151
|
Law AL, Ling Q, Hajjar KA, Futter CE, Greenwood J, Adamson P, Wavre-Shapton ST, Moss SE, Hayes MJ. Annexin A2 regulates phagocytosis of photoreceptor outer segments in the mouse retina. Mol Biol Cell 2009; 20:3896-904. [PMID: 19587120 PMCID: PMC2735488 DOI: 10.1091/mbc.e08-12-1204] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 06/24/2008] [Accepted: 06/25/2009] [Indexed: 01/08/2023] Open
Abstract
The daily phagocytosis of shed photoreceptor outer segments by pigment epithelial cells is critical for the maintenance of the retina. In a subtractive polymerase chain reaction analysis, we found that functional differentiation of human ARPE19 retinal pigment epithelial (RPE) cells is accompanied by up-regulation of annexin (anx) A2, a major Src substrate and regulator of membrane-cytoskeleton dynamics. Here, we show that anx A2 is recruited to the nascent phagocytic cup in vitro and in vivo and that it fully dissociates once the phagosome is internalized. In ARPE19 cells depleted of anx A2 by using small interfering RNA and in ANX A2(-/-) mice the phagocytosis of outer segments was impaired, and in ANX A2(-/-) mice there was an accumulation of phagocytosed outer segments in the RPE apical processes, indicative of retarded phagosome transport. We show that anx A2 is tyrosine phosphorylated at the onset of phagocytosis and that the synchronized activation of focal adhesion kinase and c-Src is abnormal in ANX A2(-/-) mice. These findings reveal that anx A2 is involved in the circadian regulation of outer segment phagocytosis, and they provide new insight into the protein machinery that regulates phagocytic function in RPE cells.
Collapse
Affiliation(s)
- Ah-Lai Law
- *Department of Cell Biology, University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and
| | - Qi Ling
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Katherine A. Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Clare E. Futter
- *Department of Cell Biology, University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and
| | - John Greenwood
- *Department of Cell Biology, University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and
| | - Peter Adamson
- *Department of Cell Biology, University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and
| | - Silène T. Wavre-Shapton
- *Department of Cell Biology, University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and
| | - Stephen E. Moss
- *Department of Cell Biology, University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and
| | - Matthew J. Hayes
- *Department of Cell Biology, University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and
| |
Collapse
|
152
|
Actin dynamics and Rho GTPases regulate the size and formation of parasitophorous vacuoles containing Coxiella burnetii. Infect Immun 2009; 77:4609-20. [PMID: 19635823 DOI: 10.1128/iai.00301-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Q fever is a disease caused by Coxiella burnetii. In the host cell, this pathogen generates a large parasitophorous vacuole (PV) with lysosomal characteristics. Here we show that F-actin not only is recruited to but also is involved in the formation of the typical PV. Treatment of infected cells with F-actin-depolymerizing agents alters PV development. The small PVs formed in latrunculin B-treated cells were loaded with transferrin and Lysotracker and labeled with an antibody against cathepsin D, suggesting that latrunculin B did not affect vacuole cargo and its lysosomal characteristics. Nevertheless, the vacuoles were unable to fuse with latex bead phagosomes. It is known that actin dynamics are regulated by the Rho family GTPases. To assess the role of these GTPases in PV formation, infected cells were transfected with pEGFP expressing wild-type and mutant Rac1, Cdc42, and RhoA proteins. Rac1 did not show significant PV association. In contrast, PVs were decorated by both the wild types and constitutively active mutants of Cdc42 and RhoA. This association was inhibited by treatment of infected cells with chloramphenicol, suggesting a role for bacterial protein synthesis in the recruitment of these proteins. Interestingly, a decrease in vacuole size was observed in cells expressing dominant-negative RhoA; however, these small vacuoles accumulated transferrin, Lysotracker, and DQ-BSA. In summary, these results suggest that actin, likely modulated by the GTPases RhoA and Cdc42 and by bacterial proteins, is involved in the formation of the typical PV.
Collapse
|
153
|
Hayes MJ, Moss SE. Annexin 2 has a dual role as regulator and effector of v-Src in cell transformation. J Biol Chem 2009; 284:10202-10. [PMID: 19193640 PMCID: PMC2665074 DOI: 10.1074/jbc.m807043200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 02/04/2009] [Indexed: 01/03/2023] Open
Abstract
Cell transformation by v-Src involves rearrangement of the actin cytoskeleton, disassembly of focal adhesions, and the development of anchorage-independent growth. Here, we report that this is dependent on annexin 2, a v-Src substrate and calcium-dependent regulator of actin dynamics. Using a thermoactivatable mutant of v-Src, we show that at the permissive temperature, annexin 2 becomes phosphorylated and colocalizes with activated v-Src and focal adhesion kinase both at the plasma membrane and in a Rab11-positive compartment of the endosomal pathway. In cells depleted of annexin 2 by small interfering RNA, v-Src becomes activated at the permissive temperature but does not target to the plasma membrane or to perinuclear vesicles, and cell transformation does not occur. Our findings reveal a dual role for annexin 2, first as a regulator of v-Src trafficking and targeting and second as a v-Src effector in the reorganization of actin.
Collapse
Affiliation(s)
- Matthew J Hayes
- Division of Cell Biology, University College London Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | | |
Collapse
|
154
|
Szymańska E, Korzeniowski M, Raynal P, Sobota A, Kwiatkowska K. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling. Exp Cell Res 2009; 315:981-95. [DOI: 10.1016/j.yexcr.2009.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 01/18/2023]
|
155
|
The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 2009; 419:29-49. [PMID: 19272022 DOI: 10.1042/bj20081673] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.
Collapse
|
156
|
Mao YS, Yamaga M, Zhu X, Wei Y, Sun HQ, Wang J, Yun M, Wang Y, Di Paolo G, Bennett M, Mellman I, Abrams CS, De Camilli P, Lu CY, Yin HL. Essential and unique roles of PIP5K-gamma and -alpha in Fcgamma receptor-mediated phagocytosis. ACTA ACUST UNITED AC 2009; 184:281-96. [PMID: 19153220 PMCID: PMC2654300 DOI: 10.1083/jcb.200806121] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The actin cytoskeleton is dynamically remodeled during Fcγ receptor (FcγR)-mediated phagocytosis in a phosphatidylinositol (4,5)-bisphosphate (PIP2)-dependent manner. We investigated the role of type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) γ and α isoforms, which synthesize PIP2, during phagocytosis. PIP5K-γ−/− bone marrow–derived macrophages (BMM) have a highly polymerized actin cytoskeleton and are defective in attachment to IgG-opsonized particles and FcγR clustering. Delivery of exogenous PIP2 rescued these defects. PIP5K-γ knockout BMM also have more RhoA and less Rac1 activation, and pharmacological manipulations establish that they contribute to the abnormal phenotype. Likewise, depletion of PIP5K-γ by RNA interference inhibits particle attachment. In contrast, PIP5K-α knockout or silencing has no effect on attachment but inhibits ingestion by decreasing Wiskott-Aldrich syndrome protein activation, and hence actin polymerization, in the nascent phagocytic cup. In addition, PIP5K-γ but not PIP5K-α is transiently activated by spleen tyrosine kinase–mediated phosphorylation. We propose that PIP5K-γ acts upstream of Rac/Rho and that the differential regulation of PIP5K-γ and -α allows them to work in tandem to modulate the actin cytoskeleton during the attachment and ingestion phases of phagocytosis.
Collapse
Affiliation(s)
- Yuntao S Mao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Whereas bacterial pathogens take over the control of their host cell actin cytoskeleton by delivering an array of protein effectors through specialized secretion systems, promastigotes of the protozoan parasite Leishmania donovani rely entirely upon a cell surface glycolipid to achieve this feat. Here, we review recent evidence that L. donovani promastigotes subvert host macrophage actin dynamics during the establishment of infection and we discuss the potential mechanisms involved.
Collapse
|
158
|
Johnson CM, Rodgers W. Spatial Segregation of Phosphatidylinositol 4,5-Bisphosphate (PIP(2)) Signaling in Immune Cell Functions. IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2008; 8:349-357. [PMID: 19956793 PMCID: PMC2771939 DOI: 10.2174/187152208787169233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a prevalent phosphoinositide in the inner leaflet of the plasma membrane. PIP(2) associates with an ever-growing list of proteins, and participates in a variety of cellular processes. PIP(2) signaling to the actin cytoskeleton transduces specific signals necessary for changes in morphology, motility, endocytosis, exocytosis, phagocytosis, and cell activation. The mechanism(s) by which PIP(2) signaling pathways are specific is a topic of intense investigation. One working model is the compartmentalization of PIP(2)-mediated signaling by concentrating PIP(2) in cholesterol-dependent membrane rafts, therefore providing spatial and temporal regulation. Here we discuss properties of PIP(2) signaling to the actin cytoskeleton in immune cell functioning, the association of PIP(2) cellular pools with membrane rafts, and recent work investigating models for compartmentalization of PIP(2)-mediated signaling in membrane rafts to the actin cytoskeleton.
Collapse
Affiliation(s)
- Corey M. Johnson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
| | - William Rodgers
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation
- Departments of Microbiology and Immunology, & Pathology, University of Oklahoma Health Sciences Center
| |
Collapse
|
159
|
Heinsbroek SE, Kamen LA, Taylor PR, Brown GD, Swanson J, Gordon S. Actin and phosphoinositide recruitment to fully formed Candida albicans phagosomes in mouse macrophages. J Innate Immun 2008; 1:244-53. [PMID: 20375582 PMCID: PMC3005358 DOI: 10.1159/000173694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/22/2008] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is a dimorphic yeast that enters macrophages (Mphi) via the beta-glucan receptor dectin-1. Phagocytosis of C. albicans is characterized by actin polymerization, Syk kinase activation and rapid acquisition of phagolysosomal markers. In mice, C. albicans are able to resist the harsh environment of the phagosome and form pseudohyphae inside the phagolysosomal compartment, eventually extending from the Mphi. In this study, we investigated these unique C. albicans phagosomes and found that actin localized dynamically around the phagosomes, before disintegrating. Membrane phosphoinositides, PI(4,5)P(2), PI(3,4,5)P(3), PI(3,4)P(2), and PI(3)P also localized to the phagosomes. Localization was not related to actin polymerization, and inhibitor studies showed that polymerization of actin on the C. albicans phagosome was independent of PI3K. The ability of mature C. albicans phagosomes to stimulate actin polymerization could facilitate the escape of the growing yeast from the Mphi.
Collapse
Affiliation(s)
| | - Lynn A. Kamen
- Department of Microbiology and Immunology, Program in Immunology, University of Michigan Medical School, Ann Arbor, Mich., USA
| | - Philip R. Taylor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gordon D. Brown
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Joel Swanson
- Department of Microbiology and Immunology, Program in Immunology, University of Michigan Medical School, Ann Arbor, Mich., USA
| | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
160
|
Lippuner C, Paape D, Paterou A, Brand J, Richardson M, Smith AJ, Hoffmann K, Brinkmann V, Blackburn C, Aebischer T. Real‐time imaging ofLeishmania mexicana‐infected early phagosomes: a study using primary macrophages generated from green fluorescent protein‐Rab5 transgenic mice. FASEB J 2008; 23:483-91. [DOI: 10.1096/fj.08-108712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christoph Lippuner
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
- Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie und BiotechnologieAlbert‐Ludwigs‐Universität FreiburgGermany
| | - Daniel Paape
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
- Marie Curie Team Pathogen Habitats, Institute of Immunology and Infection ResearchUniversity of Edinburgh, EdinburghUK
| | - Athina Paterou
- Marie Curie Team Pathogen Habitats, Institute of Immunology and Infection ResearchUniversity of Edinburgh, EdinburghUK
| | - Janko Brand
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
| | | | - Andrew J. Smith
- Institute for Stem Cell ResearchUniversity of EdinburghEdinburghUK
| | - Kirstin Hoffmann
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
| | - Volker Brinkmann
- Central Microscopy UnitMax‐Planck‐Institute for Infection BiologyBerlinGermany
| | - Clare Blackburn
- Institute for Stem Cell ResearchUniversity of EdinburghEdinburghUK
| | - Toni Aebischer
- Department of Molecular BiologyMax‐Planck‐Institute for Infection BiologyBerlinGermany
- Marie Curie Team Pathogen Habitats, Institute of Immunology and Infection ResearchUniversity of Edinburgh, EdinburghUK
| |
Collapse
|
161
|
Zhou Z, Yu X. Phagosome maturation during the removal of apoptotic cells: receptors lead the way. Trends Cell Biol 2008; 18:474-85. [PMID: 18774293 PMCID: PMC3125982 DOI: 10.1016/j.tcb.2008.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 01/08/2023]
Abstract
In metazoan organisms, cells undergoing apoptosis are rapidly engulfed and degraded by phagocytes. Defects in apoptotic-cell clearance result in inflammatory and autoimmune responses. However, little is known about how apoptotic-cell degradation is initiated and regulated and how different phagocytic targets induce different immune responses from their phagocytes. Recent studies in mammalian systems and invertebrate model organisms have led to major progress in identifying new factors involved in the maturation of phagosomes containing apoptotic cells. These studies have delineated signaling pathways that promote the sequential incorporation of intracellular organelles to phagosomes and have also discovered that phagocytic receptors produce the signals that initiate phagosome maturation. Here, we discuss these exciting new findings, focusing on the mechanisms that regulate the interactions between intracellular organelles and phagosomes.
Collapse
Affiliation(s)
- Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
162
|
Jankowski A, Zhu P, Marshall JG. Capture of an activated receptor complex from the surface of live cells by affinity receptor chromatography. Anal Biochem 2008; 380:235-48. [DOI: 10.1016/j.ab.2008.05.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/16/2008] [Accepted: 05/18/2008] [Indexed: 11/30/2022]
|
163
|
Hicks SN, Jezyk MR, Gershburg S, Seifert JP, Harden TK, Sondek J. General and versatile autoinhibition of PLC isozymes. Mol Cell 2008; 31:383-94. [PMID: 18691970 PMCID: PMC2702322 DOI: 10.1016/j.molcel.2008.06.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 11/26/2007] [Accepted: 06/01/2008] [Indexed: 12/12/2022]
Abstract
Phospholipase C (PLC) isozymes are directly activated by heterotrimeric G proteins and Ras-like GTPases to hydrolyze phosphatidylinositol 4,5-bisphosphate into the second messengers diacylglycerol and inositol 1,4,5-trisphosphate. Although PLCs play central roles in myriad signaling cascades, the molecular details of their activation remain poorly understood. As described here, the crystal structure of PLC-beta2 illustrates occlusion of the active site by a loop separating the two halves of the catalytic TIM barrel. Removal of this insertion constitutively activates PLC-beta2 without ablating its capacity to be further stimulated by classical G protein modulators. Similar regulation occurs in other PLC members, and a general mechanism of interfacial activation at membranes is presented that provides a unifying framework for PLC activation by diverse stimuli.
Collapse
Affiliation(s)
- Stephanie N. Hicks
- Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mark R. Jezyk
- Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Svetlana Gershburg
- Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason P. Seifert
- Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - T. Kendall Harden
- Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John Sondek
- Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
164
|
Abstract
The ingestion of particles or cells by phagocytosis and of fluids by macropinocytosis requires the formation of large endocytic vacuolar compartments inside cells by the organized movements of membranes and the actin cytoskeleton. Fc-receptor-mediated phagocytosis is guided by the zipper-like progression of local, receptor-initiated responses that conform to particle geometry. By contrast, macropinosomes and some phagosomes form with little or no guidance from receptors. The common organizing structure is a cup-shaped invagination of the plasma membrane that becomes the phagosome or macropinosome. Recent studies, focusing on the physical properties of forming cups, indicate that a feedback mechanism regulates the signal transduction of phagocytosis and macropinocytosis.
Collapse
Affiliation(s)
- Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA.
| |
Collapse
|
165
|
Jongstra-Bilen J, Puig Cano A, Hasija M, Xiao H, Smith CIE, Cybulsky MI. Dual Functions of Bruton’s Tyrosine Kinase and Tec Kinase during Fcγ Receptor-Induced Signaling and Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:288-98. [DOI: 10.4049/jimmunol.181.1.288] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
166
|
Gilberti RM, Joshi GN, Knecht DA. The phagocytosis of crystalline silica particles by macrophages. Am J Respir Cell Mol Biol 2008; 39:619-27. [PMID: 18556590 DOI: 10.1165/rcmb.2008-0046oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Silicosis is a chronic lung disease induced by the inhalation of crystalline silica. Exposure of cultured macrophages to crystalline silica leads to cell death; however, the mechanism of cell-particle interaction, the fate of particles, and the cause of death are unknown. Time-lapse imaging shows that mouse macrophages avidly bind particles that settle onto the cell surface and that cells also extend protrusions to capture distant particles. Using confocal optical sectioning, silica particles were shown to be present within the cytoplasmic volume of live cells. In addition, electron microscopy and elemental analysis showed silica in internal cellular sections. To further examine the phagocytosis process, the kinetics of particle uptake was quantified using an assay in which cells were exposed to ovalbumin (OVA)-coated particles, and an anti-OVA antibody was used to distinguish surface-bound from internalized particles. Fc receptor-mediated uptake of antibody-coated silica particles was nearly complete within 5 minutes. In contrast, no OVA-coated particles were internalized at this time. After 30 minutes, 30% of bound silica was internalized and uptake continued slowly thereafter. OVA-coated latex beads, regardless of surface charge, were internalized at a similarly slow rate. These results demonstrate that macrophages internalize silica and that nonopsonized phagocytosis occurs by a temporally, and possibly mechanistically, distinct pathway from Fc receptor-mediated phagocytosis. Eighty percent of macrophages die within 12 hours of silica exposure. Neither OVA coating nor tetramethylrhodamine isothiocyanate labeling has any effect on cell death. Interestingly, antibody coating dramatically reduces silica toxicity. We hypothesize that the route of particle entry and subsequent phagosome trafficking affects the toxicity of internalized particles.
Collapse
Affiliation(s)
- Renée M Gilberti
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
167
|
Abstract
AbstractAlthough membrane phospholipid phosphatidylinositol-4,5bisphosphate (PIP2) plays a key role as signaling intermediate and coordinator of actin dynamics and vesicle trafficking, it remains completely unknown its involvement in the activation of cytolytic machinery. By live confocal imaging of primary human natural killer (NK) cells expressing the chimeric protein GFP-PH, we observed, during effector-target cell interaction, the consumption of a preexisting PIP2 pool, which is critically required for the activation of cytolytic machinery. We identified type I phosphatidylinositol-4-phosphate-5-kinase (PI5KI) α and γ isoforms as the enzymes responsible for PIP2 synthesis in NK cells. By hRNA-driven gene silencing, we observed that both enzymes are required for the proper activation of NK cytotoxicity and for inositol-1,4,5-trisphosphate (IP3) generation on receptor stimulation. In an attempt to elucidate the specific step controlled by PI5KIs, we found that lytic granule secretion but not polarization resulted in impaired PI5KIα- and PI5KIγ-silenced cells. Our findings delineate a novel mechanism implicating PI5KIα and PI5KIγ isoforms in the synthesis of PIP2 pools critically required for IP3-dependent Ca2+ response and lytic granule release.
Collapse
|
168
|
Huang YW, Yan M, Collins RF, DiCiccio JE, Grinstein S, Trimble WS. Mammalian septins are required for phagosome formation. Mol Biol Cell 2008; 19:1717-26. [PMID: 18272790 PMCID: PMC2291437 DOI: 10.1091/mbc.e07-07-0641] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 12/27/2007] [Accepted: 01/30/2008] [Indexed: 11/11/2022] Open
Abstract
Septins are members of a highly conserved family of filamentous proteins that are required in many organisms for the completion of cytokinesis. In addition, septins have been implicated in a number of important cellular processes and have been suggested to have roles in regulating membrane traffic. Given the proposed role of septins in cell membrane dynamics, we investigated the function of septins during FcgammaR-mediated phagocytosis. We show that several septins are expressed in RAW264.7 and J774 mouse macrophage cell lines and that SEPT2 and SEPT11 are colocalized with submembranous actin-rich structures during the early stages of FcgammaR-mediated phagocytosis. In addition, SEPT2 accumulation is seen in primary human neutrophils and in nonprofessional phagocytes. The time course of septin accumulation mirrors actin accumulation and is inhibited by latrunculin and genistein, but not other inhibitors of phagocytosis. Inhibition of septin function by transient expression of the BD3 domain of BORG3, known to cause septin aggregation, or depletion of SEPT2 or SEPT11 by RNAi, significantly inhibited FcgammaR-mediated phagocytosis of IgG-coated latex beads. Interestingly, this occurred without affecting the accumulation of actin or the actin-associated protein coronin-1. These observations show that, although not necessary for actin recruitment, septins are required for efficient FcgammaR-mediated phagocytosis.
Collapse
Affiliation(s)
- Yi-Wei Huang
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G1X8
| | - Ming Yan
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G1X8
| | - Richard F. Collins
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G1X8
| | - Jessica E. DiCiccio
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G1X8
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G1X8
| | - William S. Trimble
- Program in Cell Biology, Hospital for Sick Children, and Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5G1X8
| |
Collapse
|
169
|
Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 2008; 450:725-30. [PMID: 18046412 DOI: 10.1038/nature06345] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 10/04/2007] [Indexed: 11/08/2022]
Abstract
With the emergence of multidrug resistant (MDR) bacteria, it is imperative to develop new intervention strategies. Current antibiotics typically target pathogen rather than host-specific biochemical pathways. Here we have developed kinase inhibitors that prevent intracellular growth of unrelated pathogens such as Salmonella typhimurium and Mycobacterium tuberculosis. An RNA interference screen of the human kinome using automated microscopy revealed several host kinases capable of inhibiting intracellular growth of S. typhimurium. The kinases identified clustered in one network around AKT1 (also known as PKB). Inhibitors of AKT1 prevent intracellular growth of various bacteria including MDR-M. tuberculosis. AKT1 is activated by the S. typhimurium effector SopB, which promotes intracellular survival by controlling actin dynamics through PAK4, and phagosome-lysosome fusion through the AS160 (also known as TBC1D4)-RAB14 pathway. AKT1 inhibitors counteract the bacterial manipulation of host signalling processes, thus controlling intracellular growth of bacteria. By using a reciprocal chemical genetics approach, we identified kinase inhibitors with antibiotic properties and their host targets, and we determined host signalling networks that are activated by intracellular bacteria for survival.
Collapse
|
170
|
Cosío G, Grinstein S. Analysis of phosphoinositide dynamics during phagocytosis using genetically encoded fluorescent biosensors. Methods Mol Biol 2008; 445:287-300. [PMID: 18425457 DOI: 10.1007/978-1-59745-157-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phosphoinositide signaling is essential for successful phagocytosis. Phosphoinositides regulate processes such as actin assembly and the recruitment of molecular motors required for ingestion, as well as fusion events required for the maturation of the phagosome. Phosphoinositides not only serve as substrates for the generation of second messengers, but also function to anchor to the membrane cytosolic proteins that contain phosphoinositide-binding motifs. Conventional methods for the detection of phosphoinositides involve their extraction from the cells and separation by chromatographic procedures. These approaches are laborious and expensive and fail to provide spatio-temporal information, which is critical when analyzing localized and transient phenomena like phagocytosis. In this chapter we describe a method to monitor phosphoinositides dynamically by transfection of fluorescently tagged probes (biosensors) into cultured macrophages. These biosensors are based on the fusion of phosphoinositide-binding protein domains with fluorescent proteins. Some specifications for live cell imaging of such phosphoinositide-specific probes are also provided.
Collapse
Affiliation(s)
- Gabriela Cosío
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
171
|
Szymańska E, Sobota A, Czuryło E, Kwiatkowska K. Expression of PI(4,5)P2-binding proteins lowers the PI(4,5)P2level and inhibits FcγRIIA-mediated cell spreading and phagocytosis. Eur J Immunol 2008; 38:260-72. [DOI: 10.1002/eji.200737170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
172
|
Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:253-300. [PMID: 19081545 DOI: 10.1016/s1937-6448(08)01206-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research into phagocytosis and host-pathogen interactions in the lower eukaryote Dictyostelium discoideum has flourished in recent years. This chapter presents a glimpse of where this research stands, with emphasis on the cell biology of the phagocytic process and on the wealth of molecular genetic data that have been gathered. The basic mechanistic machinery and most of the underlying genes appear to be evolutionarily conserved, reflecting the fact that phagocytosis arose as an efficient way to ingest food in single protozoan cells devoid of a rigid cell wall. In spite of some differences, the signal transduction pathways regulating phagosome biogenesis are also emerging as ultimately similar between Dictyostelium and macrophages. Both cell types are hosts for many pathogenic invasive bacteria, which exploit phagocytosis to grow intracellularly. We present an overwiew, based on the analysis of mutants, on how Dictyostelium contributes as a genetic model system to decipher the complexity of host-pathogen interactions.
Collapse
|
173
|
Horan KA, Watanabe KI, Kong AM, Bailey CG, Rasko JEJ, Sasaki T, Mitchell CA. Regulation of FcγR-stimulated phagocytosis by the 72-kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72-kDa 5-phosphatase, regulates complement receptor 3–mediated phagocytosis by differential recruitment of these 5-phosphatases to the phagocytic cup. Blood 2007; 110:4480-91. [PMID: 17682126 DOI: 10.1182/blood-2007-02-073874] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Macrophages phagocytose particles to resolve infections and remove apoptotic cells. Phosphoinositide 3-kinase generates phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] is restricted to the phagocytic cup, promoting phagocytosis. The PtdIns(3,4,5)P3 5-phosphatase (5-ptase) Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1) inhibits phagocytosis. We report here that another PtdIns(3,4,5)P3-5-ptase, the 72-kDa-5-phosphatase (72-5ptase), inhibits Fcγ receptor (FcγR)– but not complement receptor 3 (CR3)–mediated phagocytosis, affecting pseudopod extension and phagosome closure. In contrast, SHIP1 inhibited FcγR and CR3 phagocytosis with greater effects on CR3-stimulated phagocytosis. The 72-5ptase and SHIP1 were both dynamically recruited to FcγR-stimulated phagocytic cups, but only SHIP1 was recruited to CR3-stimulated phagocytic cups. To determine whether 5-ptases focally degrade PtdIns(3,4,5)P3 at the phagocytic cup after specific stimuli, time-lapse imaging of specific biosensors was performed. Transfection of dominant-negative 72-5ptase or 72-5ptase small interfering RNA (siRNA) resulted in amplified and prolonged PtdIns(3,4,5)P3 at the phagocytic cup in response to FcγR- but not CR3-stimulation. In contrast, macrophages from Ship1−/−/AktPH-GFP transgenic mice exhibited increased and sustained PtdIns(3,4,5)P3 at the cup in response to CR3 activation, with minimal changes to FcγR activation. Therefore, 72-5ptase and SHIP1 exhibit specificity in regulating FcγR- versus CR3-stimulated phagocytosis by controlling the amplitude and duration of PtdIns(3,4,5)P3 at the phagocytic cup.
Collapse
Affiliation(s)
- Kristy A Horan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
174
|
Wu W, Zong R, Xu J, Zhang X. Antiviral phagocytosis is regulated by a novel Rab-dependent complex in shrimp penaeus japonicus. J Proteome Res 2007; 7:424-31. [PMID: 18072731 DOI: 10.1021/pr700639t] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rab GTPases are involved in phagosome formation and maturation. However, the role of Rab GTPases in phagocytosis against virus infection remains unknown. In this study, it was found that a Rab gene ( PjRab) from marine shrimp was upregulated in virus-resistant shrimp, suggesting that Rab GTPase was involved in the innate response to virus. The RNAi and mRNA assays revealed that the PjRab protein could regulate shrimp hemocytic phagocytosis through a protein complex consisting of the PjRab, beta-actin, tropomyosin, and envelope protein VP466 of shrimp white spot syndrome virus (WSSV). It was further demonstrated that the PjRab gene silencing by RNAi caused the increase in the number of WSSV copies, indicating that the PjRab might be an intracellular virus recognition protein employed by a host to increase the phagocytic activity. Therefore, our study presents a novel Rab-dependent signaling complex, in which the Rab GTPase might detect virus infection as an intracellular virus recognition protein and trigger downstream phagocytic defense against virus in crustacean for the first time. This discovery would improve our understanding of the still poorly understood molecular events involved in innate immune response against virus infection of invertebrates.
Collapse
Affiliation(s)
- Wenlin Wu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China
| | | | | | | |
Collapse
|
175
|
Yaradanakul A, Hilgemann DW. Unrestricted diffusion of exogenous and endogenous PIP(2 )in baby hamster kidney and Chinese hamster ovary cell plasmalemma. J Membr Biol 2007; 220:53-67. [PMID: 18008024 DOI: 10.1007/s00232-007-9074-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Accepted: 09/26/2007] [Indexed: 01/21/2023]
Abstract
We used two approaches to characterize the lateral mobility of phosphatidylinositol 4,5-bisphosphate (PIP(2)) in the plasmalemma of baby hamster kidney and Chinese hamster ovary fibroblasts. First, nitrobenzoxadiazole-labeled C6-phosphatidylcholine and C16-PIP(2) were incorporated into plasma membrane "lawns" ( approximately 20 x 30 microm) from these cells and into the outer monolayer of intact cells. Diffusion coefficients determined by fluorescence recovery after photobleaching were similar for the two lipids and were higher in lawns, approximately 0.3 microm(2)/s, than on the cell surface, approximately 0.1 microm(2)/s. For membrane lawns, the fractional recoveries (75-90%) were close to those expected from the fraction of total membrane bleached, and labeling by the probes was several times greater than for intact cells. Second, we analyzed cells expressing M1 muscarinic receptors and green fluorescent protein fused with PIP(2)-binding pleckstrin-homology domains, Tubby domains or diacylglycerol (DAG)-binding C1 domains. On-cell gigaseal patches were formed with pipette tips >5 microm in diameter. When the agonist carbachol (0.3 mM: ) was applied either within or outside of the pipette, lipid signals crossed the pipette barrier rapidly in both directions and membrane blebbing occurred on both membrane sides. Accurate simulations of lipid gradients required diffusion coefficients >1 microm(2)/s. Exogenous DAG also crossed the pipette barrier rapidly. In summary, we found no evidence for restricted diffusion of signaling lipids in these cells. The lower mobility and incorporation of phospholipid at the extracellular leaflet may reflect a more ordered and condensed extracellular monolayer, as expected from previous studies.
Collapse
Affiliation(s)
- Alp Yaradanakul
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA.
| | | |
Collapse
|
176
|
Abstract
Phagocytosis is an important component of innate and adaptive immunity. The formation of phagosomes and the subsequent maturation that capacitates them for pathogen elimination and antigen presentation are complex processes that involve signal transduction, cytoskeletal reorganization, and membrane remodeling. Lipids are increasingly appreciated to play a crucial role in these events. Sphingolipids, cholesterol, and glycerophospholipids, notably the phosphoinositides, are required for the segregation of signaling microdomains and for the generation of second messengers. They are also instrumental in the remodeling of the actin cytoskeleton and in directing membrane traffic. They accomplish these feats by congregating into liquid-ordered domains, by generating active metabolites that activate receptors, and by recruiting and anchoring specific protein ligands to the membrane, often altering their conformation and catalytic activity. A less appreciated role of acidic phospholipids is their contribution to the negative surface charge of the inner leaflet of the plasmalemma. The unique negativity of the inner aspect of the plasma membrane serves to attract and anchor key signaling and effector molecules that are required to initiate phagosome formation. Conversely, the loss of charge that accompanies phospholipid metabolism as phagosomes seal facilitates the dissociation of proteins and the termination of signaling and cytoskeleton assembly. In this manner, lipids provide a binary electrostatic switch to control phagocytosis.
Collapse
Affiliation(s)
- Tony Yeung
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
177
|
Vernon-Wilson EF, Auradé F, Tian L, Rowe ICM, Shipston MJ, Savill J, Brown SB. CD31 delays phagocyte membrane repolarization to promote efficient binding of apoptotic cells. J Leukoc Biol 2007; 82:1278-88. [PMID: 17684043 DOI: 10.1189/jlb.0507283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Homophilic ligation of CD31, a member of the Ig superfamily of adhesion receptors, promotes macrophage clearance of apoptotic leukocytes by a mechanism hitherto not described. In studying CD31-dependent regulation of beta1-integrin binding of fibronectin-coated Latex beads, we discovered a role for the voltage-gated potassium channel ether-à-go-go-related gene (ERG) as a downstream effector of CD31 signaling. ERG was identified by tandem mass spectrometry as a 140-kDa protein, which was selectively modified with biotin following the targeted delivery of a biotin-transfer reagent to CD31 using Fab fragments of an anti-CD31 mAb. Similar results were obtained with macrophages but not K562 cells, expressing a truncated cytoplasmic tail of CD31, which failed to regulate bead binding. Colocalization of CD31 with ERG was confirmed by immunofluorescence for K562 cells and macrophages. We now demonstrate that the resting membrane potential of macrophages is depolarized on contact with apoptotic cells and that CD31 inhibits the ERG current, which would otherwise function to repolarize. Sustained depolarization favored the firm binding of phagocytic targets, a prerequisite for efficient engulfment. Our results identify ERG as a downstream effector of CD31 in the regulation of integrin-dependent binding of apoptotic cells by macrophages.
Collapse
|
178
|
Jones NP, Katan M. Role of phospholipase Cgamma1 in cell spreading requires association with a beta-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1. Mol Cell Biol 2007; 27:5790-805. [PMID: 17562871 PMCID: PMC1952113 DOI: 10.1128/mcb.00778-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/24/2007] [Indexed: 11/20/2022] Open
Abstract
The significance of multiprotein signaling complexes in cell motility is becoming increasingly important. We have previously shown that phospholipase Cgamma1 (PLCgamma1) is critical for integrin-mediated cell spreading and motility (N. Jones et al., J. Cell Sci. 118:2695-2706, 2005). In the current study we show that, on a basement membrane-type matrix, PLCgamma1 associates with the adaptor protein GIT1 and the Rac1/Cdc42 guanine exchange factor beta-Pix; GIT1 and beta-Pix form tight complexes independently of PLCgamma1. The association of PLCgamma1 with the complex requires both GIT1 and beta-Pix and the specific array region (gammaSA) of PLCgamma1. Mutations of PLCgamma1 within the gammaSA region reveal that association with this complex is essential for the phosphorylation of PLCgamma1 and the progression to an elongated morphology after integrin engagement. Short interfering RNA (siRNA) depletion of either beta-Pix or GIT1 inhibited cell spreading in a fashion similar to that seen with siRNA against PLCgamma1. Furthermore, siRNA depletion of PLCgamma1, beta-Pix, or GIT1 inhibited Cdc42 and Rac1 activation, while constitutively active forms of Cdc42 or Rac1, but not RhoA, were able to rescue the elongation of these cells. Signaling of the PLCgamma1/GIT1/beta-Pix complex to Cdc42/Rac1 was found to involve the activation of calpains, calcium-dependent proteases. Therefore, we propose that the association of PLCgamma1 with complexes containing GIT1 and beta-Pix is essential for its role in integrin-mediated cell spreading and motility. As a component of this complex, PLCgamma1 is also involved in the activation of Cdc42 and Rac1.
Collapse
Affiliation(s)
- Neil P Jones
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | |
Collapse
|
179
|
Kusner DJ, Thompson CR, Melrose NA, Pitson SM, Obeid LM, Iyer SS. The Localization and Activity of Sphingosine Kinase 1 Are Coordinately Regulated with Actin Cytoskeletal Dynamics in Macrophages. J Biol Chem 2007; 282:23147-62. [PMID: 17519232 DOI: 10.1074/jbc.m700193200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiologic and pathologic functions of sphingosine kinase (SK) require translocation to specific membrane compartments. We tested the hypothesis that interactions with actin filaments regulate the localization of SK1 to membrane surfaces, including the plasma membrane and phagosome. Macrophage activation is accompanied by a marked increase in association of SK1 with actin filaments. Catalytically-inactive (CI)- and phosphorylation-defective (PD)-SK1 mutants exhibited reductions in plasma membrane translocation, colocalization with cortical actin filaments, membrane ruffling, and lamellipodia formation, compared with wild-type (WT)-SK1. However, translocation of CI- and PD-SK1 to phagosomes were equivalent to WT-SK1. SK1 exhibited constitutive- and stimulus-enhanced association with actin filaments and F-actin-enriched membrane fractions in both intact macrophages and a novel in vitro assay. In contrast, SK1 bound G-actin only under stimulated conditions. Actin inhibitors disrupted SK1 localization and modulated its activity. Conversely, reduction of SK1 levels or activity via RNA interference or specific chemical inhibition resulted in dysregulation of actin filaments. Thus, the localization and activity of SK1 are coordinately regulated with actin dynamics during macrophage activation.
Collapse
Affiliation(s)
- David J Kusner
- Inflammation Program, Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Carver College of Medicine and Veterans Affairs Medical Center, Iowa City, Iowa 52245, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Hilgemann DW. Local PIP(2) signals: when, where, and how? Pflugers Arch 2007; 455:55-67. [PMID: 17534652 DOI: 10.1007/s00424-007-0280-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 10/24/2022]
Abstract
PIP(2) is a minor phospholipid that modulates multiple cellular processes. However, its abundance by mass, like diacylglycerol, is still 20 to 100 times greater than the master phospholipid second messenger, PIP(3). Therefore, it is a case-by-case question whether PIP(2) is acting more like GTP, in being a cofactor in regulatory processes, or whether it is being used as a true second messenger. Analysis of signaling mechanisms in primary cells is essential to answer this question, as overexpression studies will naturally generate false positives. In connection with the possible messenger function of PIP(2), a second question arises as to how and if PIP(2) metabolism and signaling may be limited in space. This review summarizes succinctly the notable cases in which PIP(2) is proposed to function in a localized way and the different mechanistic models that may allow it to function locally. In general, drastic restrictions of PIP(2) diffusion are required. It is speculated that molecular PIP(2) signaling may be possible in the absence of PIP(2) gradients via ternary complexes between PIP(2) and two protein partners. That PIP(2) synthesis and hydrolysis might be locally dependent on protein-protein interactions, and direct lipid "hand-off" is suggested by multiple results.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9040, USA.
| |
Collapse
|
181
|
Murphy SC, Fernandez-Pol S, Chung PH, Prasanna Murthy SN, Milne SB, Salomao M, Brown HA, Lomasney JW, Mohandas N, Haldar K. Cytoplasmic remodeling of erythrocyte raft lipids during infection by the human malaria parasite Plasmodium falciparum. Blood 2007; 110:2132-9. [PMID: 17526861 PMCID: PMC1976375 DOI: 10.1182/blood-2007-04-083873] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of detergent-resistant membrane (DRM) rafts in mature erythrocytes have facilitated identification of proteins that regulate formation of endovacuolar structures such as the parasitophorous vacuolar membrane (PVM) induced by the malaria parasite Plasmodium falciparum. However, analyses of raft lipids have remained elusive because detergents interfere with lipid detection. Here, we use primaquine to perturb the erythrocyte membrane and induce detergent-free buoyant vesicles, which are enriched in cholesterol and major raft proteins flotillin and stomatin and contain low levels of cytoskeleton, all characteristics of raft microdomains. Lipid mass spectrometry revealed that phosphatidylethanolamine and phosphatidylglycerol are depleted in endovesicles while phosphoinositides are highly enriched, suggesting raft-based endovesiculation can be achieved by simple (non-receptor-mediated) mechanical perturbation of the erythrocyte plasma membrane and results in sorting of inner leaflet phospholipids. Live-cell imaging of lipid-specific protein probes showed that phosphatidylinositol (4,5) bisphosphate (PIP(2)) is highly concentrated in primaquine-induced vesicles, confirming that it is an erythrocyte raft lipid. However, the malarial PVM lacks PIP(2), although another raft lipid, phosphatidylserine, is readily detected. Thus, different remodeling/sorting of cytoplasmic raft phospholipids may occur in distinct endovacuoles. Importantly, erythrocyte raft lipids recruited to the invasion junction by mechanical stimulation may be remodeled by the malaria parasite to establish blood-stage infection.
Collapse
Affiliation(s)
- Sean C Murphy
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Mao YS, Yin HL. Regulation of the actin cytoskeleton by phosphatidylinositol 4-phosphate 5 kinases. Pflugers Arch 2007; 455:5-18. [PMID: 17520274 DOI: 10.1007/s00424-007-0286-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/02/2007] [Indexed: 12/19/2022]
Abstract
Phosphatidylinositol (4,5)-bisphosphate (PIP(2)) is an important lipid mediator that has multiple regulatory functions. There is now increasing evidence that the phosphatidylinositol 4-phosphate 5 kinases (PIP5Ks), which synthesize PIP(2), are regulated spatially and temporally and that they have isoform-specific functions and regulations. This review will summarize the highlights of recent developments in understanding how the three major PIP5K isoforms regulate the actin cytoskeleton and other important cellular processes.
Collapse
Affiliation(s)
- Yuntao S Mao
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9040, USA
| | | |
Collapse
|
183
|
Lee WL, Mason D, Schreiber AD, Grinstein S. Quantitative analysis of membrane remodeling at the phagocytic cup. Mol Biol Cell 2007; 18:2883-92. [PMID: 17507658 PMCID: PMC1949373 DOI: 10.1091/mbc.e06-05-0450] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nascent phagosomes, which are derived from the plasma membrane, acquire microbicidal properties through multiple fusion and fission events collectively known as maturation. Here we show that remodeling of the phagosomal membrane is apparent even before sealing, particularly when large particles are ingested. Fluorescent probes targeted to the plasma membrane are cleared from the region lining the particle before engulfment is completed. Extensive clearance was noted for components of the inner as well as outer monolayer of the plasmalemma. Segregation of lipid microdomains was ruled out as the mechanism underlying membrane remodeling, because markers residing in rafts and those that are excluded were similarly depleted. Selective endocytosis was also ruled out. Instead, several lines of evidence indicate that endomembranes inserted by exocytosis at sites of ingestion displace the original membrane constituents from the base of the phagosomal cup. The Fcgamma receptors that trigger phagocytosis remain associated with their ligands. By contrast, Src-family kinases that are the immediate effectors of receptor activation are flushed away from the cup by the incoming membranes. Together with the depletion of phosphoinositides required for signal transduction, the disengagement of receptors from their effectors by bulk membrane remodeling provides a novel means to terminate receptor signaling.
Collapse
Affiliation(s)
- Warren L. Lee
- *Programme in Cell Biology, Hospital for Sick Children
- Interdepartmental Division of Critical Care Medicine, and
- the Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, M5G 1X8 Canada; and
| | - David Mason
- *Programme in Cell Biology, Hospital for Sick Children
| | - Alan D. Schreiber
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | |
Collapse
|
184
|
Araki N, Egami Y, Watanabe Y, Hatae T. Phosphoinositide metabolism during membrane ruffling and macropinosome formation in EGF-stimulated A431 cells. Exp Cell Res 2007; 313:1496-507. [PMID: 17368443 DOI: 10.1016/j.yexcr.2007.02.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/30/2007] [Accepted: 02/13/2007] [Indexed: 11/30/2022]
Abstract
Inhibitors of phosphoinositide 3-kinase (PI3K) were found to perturb macropinosome formation without affecting the membrane ruffling and actin polymerization in epidermal growth factor-stimulated A431 cells. Live-cell imaging and quantitative image analysis of the fluorescence intensity ratio of the YFP-tagged phospholipase Cdelta1-pleckstrin homology domain (YFP-PLC-PH) relative to membrane-targeted CFP (CFP-Mem) demonstrated that the concentration of PI(4,5)P(2) in the membrane ruffles forming macropinocytic cups increased to more than double that in planar plasma membranes. The PI(4,5)P(2) level in the membrane reached its maximum just before macropinosome closure and rapidly fell as the macropinocytic cups closed. In contrast, the PI(3,4,5)P(3) concentrations visualized based on the YFP-Akt-PH or YFP-Bruton's tyrosine kinase (Btk)-PH/CFP-Mem ratio increased locally at the site of macropinosome formation and peaked at the time of macropinosome closure. The kinetics of PI(4,5)P(2) and PI(3,4,5)P(3) appeared to be mechanistically linked to actin remodeling during macropinocytosis. From the pharmacological data using inhibitors and synthetic phosphoinositides and other data, it could be concluded that both PI(4,5)P(2) elimination and PI(3,4,5)P(3) production by PI3K might be crucial for macropinosome formation from membrane ruffles. This study emphasizes that locally controlled levels of phosphoinositides are important for regulating the function of actin-binding proteins which effect changes in the membrane architecture.
Collapse
Affiliation(s)
- Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan.
| | | | | | | |
Collapse
|
185
|
Lee WL, Cosio G, Ireton K, Grinstein S. Role of CrkII in Fcgamma receptor-mediated phagocytosis. J Biol Chem 2007; 282:11135-43. [PMID: 17308335 DOI: 10.1074/jbc.m700823200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis of IgG-opsonized pathogens by Fcgamma receptors requires extensive remodeling of the actin cytoskeleton, a process regulated by the small GTPase Rac. Vav was thought to be the guanine nucleotide exchange factor responsible for the activation of Rac, but recent evidence indicates that Fcgamma receptor-mediated phagocytosis is unaffected in macrophages lacking all three isoforms of Vav. We therefore tested whether another GEF, DOCK180, participates in Fcgamma receptor-initiated phagocytosis. DOCK180 associates with the adaptor protein Crk, which mediates recruitment of the GEF to sites of tyrosine phosphorylation. CrkII and DOCK180 were found to accumulate at the phagocytic cup. Knockdown of Crk or DOCK180 in murine macrophages using small interfering RNA inhibited phagocytosis of IgG-opsonized particles. Moreover, transfection of dominant negative CrkII prevented both recruitment of DOCK180 and the activation of Rac at the phagocytic cup. This is the first report of a role for either Crk or DOCK180 in Fcgamma receptor-mediated phagocytosis. The Crk-DOCK180 complex is involved in the clearance of apoptotic cells, which unlike the ingestion of IgG-opsonized particles, is an anti-inflammatory process. The finding that CrkII-DOCK180 is also responsible, at least in part, for the effects of Fcgamma receptors implies that additional, parallel pathways must account for the associated pro-inflammatory effect.
Collapse
Affiliation(s)
- Warren L Lee
- Programme in Cell Biology, Hospital for Sick Children, and the Department of Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
186
|
Oude Weernink PA, López de Jesús M, Schmidt M. Phospholipase D signaling: orchestration by PIP2 and small GTPases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 374:399-411. [PMID: 17245604 PMCID: PMC2020506 DOI: 10.1007/s00210-007-0131-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/20/2006] [Indexed: 11/12/2022]
Abstract
Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)). PIP(2) is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP(2) by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP(2) and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions.
Collapse
Affiliation(s)
| | | | - Martina Schmidt
- />Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
187
|
Ching KH, Kisailus AE, Burbelo PD. Biochemical characterization of distinct regions of SPEC molecules and their role in phagocytosis. Exp Cell Res 2007; 313:10-21. [PMID: 17045588 DOI: 10.1016/j.yexcr.2006.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
Cdc42 signaling pathways play important roles in immune cell polarization and cytoskeletal changes. Although the small Cdc42-binding proteins SPEC1 and SPEC2 play a role in F-actin accumulation in activated T lymphocytes, little is known about their precise activities in other cell types. Here, we mapped the Cdc42-binding activity of SPEC1 to the CRIB sequence and a downstream alpha helical region. Biochemical studies revealed that SPEC1 did not interact with a Rac1 switch-of-function mutant capable of inducing Cdc42-like filopodia, potentially eliminating a role for SPECs in this process. A phosphoinositide-binding region was identified within a basic region N-terminal to the CRIB sequence of SPEC1. Using an anti-SPEC2 antibody, we found that endogenous SPEC2 colocalized with Cdc42 at the phagocytic cup of macrophages internalizing zymosan A particles prior to significant F-actin accumulation. Overexpression studies of the related SPEC1 protein induced marked macrophage contraction and prevented particle binding and phagocytosis. Although a Cdc42-binding mutant of SPEC1 still caused macrophage contraction, mutations within the N-terminal cysteines and phosphoinositide-binding region reversed macrophage contraction but still resulted in impaired phagocytosis. These results identify three distinct structural and functional regions within SPECs and demonstrate their likely role in early contractile events in phagocytosis.
Collapse
Affiliation(s)
- Kathryn H Ching
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
188
|
Seth A, Otomo C, Rosen MK. Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpha and mDia1. ACTA ACUST UNITED AC 2006; 174:701-13. [PMID: 16943183 PMCID: PMC2064313 DOI: 10.1083/jcb.200605006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diaphanous-related formins (DRFs) are key regulators of actin cytoskeletal dynamics whose in vitro actin assembly activities are thought to be regulated by autoinhibition. However, the in vivo consequences of autoinhibition and the involvement of DRFs in specific biological processes are not well understood. In this study, we show that in the DRFs FRLα (formin-related gene in leukocytes α) and mouse diaphanous 1, autoinhibition regulates a novel membrane localization activity in vivo as well as actin assembly activity in vitro. In FRLα, the Rho family guanosine triphosphatase Cdc42 relieves the autoinhibition of both membrane localization and biochemical actin assembly activities. FRLα is required for efficient Fc-γ receptor–mediated phagocytosis and is recruited to the phagocytic cup by Cdc42. These results suggest that mutual autoinhibition of biochemical activity and cellular localization may be a general regulatory principle for DRFs and demonstrate a novel role for formins in immune function.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Biochemistry, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | |
Collapse
|
189
|
Schröder A, Schröder B, Roppenser B, Linder S, Sinha B, Fässler R, Aepfelbacher M. Staphylococcus aureus fibronectin binding protein-A induces motile attachment sites and complex actin remodeling in living endothelial cells. Mol Biol Cell 2006; 17:5198-210. [PMID: 17021255 PMCID: PMC1679684 DOI: 10.1091/mbc.e06-05-0463] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus fibronectin binding protein-A (FnBPA) stimulates alpha5beta1-integrin signaling and actin rearrangements in host cells. This eventually leads to invasion of the staphylococci and their targeting to lysosomes. Using live cell imaging, we found that FnBPA-expressing staphylococci induce formation of fibrillar adhesion-like attachment sites and translocate together with them on the surface of human endothelial cells (velocity approximately 50 microm/h). The translocating bacteria recruited cellular actin and Rab5 in a cyclic and alternating manner, suggesting unsuccessful attempts of phagocytosis by the endothelial cells. Translocation, actin recruitment, and eventual invasion of the staphylococci was regulated by the fibrillar adhesion protein tensin. The staphylococci also regularly produced Neural Wiskott-Aldrich syndrome protein-controlled actin comet tails that further propelled them on the cell surface (velocity up to 1000 microm/h). Thus, S. aureus FnBPA produces attachment sites that promote bacterial movements but subvert actin- and Rab5 reorganization during invasion. This may constitute a novel strategy of S. aureus to postpone invasion until its toxins become effective.
Collapse
Affiliation(s)
- Andreas Schröder
- *Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Barbara Schröder
- Institut für Prophylaxe der Kreislaufkrankheiten, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Bernhard Roppenser
- *Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für Prophylaxe der Kreislaufkrankheiten, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Bhanu Sinha
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, 48149 Münster, Germany; and
| | - Reinhard Fässler
- Max-Planck-Institut für Biochemie, Abteilung für Molekulare Medizin, 82152 Martinsried, Germany
| | - Martin Aepfelbacher
- *Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
190
|
Oude Weernink PA, Han L, Jakobs KH, Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:888-900. [PMID: 17054901 DOI: 10.1016/j.bbamem.2006.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP(2) by phospholipase C (PLC) into the second messengers IP(3) and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP(2), has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP(2) by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.
Collapse
Affiliation(s)
- Paschal A Oude Weernink
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
191
|
Yeung T, Ozdamar B, Paroutis P, Grinstein S. Lipid metabolism and dynamics during phagocytosis. Curr Opin Cell Biol 2006; 18:429-37. [PMID: 16781133 DOI: 10.1016/j.ceb.2006.06.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Accepted: 06/06/2006] [Indexed: 12/24/2022]
Abstract
Phagocytosis, the engulfment of particles, mediates the elimination of invading pathogens as well as the clearance of apoptotic cells. Ingested particles reside within a vacuole or phagosome, where they are eventually destroyed and digested. The phagosomal lumen acquires microbicidal and digestive properties through interaction with various components of the endocytic pathway, a process known as maturation. Lipids are known to have numerous roles in phagosome formation and maturation; recent developments in the design of lipid-specific probes and in high-resolution imaging have revealed that lipids, notably phosphoinositides, are involved in signaling, actin assembly and the recruitment of molecular motors to sites of ingestion. In addition, phosphoinositides and other lipids also regulate multiple membrane budding, fission and fusion events required for maturation.
Collapse
Affiliation(s)
- Tony Yeung
- Division of Cell Biology, The Hospital for Sick Children, Institute of Medical Sciences, University of Toronto, Toronto, M5S 1A8, Canada
| | | | | | | |
Collapse
|
192
|
Corrotte M, Chasserot-Golaz S, Huang P, Du G, Ktistakis NT, Frohman MA, Vitale N, Bader MF, Grant NJ. Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis. Traffic 2006; 7:365-77. [PMID: 16497229 DOI: 10.1111/j.1600-0854.2006.00389.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phospholipase D (PLD) produces phosphatidic acid (PA), an established intracellular signalling lipid that has been also implicated in vesicular trafficking, and as such, PLD could play multiple roles during phagocytosis. Using an RNA interference strategy, we show that endogenous PLD1 and PLD2 are necessary for efficient phagocytosis in murine macrophages, in line with results obtained with wild-type constructs and catalytically inactive PLD mutants which, respectively, enhance and inhibit phagocytosis. Furthermore, we found that PA is transiently produced at sites of phagosome formation. Macrophage PLD1 and PLD2 differ in their subcellular distributions. PLD1 is associated with cytoplasmic vesicles, identified as a late endosomal/lysosomal compartment, whereas PLD2 localizes at the plasma membrane. In living cells undergoing phagocytosis, PLD1 vesicles are recruited to nascent and internalized phagosomes, whereas PLD2 is only observed on nascent phagosomes. These results provide evidence that both PLD isoforms are required for phagosome formation, but only PLD1 seems to be implicated in later stages of phagocytosis occurring after phagosomal internalization.
Collapse
Affiliation(s)
- Matthias Corrotte
- Département Neurotransmission et Sécrétion Neuroendocrine, UMR 7168/LC2, CNRS/Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Hammond GRV, Dove SK, Nicol A, Pinxteren JA, Zicha D, Schiavo G. Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. J Cell Sci 2006; 119:2084-94. [PMID: 16687737 DOI: 10.1242/jcs.02912] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inositol lipid phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] is involved in a myriad of cellular processes, including the regulation of exocytosis and endocytosis. In this paper, we address the role of PtdIns(4,5)P2 in compound exocytosis from rat peritoneal mast cells. This process involves granule-plasma membrane fusion as well as homotypic granule membrane fusion and occurs without any immediate compensatory endocytosis. Using a novel quantitative immunofluorescence technique, we report that plasma membrane PtdIns(4,5)P2 becomes transiently depleted upon activation of exocytosis, and is not detected on the membranes of fusing granules. Depletion is caused by phospholipase C activity, and is mandatory for exocytosis. Although phospholipase C is required for Ca2+ release from internal stores, the majority of the requirement for PtdIns(4,5)P2 hydrolysis occurs downstream of Ca2+ signalling - as shown in permeabilised cells, where the inositol (1,4,5)-trisphosphate-Ca2+ pathway is bypassed. Neither generation of the PtdIns(4,5)P2 metabolite, diacylglycerol (DAG) or simple removal and/or sequestration of PtdIns(4,5)P2 are sufficient for exocytosis to occur. However, treatment of permeabilised cells with DAG induces a small potentiation of exocytosis, indicating that it may be required. We propose that a cycle of PtdIns(4,5)P2 synthesis and breakdown is crucial for exocytosis to occur in mast cells, and may have a more general role in all professional secretory cells.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Molecular Neuropathobiology, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK.
| | | | | | | | | | | |
Collapse
|
194
|
Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam DJ. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. THE JOURNAL OF IMMUNOLOGY 2006; 176:3070-9. [PMID: 16493066 DOI: 10.4049/jimmunol.176.5.3070] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis, although the mechanisms by which bacterial translocation occurs remain largely unknown. We hypothesized that bacterial translocation across the intact barrier occurs after internalization of the bacteria by enterocytes in a process resembling phagocytosis and that TLR4 is required for this process. We now show that FcgammaRIIa-transfected enterocytes can internalize IgG-opsonized erythrocytes into actin-rich cups, confirming that these enterocytes have the molecular machinery required for phagocytosis. We further show that enterocytes can internalize Escherichia coli into phagosomes, that the bacteria remain viable intracellularly, and that TLR4 is required for this process to occur. TLR4 signaling was found to be necessary and sufficient for phagocytosis by epithelial cells, because IEC-6 intestinal epithelial cells were able to internalize LPS-coated, but not uncoated, latex particles and because MD2/TLR4-transfected human endothelial kidney (HEK)-293 cells acquired the capacity to internalize E. coli, whereas nontransfected HEK-293 cells and HEK-293 cells transfected with dominant-negative TLR4 bearing a P712H mutation did not. LPS did not induce membrane ruffling or macropinocytosis in enterocytes, excluding their role in bacterial internalization. Strikingly, the internalization of Gram-negative bacteria into enterocytes in vivo and the translocation of bacteria across the intestinal epithelium to mesenteric lymph nodes were significantly greater in wild-type mice as compared with mice having mutations in TLR4. These data suggest a novel mechanism by which bacterial translocation occurs and suggest a critical role for TLR4 in the phagocytosis of bacteria by enterocytes in this process.
Collapse
Affiliation(s)
- Matthew D Neal
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
The physiological effects of many extracellular stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid-signaling pathways. These signaling responses include the classically described conversion of PtdIns(4,5)P(2) to the Ca(2+)-mobilizing second messenger Ins(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. Here we discuss how the family of PLCs elaborates a minimal catalytic core typified by PLC-delta to confer multiple modes of regulation on their phospholipase activities. Although PLC-dependent signaling is prominently regulated by direct interactions with heterotrimeric G proteins or tyrosine kinases, the existence of at least 13 divergent PLC isozymes promises a diverse repertoire of regulatory mechanisms for this class of important signaling proteins. We focus here on the recently realized and extensive regulation of inositol lipid signaling by Ras superfamily GTPases directly acting on PLC isozymes and conclude by considering the biological and pharmacological ramifications of this regulation.
Collapse
Affiliation(s)
- T Kendall Harden
- Departments of Pharmacology, Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
196
|
Bonnans C, Fukunaga K, Keledjian R, Petasis NA, Levy BD. Regulation of phosphatidylinositol 3-kinase by polyisoprenyl phosphates in neutrophil-mediated tissue injury. ACTA ACUST UNITED AC 2006; 203:857-63. [PMID: 16567384 PMCID: PMC2118263 DOI: 10.1084/jem.20052143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neutrophils play a central role in host defense, inflammation, and tissue injury. Recent findings indicate a novel role for polyisoprenyl phosphates (PIPPs) as natural down-regulatory signals in neutrophils. The relationship between PIPPs and neutrophil early activating signals, such as phosphoinositides, has not been previously determined. Here, we establish presqualene diphosphate (PSDP) as an endogenous PIPP regulator of phosphatidylinositol 3-kinase (PI3K). In human neutrophils, leukotriene B4 (LTB4) triggered rapid decreases in PSDP and reciprocal increases in PI3K activity. In addition, PSDP was identified by gas chromatography/mass spectrometry in p110gamma-PI3K immunoprecipitates obtained 30 s after LTB4, indicating a physical interaction between PSDP and PI3K in activated neutrophils. Moreover, PSDP (0.4-800 pmol) directly inhibited recombinant human p110gamma-PI3K activity. During an experimental model of lung injury and inflammation, a reciprocal relationship was also present in vivo for lung PSDP and PI3K activity. To investigate its therapeutic potential, we developed a new PSDP structural mimetic that blocked human neutrophil activation and mouse lung PI3K activity and inflammation. Together, our findings indicate that PSDP is an endogenous PI3K inhibitor, and suggest that in inflammatory diseases characterized by excessive neutrophil activation, PIPPs can serve as structural templates in a novel antineutrophil therapeutic strategy to limit tissue injury.
Collapse
Affiliation(s)
- Caroline Bonnans
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
197
|
Iyer SS, Agrawal RS, Thompson CR, Thompson S, Barton JA, Kusner DJ. Phospholipase D1 Regulates Phagocyte Adhesion. THE JOURNAL OF IMMUNOLOGY 2006; 176:3686-96. [PMID: 16517737 DOI: 10.4049/jimmunol.176.6.3686] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adhesion is a fundamental cellular response that is essential to the physiologic processes of development, differentiation, proliferation, and motility, as well as to the pathology of inflammation, transformation, and metastasis. Adhesion of phagocytic leukocytes is a critical modulator of antimicrobial and cytotoxic functions, including the respiratory burst, secretion, and apoptosis. Because phospholipase D (PLD) is linked to several signaling pathways implicated in these processes, we tested the hypothesis that PLD regulates phagocyte adhesion. Adhesion of primary human neutrophils and monocyte-derived macrophages to fibronectin was accompanied by marked stimulation of PLD activity. Similarly, adhesion of both human (PLB, THP-1) and murine (RAW) myeloid-macrophage cell lines to fibronectin, fibrinogen, collagen, or plastic resulted in significant activation of PLD. Stimulation of PLD activity was rapid and persisted for at least 90 min. Confocal microscopy indicated that PLD1 exhibited partial colocalization with actin filaments at the adherent interface, in proximity to the focal adhesion protein, paxillin. Reductions in PLD activity by chemical inhibitors or specific short-interfering RNA-induced knockdown of PLD1 resulted in significant inhibition of phagocyte adhesion and was accompanied by reductions in total cellular F-actin. These data support the hypotheses that adhesion stimulates PLD activity, and that PLD1 regulates the initial stages of phagocyte adhesion. Stimulation of PLD activity may promote adhesion-dependent phagocyte effector responses.
Collapse
Affiliation(s)
- Shankar S Iyer
- Inflammation Program, Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Carver College of Medicine, 2501 Crosspark Road, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
198
|
Shi Y, Tohyama Y, Kadono T, He J, Miah SMS, Hazama R, Tanaka C, Tohyama K, Yamamura H. Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 2006; 107:4554-62. [PMID: 16449524 DOI: 10.1182/blood-2005-09-3616] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein tyrosine kinase Syk plays a central role in Fcgamma receptor-mediated phagocytosis in the adaptive immune system. We show here that Syk also plays an essential role in complement-mediated phagocytosis in innate immunity. Macrophage-like differentiated HL60 cells and C3bi-opsonized zymosan comprised the pathogen-phagocyte system. C3bi-opsonized zymosan particles promptly attached to the cells and were subsequently engulfed via complement receptor 3. During this process, Syk became tyrosine phosphorylated and accumulated around the nascent phagosomes. The transfer of Syk-siRNA or dominant-negative Syk (DN-Syk) into HL60 cells resulted in impaired phagocytosis. Quenching assays using fluorescent zymosan revealed that most of the attached zymosan particles were located inside parental HL60 cells, whereas few were ingested by the mutant cells. These data indicated that Syk is required for the engulfment of C3bi-opsonized zymosan. During C3bi-zymosan-induced phagocytosis, actin accumulation occurred around phagosomes and was followed by depolymerization, and further RhoA was activated together with tyrosine phosphorylation of Vav. These responses including the actin remodeling were suppressed in Syk-siRNA- or DN-Syk-expressing cells. Our results demonstrated that Syk plays an indispensable role in complement-mediated phagocytosis by regulating both actin dynamics and the RhoA activation pathway and that these functions of Syk lead to phagosome formation and pathogen engulfment.
Collapse
Affiliation(s)
- Yuhong Shi
- Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Blanc C, Charette S, Cherix N, Lefkir Y, Cosson P, Letourneur F. A novel phosphatidylinositol 4,5-bisphosphate-binding domain targeting the Phg2 kinase to the membrane in Dictyostelium cells. Eur J Cell Biol 2005; 84:951-60. [PMID: 16325504 DOI: 10.1016/j.ejcb.2005.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/13/2005] [Accepted: 09/14/2005] [Indexed: 11/17/2022] Open
Abstract
Phg2 is a ser/thr kinase involved in adhesion, motility, actin cytoskeleton dynamics, and phagocytosis in Dictyostelium cells. In a search for Phg2 domains required for its localization to the plasma membrane, we identified a new domain interacting with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 4-phosphate (PI(4)P) membrane phosphoinositides. Deletion of this domain prevented membrane recruitment of Phg2 and proper function of the protein in the phagocytic process. Moreover, the overexpression of this PI(4,5)P(2)-binding domain specifically had a dominant-negative effect by inhibiting phagocytosis. Therefore, plasma membrane recruitment of Phg2 is essential for its function. The PI(4,5)P(2)-binding domain fused to GFP (green fluorescent protein) (GFP-Nt-Phg2) was also used to monitor the dynamics of PI(4,5)P(2) during macropinocytosis and phagocytosis. GFP-Nt-Phg2 disappeared from macropinosomes immediately after their closure. During phagocytosis, PI(4,5)P(2) disappeared even before the sealing of phagosomes as it was already observed in mammalian cells. Together these results demonstrate that PI(4,5)P(2) metabolism regulates the dynamics and the function of Phg2.
Collapse
Affiliation(s)
- Cédric Blanc
- IFR 128 BioSciences Lyon-Gerland, Institut de Biologie et Chimie des Protéines, UMR5086, CNRS/Université Lyon I, France
| | | | | | | | | | | |
Collapse
|
200
|
|