151
|
Abstract
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms.
Collapse
|
152
|
Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 2008; 133:1055-67. [PMID: 18555781 PMCID: PMC2481404 DOI: 10.1016/j.cell.2008.04.044] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 11/15/2007] [Accepted: 04/24/2008] [Indexed: 11/27/2022]
Abstract
The prevailing view of intra-Golgi transport is cisternal progression, which has a key prediction--that newly arrived cargo exhibits a lag or transit time before exiting the Golgi. Instead, we find that cargo molecules exit at an exponential rate proportional to their total Golgi abundance with no lag. Incoming cargo molecules rapidly mix with those already in the system and exit from partitioned domains with no cargo privileged for export based on its time of entry into the system. Given these results, we constructed a new model of intra-Golgi transport that involves rapid partitioning of enzymes and transmembrane cargo between two lipid phases combined with relatively rapid exchange among cisternae. Simulation and experimental testing of this rapid partitioning model reproduced all the key characteristics of the Golgi apparatus, including polarized lipid and protein gradients, exponential cargo export kinetics, and cargo waves.
Collapse
Affiliation(s)
- George H. Patterson
- Cell Biology and Metabolism Branch, National Institutes of Health, Bldg 18T Rm 101, 18 Library Drive, Bethesda, MD 20892-5430
| | - Koret Hirschberg
- Cell Biology and Metabolism Branch, National Institutes of Health, Bldg 18T Rm 101, 18 Library Drive, Bethesda, MD 20892-5430
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Roman S. Polishchuk
- Department of Cell Biology and Oncology, Consorzio “Mario Negri Sud” Santa Maria Imbaro (CH), 66030, Italy
| | | | | | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Branch, National Institutes of Health, Bldg 18T Rm 101, 18 Library Drive, Bethesda, MD 20892-5430
| |
Collapse
|
153
|
Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, Böckmann RA, Corda D, Colanzi A, Marjomaki V, Luini A. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J 2008; 27:970-81. [PMID: 18354494 PMCID: PMC2323256 DOI: 10.1038/emboj.2008.59] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 02/29/2008] [Indexed: 12/22/2022] Open
Abstract
Membrane fission is an essential process in membrane trafficking and other cellular functions. While many fissioning and trafficking steps are mediated by the large GTPase dynamin, some fission events are dynamin independent and involve C-terminal-binding protein-1/brefeldinA-ADP ribosylated substrate (CtBP1/BARS). To gain an insight into the molecular mechanisms of CtBP1/BARS in fission, we have studied the role of this protein in macropinocytosis, a dynamin-independent endocytic pathway that can be synchronously activated by growth factors. Here, we show that upon activation of the epidermal growth factor receptor, CtBP1/BARS is (a) translocated to the macropinocytic cup and its surrounding membrane, (b) required for the fission of the macropinocytic cup and (c) phosphorylated on a specific serine that is a substrate for p21-activated kinase, with this phosphorylation being essential for the fission of the macropinocytic cup. Importantly, we also show that CtBP1/BARS is required for macropinocytic internalization and infection of echovirus 1. These results provide an insight into the molecular mechanisms of CtBP1/BARS activation in membrane fissioning, and extend the relevance of CtBP1/BARS-induced fission to human viral infection.
Collapse
Affiliation(s)
- Prisca Liberali
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Elina Kakkonen
- Department of Biological and Environmental Science, Nanoscience Centre, University of Jyvaskyla, Jyvaskyla, Finland
| | - Gabriele Turacchio
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Carmen Valente
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Alexander Spaar
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Giuseppe Perinetti
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Rainer A Böckmann
- Theoretical and Computational Membrane Biology, Centre for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Daniela Corda
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Antonino Colanzi
- Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Varpu Marjomaki
- Department of Biological and Environmental Science, Nanoscience Centre, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alberto Luini
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| |
Collapse
|
154
|
Abstract
The composition and identity of cell organelles are dictated by the flux of lipids and proteins that they receive and lose through cytosolic exchange and membrane trafficking. The trans-Golgi network (TGN) is a major sorting centre for cell lipids and proteins at the crossroads of the endocytic and exocytic pathways; it has a complex dynamic structure composed of a network of tubular membranes that generate pleiomorphic carriers targeted to different destinations. Live-cell imaging combined with three-dimensional tomography has recently provided the temporal and topographical framework that allows the assembly of the numerous molecular machineries so far implicated in sorting and trafficking at the TGN.
Collapse
|
155
|
|
156
|
|
157
|
Abstract
This unit describes newly developed methods that allow the examination of living cells by time-lapse analysis with the subsequent identification of the just-observed organelle under an electron microscope. To understand how such cellular functions, such as intracellular traffic, cytokinesis, and cell migration, are organized and executed in vivo, it is most useful to observe living cells in real time with the spatial resolution afforded by electron microscopy (EM). Most suitable for this is a conceptually simple, yet powerful, method called correlative video light/electron microscopy (CVLEM), by which observations of the in vivo dynamics and the ultrastructure of intracellular objects can indeed be combined to achieve the above-mentioned result. This unit describes this methodology, illustrates the type of questions that the CVLEM approach was designed to address, and discusses the expertise required for successful application of the technique.
Collapse
Affiliation(s)
- R S Polishchuk
- Consorzio Mario Negri Sud, S. Maria Imbara (Chieti), Italy
| | | |
Collapse
|
158
|
Abstract
The trans-Golgi network (TGN) is one of the main, if not the main, sorting stations in the process of intracellular protein trafficking. It is therefore of central importance to understand how the key players in the TGN-based sorting and delivery process, the post-Golgi carriers (PGCs), form and function. Over the last few years, modern morphological approaches have generated new insights into the questions of PGC biogenesis, structure and dynamics. Here, we present a view by which the “lifecycle” of a PGC consists of several distinct stages: the formation of TGN tubular export domains (where different cargoes are segregated from each other and from the Golgi enzymes); the docking of these tubular domains onto molecular motors and their extrusion towards the cell periphery along microtubules; the fission of the forming PGC from the donor membrane; and the delivery of the newly formed PGC to its specific acceptor organelle. It is now important to add the many molecular machineries that have been described as operating at the TGN to this “morphofunctional map” of the TGN export process.
Collapse
|
159
|
Lasiecka ZM, Yap CC, Vakulenko M, Winckler B. Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:303-89. [DOI: 10.1016/s1937-6448(08)01607-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
160
|
|
161
|
The Golgi apparatus and main discoveries in the field of intracellular transport. THE GOLGI APPARATUS 2008. [PMCID: PMC7121413 DOI: 10.1007/978-3-211-76310-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this chapter, we summarize important findings in the field of intracellular transport, which have considerably contributed to the understanding of the function and organization of the Golgi apparatus (GA). It is not possible to mention all authors in this huge field. We apologize for gaps and incompleteness, and are thankful for suggestions and corrections.
Collapse
|
162
|
Bossard C, Bresson D, Polishchuk RS, Malhotra V. Dimeric PKD regulates membrane fission to form transport carriers at the TGN. J Cell Biol 2007; 179:1123-31. [PMID: 18086912 PMCID: PMC2140039 DOI: 10.1083/jcb.200703166] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 11/15/2007] [Indexed: 01/11/2023] Open
Abstract
Protein kinase D (PKD) is recruited to the trans-Golgi network (TGN) through interaction with diacylglycerol (DAG) and is required for the biogenesis of TGN to cell surface transport carriers. We now provide definitive evidence that PKD has a function in membrane fission. PKD depletion by siRNA inhibits trafficking from the TGN, whereas expression of a constitutively active PKD converts TGN into small vesicles. These findings demonstrate that PKD regulates membrane fission and this activity is used to control the size of transport carriers, and to prevent uncontrolled vesiculation of TGN during protein transport.
Collapse
Affiliation(s)
- Carine Bossard
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Damien Bresson
- La Jolla Institute for Allergy and Immunology, Developmental Immunology 3, La Jolla, CA 92037
| | - Roman S. Polishchuk
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH) 66030, Italy
| | - Vivek Malhotra
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
163
|
Wilke K, Wick K, Keil FJ, Wittern KP, Wepf R, Biel SS. A strategy for correlative microscopy of large skin samples: towards a holistic view of axillary skin complexity. Exp Dermatol 2007; 17:73-81. [PMID: 18005049 DOI: 10.1111/j.1600-0625.2007.00635.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Knowledge about the structural elements of skin and its appendices is an essential prerequisite for understanding their complex functions and interactions. The hence necessary morphological description across several orders of scale not only requires the investigation at the light microscopic level but also ultrastructural investigation, ideally on the identical sample. For a correlative and multimodal observation one unique preparation protocol is mandatory. As a compromise between sample sizes of >500 microm in diameter on the one hand and optimal preservation of antigenicity and morphology on the other, we developed a new preparation protocol that allows (i) 3D reconstruction of the resin-embedded sample by confocal light microscopy prior to (ii) direct immunolocalization of target proteins within selected sample planes by light and fluorescence microscopy or transmission electron microscopy. Alternatively, (iii) serial cryosections of the frozen sample can be taken for characterizing the sample in toto. With this unique approach we were able to fully demonstrate the structural complexity of axillary skin samples, increasing the structural resolution from 3D reconstruction of the whole gland up to ultrastructural investigations at the subcellular level. We could demonstrate that axillary sweat glands are not separately distributed, as has been assumed to date; instead, they seem to be intricately twisted into one another. This promotes the concept of a complex axillary sweat gland organ instead of single sweat gland entities.
Collapse
|
164
|
Manderson AP, Kay JG, Hammond LA, Brown DL, Stow JL. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFalpha. ACTA ACUST UNITED AC 2007; 178:57-69. [PMID: 17606866 PMCID: PMC2064421 DOI: 10.1083/jcb.200612131] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activated macrophages secrete an array of proinflammatory cytokines, including tumor necrosis factor-alpha (TNFalpha) and interleukin 6 (IL-6), that are temporally secreted for sequential roles in inflammation. We have previously characterized aspects of the intracellular trafficking of membrane-bound TNFalpha and its delivery to the cell surface at the site of phagocytic cups for secretion (Murray, R.Z., J.G. Kay, D.G. Sangermani, and J.L. Stow. 2005. Science. 310:1492-1495). The trafficking pathway and surface delivery of IL-6, a soluble cytokine, were studied here using approaches such as live cell imaging of fluorescently tagged IL-6 and immunoelectron microscopy. Newly synthesized IL-6 accumulates in the Golgi complex and exits in tubulovesicular carriers either as the sole labeled cargo or together with TNFalpha, utilizing specific soluble NSF attachment protein receptor (SNARE) proteins to fuse with the recycling endosome. Within recycling endosomes, we demonstrate the compartmentalization of cargo proteins, wherein IL-6 is dynamically segregated from TNFalpha and from surface recycling transferrin. Thereafter, these cytokines are independently secreted, with TNFalpha delivered to phagocytic cups but not IL-6. Therefore, the recycling endosome has a central role in orchestrating the differential secretion of cytokines during inflammation.
Collapse
Affiliation(s)
- Anthony P Manderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
165
|
Wessels E, Simpson JC. Impact of live cell imaging on coated vesicle research. Semin Cell Dev Biol 2007; 18:412-23. [PMID: 17689276 DOI: 10.1016/j.semcdb.2007.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 11/21/2022]
Abstract
The role of membrane traffic is to transfer cargo between distinct subcellular compartments. Each individual trafficking event involves the creation, transport and fusion of vesicular and tubular carriers that are formed and regulated via cytoplasmic coat protein complexes. The dynamic nature of this process is therefore highly suitable for studying using live cell imaging techniques. Although these approaches have raised further questions for the field, they have also been instrumental in providing essential new information, in particular relating to the morphology of transport carriers and the exchange kinetics of coat proteins and their regulators on membranes. Here, we present an overview of live cell-imaging experiments that have been used in the study of coated-vesicle transport, and provide specific examples of their impact on our understanding of coat function.
Collapse
Affiliation(s)
- Els Wessels
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
166
|
Schwartz CL, Sarbash VI, Ataullakhanov FI, McIntosh JR, Nicastro D. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 2007; 227:98-109. [PMID: 17845705 DOI: 10.1111/j.1365-2818.2007.01794.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence light microscopy (LM) has many advantages for the study of cell organization. Specimen preparation is easy and relatively inexpensive, and the use of appropriate tags gives scientists the ability to visualize specific proteins of interest. LM is, however, limited in resolution, so when one is interested in ultrastructure, one must turn to electron microscopy (EM), even though this method presents problems of its own. The biggest difficulty with cellular EM is its limited utility in localizing macromolecules of interest while retaining good structural preservation. We have built a cryo-light microscope stage that allows us to generate LM images of vitreous samples prepared for cryo-EM. Correlative LM and EM allows one to find areas of particular interest by using fluorescent proteins or vital dyes as markers within vitrified samples. Once located, the sample can be placed in the EM for further study at higher resolution. An additional benefit of the cryo-LM stage is that photobleaching is slower at cryogenic temperatures (-140 degrees C) than at room temperature.
Collapse
Affiliation(s)
- Cindi L Schwartz
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Department of Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| | | | | | | | | |
Collapse
|
167
|
Tokarz M, Hakonen B, Dommersnes P, Orwar O, Akerman B. Electrophoretic transport of latex particles in lipid nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7652-8. [PMID: 17547424 DOI: 10.1021/la700336u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Lipid vesicles can be connected by membrane nanotubes to build networks with promising bioanalytical properties. Here we characterize electrophoretic transport in such membrane tubes, with a particular eye to how their soft-material nature influences the intratube migration. In the absence of field, the tube radius is 110 +/- 26 nm, and it remains in this range during electrophoresis even though the applied electric field causes a slight decrease in the tube radius (approximately 6-11%). The electrophoretic velocity of the membrane wall (labeled with quantum dots) varies linearly with the field strength. Intratube migration is studied with latex spheres of radii 15, 50, 100, and 250 nm. The largest particle size does not enter the tube at fields strengths lower than 1250 V/m because the energy cost for expanding the tube around the particles is too high. The smaller particles migrate with essentially the same velocity as the membrane at low fields. Above 250 V/cm, the 15 nm particles exhibit an upward deviation from linear behavior and in fact migrate faster than in free solution whereas the 100 nm particles deviate downward. We propose that these nonlinear effects arise because of lipid adsorption to the particles (dominating for 15 nm particles) and a pistonlike compression of the solvent in front of the particles (dominating for 100 nm). As expected from such complexities, existing theories for a sphere migrating in a rigid-wall cylinder cannot explain our velocity results in lipid nanotubes.
Collapse
Affiliation(s)
- Michal Tokarz
- Department of Chemistry and Bioscience, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
168
|
Colanzi A, Carcedo CH, Persico A, Cericola C, Turacchio G, Bonazzi M, Luini A, Corda D. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J 2007; 26:2465-76. [PMID: 17431394 PMCID: PMC1868899 DOI: 10.1038/sj.emboj.7601686] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/21/2007] [Indexed: 11/09/2022] Open
Abstract
The Golgi ribbon is a complex structure of many stacks interconnected by tubules that undergo fragmentation during mitosis through a multistage process that allows correct Golgi inheritance. The fissioning protein CtBP1-S/BARS (BARS) is essential for this, and is itself required for mitotic entry: a block in Golgi fragmentation results in cell-cycle arrest in G2, defining the 'Golgi mitotic checkpoint'. Here, we clarify the precise stage of Golgi fragmentation required for mitotic entry and the role of BARS in this process. Thus, during G2, the Golgi ribbon is converted into isolated stacks by fission of interstack connecting tubules. This requires BARS and is sufficient for G2/M transition. Cells without a Golgi ribbon are independent of BARS for Golgi fragmentation and mitotic entrance. Remarkably, fibroblasts from BARS-knockout embryos have their Golgi complex divided into isolated stacks at all cell-cycle stages, bypassing the need for BARS for Golgi fragmentation. This identifies the precise stage of Golgi fragmentation and the role of BARS in the Golgi mitotic checkpoint, setting the stage for molecular analysis of this process.
Collapse
Affiliation(s)
- Antonino Colanzi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- These authors contributed equally to this work
| | - Cristina Hidalgo Carcedo
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- These authors contributed equally to this work
- Present address: Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK
| | - Angela Persico
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Claudia Cericola
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Gabriele Turacchio
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Matteo Bonazzi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- Present address: Unité des Interactions Bactéries-Cellules, Institut Pasteur, 75015 Paris, France
| | - Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| |
Collapse
|
169
|
Harsay E, Schekman R. Avl9p, a member of a novel protein superfamily, functions in the late secretory pathway. Mol Biol Cell 2007; 18:1203-19. [PMID: 17229886 PMCID: PMC1838974 DOI: 10.1091/mbc.e06-11-1035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The branching of exocytic transport routes in both yeast and mammalian cells has complicated studies of the late secretory pathway, and the mechanisms involved in exocytic cargo sorting and exit from the Golgi and endosomes are not well understood. Because cargo can be sorted away from a blocked route and secreted by an alternate route, mutants defective in only one route do not exhibit a strong secretory phenotype and are therefore difficult to isolate. In a genetic screen designed to isolate such mutants, we identified a novel conserved protein, Avl9p, the absence of which conferred lethality in a vps1Delta apl2Delta strain background (lacking a dynamin and an adaptor-protein complex 1 subunit). Depletion of Avl9p in this strain resulted in secretory defects as well as accumulation of Golgi-like membranes. The triple mutant also had a depolarized actin cytoskeleton and defects in polarized secretion. Overexpression of Avl9p in wild-type cells resulted in vesicle accumulation and a post-Golgi defect in secretion. Phylogenetic analysis indicated evolutionary relationships between Avl9p and regulators of membrane traffic and actin function.
Collapse
Affiliation(s)
- Edina Harsay
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
170
|
Derby MC, Gleeson PA. New Insights into Membrane Trafficking and Protein Sorting. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:47-116. [PMID: 17560280 DOI: 10.1016/s0074-7696(07)61002-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein transport in the secretory and endocytic pathways is a multistep process involving the generation of transport carriers loaded with defined sets of cargo, the shipment of the cargo-loaded transport carriers between compartments, and the specific fusion of these transport carriers with a target membrane. The regulation of these membrane-mediated processes involves a complex array of protein and lipid interactions. As the machinery and regulatory processes of membrane trafficking have been defined, it is increasingly apparent that membrane transport is intimately connected with a number of other cellular processes, such as quality control in the endoplasmic reticulum (ER), cytoskeletal dynamics, receptor signaling, and mitosis. The fidelity of membrane trafficking relies on the correct assembly of components on organelles. Recruitment of peripheral proteins plays a critical role in defining organelle identity and the establishment of membrane subdomains, essential for the regulation of vesicle transport. The molecular mechanisms for the biogenesis of membrane subdomains are also central to understanding how cargo is sorted and segregated and how different populations of transport carriers are generated. In this review we will focus on the emerging themes of organelle identity, membrane subdomains, regulation of Golgi trafficking, and advances in dissecting pathways in physiological systems.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
171
|
Mironov AA, Banin VV, Sesorova IS, Dolgikh VV, Luini A, Beznoussenko GV. Evolution of the Endoplasmic Reticulum and the Golgi Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 607:61-72. [DOI: 10.1007/978-0-387-74021-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
172
|
Abstract
In the trans-Golgi network (TGN), proteins are sorted for transport to the endosomes, plasma membrane, preceding Golgi cisternae, and endoplasmic reticulum. The formation of clathrin-coated vesicles for transport to the endosomes and of COP-I-coated vesicles for retrograde trafficking is fairly well characterized at the molecular level. We describe our current understanding of the TGN-to-cell-surface carriers, with a specific focus on the components involved in membrane fission. Inhibiting the fission machinery promotes growth of transport carriers into large tubules that remain attached to the TGN. Overactivating this machinery, on the other hand, vesiculates the TGN. To understand how membrane fission is regulated by cargo to form transport carriers yet prevents complete vesiculation of the TGN remains a daunting challenge. We discuss these issues with regard to TGN-to-cell-surface transport carriers.
Collapse
Affiliation(s)
- Frédéric Bard
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
173
|
Baldassarre M, Ayala I, Beznoussenko G, Giacchetti G, Machesky LM, Luini A, Buccione R. Actin dynamics at sites of extracellular matrix degradation. Eur J Cell Biol 2006; 85:1217-31. [PMID: 17010475 DOI: 10.1016/j.ejcb.2006.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022] Open
Abstract
The degradation of extracellular matrix (ECM) by proteases is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Here we present an extensive morpho-functional analysis of invadopodia actively engaged in ECM degradation and show that they are actin comet-based structures, not unlike the well-known bacteria-propelling actin tails. The relative mapping of the basic molecular components of invadopodia to actin tails is also provided. Finally, a live-imaging analysis of invadopodia highlights the intrinsic long-term stability of the structures coupled to a highly dynamic actin turnover. The results offer new insight into the tight coordination between signalling, actin remodelling and trafficking activities occurring at sites of focalized ECM degradation by invadopodia. In conclusion, invadopodia-associated actin comets are a striking example of consistently arising, spontaneous expression of actin-driven propulsion events that also represent a valuable experimental paradigm.
Collapse
Affiliation(s)
- Massimiliano Baldassarre
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8A, I-66030 S. Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
174
|
Polishchuk RS, San Pietro E, Di Pentima A, Teté S, Bonifacino JS. Ultrastructure of long-range transport carriers moving from the trans Golgi network to peripheral endosomes. Traffic 2006; 7:1092-103. [PMID: 16787435 DOI: 10.1111/j.1600-0854.2006.00453.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The delivery of mannose 6-phosphate receptors carrying lysosomal hydrolases from the trans-Golgi network (TGN) to the endosomal system is mediated by selective incorporation of the receptor-hydrolase complexes into vesicular transport carriers (TCs) that are coated with clathrin and the adaptor proteins, GGA and AP-1. Previous electron microscopy (EM) and biochemical studies have shown that these TCs consist of spherical coated vesicles with a diameter of 60-100 nm. The use of fluorescent live cell imaging, however, has revealed that at least some of this transport relies on a subset of apparently larger and highly pleiomorphic carriers that detach from the TGN and translocate toward the peripheral cytoplasm until they meet with distally located endosomes. The ultrastructure of such long-range TCs has remained obscure because of the inability to examine by conventional EM the morphological details of rapidly moving organelles. The recent development of correlative light-EM has now allowed us to obtain ultrastructural 'snapshots' of these TCs immediately after their formation from the TGN in live cells. This approach has revealed that such carriers range from typical 60- to 100-nm clathrin-coated vesicles to larger, convoluted tubular-vesicular structures displaying several coated buds. We propose that this subset of TCs serve as vehicles for long-range distribution of biosynthetic or recycling cargo from the TGN to the peripheral endosomes.
Collapse
Affiliation(s)
- Roman S Polishchuk
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030, Santa Maria Imbaro (Chieti), Italy.
| | | | | | | | | |
Collapse
|
175
|
Barr VA, Balagopalan L, Barda-Saad M, Polishchuk R, Boukari H, Bunnell SC, Bernot KM, Toda Y, Nossal R, Samelson LE. T-Cell Antigen Receptor-Induced Signaling Complexes: Internalization Via a Cholesterol-Dependent Endocytic Pathway. Traffic 2006; 7:1143-62. [PMID: 16919152 DOI: 10.1111/j.1600-0854.2006.00464.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
T-cell antigen receptor engagement causes the rapid assembly of signaling complexes. The adapter protein SLP-76, detected as SLP-yellow fluorescent protein, initially clustered with the TCR and other proteins, then translocated medially on microtubules. As shown by total internal reflection fluorescence microscopy and the inhibition of SLP-76 movement at 16 degrees C, this movement required endocytosis. Immunoelectron microscopy showed SLP-76 staining of smooth pits and tubules. Cholesterol depletion decreased the movement of SLP-76 clusters, as did coexpression of the ubiquitin-interacting motif domain from eps15. These data are consistent with the internalization of SLP-76 via a lipid raft-dependent pathway that requires interaction of the endocytic machinery with ubiquitinylated proteins. The endocytosed SLP-76 clusters contained phosphorylated SLP-76 and phosphorylated LAT. The raft-associated, transmembrane protein LAT likely targets SLP-76 to endocytic vesicles. The endocytosis of active SLP-76 and LAT complexes suggests a possible mechanism for downregulation of signaling complexes induced by TCR activation.
Collapse
Affiliation(s)
- Valarie A Barr
- Laboratory of Cellular and Molecular Biology, Department of Health and Human Services, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Kozlov MM. Membrane shape equations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S1177-S1190. [PMID: 21690836 DOI: 10.1088/0953-8984/18/28/s05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shape equations allow the understanding of complex conformations of membranes of cells and cell organelles. We describe the theoretical approaches used to describe the elastic behaviour of lipid membranes, review the sets of equations proposed previously to analyse membrane mechanical equilibrium and discuss their limitations. We further present a derivation of generalized shape equations, which are not limited by any assumptions about the membrane structure and shape. These equations represent a tool for the analysis of complex shapes of cell membranes.
Collapse
Affiliation(s)
- Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
177
|
Sallese M, Pulvirenti T, Luini A. The physiology of membrane transport and endomembrane-based signalling. EMBO J 2006; 25:2663-73. [PMID: 16763561 PMCID: PMC1500860 DOI: 10.1038/sj.emboj.7601172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023] Open
Abstract
Some of the important open questions concerning the physiology of the secretory pathway relate to its homeostasis. Secretion involves a number of separate compartments for which their transport activities should be precisely cross-coordinated to avoid gross imbalances in the trafficking system. Moreover, the membrane fluxes across these compartments should be able to adapt to environmental 'requests' and to respond to extracellular signals. How is this regulation effected? Here, we consider evidence that endomembrane-based signalling cascades that are similar in organization to those used at the plasma membrane coordinate membrane traffic. If this is the case, this would also represent a model for a more general inter-organelle signalling network for functionally interconnecting different intracellular activities, a necessity for the maintenance of cellular homeostasis and to express harmonic global cellular responses.
Collapse
Affiliation(s)
- Michele Sallese
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Teodoro Pulvirenti
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Alberto Luini
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| |
Collapse
|
178
|
Donohoe BS, Mogelsvang S, Staehelin LA. Electron tomography of ER, Golgi and related membrane systems. Methods 2006; 39:154-62. [PMID: 16854591 DOI: 10.1016/j.ymeth.2006.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 05/01/2006] [Indexed: 11/22/2022] Open
Abstract
A primary goal of cell biology is to uncover the mechanisms of cellular processes. A detailed structural understanding of the organelles and subcellular structures involved in these processes has often formed the foundation for the elucidation of their function. Electron tomography is a powerful technique for characterizing subcellular architecture and structural details in three dimensions. Electron tomography of cryofixed, freeze-substituted, and plastic-embedded samples allows three-dimensional visualization and display of dynamic, pleiomorphic structures at a resolution of approximately 7 nm in cell volumes up to approximately 25 microm(3). In this review, we describe the electron tomography protocols that we have employed to determine the 3D architecture of complex cellular structures, thereby gaining insights into their functional organization. We stress the need for studying specimens preserved by cryofixation methods to obtain accurate information on the geometry and size of cellular structures. We also discuss some of the challenges associated with the staining of certain types of membranes. Finally, we provide examples of how tomographic data can be analyzed, dissected, and displayed using the tools built into the IMOD software package.
Collapse
Affiliation(s)
- Bryon S Donohoe
- University of Colorado at Boulder, MCD Biology, Boulder, CO 80309, USA
| | | | | |
Collapse
|
179
|
Abstract
Biological membranes exhibit various function-related shapes, and the mechanism by which these shapes are created is largely unclear. Here, we classify possible curvature-generating mechanisms that are provided by lipids that constitute the membrane bilayer and by proteins that interact with, or are embedded in, the membrane. We describe membrane elastic properties in order to formulate the structural and energetic requirements of proteins and lipids that would enable them to work together to generate the membrane shapes seen during intracellular trafficking.
Collapse
Affiliation(s)
- Joshua Zimmerberg
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1855, USA.
| | | |
Collapse
|
180
|
Lock JG, Hammond LA, Houghton F, Gleeson PA, Stow JL. E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 2006; 6:1142-56. [PMID: 16262725 DOI: 10.1111/j.1600-0854.2005.00349.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
E-cadherin is a cell-cell adhesion protein that is trafficked and delivered to the basolateral cell surface. Membrane-bound carriers for the post-Golgi exocytosis of E-cadherin have not been characterized. Green fluorescent protein (GFP)-tagged E-cadherin (Ecad-GFP) is transported from the trans-Golgi network (TGN) to the recycling endosome on its way to the cell surface in tubulovesicular carriers that resemble TGN tubules labeled by members of the golgin family of tethering proteins. Here, we examine the association of golgins with tubular carriers containing E-cadherin as cargo. Fluorescent GRIP domains from golgin proteins replicate the membrane binding of the full-length proteins and were coexpressed with Ecad-GFP. The GRIP domains of p230/golgin-245 and golgin-97 had overlapping but nonidentical distributions on the TGN; both domains were on TGN-derived tubules but only the golgin-97 GRIP domain coincided with Ecad-GFP tubules in live cells. When the Arl1-binding endogenous golgins, p230/golgin-245 and golgin-97 were displaced from Golgi membranes by overexpression of the p230 GRIP domain, trafficking of Ecad-GFP was inhibited. siRNA knockdown of golgin-97 also inhibited trafficking of Ecad-GFP. Thus, the GRIP domains of p230/golgin-245 and golgin-97 bind discriminately to distinct membrane subdomains of the TGN. Golgin-97 is identified as a selective and essential component of the tubulovesicular carriers transporting E-cadherin out of the TGN.
Collapse
Affiliation(s)
- John G Lock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
181
|
Altan-Bonnet N, Sougrat R, Liu W, Snapp EL, Ward T, Lippincott-Schwartz J. Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol Biol Cell 2006; 17:990-1005. [PMID: 16314396 PMCID: PMC1356606 DOI: 10.1091/mbc.e05-02-0155] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 11/07/2005] [Accepted: 11/15/2005] [Indexed: 11/11/2022] Open
Abstract
Golgi inheritance during mammalian cell division occurs through the disassembly, partitioning, and reassembly of Golgi membranes. The mechanisms responsible for these processes are poorly understood. To address these mechanisms, we have examined the identity and dynamics of Golgi proteins within mitotic membranes using live cell imaging and electron microscopy techniques. Mitotic Golgi fragments, seen in prometaphase and telophase, were found to localize adjacent to endoplasmic reticulum (ER) export domains, and resident Golgi transmembrane proteins cycled rapidly into and out of these fragments. Golgi proteins within mitotic Golgi haze-seen during metaphase-were found to redistribute with ER markers into fragments when the ER was fragmented by ionomycin treatment. The temperature-sensitive misfolding mutant ts045VSVG protein, when localized to the Golgi at the start of mitosis, became trapped in the ER at the end of mitosis in cells shifted to 40 degrees C. Finally, reporters for Arf1 and Sar1 activity revealed that Arf1 and Sar1 undergo sequential inactivation during mitotic Golgi breakdown and sequential reactivation upon Golgi reassembly at the end of mitosis. Together, these findings support a model of mitotic Golgi inheritance that involves inhibition and subsequent reactivation of cellular activities controlling the cycling of Golgi components into and out of the ER.
Collapse
Affiliation(s)
- Nihal Altan-Bonnet
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
182
|
Darcy KJ, Staras K, Collinson LM, Goda Y. An ultrastructural readout of fluorescence recovery after photobleaching using correlative light and electron microscopy. Nat Protoc 2006; 1:988-94. [PMID: 17406335 DOI: 10.1038/nprot.2006.146] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) provides an important quantitative readout of the mobility of fluorescently tagged structures in live tissue. Here we present a protocol for visualizing FRAP signal at the ultrastructural level, permitting the nature of recovered fluorescence signal to be studied at greater resolution than afforded by conventional light microscopy. Specifically we use FRAP, fixation, photoconversion and correlative light and electron microscopy (CLEM) to examine the ultrastructural organization of mobile FM1-43-labeled vesicles in synapses of cultured hippocampal neurons. At photobleached synapses, the FRAP signal can be visualized as photoconverted electron-dense vesicles. The combination of FRAP and CLEM provides a powerful tool for examining the specific localization of imported vesicles in relation to synaptic architecture. Moreover, with the increasing availability of photoconvertible fluorophores, this approach should be readily applicable to other systems where an ultrastructural characterization of FRAP signal is desirable. After cultures are prepared and ready to use, this protocol takes 2-3 days.
Collapse
Affiliation(s)
- Kevin J Darcy
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
183
|
Yang JS, Lee SY, Spanò S, Gad H, Zhang L, Nie Z, Bonazzi M, Corda D, Luini A, Hsu VW. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J 2005; 24:4133-43. [PMID: 16292346 PMCID: PMC1356313 DOI: 10.1038/sj.emboj.7600873] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 10/21/2005] [Indexed: 11/09/2022] Open
Abstract
The core complex of Coat Protein I (COPI), known as coatomer, is sufficient to induce coated vesicular-like structures from liposomal membrane. In the context of biological Golgi membrane, both palmitoyl-coenzyme A (p-coA) and ARFGAP1, a GTPase-activating protein (GAP) for ADP-Ribosylation Factor 1, also participate in vesicle formation, but how their roles may be linked remains unknown. Moreover, whether COPI vesicle formation from Golgi membrane requires additional factors also remains unclear. We now show that Brefeldin-A ADP-Ribosylated Substrate (BARS) plays a critical role in the fission step of COPI vesicle formation from Golgi membrane. This role of BARS requires its interaction with ARFGAP1, which is in turn regulated oppositely by p-coA and nicotinamide adenine dinucleotide, which act as cofactors of BARS. Our findings not only identify a new factor needed for COPI vesicle formation from Golgi membrane but also reveal a surprising mechanism by which the roles of p-coA and GAP are linked in this process.
Collapse
Affiliation(s)
- Jia-Shu Yang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stella Y Lee
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stefania Spanò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Helge Gad
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Leiliang Zhang
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Zhongzhen Nie
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA
| | - Matteo Bonazzi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
184
|
Abstract
Membrane traffic in activated macrophages is required for two critical events in innate immunity: proinflammatory cytokine secretion and phagocytosis of pathogens. We found a joint trafficking pathway linking both actions, which may economize membrane transport and augment the immune response. Tumor necrosis factor alpha (TNFalpha) is trafficked from the Golgi to the recycling endosome (RE), where vesicle-associated membrane protein 3 mediates its delivery to the cell surface at the site of phagocytic cup formation. Fusion of the RE at the cup simultaneously allows rapid release of TNFalpha and expands the membrane for phagocytosis.
Collapse
Affiliation(s)
- Rachael Z Murray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
185
|
Luini A, Ragnini-Wilson A, Polishchuck RS, De Matteis MA. Large pleiomorphic traffic intermediates in the secretory pathway. Curr Opin Cell Biol 2005; 17:353-61. [PMID: 15993575 DOI: 10.1016/j.ceb.2005.06.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 06/08/2005] [Indexed: 01/07/2023]
Abstract
There are two main classes of traffic intermediates that operate in intracellular trafficking pathways: small round vesicles, and large pleiomorphic carriers (LPCs). While both are essential, the LPCs appear to be responsible for moving the bulk of the secretory traffic between distant compartments. LPCs are much larger and more variable in shape than vesicles, and they have evident interconnected tubular and saccular/cisternal components. They appear to form by en bloc extrusion and cleavage of large membrane areas of the donor organelle. Although many proteins and lipids that are involved in LPC formation have been identified, the intrinsic complexity of these carriers and current technical limitations mean that a coherent picture of the process of of LPC formation is only just beginning to emerge.
Collapse
Affiliation(s)
- Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, Chieti, Italy.
| | | | | | | |
Collapse
|
186
|
Abstract
In addition to important roles near the actin-rich cell cortex, ample evidence indicates that multiple myosins are also involved in membrane movements in the endomembrane system. Nonmuscle myosin-II has been shown to have roles in anterograde and retrograde trafficking at the Golgi. Myosin-II is present on Golgi stacks isolated from intestinal epithelial cells and has been localized to the Golgi in several polarized and unpolarized cell lines. An understanding of roles of myosin-II in Golgi physiology will be facilitated by understanding the molecular arrangement of myosin-II at the Golgi. Salt-washing removes endogenous myosin-II from isolated Golgi and purified brush border myosin-II can bind in vitro. Brush border myosin-II binds to a tightly bound Golgi peripheral membrane protein with a K(1/2) of 75 nM and binding is saturated at 0.7 pmol myosin/microg Golgi. Binding studies using papain cleavage fragments of brush border myosin-II show that the 120-kDa rod domain, but not the head domain, of myosin heavy chain can bind directly to Golgi stacks. The 120-kDa domain does not bind to Golgi membranes when phosphorylated in vitro with casein kinase-II. These results suggest that phosphorylation in the rod domain may regulate the binding and/or release of myosin-II from the Golgi. These data support a model in which myosin-II is tethered to the Golgi membrane by its tail and actin filaments by its head. Thus, translocation along actin filaments may extend Golgi membrane tubules and/or vesicles away from the Golgi complex.
Collapse
Affiliation(s)
- Karl R Fath
- Biology Department, Queens College and Graduate Center of the City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
187
|
Marsh BJ. Lessons from tomographic studies of the mammalian Golgi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:273-92. [PMID: 15896857 DOI: 10.1016/j.bbamcr.2005.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/22/2022]
Abstract
Basic structure studies of the biosynthetic machinery of the cell by electron microscopy (EM) have underpinned much of our fundamental knowledge in the areas of molecular cell biology and membrane traffic. Driven by our collective desire to understand how changes in the complex and dynamic structure of this enigmatic organelle relate to its pivotal roles in the cell, the comparatively high-resolution glimpses of the Golgi and other compartments of the secretory pathway offered to us through EM have helped to inspire the development and application of some of our most informative, complimentary (molecular, biochemical and genetic) approaches. Even so, no one has yet even come close to relating the basic molecular mechanisms of transport, through and from the Golgi, to its ultrastructure, to everybody's satisfaction. Over the past decade, EM tomography has afforded new insights into structure-function relationships of the Golgi and provoked a re-evaluation of older paradigms. By providing a set of tools for structurally dissecting cells at high-resolution in three-dimensions (3D), EM tomography has emerged as a method for studying molecular cell biology in situ. As we move rapidly toward the establishment of molecular atlases of organelles through advances in proteomics and genomics, tomographic studies of the Golgi offer the tantalizing possibility that one day, we will be able to map the spatio-temporal coordinates of Golgi-related proteins and lipids accurately in the context of 4D cellular space.
Collapse
Affiliation(s)
- Brad J Marsh
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, and School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
188
|
Mironov AA, Beznoussenko GV, Polishchuk RS, Trucco A. Intra-Golgi transport: A way to a new paradigm? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:340-50. [PMID: 15979506 DOI: 10.1016/j.bbamcr.2005.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
The morpho-functional principles of intra-Golgi transport are, surprisingly, still not clear, which is in marked contrast to our advanced knowledge of the underlying molecular machineries. Recently, the conceptual and technological hindrances that had delayed progress in this area have been disappearing, and a cluster of powerful morphological techniques has been revealing new glimpses of the organization of traffic in intact cells. Here, we discuss the new concepts around the present models of intra-Golgi transport.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro (Chieti), Italy.
| | | | | | | |
Collapse
|
189
|
Rodriguez-Boulan E, Müsch A. Protein sorting in the Golgi complex: Shifting paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:455-64. [PMID: 15927284 DOI: 10.1016/j.bbamcr.2005.04.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 02/08/2023]
Abstract
The paradigms for transport along the biosynthetic route have changed dramatically over the past 15 years. Unlike the situation 15 years ago, the current paradigm involves sorting signals practically at every step of the pathway. In particular, at the exit from the Golgi complex, apical, basolateral and lysosomal targeting signals result in the generation of a variety of routes. Furthermore, it is now quite clear that not all sorting in the biosynthetic route occurs in the Golgi complex or the Trans Golgi Network (TGN). Sorting may occur distally to the Golgi, in recycling endosomes or in budded tubulosaccular structures, or it may occur proximally to the Golgi complex, at the exit from the ER. Several adaptors are candidates to sort apical and basolateral proteins but only AP1B and AP4 are currently involved. Progress is fast and future work should elucidate many of the open questions.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, LC-300, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
190
|
Bonazzi M, Spanò S, Turacchio G, Cericola C, Valente C, Colanzi A, Kweon HS, Hsu VW, Polishchuck EV, Polishchuck RS, Sallese M, Pulvirenti T, Corda D, Luini A. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat Cell Biol 2005; 7:570-80. [PMID: 15880102 DOI: 10.1038/ncb1260] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 04/19/2005] [Indexed: 11/08/2022]
Abstract
Membrane fission is a fundamental step in membrane transport. So far, the only fission protein machinery that has been implicated in in vivo transport involves dynamin, and functions in several, but not all, transport pathways. Thus, other fission machineries may exist. Here, we report that carboxy-terminal binding protein 3/brefeldin A-ribosylated substrate (CtBP3/BARS) controls fission in basolateral transport from the Golgi to the plasma membrane and in fluid-phase endocytosis, whereas dynamin is not involved in these steps. Conversely, CtBP3/BARS protein is inactive in apical transport to the plasma membrane and in receptor-mediated endocytosis, both steps being controlled by dynamin. This indicates that CtBP3/BARS controls membrane fission in endocytic and exocytic transport pathways, distinct from those that require dynamin.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Laboratory of Membrane Traffic, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Collagen fibrils in the extracellular matrix allow connective tissues such as tendon, skin and bone to withstand tensile forces. The fibrils are indeterminate in length, insoluble and form elaborate three-dimensional arrays that extend over numerous cell lengths. Studies of the molecular basis of collagen fibrillogenesis have provided insight into the trafficking of procollagen (the precursor of collagen) through the cellular secretory pathway, the conversion of procollagen to collagen by the procollagen metalloproteinases, and the directional deposition of fibrils involving the plasma membrane and late secretory pathway. Fibril-associated molecules are targeted to the surface of collagen fibrils, and these molecules play an important role in regulating the diameter and interactions between the fibrils.
Collapse
Affiliation(s)
- Elizabeth G Canty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
192
|
Galkina SI, Molotkovsky JG, Ullrich V, Sud'ina GF. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide. Exp Cell Res 2005; 304:620-9. [PMID: 15748905 DOI: 10.1016/j.yexcr.2004.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 12/08/2004] [Accepted: 12/09/2004] [Indexed: 11/24/2022]
Abstract
We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na(+)-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich, (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-omega-nitro-L-arginine methyl ester, neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a beta1 and beta2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A. N. Belozersky Institute of Physico-Chemical Biology of the M. V. Lomonosov Moscow State University, 119992, Moscow, Leninskie gory, Building A, Moscow, Russia.
| | | | | | | |
Collapse
|
193
|
Lock JG, Stow JL. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol Biol Cell 2005; 16:1744-55. [PMID: 15689490 PMCID: PMC1073657 DOI: 10.1091/mbc.e04-10-0867] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, DeltaS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical DeltaS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, mu1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion.
Collapse
Affiliation(s)
- John G Lock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
194
|
Martínez-Alonso E, Egea G, Ballesta J, Martínez-Menárguez JA. Structure and Dynamics of the Golgi Complex at 15 oC: Low Temperature Induces the Formation of Golgi-Derived Tubules. Traffic 2005; 6:32-44. [PMID: 15569243 DOI: 10.1111/j.1600-0854.2004.00242.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immunofluorescence and cryoimmunoelectron microscopy were used to examine the morphologic and functional effects on the Golgi complex when protein transport is blocked at the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) in HeLa cells incubated at low temperature (15 degrees C). At this temperature, the Golgi complex showed long tubules containing resident glycosylation enzymes but not matrix proteins. These Golgi-derived tubules also lacked anterograde (VSV-G) or retrograde (Shiga toxin) cargo. The formation of tubules was dependent on both energy and intact microtubule and actin cytoskeletons. Conversely, brefeldin A or cycloheximide treatments did not modify the appearance. When examined at the electron microscope, Golgi stacks were long and curved and appeared connected to tubules immunoreactive to galactosyltransferase antibodies but devoid of Golgi matrix proteins. Strikingly, COPI proteins moved from membranes to the cytosol at 15 degrees C, which could explain the formation of tubules.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology, School of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
195
|
Mironov AA, Beznoussenko GV, Luini A, Polishchuk RS. Visualizing intracellular events in vivo by combined video fluorescence and 3-D electron microscopy. Methods Enzymol 2005; 404:43-57. [PMID: 16413256 DOI: 10.1016/s0076-6879(05)04005-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The combination of the capability of in vivo fluorescence video microscopy with the power of resolution of electron microscopy (EM) has been described. This approach is based on such an association of two techniques. An individual intracellular structure can be monitored in vivo, typically through the use of markers fused with green fluorescent protein (GFP), and a "snapshot" of its three-dimensional (3-D) ultrastructure and especially tomographic reconstruction can then be taken at any chosen time during its life cycle. The pitfalls and potential of this approach are discussed.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | | | |
Collapse
|
196
|
Valente C, Spanò S, Luini A, Corda D. Purification and functional properties of the membrane fissioning protein CtBP3/BARS. Methods Enzymol 2005; 404:296-316. [PMID: 16413278 DOI: 10.1016/s0076-6879(05)04027-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fissioning protein CtBP3/BARS is a member of the CtBP transcription corepressor family of proteins. The characterization of this fissioning activity of CtBP3/BARS in both isolated Golgi membranes and in intact cells has indicated that the CtBP family includes multifunctional proteins that can act both in the nucleus and in the cytoplasm. The fissiogenic activity of CtBP3/BARS has a role in the fragmentation of the Golgi complex during mitosis and during intracellular membrane transport. This was demonstrated using a number of approaches and reagents, which are discussed in the following text, and which include recombinant proteins and mutants, antibodies, protein overexpression, RNA interference, antisense oligonucleotides, cell permeabilization, and electron miscroscopy, together with biochemical assays such as that for ADP-ribosylation.
Collapse
Affiliation(s)
- Carmen Valente
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | | | |
Collapse
|
197
|
Daull P, Home W, LeBel D. Characterization of the TGN exit routes in AtT20 cells using pancreatic amylase and serum albumin. Eur J Cell Biol 2004; 83:121-30. [PMID: 15202570 DOI: 10.1078/0171-9335-00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The AtT20 pituitary cell is the one that was originally used to define the pathways taken by secretory proteins in mammalian cells. It possesses two secretory pathways, the constitutive for immediate secretion and the regulated for accumulation and release under hormonal stimulation. It is in the regulated pathway, most precisely in the immature granule of the regulated pathway, that proteolytic maturation takes place. A pathway that stems from the regulated one, namely the constitutive-like pathway releases proteins present in immature granules that are not destined for accumulation in mature granules. In AtT20 cells proopiomelanocortin the endogenous precursor of the accumulated adrenocorticotropic hormone, is predominantly secreted in a constitutive manner without proteolytic maturation. In order to better understand by which secretory pathway intact proopiomelanocortin is secreted by a cell line possessing a regulated secretory pathway, it was transfected with rat serum albumin (a marker of constitutive secretory proteins), and pancreatic amylase (a marker of regulated proteins). COS cells were also transfected in order to serve as control of release by the constitutive pathway. It was observed that both the basal and stimulated secretions of albumin and proopiomelanocortin from AtT20 cells are identical. In addition, secretagogue stimulation when POMC is in transit in the trans-Golgi network decreases its constitutive secretion by 50%. It was also observed using cell fractionation and 20 degrees C secretion blocks that albumin and proopiomelanocortin are present in the regulated pathway, presumably in the immature granules, and are secreted by the constitutive-like secretory pathway. These observations show that stimulation can increase sorting into the regulated pathway, and confirm the importance of the constitutive-like secretory pathway in the model AtT20 cell line.
Collapse
Affiliation(s)
- Philippe Daull
- Groupe de Recherche sur les Mécanismes de Sécrétion, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | | |
Collapse
|
198
|
Mazzone M, Baldassarre M, Beznoussenko G, Giacchetti G, Cao J, Zucker S, Luini A, Buccione R. Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains. J Cell Sci 2004; 117:6275-87. [PMID: 15561768 DOI: 10.1242/jcs.01563] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The integral membrane type 1 matrix metalloprotease (MT1-MMP) is a pivotal protease in a number of physiological and pathological processes and confers both non-tumorigenic and tumorigenic cell lines with a specific growth advantage in a three-dimensional matrix. Here we show that, in a melanoma cell line, the majority (80%) of MT1-MMP is sorted to detergent-resistant membrane fractions; however, it is only the detergent-soluble fraction (20%) of MT1-MMP that undergoes intracellular processing to the mature form. Also, this processed MT1-MMP is the sole form responsible for ECM degradation in vitro. Finally, furin-dependent processing of MT1-MMP is shown to occur intracellularly after exit from the Golgi apparatus and prior to its arrival at the plasma membrane. It is thus proposed that the association of MT1-MMP with different membrane subdomains might be crucial in the control of its different activities: for instance in cell migration and invasion and other less defined ones such as MT1-MMP-dependent signaling pathways.
Collapse
Affiliation(s)
- Marco Mazzone
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, S. Maria Imbaro, 66030, Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJC, Koster AJ, Burger KNJ, Mironov AA, Luini A. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 2004; 6:1071-81. [PMID: 15502824 DOI: 10.1038/ncb1180] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The organization of secretory traffic remains unclear, mainly because of the complex structure and dynamics of the secretory pathway. We have thus studied a simplified system, a single synchronized traffic wave crossing an individual Golgi stack, using electron tomography. Endoplasmic-reticulum-to-Golgi carriers join the stack by fusing with cis cisternae and induce the formation of intercisternal tubules, through which they redistribute their contents throughout the stack. These tubules seem to be pervious to Golgi enzymes, whereas Golgi vesicles are depleted of both enzymes and cargo. Cargo then traverses the stack without leaving the cisternal lumen. When cargo exits the stack, intercisternal connections disappear. These findings provide a new view of secretory traffic that includes dynamic intercompartment continuities as key players.
Collapse
Affiliation(s)
- Alvar Trucco
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
The study of intracellular membrane trafficking and organelle dynamics has been revolutionized with the advent of GFP technology, which allows individual proteins to be tagged with GFP and monitored in living cells. Using GFP-based techniques such as selective photobleaching and time-lapse imaging of different GFP color variants, it is now possible to address a host of questions related to protein retention within the organelles, the origin and fate of transport intermediates, and the extent of trafficking through different transport pathways. This has provided unexpected new insights into the organization and function of secretory and endocytic pathways within cells.
Collapse
Affiliation(s)
- Jennifer Lippincott-Schwartz
- Section on Organelle Biology, Cell Biology & Metabolism Branch, Division of Intramural Research, NICHD, NIH, Building 18T, Room 101, 18 Library Drive, Bethesda, MD 20892-5430, USA.
| |
Collapse
|