclei and distorted membrane bodies was picturized. Additionally, PEGylated liposome targets the mitochondria of MCF-7 cells and significantly increased the level of ROS and contributes to the damage of mitochondrial transmembrane potential. Hence, PEGylated liposome could positively deliver the bioactive compounds of K. alvarezii extract into FR-positive breast cancer cells (MCF-7) and exhibit great potential in anticancer therapy.
Collapse
|
164
|
Saraswat AL, Maher TJ. Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of quercetin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
165
|
Olenskyj AG, Donis-González IR, Bornhorst GM. Nondestructive characterization of structural changes during in vitro gastric digestion of apples using 3D time-series micro-computed tomography. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
166
|
Yao M, Li Z, Julian McClements D, Tang Z, Xiao H. Design of nanoemulsion-based delivery systems to enhance intestinal lymphatic transport of lipophilic food bioactives: Influence of oil type. Food Chem 2020; 317:126229. [PMID: 32078989 DOI: 10.1016/j.foodchem.2020.126229] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
The impact of nanoemulsions containing triglycerides with different fatty acid chain lengths on the bioavailability of a highly lipophilic bioactive: 5-demethylnobiletin (5-DN) was investigated. 5-DN was encapsulated in nanoemulsions fabricated using either medium-chain triglycerides (MCT) or long-chain triglycerides (LCT). They were then subjected to in vitro digestion, and the resulting mixed micelles was applied to a Caco-2 cell model. Higher 5-DN bioaccessibility was found for the MCT-nanoemulsion (13%) than for the LCT-nanoemulsion (7%). However, only 30% 5-DN in MCT crossed the Caco-2 monolayer and 50% was metabolized, while 60% 5-DN in LCT crossed the monolayer and only 10% was metabolized. More lipid droplets and chylomicrons were also formed for the LCT nanoemulsions, indicating greater 5-DN transported through lymph. Although MCT gave a higher 5-DN bioaccessibility, the final amount of 5-DN absorbed and transported to the lymph was inferior to that of the LCT formulation.
Collapse
Affiliation(s)
- Mingfei Yao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Zhonghai Tang
- School of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; School of Food Science and Technology, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
167
|
Robert P, Vergara C, Silva-Weiss A, Osorio FA, Santander R, Sáenz C, Giménez B. Influence of gelation on the retention of purple cactus pear extract in microencapsulated double emulsions. PLoS One 2020; 15:e0227866. [PMID: 31945132 PMCID: PMC6964817 DOI: 10.1371/journal.pone.0227866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/01/2020] [Indexed: 11/18/2022] Open
Abstract
A purple cactus pear (Opuntia ficus-indica) extract (CP) was encapsulated in double emulsions (DE) gelled with gelatin (DE-CP-G) and with gelatin and transglutaminase (DE-CP-GT), as well as in a DE with a liquid external aqueous phase (DE-CP), in order to study the retention of betanin as colorant agent. Both gelled DEs showed a predominantly elastic behavior, in contrast with DE-CP. The degradation rate constant of betanin was significantly higher in DE-CP-GT (90.2 x 10−3 days-1) than in DE-CP-G (11.0 x 10−3 days-1) and DE-CP (14.6 x 10−3 days-1) during cold-storage (4 °C). A shift towards yellow color was found in all the systems during cold-storage (4 °C) and after thermal treatment (70°C/30 min), especially in DE-CP-GT, denoting a higher degradation of betanin. Betalamic acid, cyclo-Dopa 5-O-β-glucoside, 17-decarboxy-betanin and neobetanin were identified by UHPLC-MS/MS as degradation products of betanin.
Collapse
Affiliation(s)
- Paz Robert
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Cristina Vergara
- INIA La Platina, Instituto de Investigaciones Agropecuarias, Santiago, Chile
| | - Andrea Silva-Weiss
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Fernando A. Osorio
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Rocío Santander
- Dpto. de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carmen Sáenz
- Dpto. de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Begoña Giménez
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
168
|
Nasiri F, Faghfouri L, Hamidi M. Preparation, optimization, and in-vitro characterization of α-tocopherol-loaded solid lipid nanoparticles (SLNs). Drug Dev Ind Pharm 2020; 46:159-171. [PMID: 31894713 DOI: 10.1080/03639045.2019.1711388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: The main scope of present investigation was preparation and physicochemical characterization of solid lipid nanoparticles (SLNs) loaded by α-tocopherol acetate (ATA).Methods: ATA-loaded nanoparticles were prepared by solvent injection-homogenization technique using stearic acid as the solid lipid, phosphatidylcholine as the stabilizer and finally coated by chitosan with the aim of increasing z-potential and also having a more stable nano-formulation. Then, characterization of SLNs has been conducted using dynamic light scattering (DLS), zeta potential measurement, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC).Results: Nanoparticles with average sizes of 175 ± 15 nm and zeta potential of +35 ± 2.5 mV were obtained. An excellent drug entrapment efficiency of 90.58 ± 1.38% was obtained with a no-burst slow release up to about 10 days tested. The final plateau of release of ATA from nanoparticulate system within 216 h was 61.13 ± 0.13% which was approached in about 150 h. Physical stability studies showed that the ATA nano-formulation remained stable with slight increase in mean particle size and polydispersity index over a 3-month period in refrigerated temperature. Considering both FTIR and DSC analysis, it can be concluded that there is no new band formation between materials and ATA in our nano-formulation. Particle sizes obtained using AFM images are in a good agreement to those established from the DLS analysis.Conclusion: These data showed a promising delivery system for vitamin E based on SLN platform.
Collapse
Affiliation(s)
- Farzaneh Nasiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Faghfouri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan, Iran
| |
Collapse
|
169
|
Influence of Rosemary Extract Addition in Different Phases on the Oxidation of Lutein and WPI in WPI-Stabilized Lutein Emulsions. J FOOD QUALITY 2020. [DOI: 10.1155/2020/5894646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim was to investigate rosemary extract with different addition methods affecting the physicochemical stability of WPI-coated lutein emulsions and examine the correlations between lutein degradation and WPI oxidation during storage. First, lutein emulsions containing different concentrations of rosemary extract in the oil phase were prepared. Second, lutein emulsions containing rosemary extract in the oil phase or water phase were studied along with the kinetic reaction of lutein degradation. Moreover, the impact of rosemary extract on the oxidation of WPI and their products was also determined. It was noticed that rosemary extract at 0.05 wt.% exhibited the best protection of lutein. According to the kinetics analysis of lutein degradation, the direct addition of rosemary extract in the oil phase was more suitable for retarding the degradation of lutein in emulsion than the addition in the aqueous phase due to it being partitioned at the interface. Meanwhile, it was revealed that the addition of rosemary extract in the water phase exhibited better inhibition of the WPI oxidation than addition in the oil phase. The understanding of the association and driving forces of rosemary extract in emulsion systems may be useful for the application of rosemary extract in multicomponent food systems.
Collapse
|
170
|
Microencapsulation of vitamin D in protein matrices: in vitro release and storage stability. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00366-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
171
|
Jain S, Winuprasith T, Suphantharika M. Digestion behavior and gastrointestinal fate of oil-in-water emulsions stabilized by different modified rice starches. Food Funct 2020; 11:1087-1097. [DOI: 10.1039/c9fo01628g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study highlights how starch modification and the concentration of resistant starch may alter the lipid digestion behavior in oil-in-water emulsions.
Collapse
Affiliation(s)
- Surangna Jain
- Department of Biotechnology
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | | | - Manop Suphantharika
- Department of Biotechnology
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| |
Collapse
|
172
|
Gao W, Jiang Z, Du X, Zhang F, Liu Y, Bai X, Sun G. Impact of Surfactants on Nanoemulsions based on Fractionated Coconut Oil: Emulsification Stability and in vitro Digestion. J Oleo Sci 2020; 69:227-239. [DOI: 10.5650/jos.ess19264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei Gao
- College of Food Science and Engineering, Hainan University
| | - Zefang Jiang
- College of Food Science and Engineering, Hainan University
| | - Xiaojing Du
- College of Food Science and Engineering, Hainan University
| | - Fangfang Zhang
- College of Food Science and Engineering, Hainan University
| | - Yawen Liu
- College of Food Science and Engineering, Hainan University
| | - Xinpeng Bai
- College of Food Science and Engineering, Hainan University
- Tropical Polysaccharide Resources Utilization Engineering Research Center of the Ministry of Education, Hainan University
| | | |
Collapse
|
173
|
Lordan R, Redfern S, Tsoupras A, Zabetakis I. Inflammation and cardiovascular disease: are marine phospholipids the answer? Food Funct 2020; 11:2861-2885. [DOI: 10.1039/c9fo01742a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review presents the latest research on the cardioprotective effects of n-3 fatty acids (FA) and n-3 FA bound to polar lipids (PL). Overall, n-3 PL may have enhanced bioavailability and potentially bioactivityversusfree FA and ester forms of n-3 FA.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Shane Redfern
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Ioannis Zabetakis
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| |
Collapse
|
174
|
Controlling the rheological properties of W1/O/W2 multiple emulsions using osmotic swelling: Impact of WPI-pectin gelation in the internal and external aqueous phases. Colloids Surf B Biointerfaces 2020; 185:110629. [DOI: 10.1016/j.colsurfb.2019.110629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023]
|
175
|
VIEIRA MDC, BAKOF KK, SCHUCH NJ, SKUPIEN JA, BOECK CR. The benefits of omega-3 fatty acid nanocapsulation for the enrichment of food products: a review. REV NUTR 2020. [DOI: 10.1590/1678-9865202033e190165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Polyunsaturated fatty acids oxidize easily due to their chemical structure, causing a reduction of their nutritional properties. Nanostructured systems may be an alternative to protect fatty acids against oxidation, improving solubility and stability. Consequently, nutritional value of food is maintained as well as the sensory characteristics (color, flavor, texture, and aroma) when fatty acids are added to food products. The present study is a narrative review to introduce the potential benefits of omega-3 unsaturated fatty acids nanoparticles incorporated in food products. The literature review includes publications in English and Portuguese issued between March 1985 and March 2019, in PubMed, ScienceDirect and Web of Science databases. Manual searches were conducted in the articles references lists of the articles included to identify other relevant studies. There were studies that evaluated the stability of fatty acids in food products such as bread, fruit juice, milk, yogurt, and meat. In this study, the most used nanostructured systems for the incorporation of fatty acids were the nanocapsules and the nanoliposomes. Currently, the nanostructured system demonstrates a potential to improve protection of polyunsaturated fatty acids against oxidization and thermal degradation. In this way, they maintain their functional properties and their bioavailability increases and therapeutic efficacy and sensory properties are improved. There are several methodologies being tested, which makes it difficult to identify the most efficient formulation to protect fatty acids. Nanostructured systems seem to be the best alternative to protect polyunsatured fatty acids from oxidization. The encapsulation efficiency, particle’s size and type are relevant factors to be considered to evaluate oxidization. In conclusion, the review showed that currently it is impossible to determine the most efficient methodology. Besides, nanoformulations should follow international guidelines to present more standardized and therefore more efficient particles.
Collapse
|
176
|
He S, Ye A. Formation and gastrointestinal digestion of β‐carotene emulsion stabilized by milk fat globule membrane. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shenghua He
- Key Laboratory of Biomarker Based Rapid‐detection Technology for Food Safety of Henan ProvinceXuchang University Xuchang China
| | - Aiqian Ye
- Riddet Institute, Massey University Palmerston North New Zealand
| |
Collapse
|
177
|
Milinčić DD, Popović DA, Lević SM, Kostić AŽ, Tešić ŽL, Nedović VA, Pešić MB. Application of Polyphenol-Loaded Nanoparticles in Food Industry. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1629. [PMID: 31744091 PMCID: PMC6915646 DOI: 10.3390/nano9111629] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022]
Abstract
Nanotechnology is an emerging field of science, and nanotechnological concepts have been intensively studied for potential applications in the food industry. Nanoparticles (with dimensions ranging from one to several hundred nanometers) have specific characteristics and better functionality, thanks to their size and other physicochemical properties. Polyphenols are recognized as active compounds that have several putative beneficial properties, including antioxidant, antimicrobial, and anticancer activity. However, the use of polyphenols as functional food ingredients faces numerous challenges, such as their poor stability, solubility, and bioavailability. These difficulties could be solved relatively easily by the application of encapsulation. The objective of this review is to present the most recent accomplishments in the usage of polyphenol-loaded nanoparticles in food science. Nanoparticles loaded with polyphenols and their applications as active ingredients for improving physicochemical and functional properties of food, or as components of active packaging materials, were critically reviewed. Potential adverse effects of polyphenol-loaded nanomaterials are also discussed.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Dušanka A. Popović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Steva M. Lević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Aleksandar Ž. Kostić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Živoslav Lj. Tešić
- Faculty of Chemistry, University of Belgrade, Studentski Trg, 12-16, 11158 Belgrade, Serbia;
| | - Viktor A. Nedović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| | - Mirjana B. Pešić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (D.A.P.); (S.M.L.); (A.Ž.K.); (V.A.N.)
| |
Collapse
|
178
|
Rabelo RS, Tavares GM, Prata AS, Hubinger MD. Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration. Carbohydr Polym 2019; 223:115120. [DOI: 10.1016/j.carbpol.2019.115120] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
|
179
|
Tripodi E, Lazidis A, Norton IT, Spyropoulos F. Food Structure Development in Emulsion Systems. HANDBOOK OF FOOD STRUCTURE DEVELOPMENT 2019. [DOI: 10.1039/9781788016155-00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of food products exist, in part or entirely, as emulsions, while others are present in an emulsified state at some point during their production/formation. Mayonnaise, butter, margarine, salad dressing, whipped cream, and ice cream represent some of the typical examples of emulsion-based foods. Controlled by both formulation and processing aspects, the emulsion architecture that is formed ultimately determines many of the attributes of the final food product. This chapter initially provides an overview of the basic constituents of emulsions and their influence on the microstructure and stability of conventional as well as more complex systems. The available spectrum of processing routes and characterization techniques currently utilized (or emerging) within the area of emulsions is then discussed. The chapter concludes with a concise outline of the relationship between food emulsion microstructure design and its performance (textural, rheological, sensorial, etc.).
Collapse
Affiliation(s)
- Ernesto Tripodi
- Chemical Engineering Department, University of Birmingham UK
| | - Aris Lazidis
- Chemical Engineering Department, University of Birmingham UK
- Nestlé Product Technology Centre, York UK
| | - Ian T. Norton
- Chemical Engineering Department, University of Birmingham UK
| | | |
Collapse
|
180
|
Influence of AO chain length, droplet size and oil to water ratio on the distribution and on the activity of gallates in fish oil-in-water emulsified systems: Emulsion and nanoemulsion comparison. Food Chem 2019; 310:125716. [PMID: 31796227 DOI: 10.1016/j.foodchem.2019.125716] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
Abstract
The distribution of a homologous series of polyphenol derivatives of increasing lipophilicity has been determined in fish oil-in-water emulsions and nanoemulsions by the pseudophase model. One of the hypotheses on which the pseudophase model is based, is that its application is independent of the size of emulsion droplets. In agreement with our hypothesis, results showed that the smaller droplet size found in nanoemulsions does not affect partition constants of gallic acid (GA) and its esters. The antioxidant efficiency of GA and gallates in the emulsified systems used, correlated positively with the concentration of antioxidant at the interfacial region. The increase in the oil/water ratio increased the overall oxidative stability of emulsions but decreased the antioxidant efficiency of the more lipophilic derivatives. This can be assigned to the fact that, increasing the oil phase volume, the interfacial concentration decreased for the more lipophilic antioxidants.
Collapse
|
181
|
Durmus M. The effects of nanoemulsions based on citrus essential oils (orange, mandarin, grapefruit, and lemon) on the shelf life of rainbow trout (
Oncorhynchus mykiss
) fillets at 4 ± 2°C. J Food Saf 2019. [DOI: 10.1111/jfs.12718] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mustafa Durmus
- Department of Seafood and Processing Technology, Faculty of FisheriesÇukurova University Adana Turkey
| |
Collapse
|
182
|
Voblikova T, Mannino S, Barybina L, Sadovoy V, Permyakov A, Ivanov V, Selimov M. Immobilisation of bifidobacteria in biodegradable food-grade microparticles. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-1-74-83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present research features a natural polymer that can be used for immobilisation of bifidobacteria as well as a method of immobilisation. We described a modified method of microencapsulation of probiotics using sodi- um alginate. The experiment studied the effect of encapsulation on probiotic stability and involved an in vitro model of human digestive tract. The test sample of microencapsulated Bifi obacterium bifi um 791 showed a decrease in the activity from 3.0×107 to 2.2×105 CFU/ml in a mouse model with pH 1.2. By contrast, the control sample, unprotected by biodegradable polymer microcapsules, demonstrated a higher death rate of bifidobacteria: from 2.6×108 CFU/ml to 5.0×103 CFU/ml. The control sample demonstrated the same downward trend in in vitro gastrointestinal models with pH values of 4.5, 6.8, 7.2, and 5.8. Because the total plate count fell down to 4.0l g CFU/ml in acidity gradients, the titres of the initial microencapsulated biomass had to be increased up to > 109 CFU/ml. According to the results of scanning electron microscopy, the new type of microcapsules obtained by using a resistant starch had a closed sur- face. Prebiotics increased the resistance of bacteria to low pH and bile salts. Bifidobacteria encapsulated with natural biodegradable polymers proved to be well-tolerated and harmless for mice. The experiment revealed that biodegrad- able polymer microcapsules did not cause any chronic or acute toxicity when administered orally at 2×107 CFU per 1 gram of animal mass. The microcapsules demonstrated neither dermonecrotic properties nor any irritant effect on the ocular mucosa and, thus, can be used for food enforcement.
Collapse
|
183
|
Comparision of heteroaggregation, layer-by-layer and directly mixing techniques on the physical properties and in vitro digestion of emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
184
|
|
185
|
Novel Edible Coating with Antioxidant and Antimicrobial Activities Based on Whey Protein Isolate Nanofibrils and Carvacrol and Its Application on Fresh-Cut Cheese. COATINGS 2019. [DOI: 10.3390/coatings9090583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The composition and properties of edible coatings (ECs) will significantly influence their effects of food preservation. For the first time, whey protein isolates nanofibers (WPNFs), as a novel material with high hydrophobicity and antioxidant activity, combined with carvacrol (CA) as an antimicrobial agent and glycerol (Gly) as a plasticizer, was used to prepare edible coating (WPNFs-CA/Gly) for preserving fresh-cut Cheddar cheese. The prepared WPNFs and ECs emulsions have been investigated with transmission electron microscopy. Furthermore, the antioxidant activity of ECs emulsions, antimicrobial activity of edible films, and the physical properties of edible films, such as micromorphology, thickness, transparency, and moisture content, have also been evaluated. The weight losses and physical characteristics of both coated and uncoated fresh-cut Cheddar cheese samples have been assessed during storage. The DPPH free radical scavenging rate of WPNFs-CA/Gly emulsion was up to 67.89% and the reducing power was 0.821, which was higher than that of WPI-CA/Gly emulsions. The antimicrobial activity of WPNFs-CA/Gly films was nearly 2.0-fold higher than that of WPNFs/Gly films for the presence of CA. The WPNFs-CA/Gly films had smooth and continuous surfaces, and the transparency reached 49.7% and the moisture content was 26.0%, which was better than that of WPI-CA/Gly films. Furthermore, Cheddar cheese with WPNFs-CA/Gly coatings has shown lower weight losses (15.23%) and better textural properties than those uncoated samples. This in-depth study has provided a valuable and noteworthy approach about the novel edible coating material.
Collapse
|
186
|
Jiang S, Mou Y, He H, Yang D, Qin L, Zhang F, Zhang P. Preparation and evaluation of self-assembly Soluplus®-sodium cholate-phospholipid ternary mixed micelles of docetaxel. Drug Dev Ind Pharm 2019; 45:1788-1798. [DOI: 10.1080/03639045.2019.1660365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shanshan Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Huiyang He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dandan Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Fang Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
187
|
Chen JF, Guo J, Liu SH, Luo WQ, Wang JM, Yang XQ. Zein Particle-Stabilized Water-In-Water Emulsion as a Vehicle for Hydrophilic Bioactive Compound Loading of Riboflavin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9926-9933. [PMID: 31398027 DOI: 10.1021/acs.jafc.9b02415] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vitamins and flavonoids are two kinds of essential trace bioactives which are prone to photodegradation during food processing and storage. In this study, a particle-stabilized water-in-water (W/W) emulsion system composed of soy protein isolate (SPI) and guar gum (GG) was applied in loading riboflavin. Based on the significant binding affinity differences of SPI (Ka = 1.11 × 105 L mol-1) and GG (Ka = 9.00 × 103 L mol-1) to riboflavin, this hydrophilic and light-sensitive bioactive compound was loaded in SPI-rich droplets. Confocal images indicated that a stable microstructure of SPI-rich droplets suspended in GG-rich continuous phase was successfully constructed by manipulating the proportion of the two polymeric components and using zein-based particles (ZPs) as stabilizers. These negatively charged particles modified by pectin with a hydrodynamic diameter of 533 ± 5.7 nm were able to adsorb at the SPI/GG interface and subsequently stabilized the SPI-in-GG emulsion. Fluorescence spectra of riboflavin suggested that the formation of such W/W emulsion could effectively delay the photodegradation of riboflavin during an 8 h ultraviolet irradiation, and its color was maintained to a maximum extent. Therefore, this structured W/W emulsion could be a desired architecture for delivering light-sensitive cargo.
Collapse
Affiliation(s)
- Jia-Feng Chen
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Jian Guo
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Si-Hong Liu
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Wei-Qian Luo
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Jin-Mei Wang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| | - Xiao-Quan Yang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing , South China University of Technology , Guangzhou 510640 , P. R China
| |
Collapse
|
188
|
Lee S, Kirkland R, Grunewald ZI, Sun Q, Wicker L, de La Serre CB. Beneficial Effects of Non-Encapsulated or Encapsulated Probiotic Supplementation on Microbiota Composition, Intestinal Barrier Functions, Inflammatory Profiles, and Glucose Tolerance in High Fat Fed Rats. Nutrients 2019; 11:nu11091975. [PMID: 31443365 PMCID: PMC6769526 DOI: 10.3390/nu11091975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022] Open
Abstract
Development of obesity-associated comorbidities is related to chronic inflammation, which has been linked to gut microbiota dysbiosis. Thus, modulating gut microbiota composition could have positive effects for metabolic disorders, supporting the use of probiotics as potential therapeutics in vivo, which may be enhanced by a microencapsulation technique. Here we investigated the effects of non-encapsulated or pectin-encapsulated probiotic supplementation (Lactobacillus paracasei subsp. paracasei L. casei W8®; L. casei W8) on gut microbiota composition and metabolic profile in high-fat (HF) diet-fed rats. Four male Wistar rat groups (n = 8/group) were fed 10% low-fat, 45% HF, or HF with non-encapsulated or encapsulated L. casei W8 (4 × 107 CFU/g diet) diet for seven weeks. Microbiota composition, intestinal integrity, inflammatory profiles, and glucose tolerance were assessed. Non-encapsulated and pectin-encapsulated probiotic supplementation positively modulated gut microbiota composition in HF-fed male rats. These changes were associated with improvements in gut barrier functions and local and systemic inflammation by non-encapsulated probiotics and improvement in glucose tolerance by encapsulated probiotic treatment. Thus, these findings suggest the potential of using oral non-encapsulated or encapsulated probiotic supplementation to ameliorate obesity-associated metabolic abnormalities.
Collapse
Affiliation(s)
- Sunhye Lee
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Rebecca Kirkland
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Qingshen Sun
- College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Louise Wicker
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, 101 LSU Union Square, Baton Rouge, LA 70803, USA
| | - Claire B de La Serre
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
189
|
Wen P, Hu TG, Wen Y, Linhardt RJ, Zong MH, Zou YX, Wu H. Targeted delivery of phycocyanin for the prevention of colon cancer using electrospun fibers. Food Funct 2019; 10:1816-1825. [PMID: 30806395 DOI: 10.1039/c8fo02447b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phycocyanin (PC), a water-soluble biliprotein, exhibits potent anti-colon cancer properties. However, its application in functional foods is limited by the poor stability and low bioavailability of PC. In this study, we successfully encapsulated PC by coaxial electrospinning. The colon targeted release of PC was achieved with retention of the antioxidant activity of PC. The PC-loaded electrospun fiber mat (EFM) obtained inhibited HCT116 cell growth in a dose-dependent and time-dependent manner. In particular, the PC-loaded EFM exerted its anti-cancer activity by blocking the cell cycle at the G0/G1 phase and inducing cell apoptosis involving the decrease of Bcl-2/Bax, activation of caspase 3 and release of cytochrome c. This study suggests that co-axial electrospinning is an efficient and effective way to deliver PC and improve its bioavailability; thus, it represents a promising approach for encapsulating functional ingredients for colon cancer prevention.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | | | | | |
Collapse
|
190
|
Nguyen MK, Moon JY, Bui VKH, Oh YK, Lee YC. Recent advanced applications of nanomaterials in microalgae biorefinery. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
191
|
Yousefi M, Ehsani A, Jafari SM. Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Adv Colloid Interface Sci 2019; 270:263-277. [PMID: 31306852 DOI: 10.1016/j.cis.2019.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Direct application of antibacterial agents into foods gives limited advantages because bioactive ingredients may be partially inactivated, neutralized, or easily diffused when contacting with the food matrix. Hence, the aim of this study is to investigate the application of lipid-based nanocarriers as delivery systems for antibacterial ingredients. In this regard, several types of these carriers such as nanoliposomes, nanoemulsions, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) are explored. This study seeks to cover the important challenges of lipid-based nanocarriers including structures and characteristics, properties, production methods, advantages and drawbacks, and their applications to encapsulate antibacterial compounds effectively, particularly in food systems. However, for more scrutiny inspection of the functionality of lipid-based nanocarriers, we have gathered and discussed the studies related to the antibiotic-loaded lipid-based nanoparticles. Also, the role of such nanocarriers in active packaging systems when combining with edible coatings or films is discussed.
Collapse
|
192
|
Fang S, Zhao X, Liu Y, Liang X, Yang Y. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
193
|
Koshani R, Jafari SM. Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 2019; 270:123-146. [PMID: 31226521 DOI: 10.1016/j.cis.2019.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/30/2022]
Abstract
Developing green and facile approaches to produce nanostructures suitable for bioactives, nanoencapsulation faces some challenges in the nutraceutical and food bioactive industries due to potential risks arising from nanomaterials fabrication and consumption. High-intensity ultrasound is an effective technology to generate different bio-based structures in sub-micron or nanometer scale. This technique owing to some intrinsic advantages such as safety, straightforward operation, energy efficiency, and scale-up potential, as well as, ability to control over size and morpHology has stood out among various nanosynthetic routes. Ultrasonically-provided energy is mainly transferred to the droplets and particles via acoustic cavitation (which is formation, growth, and implosive collapse of bubbles in solvent). This review provides an outlook on the fundamentals of ultrasonication and some applicable setups in nanoencapsulation. Different kinds of nanostructures based on surfactants, lipids, proteins and carbohydrates formed by sonication, along with their advantages and disadvantages are assessed from the viewpoint of stability, particle size, and process impacts on some functionalities. The gastrointestinal fate and safety issues of ultrasonically prepared nanostructures are also discussed. Sonication, itself or in combination with other encapsulation approaches, alongside biopolymers generate nano-engineered carriers with enough stability, small particle sizes, and a low polydispersity. The nano-sized systems improve techno-functional activities of encapsulated bioactive agents including stability, solubility, dissolution, availability, controlled and targeted release profile in vitro and in vivo plus other bioactive properties such as antioxidant and antimicrobial capacities. Ultrasonically prepared nanocarriers show a great potential in fortifying food products with desired bioactive components, especially for the industrial applications.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp and Paper Research Centre, McGill University, Montreìal, Queìbec H3A 0B8, Canada; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
194
|
Chen XW, Ning XY, Zou Y, Liu X, Yang XQ. Multicompartment emulsion droplets for programmed release of hydrophobic cargoes. Food Funct 2019; 10:4522-4532. [PMID: 31355399 DOI: 10.1039/c9fo00558g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Delivery systems with multicompartmental structures that allow simultaneous delivery of several cargos are of great interest in both fundamental research and industrial applications. Here, we report a facile and easily scalable approach to fabricate multi-compartmentalized microdroplets for achieving programmed release of hydrophobic cargoes. Well-dispersed nanodroplets stabilized by natural Quillaja saponin served as an effective colloid stabilizer for fabricating microscale emulsion droplets with multicompartment architectures comprising many nanoscale droplets as a shell and single microscale core. Control of the number of nanodroplets allows accurate manipulation of the interface permeability for flexible and controllable release of volatile compounds (e.g., 2,3-butanedione, cis-3-hexen-1-ol, ethyl butyrate, d-limonene). More interestingly, the multicompartment microdroplets exhibited a higher flexibility for programmed release of different volatile compounds, as well as curcumin, during in vitro digestion by introducing cargos into the shell subcompartments or core microcompartment. The promising results highlight the power of this multi-compartmentalized system toward accessing a powerful platform for functional cargo delivery strategies.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | | | | | | | | |
Collapse
|
195
|
Electrohydrodynamic atomization of Balangu (Lallemantia royleana) seed gum for the fast-release of Mentha longifolia L. essential oil: Characterization of nano-capsules and modeling the kinetics of release. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
196
|
Kim TI, Kim TG, Lim DH, Kim SB, Park SM, Hur TY, Ki KS, Kwon EG, Vijayakumar M, Kim YJ. Preparation of Nanoemulsions of Vitamin A and C by Microfluidization: Efficacy on the Expression Pattern of Milk-Specific Proteins in MAC-T Cells. Molecules 2019; 24:molecules24142566. [PMID: 31311137 PMCID: PMC6680671 DOI: 10.3390/molecules24142566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/27/2023] Open
Abstract
In this study, we prepared stabilized vitamin A and C nanoemulsions, and investigated their efficacy on milk-specific proteins in bovine mammary epithelial cells (MAC-T). Emulsions of vitamin A (vit-A) and C (vit-C) were prepared using Lipoid S 75 and microfluidization. The particle size and polydispersity index (PDI) of nanoemulsified vit-A and vit-C were studied. The cytotoxic effect of nanoemulsion-free and nanoemulsified vit-A and vit-C was determined by an MTT assay. In addition, the efficacy of nanoemulsified vit-A and vit-C on the in vitro expression pattern of milk-specific proteins in MAC-T cells was investigated by quantitative RT-PCR. The results showed that the efficacies of stabilized nanoemulsions of vit-A and vit-C were 100% and 92.7%, respectively. The particle sizes were around 475.7 and 225.4 nm, and the zeta potentials were around −33.5 and −21.3 mV, respectively. The expression changes of αs2-, β- and κ-casein were higher in the presence of a stabilized nanoemulsion of vit-A, compared with nanoemulsion-free vit-A. Furthermore, the expression changes of αs2- and β-casein were lower and that of κ-casein was higher in the presence of a stabilized nanoemulsion of vit-C, compared with nanoemulsion-free vit-C. Thus, our findings demonstrate the efficacy of nanoemulsified vit-A and vit-C in changing the expression of milk-specific proteins in MAC-T cells.
Collapse
Affiliation(s)
- Tae-Il Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Chungcheongnam-do, Cheonan 31000, Korea
| | - Tae-Gyun Kim
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Dong-Hyun Lim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Chungcheongnam-do, Cheonan 31000, Korea
| | - Sang-Bum Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Chungcheongnam-do, Cheonan 31000, Korea
| | - Seong-Min Park
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Chungcheongnam-do, Cheonan 31000, Korea
| | - Tai-Young Hur
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Chungcheongnam-do, Cheonan 31000, Korea
| | - Kwang-Seok Ki
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Chungcheongnam-do, Cheonan 31000, Korea
| | - Eung-Gi Kwon
- Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang-gun, Gangwon-do 25340, Korea
| | - Mayakrishnan Vijayakumar
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Chungcheongnam-do, Cheonan 31000, Korea.
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| |
Collapse
|
197
|
Yazgan H, Ozogul Y, Kuley E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int J Food Microbiol 2019; 306:108266. [PMID: 31319195 DOI: 10.1016/j.ijfoodmicro.2019.108266] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 02/08/2023]
Abstract
The antimicrobial activities of lemon oil based nanoemulsion and two different concentrations of lemon essential oil (100% and 10%) on food-brne pathogens (Staphylococcus aureus, Klebsiella pneumoniae, Enterococcus faecalis and Salmonella Paratyphi A) and fish spoilage bacteria (Photobacterium damselae, Enterococcus faecalis, Vibrio vulnificus, Proteus mirabilis, Serratia liquefaciens, and Pseudomonas luteola) were compared in terms of disc diffusion, minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC). The constitutes of extracted lemon essential oil were identified by using GC-MS. Viscosity, the mean droplet size, thermodynamic stability and refractive index of nanoemulsions were determined. The main components detected in the lemon essential oil were d-limonene, p-cymene, β-pinene with percentages of 52.85%, 14.36%, and 13.69%, respectively. It was found that lemon nanoemulsion was more effective on food-borne pathogens except K. pneumoniae than 100% lemon essential oil. 10% lemon essential oil showed the highest inhibition effect on S. Paratyphi A. The conversion of the essential oil into nanoemulsion improved antimicrobial activity. According to value of MIC, both nanoemulsion and 100% essential oil inhibited bacterial growth of all of the pathogen bacteria tested whereas they were less effective on inhibition of fish spoilage bacteria. However, 10% essential oil was more effective on spoilage bacteria than pathogens. MBC showed that nanoemulsion and 100% lemon essential oil presented a noticeable bactericidal activity against S. paratyphi A whereas 10% lemon essential oil was found as ≥25 mg/mL against pathogens and spoilage bacteria. Therefore, the use of nanoemulsion based on lemon essential oil can have potential as a natural antimicrobial agent against food-borne pathogen and spoilage bacteria for fish processing industry.
Collapse
Affiliation(s)
- Hatice Yazgan
- Department of Food Hygiene and Technology, Faculty of Ceyhan Veterinary Medicine, University of Cukurova, Adana, Turkey.
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Esmeray Kuley
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| |
Collapse
|
198
|
Wang X, Li X, Xu D, Zhu Y, Cao Y, Li X, Sun B. Modulation of stability, rheological properties, and microstructure of heteroaggregated emulsion: Influence of oil content. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
199
|
Xu Y, Dai T, Li T, Huang K, Li Y, Liu C, Chen J. Investigation on the binding interaction between rice glutelin and epigallocatechin-3-gallate using spectroscopic and molecular docking simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:215-222. [PMID: 30939368 DOI: 10.1016/j.saa.2019.03.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The interaction between plant protein and polyphenol is a topic of considerable interest. However, there is relatively little understanding about the interaction between rice protein and epigallocatechin-3-gallate (EGCG). The spectroscopy and computational docking program were used to investigate the potential interaction between rice glutelin (RG) and EGCG. It was found that the intrinsic fluorescence of RG could be quenched by EGCG, which indicated interaction occurred between them. Thermodynamic analysis elucidated that the interaction process between RG and EGCG happened spontaneously with hydrogen bond as the primary driving force. The ANS-fluorescence indicated that the surface hydrophobicity of RG reduced with the increasing of EGCG. Circular dichroism spectra and synchronous fluorescence gave further information for the conformational and microenvironmental changes of RG. Particularly, the α-helix structure reduced and random coil structure increased after the binding interaction. Furthermore, the computational docking program exhibited target sites in which the amino acid residues of RG and EGCG might be bound together.
Collapse
Affiliation(s)
- Yujia Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Kechou Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
200
|
Physical and chemical stability under environmental stress of microemulsions formulated with fish oil. Food Res Int 2019; 119:283-290. [DOI: 10.1016/j.foodres.2019.01.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 11/20/2022]
|