151
|
Ogawa N, Katagiri K, Haimoto Y, Kobayashi Y. Total synthesis of resolvin D3. Org Biomol Chem 2022; 20:4338-4341. [PMID: 35551327 DOI: 10.1039/d2ob00750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resolvin D3 was synthesized by the Suzuki-Miyaura cross-coupling reaction of C1-C8 borane with C9-C22 iodoolefin as the key reaction. The latter intermediate was obtained by the sequential Wittig reactions of C9-C13 phosphonium salt with C14-C19 aldehyde and then C9-C19 aldehyde with propyltriphenylphosphonium bromide. The stereogenic centers at C4, C11, and C17 were constructed by the ruthenium-catalyzed asymmetric transfer hydrogenation with high stereoselectivity.
Collapse
Affiliation(s)
- Narihito Ogawa
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Kyosuke Katagiri
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Yosuke Haimoto
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Yuichi Kobayashi
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
152
|
Jiang X, Xue Y, Mustafa M, Xing Z. An updated review of the effects of eicosapentaenoic acid- and docosahexaenoic acid-derived resolvins on bone preservation. Prostaglandins Other Lipid Mediat 2022; 160:106630. [PMID: 35263670 DOI: 10.1016/j.prostaglandins.2022.106630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Resolvins are biosynthesized from omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in vivo by means of enzymatic activities, and these factors can attenuate inflammation and promote tissue regeneration. Inflammatory bone disorders can lead to bone loss and thereby be harmful to human health. The link between bone preservation and resolvins has been discussed in some experimental studies. Significant evidence has shown that resolvins benefit bone health and bone preservation by promoting the resolution of inflammation and directly regulating osteoclasts and osteoblasts. Therefore, this review highlights the role and beneficial impact of resolvins derived from EPA and DHA on inflammatory bone disorders, such as rheumatoid arthritis and periodontitis. In addition, the mechanisms by which resolvins exert their beneficial effects on bone preservation have also been summarized based on the available literature.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway.
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, 5009 Bergen, Norway
| | - Zhe Xing
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
153
|
Bezerra B, Monajemzadeh S, Silva D, Pirih FQ. Modulating the Immune Response in Periodontitis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.879131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition initiated by the accumulation of bacterial biofilm. It is highly prevalent and when left untreated can lead to tooth loss. The presence of bacterial biofilm is essential for the initiation of the inflammatory response but is not the sole initiator. Currently it is unknown which mechanisms drive the dysbiosis of the bacterial biofilm leading to the dysregulation of the inflammatory response. Other players in this equation include environmental, systemic, and genetic factors which can play a role in exacerbating the inflammatory response. Treatment of periodontal disease consists of removal of the bacterial biofilm with the goal of resolving the inflammatory response; however, this does not occur in every case. Understanding the way the inflammatory response does not return to a state of homeostasis has led investigators to consider both systemic and local pharmacological interventions. Nonetheless, a better understanding of the impact that genetics and environmental factors may have on the inflammatory response could be key to helping identify how inflammation can be modulated therefore stopping the destruction of the periodontium. In this article, we will explore the current evidence associating the microbial dysbiosis and the dysregulation of the immune response, potential mechanisms or pathways that may be targeted for the modulation of the inflammatory response, and discuss the advantages and drawbacks associated with local and systemic inflammatory modulation in the management of periodontal disease. This information will be valuable for those interested in understanding potential adjunct methods for managing periodontal diseases, but not limited to, dental professionals, clinical researchers and the public at large.
Collapse
|
154
|
Bardin M, Pawelzik SC, Lagrange J, Mahdi A, Arnardottir H, Regnault V, Fève B, Lacolley P, Michel JB, Mercier N, Bäck M. The resolvin D2 - GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice. Biochem Pharmacol 2022; 201:115075. [PMID: 35525326 DOI: 10.1016/j.bcp.2022.115075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
Chronic inflammation in atherosclerosis reflects a failure in the resolution of inflammation. Pro-resolving lipid mediators derived from omega-3 fatty acids reduce the development of atherosclerosis in murine models. The aim of the present study was to decipher the role of the specialized proresolving mediator (SPM) resolvin D2 (RvD2) in atherosclerosis and its signaling through the G-protein coupled receptor (GPR) 18. The ligand and receptor were detected in human coronary arteries in relation to the presence of atherosclerotic lesions and its cellular components. Importantly, RvD2 levels were significantly higher in atherosclerotic compared with healthy human coronary arteries. Furthermore, apolipoprotein E (ApoE) deficient hyperlipidemic mice were treated with either RvD2 or vehicle in the absence and presence of the GPR18 antagonist O-1918. RvD2 significantly reduced atherosclerosis, necrotic core, and pro-inflammatory macrophage marker expression. RvD2 in addition enhanced macrophage phagocytosis. The beneficial effects of RvD2 were not observed in the presence of O-1918. Taken together, these results provide evidence of atheroprotective pro-resolving signalling through the RvD2-GPR18 axis.
Collapse
Affiliation(s)
| | - Sven-Christian Pawelzik
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeremy Lagrange
- Université de Lorraine, Inserm, DCAC, Nancy, France; CHRU Nancy, Vandœuvre-lès-Nancy, France
| | - Ali Mahdi
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Hildur Arnardottir
- Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Bruno Fève
- INSERM UMR_S938, Centre de recherche Saint-Antoine, Institut Hospitalo-Universitaire, Université de la Sorbonne, ICAN, 75012 Paris, France
| | | | | | | | - Magnus Bäck
- Université de Lorraine, Inserm, DCAC, Nancy, France; Department of Medicine Solna, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
155
|
Resolution of inflammation: Intervention strategies and future applications. Toxicol Appl Pharmacol 2022; 449:116089. [DOI: 10.1016/j.taap.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022]
|
156
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
157
|
Johnson WT, Dorn NC, Ogbonna DA, Bottini N, Shah NJ. Lipid-based regulators of immunity. Bioeng Transl Med 2022; 7:e10288. [PMID: 35600637 PMCID: PMC9115682 DOI: 10.1002/btm2.10288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
Lipids constitute a diverse class of molecular regulators with ubiquitous physiological roles in sustaining life. These carbon-rich compounds are primarily sourced from exogenous sources and may be used directly as structural cellular building blocks or as a substrate for generating signaling mediators to regulate cell behavior. In both of these roles, lipids play a key role in both immune activation and suppression, leading to inflammation and resolution, respectively. The simple yet elegant structural properties of lipids encompassing size, hydrophobicity, and molecular weight enable unique biodistribution profiles that facilitate preferential accumulation in target tissues to modulate relevant immune cell subsets. Thus, the structural and functional properties of lipids can be leveraged to generate new materials as pharmacological agents for potently modulating the immune system. Here, we discuss the properties of three classes of lipids: polyunsaturated fatty acids, short-chain fatty acids, and lipid adjuvants. We describe their immunoregulatory functions in modulating disease pathogenesis in preclinical models and in human clinical trials. We conclude with an outlook on harnessing the diverse and potent immune modulating properties of lipids for immunoregulation.
Collapse
Affiliation(s)
- Wade T. Johnson
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nicholas C. Dorn
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Dora A. Ogbonna
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
158
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
159
|
Artru F, McPhail MJW, Triantafyllou E, Trovato FM. Lipids in Liver Failure Syndromes: A Focus on Eicosanoids, Specialized Pro-Resolving Lipid Mediators and Lysophospholipids. Front Immunol 2022; 13:867261. [PMID: 35432367 PMCID: PMC9008479 DOI: 10.3389/fimmu.2022.867261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | |
Collapse
|
160
|
Trotta MC, Gesualdo C, Petrillo F, Lepre CC, Della Corte A, Cavasso G, Maggiore G, Hermenean A, Simonelli F, D’Amico M, Rossi S. Resolution of Inflammation in Retinal Disorders: Briefly the State. Int J Mol Sci 2022; 23:4501. [PMID: 35562891 PMCID: PMC9100636 DOI: 10.3390/ijms23094501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
The most frequent retinal diseases, such as diabetic retinopathy, age-related macular degeneration and posterior uveitis, are underlined by oxidative stress or aging-induced retinal inflammation, which contributes to vision impairing or loss. Resolution of inflammation is emerging as a critical phase able to counteract the inflammatory process leading to the progression of retinal damage. Particularly, pro-resolving mediators (PMs) play a key role in the modulation of inflammatory exudates and could be considered a new target to be investigated in different inflammatory-autoimmune pathologies. Here, we highlight the most recent studies concerning the role of the main PMs (lipoxins, resolvins, prtectins, maresins and annexins) in retinal inflammation, in order to collect the best evidence in the field of inflammatory retinal damage resolution and to propose novel pharmacological approaches in the management of the most common retinal diseases.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Alberto Della Corte
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Giancuomo Cavasso
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Giulia Maggiore
- Department of Ophthalmology, University of Foggia, Viale Luigi Pinto 1, 71122 Foggia, Italy;
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania;
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy; (M.C.T.); (F.P.); (C.C.L.); (M.D.)
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 6, 80131 Naples, Italy; (C.G.); (A.D.C.); (G.C.); (F.S.)
| |
Collapse
|
161
|
Nshimiyimana R, Lam TF, Aggarwal S, Serhan CN, Petasis NA. First stereoselective total synthesis of 4( S),5( S)-oxido-17( S)-hydroxy-6( E),8( E),10( Z),13( Z),15( E),19( Z)-docosahexaenoic acid, the biosynthetic precursor of resolvins D3 and D4. RSC Adv 2022; 12:11613-11618. [PMID: 35481084 PMCID: PMC9015894 DOI: 10.1039/d2ra01537d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 01/07/2023] Open
Abstract
The first total convergent synthesis of 4(S),5(S)-oxido-17(S)-hydroxy-6(E),8(E),10(Z),13(Z),15(E),19(Z)-docosahexaenoic acid (1) is described. The reported synthesis led to confirmation of the native epoxydocosahexaenoic acid as the biosynthetic precursor of lipid mediators resolvin D3 and resolvin D4. These potent enzymatic products of docosahexaenoic acid (DHA) are important signaling molecules in the resolution of inflammation. A stereocontrolled and chiral pool-based synthetic strategy was employed, with key features including epoxide transposition under basic conditions to form the oxirane ring, and a cis-selective Wittig reaction to secure the target docosahexaenoate backbone.
Collapse
Affiliation(s)
- Robert Nshimiyimana
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Ting Fung Lam
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Shubhangi Aggarwal
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts 02115USA
| | - Nicos A. Petasis
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| |
Collapse
|
162
|
El Amrousy D, Elashry H, Salamah A, Maher S, Abd-Elsalam SM, Hasan S. Adherence to the Mediterranean Diet Improved Clinical Scores and Inflammatory Markers in Children with Active Inflammatory Bowel Disease: A Randomized Trial. J Inflamm Res 2022; 15:2075-2086. [PMID: 35411169 PMCID: PMC8994055 DOI: 10.2147/jir.s349502] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The Mediterranean diet (MD) is a well-known style of diet that is full of antioxidants and may have anti-inflammatory effects. We evaluated the safety, tolerability, and effects of adherence to MD on disease activity and inflammatory markers in children and adolescents with active inflammatory bowel disease (IBD). METHODS This prospective, randomized study included 100 IBD patients aged twelve to eighteen years with mild to moderate disease activity (PCDAI score 10-45 or PUCAI 10-64). The included patients were divided into two groups of 50 patients each. Group I (26 patients with active CD and 24 patients with active UC) received MD with good adherence over 12 weeks with a KIDMED 8-point score, and group II (28 patients with active CD and 22 patients with active UC) received their usual diet with a KIDMED score ≤7 points. Patients in both groups received treatment similar for IBD activity. RESULTS Clinical remission was achieved in most of the patients after 12 weeks of treatment. Patients in the first group (adhering to an MD) showed a significant decrease in both clinical scores (PCDAI and PUCAI) and most inflammatory markers (CRP, calprotectin, TNF-α, IL17., IL 12 and IL13) compared to patients in their normal group, with earlier improvement in both PCDAI and CRP. CONCLUSION Adherence to the MD improves clinical scores and inflammatory markers in children and adolescents with mild-moderate active IBD.
Collapse
Affiliation(s)
- Doaa El Amrousy
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba Elashry
- Tropical Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abeer Salamah
- Pediatric Department, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Sara Maher
- Theodor Bilharz Research Institute, Cairo, Egypt
| | | | - Samir Hasan
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
163
|
Kumar M, Yano N, Fedulov AV. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:243-261. [PMID: 34802391 PMCID: PMC8785906 DOI: 10.1080/15287394.2021.2000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Maternal gestational exposures to traffic and urban air pollutant particulates have been linked to increased risk and/or worsening asthma in children; however, mechanisms underlying this vertical transmission are not entirely understood. It was postulated that gestational particle exposure might affect the ability to elicit specialized proresolving mediator (SPM) responses upon allergen encounter in neonates. Lipidomic profiling of 50 SPMs was performed in lungs of neonates born to mice exposed to concentrated urban air particles (CAP), diesel exhaust particles (DEP), or less immunotoxic titanium dioxide particles (TiO2). While asthma-like phenotypes were induced with identical eosinophilia intensity across neonates of all particle-exposed mothers, levels of LXA4, HEPE and HETE isoforms, and HDoHe were only decreased by CAP and DEP only but not by TiO2. However, RvE2 and RvD1 were inhibited by all particles. In contrast, isomers of Maresin1 and Protectin D1 were variably elevated by CAP and DEP, whereas Protectin DX, PGE2, and TxB2 were increased in all groups. Only Protectin D1/DX, MaR1(n-3,DPA), 5(S),15(S)-DiHETE, PGE2, and RvE3 correlated with eosinophilia but the majority of other analytes, elevated or inhibited, showed no marked correlation with inflammation intensity. Evidence indicates that gestational particle exposure leads to both particle-specific and nonspecific effects on the SPM network.
Collapse
Affiliation(s)
- Mohan Kumar
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Naohiro Yano
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Alexey V. Fedulov
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| |
Collapse
|
164
|
Udumula MP, Poisson LM, Dutta I, Tiwari N, Kim S, Chinna-Shankar J, Allo G, Sakr S, Hijaz M, Munkarah AR, Giri S, Rattan R. Divergent Metabolic Effects of Metformin Merge to Enhance Eicosapentaenoic Acid Metabolism and Inhibit Ovarian Cancer In Vivo. Cancers (Basel) 2022; 14:cancers14061504. [PMID: 35326656 PMCID: PMC8946838 DOI: 10.3390/cancers14061504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023] Open
Abstract
Metformin is being actively repurposed for the treatment of gynecologic malignancies including ovarian cancer. We investigated if metformin induces analogous metabolic changes across ovarian cancer cells. Functional metabolic analysis showed metformin caused an immediate and sustained decrease in oxygen consumption while increasing glycolysis across A2780, C200, and SKOV3ip cell lines. Untargeted metabolomics showed metformin to have differential effects on glycolysis and TCA cycle metabolites, while consistent increased fatty acid oxidation intermediates were observed across the three cell lines. Metabolite set enrichment analysis showed alpha-linolenic/linoleic acid metabolism as being most upregulated. Downstream mediators of the alpha-linolenic/linoleic acid metabolism, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were abundant in all three cell lines. EPA was more effective in inhibiting SKOV3 and CaOV3 xenografts, which correlated with inhibition of inflammatory markers and indicated a role for EPA-derived specialized pro-resolving mediators such as Resolvin E1. Thus, modulation of the metabolism of omega-3 fatty acids and their anti-inflammatory signaling molecules appears to be one of the common mechanisms of metformin's antitumor activity. The distinct metabolic signature of the tumors may indicate metformin response and aid the preclinical and clinical interpretation of metformin therapy in ovarian and other cancers.
Collapse
Affiliation(s)
- Mary P. Udumula
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Laila M. Poisson
- Center for Bioinformatics, Department of Public Health Services, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (L.M.P.); (I.D.)
| | - Indrani Dutta
- Center for Bioinformatics, Department of Public Health Services, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (L.M.P.); (I.D.)
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Seongho Kim
- Biostatistics and Bioinformatics Core, Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Jasdeep Chinna-Shankar
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Ghassan Allo
- Department of Pathology, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA;
| | - Sharif Sakr
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Adnan R. Munkarah
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
| | - Shailendra Giri
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA;
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital, Henry Ford Cancer Institute, Detroit, MI 48202, USA; (M.P.U.); (N.T.); (J.C.-S.); (M.H.); (A.R.M.)
- Department of Oncology, Wayne State School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +313-876-7381; Fax: +313-876-3415
| |
Collapse
|
165
|
Ferreira I, Falcato F, Bandarra N, Rauter AP. Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation. Molecules 2022; 27:1677. [PMID: 35268778 PMCID: PMC8912121 DOI: 10.3390/molecules27051677] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022] Open
Abstract
Marine organisms are an important source of natural products with unique and diverse chemical structures that may hold the key for the development of novel drugs. Docosahexaenoic acid (DHA) is an omega-3 fatty acid marine natural product playing a crucial regulatory role in the resolution of inflammation and acting as a precursor for the biosynthesis of the anti-inflammatory specialized pro-resolving mediators (SPMs) resolvins, protectins, and maresins. These metabolites exert many beneficial actions including neuroprotection, anti-hypertension, or anti-tumorigenesis. As dysregulation of SPMs is associated with diseases of prolonged inflammation, the disclosure of their bioactivities may be correlated with anti-inflammatory and pro-resolving capabilities, offering new targets for drug design. The availability of these SPMs from natural resources is very low, but the evaluation of their pharmacological properties requires their access in larger amounts, as achieved by synthetic routes. In this report, the first review of the total organic syntheses carried out for resolvins, protectins, and maresins is presented. Recently, it was proposed that DHA-derived pro-resolving mediators play a key role in the treatment of COVID-19. In this work we also review the current evidence on the structures, biosynthesis, and functional and new-found roles of these novel lipid mediators of disease resolution.
Collapse
Affiliation(s)
- Inês Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal;
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
| | - Filipa Falcato
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
| | - Narcisa Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
166
|
Blaudez F, Ivanovski S, Fournier B, Vaquette C. The utilisation of resolvins in medicine and tissue engineering. Acta Biomater 2022; 140:116-135. [PMID: 34875358 DOI: 10.1016/j.actbio.2021.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Recent advances in the field of regenerative medicine and biomaterial science have highlighted the importance of controlling immune cell phenotypes at the biomaterial interface. These studies have clearly indicated that a rapid resolution of the inflammatory process, mediated by a switch in the macrophage population towards a reparative phenotype, is essential for tissue regeneration to occur. While various biomaterial surfaces have been developed in order to impart immunomodulatory properties to the resulting constructs, an alternative strategy involving the use of reparative biological cues, known as resolvins, is emerging in regenerative medicine. This review reports on the mechanisms via which resolvins participate in the resolution of inflammation and describes their current utilisation in pre-clinical and clinical settings, along with their effectiveness when combined with biomaterial constructs in tissue engineering applications. STATEMENT OF SIGNIFICANCE: The resolution of the inflammatory process is necessary for achieving tissue healing and regeneration. Resolvins are lipid mediators and play a key role in the resolution of the inflammatory response and can be used in as biological cues to promote tissue regeneration. This review describes the various biological inflammatory mechanisms and pathways involving resolvins and how their action results in a pro-healing response. The use of these molecules in the clinical setting is then summarised for various applications along with their limitations. Lastly, the review focuses on the emergence resolvins in tissue engineering products including the use of a more stable form which holds greater prospect for regenerative purposes.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr, Southport QLD 4222, Australia; The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia; Université de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral Rare Diseases, 5 rue Garanciere, Paris, 75006, France; Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM UMRS 1138, Molecular Oral Pathophysiology, 15-21 rue de l'école de médecine, 75006 Paris, France
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd, Herston QLD 4006, Australia.
| |
Collapse
|
167
|
Rezaei A, Neshat S, Heshmat-Ghahdarijani K. Alterations of Lipid Profile in COVID-19: A Narrative Review. Curr Probl Cardiol 2022; 47:100907. [PMID: 34272088 PMCID: PMC8161768 DOI: 10.1016/j.cpcardiol.2021.100907] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic has led to over 100 million infections and over 3 million deaths worldwide. Understanding its pathogenesis is crucial to guide prognostic and therapeutic implications. Viral infections are known to alter the lipid profile and metabolism of their host cells, similar to the case with MERS and SARS-CoV-2002. Since lipids play various metabolic roles, studying lipid profile alterations in COVID-19 is an inevitable step as an attempt to achieve better therapeutic strategies, as well as a potential prognostic factor in the course of this disease. Several studies have reported changes in lipid profile associated with COVID-19. The most frequently reported changes are a decline in serum cholesterol and ApoA1 levels and elevated triglycerides. The hyper-inflammatory state mediated by the Cytokine storm disturbs several fundamental lipid biosynthesis pathways. Virus replication is a process that drastically changes the host cell's lipid metabolism program and overuses cell lipid resources. Lower HDL-C and ApoA1 levels are associated with higher severity and mortality rates and with higher levels of inflammatory markers. Studies suggest that arachidonic acid omega-3 derivatives might help modulate hyper-inflammation and cytokine storm resulting from pulmonary involvement. Also, statins have been shown to be beneficial when administered after COVID-19 diagnosis via unclear mechanisms probably associated with anti-inflammatory effects and HDL-C rising effects.
Collapse
Affiliation(s)
- Abbas Rezaei
- Department of Internal Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Neshat
- Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiyan Heshmat-Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Kiyan Heshmat-Ghahdarijani,MD, Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran Tel: + 98 (31)36680048 Fax: +98 (31)3912862
| |
Collapse
|
168
|
Qin Q, Hu K, He Z, Chen F, Zhang W, Liu Y, Xie Z. Resolvin D1 protects against Aspergillus fumigatus keratitis in diabetes by blocking the MAPK-NF-κB pathway. Exp Eye Res 2022; 216:108941. [PMID: 35077754 DOI: 10.1016/j.exer.2022.108941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/20/2023]
Abstract
Fungal keratitis (FK) is one of the main causes of blindness in China. People with diabetes are susceptible to corneal epithelial disease, even fungal keratitis. At present, there are few studies on this disease. Resolvins (Rv) has been reported as a mediators that exert crucial anti-inflammatory and immune regulation roles in serval diseases. In order to investigate the roles and underlying mechanism of Resolvins D1 (RvD1) on the Aspergillus fumigatus (A. fumigatus) keratitis in diabetes, we established in vivo and in vitro models of A. fumigatus keratitis, which were then exposed to high glucose. The expression levels of RvD1, 5-lipoxygenase (5-LOX), and 15-lipoxygenase (15-LOX) in A. fumigatus keratitis patients with diabetes were determined through Enzyme Linked Immunosorbent Assay (ELISA), Western blot and immunohistochemistry. Reactive Oxygen Species (ROS) production, ELISA, flow cytometry, Hematoxylin-Eosin (HE) staining and fungal loading determination were conducted to evaluate the severity of A. fumigatus infection. Lymphangiogenesis and angiogenesis were examined by immunofluorescence assay. Western blot was applied to detect the proteins of the MAPK-NF-κB pathway. The results showed that RvD1 diminished the high glucose-induced oxidative stress and inflammatory response, as evidenced by the reduction of ROS production, Interleukin-6 (IL-6), Interleukin-8 (IL-8), Heme Oxygenase-1 (HMOX-1), and the elevation of Cyclooxygenase-2 (COX2), Superoxide Dismutase (SOD-1), and Glutathione Peroxidase-2 (GPX2) levels in A. fumigatus-infected Human Corneal Endothelial Cells (HCECs). Additionally, lymphangiogenesis and angiogenesis prominently decreased after intervention with RvD1. Furthermore, RvD1 significantly reduced the levels of p-MEK1/2 and p-ERK1/2, and restrained the NF-κB and GPR32 activation. The above results showed that RvD1 protects against A. fumigatus keratitis in diabetes by suppressing oxidative stress, inflammatory response, fungal growth, and immunoreaction via modulating MAPK-NF-κB pathway. RvD1 provides clues for the therapeutic targets of Fungal keratitis complicated with diabetes.
Collapse
Affiliation(s)
- Qin Qin
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China; Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China.
| | - Kai Hu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zifang He
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Feifei Chen
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Wenwen Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yajun Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zhenggao Xie
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
169
|
Du Y, Taylor CG, Aukema HM, Zahradka P. PD146176 affects human EA.hy926 endothelial cell function by differentially modulating oxylipin production of LOX, COX and CYP epoxygenase. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159156. [DOI: 10.1016/j.bbalip.2022.159156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023]
|
170
|
Dalli J, Gomez EA, Jouvene CC. Utility of the Specialized Pro-Resolving Mediators as Diagnostic and Prognostic Biomarkers in Disease. Biomolecules 2022; 12:biom12030353. [PMID: 35327544 PMCID: PMC8945731 DOI: 10.3390/biom12030353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
A precision medicine approach is widely acknowledged to yield more effective therapeutic strategies in the treatment of patients with chronic inflammatory conditions than the prescriptive paradigm currently utilized in the management and treatment of these patients. This is because such an approach will take into consideration relevant factors including the likelihood that a patient will respond to given therapeutics based on their disease phenotype. Unfortunately, the application of this precision medicine paradigm in the daily treatment of patients has been greatly hampered by the lack of robust biomarkers, in particular biomarkers for determining early treatment responsiveness. Lipid mediators are central in the regulation of host immune responses during both the initiation and resolution of inflammation. Amongst lipid mediators, the specialized pro-resolving mediators (SPM) govern immune cells to promote the resolution of inflammation. These autacoids are produced via the stereoselective conversion of essential fatty acids to yield molecules that are dynamically regulated during inflammation and exert potent immunoregulatory activities. Furthermore, there is an increasing appreciation for the role that these mediators play in conveying the biological actions of several anti-inflammatory therapeutics, including statins and aspirin. Identification and quantitation of these mediators has traditionally been achieved using hyphenated mass spectrometric techniques, primarily liquid-chromatography tandem mass spectrometry. Recent advances in the field of chromatography and mass spectrometry have increased both the robustness and the sensitivity of this approach and its potential deployment for routine clinical diagnostics. In the present review, we explore the evidence supporting a role for specific SPM as potential biomarkers for patient stratification in distinct disease settings together with methodologies employed in the identification and quantitation of these autacoids.
Collapse
Affiliation(s)
- Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| | - Esteban Alberto Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| | - Charlotte Camille Jouvene
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| |
Collapse
|
171
|
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and maresins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-resolving mediators without overt toxicity or immunosuppression.
Collapse
Affiliation(s)
- Chantal Barksdale
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shreya Tripathy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
172
|
Odenkirk M, Horman BM, Dodds JN, Patisaul HB, Baker ES. Combining Micropunch Histology and Multidimensional Lipidomic Measurements for In-Depth Tissue Mapping. ACS MEASUREMENT SCIENCE AU 2022; 2:67-75. [PMID: 35647605 PMCID: PMC9139744 DOI: 10.1021/acsmeasuresciau.1c00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While decades of technical and analytical advancements have been utilized to discover novel lipid species, increase speciation, and evaluate localized lipid dysregulation at subtissue, cellular, and subcellular levels, many challenges still exist. One limitation is that the acquisition of both in-depth spatial information and comprehensive lipid speciation is extremely difficult, especially when biological material is limited or lipids are at low abundance. In neuroscience, for example, it is often desired to focus on only one brain region or subregion, which can be well under a square millimeter for rodents. Herein, we evaluate a micropunch histology method where cortical brain tissue at 2.0, 1.25, 1.0, 0.75, 0.5, and 0.25 mm diameter sizes and 1 mm depth was collected and analyzed with multidimensional liquid chromatography, ion mobility spectrometry, collision induced dissociation, and mass spectrometry (LC-IMS-CID-MS) measurements. Lipid extraction was optimized for the small sample sizes, and assessment of lipidome coverage for the 2.0 to 0.25 mm diameter sizes showed a decline from 304 to 198 lipid identifications as validated by all 4 analysis dimensions (~35% loss in coverage for ~88% less tissue). While losses were observed, the ~200 lipids and estimated 4630 neurons contained within the 0.25 punch still provided in-depth characterization of the small tissue region. Furthermore, while localization routinely achieved by mass spectrometry imaging (MSI) and single cell analyses is greater, this diameter is sufficiently small to isolate subcortical, hypothalamic, and other brain regions in adult rats, thereby increasing the coverage of lipids within relevant spatial windows without sacrificing speciation. Therefore, micropunch histology enables in-depth, region-specific lipid evaluations, an approach that will prove beneficial to a variety of lipidomic applications.
Collapse
Affiliation(s)
- Melanie
T. Odenkirk
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brian M. Horman
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
| | - James N. Dodds
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Heather B. Patisaul
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695, United States
- Center
for Human Health and the Environment, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin S. Baker
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State
University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
173
|
Cebrián-Prats A, Pinto A, González-Lafont À, Fernandes PA, Lluch JM. The role of acetylated cyclooxygenase-2 in the biosynthesis of resolvin precursors derived from eicosapentaenoic acid. Org Biomol Chem 2022; 20:1260-1274. [PMID: 35067692 DOI: 10.1039/d1ob01932e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specialized pro-resolving lipid mediators (SPMs) are natural bioactive agents actively involved in inflammation resolution. SPMs act when uncontrolled inflammatory processes are developed, for instance, in patients of COVID-19 or other diseases. The so-called resolution pharmacology aims at developing new treatments based on the use of SPMs as agonists, which promote inflammation resolution without unwanted side effects. It has been shown that the biosynthesis of SPMs called eicosapentaenoic acid (EPA)-derived E-series resolvins is initiated by aspirin-acetylated COX-2 from EPA, leading to 18-hydroperoxy-eicosapentaenoic acid (18-HpEPE). However, there are many open questions concerning the intriguing role of aspirin in the molecular mechanism of resolvin formation. Our MD simulations, combined with QM/MM calculations, show that the potential energy barriers for the H16-abstraction from EPA, required for forming 18-HpEPE, are higher than for the H13-abstraction, thus explaining why 18-HpEPE is a marginal product of COX-2 catalysis. By contrast, in the aspirin-acetylated COX-2/EPA complex, the H16proS-abstraction energy barriers are somewhat lower than the H13proS energy barriers and much smaller than the H16-transfer barriers in the wild type COX-2/EPA system. Those results agree with the experimental observation that aspirin favours the synthesis of several SPMs known as aspirin-triggered resolvins. In the following step of the catalytic mechanism, the calculated O2 addition to C18 is preferred versus the addition to C14 which also agrees with 18R-HEPE and 18S-HEPE being the main products from EPA in aspirin-acetylated COX-2.
Collapse
Affiliation(s)
- Anna Cebrián-Prats
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Alexandre Pinto
- LAQV-Requimte, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, Porto, Portugal.
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pedro A Fernandes
- LAQV-Requimte, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, Porto, Portugal.
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
174
|
Shimizu T, Saito T, Aoki-Saito H, Okada S, Ikeda H, Nakakura T, Fukuda H, Arai S, Fujiwara K, Nakajima Y, Horiguchi K, Yamada S, Ishida E, Hisada T, Shuto S, Yamada M. Resolvin E3 ameliorates high-fat diet-induced insulin resistance via the phosphatidylinositol-3-kinase/Akt signaling pathway in adipocytes. FASEB J 2022; 36:e22188. [PMID: 35129868 DOI: 10.1096/fj.202100053r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Obesity-associated type 2 diabetes mellitus is associated with the development of insulin resistance. Among several metabolites, resolvins that are metabolites of eicosapentaenoic acid have been shown to exert insulin-sensitizing effects; however, the role of resolvin E3 (RvE3) in glucose metabolism has not been studied. In this study, the effect of RvE3 on glucose metabolism in mice with high-fat diet-induced obesity and 3T3L1 adipocytes was studied. C57BL/6 mice fed a high-fat diet were administered RvE3, for which insulin tolerance, oral glucose tolerance tests, and the homeostasis model assessment of insulin resistance, were performed. RvE3 treatment significantly improved insulin sensitivity and glucose tolerance and regulated protein kinase B (Akt) phosphorylation in the adipose tissue. Moreover, RvE3 treatment enhanced the insulin-stimulated glucose transporter 4 (Glut4) translocation, glucose uptake, phosphatidylinositol-3-kinase (PI3K) activity, and Akt phosphorylation in 3T3L1 adipocytes, whereas a PI3K inhibitor inhibited the enhanced insulin-stimulated glucose uptake induced by RvE3. These findings indicate that RvE3 likely improves insulin sensitivity, resulting in the upregulation of glucose uptake in adipocytes by activating the PI3K/Akt signaling pathways. Collectively, the findings of this study show that RvE3 may play a role in glucose homeostasis and could be used as a potential therapeutic target for developing treatments for obesity-associated diabetes.
Collapse
Affiliation(s)
- Tomohiko Shimizu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsugumichi Saito
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Center for Medical Education, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruka Aoki-Saito
- Department of Respiratory Medicine and Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuichi Okada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroyuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Hayato Fukuda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Syota Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Kouichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yasuyo Nakajima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiro Horiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sayaka Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Emi Ishida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Masanobu Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
175
|
De Matteis R, Flak MB, Gonzalez-Nunez M, Austin-Williams S, Palmas F, Colas RA, Dalli J. Aspirin activates resolution pathways to reprogram T cell and macrophage responses in colitis-associated colorectal cancer. SCIENCE ADVANCES 2022; 8:eabl5420. [PMID: 35108049 PMCID: PMC8809687 DOI: 10.1126/sciadv.abl5420] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/08/2021] [Indexed: 05/15/2023]
Abstract
Inflammation is linked with carcinogenesis in many types of cancer including colorectal cancer (CRC). Aspirin is recommended for the prevention of CRC, although the mechanism(s) mediating its immunomodulatory actions remain incompletely understood. Here, we demonstrate that aspirin increased concentrations of the immune-regulatory aspirin-triggered specialized proresolving mediators (AT-SPMs), including AT-lipoxin A4 and AT-resolvin D1, in colonic tissues during inflammation-associated CRC (I-CRC). Aspirin also down-regulated the expression of the checkpoint protein programmed cell death protein-1 in macrophages and CD8+ T cells from the colonic mucosa. Inhibition of AT-SPM biosynthesis or knockout of the AT-SPM receptor Alx/Fpr2 reversed the immunomodulatory actions of aspirin on macrophages and CD8+ T cells and abrogated its protective effects during I-CRC. Furthermore, treatment of mice with AT-SPM recapitulated the immune-directed actions of aspirin during I-CRC. Together, these findings elucidate a central role for AT-SPM in mediating the immune-directed actions of aspirin in regulating I-CRC progression.
Collapse
Affiliation(s)
- Roberta De Matteis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Magdalena B. Flak
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Maria Gonzalez-Nunez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shani Austin-Williams
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Francesco Palmas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Romain A. Colas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| |
Collapse
|
176
|
Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res 2022; 63:100164. [PMID: 34953866 PMCID: PMC8953652 DOI: 10.1016/j.jlr.2021.100164] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, the importance of lipid metabolism in biology was recognized but difficult to mechanistically understand due to the lack of sensitive and robust technologies for identification and quantification of lipid molecular species. The enabling technological breakthroughs emerged in the 1980s with the development of soft ionization methods (Electrospray Ionization and Matrix Assisted Laser Desorption/Ionization) that could identify and quantify intact individual lipid molecular species. These soft ionization technologies laid the foundations for what was to be later named the field of lipidomics. Further innovative advances in multistage fragmentation, dramatic improvements in resolution and mass accuracy, and multiplexed sample analysis fueled the early growth of lipidomics through the early 1990s. The field exponentially grew through the use of a variety of strategic approaches, which included direct infusion, chromatographic separation, and charge-switch derivatization, which facilitated access to the low abundance species of the lipidome. In this Thematic Review, we provide a broad perspective of the foundations, enabling advances, and predicted future directions of growth of the lipidomics field.
Collapse
Affiliation(s)
- Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Departments of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Chemistry, Washington University, St. Louis, MO, USA
| |
Collapse
|
177
|
Reinertsen AF, Primdahl KG, De Matteis R, Dalli J, Hansen TV. Stereoselective Synthesis, Configurational Assignment and Biological Evaluations of the Lipid Mediator RvD2 n-3 DPA. Chemistry 2022; 28:e202103857. [PMID: 34890076 PMCID: PMC9305452 DOI: 10.1002/chem.202103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/10/2022]
Abstract
Herein we report the first total synthesis of RvD2n-3 DPA , an endogenously formed mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid. The key steps are the Midland Alpine borane reduction, Sonogashira cross-coupling reactions, and a Z-selective alkyne reduction protocol, yielding RvD2n-3 DPA methyl ester in 13 % yield over 12 steps (longest linear sequence). The physical property data (UV chromophore, chromatography and MS/MS fragmentation) of the synthetic lipid mediator matched those obtained from biologically produced material. Moreover, synthetic RvD2n-3 DPA also carried the potent biological activities of enhancing macrophage uptake of Staphylococcus aureus and zymosan A bioparticles.
Collapse
Affiliation(s)
- Amalie F. Reinertsen
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| | - Karoline G. Primdahl
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| | - Roberta De Matteis
- Lipid Mediator UnitCenter for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of MedicineQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUnited Kingdom
| | - Jesmond Dalli
- Lipid Mediator UnitCenter for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of MedicineQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUnited Kingdom
| | - Trond V. Hansen
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| |
Collapse
|
178
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
179
|
Abstract
Resolution is an active and highly coordinated process that occurs in response to inflammation to limit tissue damage and promote repair. When the resolution program fails, inflammation persists. It is now understood that failed resolution is a major underlying cause of many chronic inflammatory diseases. Here, we will review the major failures of resolution in atherosclerosis, including the imbalance of proinflammatory to pro-resolving mediator production, impaired clearance of dead cells, and functional changes in immune cells that favor ongoing inflammation. In addition, we will briefly discuss new concepts that are emerging as possible regulators of resolution and highlight the translational significance for the field.
Collapse
Affiliation(s)
- Amanda C. Doran
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt Institute for Infection, Immunology, and Inflammation, Department of Molecular Physiology and Biophysics, Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
180
|
Fatty Acid Oxidation and Pro-Resolving Lipid Mediators Are Related to Male Infertility. Antioxidants (Basel) 2022; 11:antiox11010107. [PMID: 35052611 PMCID: PMC8773194 DOI: 10.3390/antiox11010107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Specialized pro-resolving lipid mediators regulate the resolution of acute inflammation. They are formed by enzymatic oxygenation of polyunsaturated fatty acids and are divided into families including lipoxins, resolvins, protectins, and maresins. Resolvin D1 (RvD1), produced by docosahexaenoic acid, exerts anti-inflammatory and pro-resolving activities. This research aimed to investigate the implication of seminal RvD1 in human infertility. Infertile patients (n° 67) were grouped based on pathological reproductive conditions as idiopathic infertility, varicocele, and leukocytospermia; the fourth group was composed of fertile men (n° 18). Sperm characteristics were evaluated by light microscopy (WHO guidelines) and by transmission electron microscopy (TEM). The seminal levels of RvD1 and F2-isoprostane (F2-IsoPs) were dosed. In twenty men (6 fertile men, 8 with varicocele, 6 with leukocytospermia) seminal phospholipase A2, iron, cholesterol, transferrin, estradiol, ferritin, testosterone, and sperm membrane fatty acids were detected. The results indicated that: (i) RvD1 amount was positively correlated with F2-IsoPs and reduced sperm quality; (ii) RvD1 levels were significantly higher in patients with leukocytospermia, varicocele, and idiopathic infertility compared to fertile men; (iii) RvD1 increased along with other markers of oxidative stress and inflammation as fatty acids content and clinical biomarkers. This study suggests a panel of inflammatory markers and lipid mediators for a diagnosis of inflammatory status and a subsequent appropriate therapeutic approach.
Collapse
|
181
|
Karayiğit O, Nurkoç SG, Başyiğit F, Kızıltunç E. The Role of Serum Resolvin D1 Levels in Determining the Presence and Prognosis of ST-Segment Elevation Myocardial Infarction. Med Princ Pract 2022; 31:548-554. [PMID: 36130524 PMCID: PMC9841756 DOI: 10.1159/000527064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Resolvin D1 (RvD1) can play a determining role in inflammatory cell migration and reduce the expression of inflammatory cytokines to enhance cardioprotection. The aim of this study was to compare serum RvD1 levels in patients with ST-segment elevation myocardial infarction (STEMI) and individuals with normal coronary arteries (NCAs) and to evaluate the association between serum RvD1 levels and prognostic markers of STEMI. METHODS 140 subjects (88 patients diagnosed with the indication of STEMI and 52 healthy individuals with NCA) were studied. RESULTS Regression analysis revealed that RvD1 levels were independently associated with STEMI. While RvD1 levels were negatively correlated with high-sensitivity C-reactive protein, pro-brain natriuretic peptide, peak troponin, and Thrombolysis in Myocardial Infarction thrombus grade, they were positively correlated with left ventricular ejection fraction. An RvD1 cut-off value of 5.07 (ng/mL) was effective in predicting STEMI with a sensitivity of 79.5% and specificity of 96.2%. CONCLUSION Serum RvD1 levels were found to be lower in the group with STEMI compared to the control group. Levels of RvD1 at admission were associated with poor prognostic markers of STEMI.
Collapse
Affiliation(s)
- Orhan Karayiğit
- Department of Cardiology, Yozgat City Hospital, Yozgat, Turkey
- *Orhan Karayiğit,
| | | | - Funda Başyiğit
- Department of Cardiology, Ankara City Hospital, Ankara, Turkey
| | - Emrullah Kızıltunç
- Department of Cardiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
182
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
183
|
Cecconello C, Clària Ribas P, Norling LV. Resolving acute inflammation; what happens when inflammation goes haywire? How can it get back in line? DIET, INFLAMMATION, AND HEALTH 2022:113-162. [DOI: 10.1016/b978-0-12-822130-3.00018-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
184
|
Resolvin D2 and Resolvin D1 Differentially Activate Protein Kinases to Counter-Regulate Histamine-Induced [Ca2+]i Increase and Mucin Secretion in Conjunctival Goblet Cells. Int J Mol Sci 2021; 23:ijms23010141. [PMID: 35008563 PMCID: PMC8745650 DOI: 10.3390/ijms23010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Resolvin (Rv) D2 and RvD1 are biosynthesized from docosahexaenoic acid (DHA) and promote resolution of inflammation in multiple organs and tissues, including the conjunctiva. Histamine is a mediator produced by mast cells in the conjunctiva during the allergic response. We determined the interaction of RvD2 with histamine and its receptor subtypes in cultured conjunctival goblet cells and compared them with RvD1 by measuring intracellular [Ca2+] and mucous secretion. Treatment with RvD2 significantly blocked the histamine-induced [Ca2+]i increase as well as secretion. RvD2 and RvD1 counter-regulate different histamine receptor subtypes. RvD2 inhibited the increase in [Ca2+]i induced by the activation of H1, H3, or H4 receptors, whereas RvD1 inhibited H1 and H3 receptors. RvD2 and RvD1 also activate distinct receptor-specific protein kinases to counter-regulate the histamine receptors, probably by phosphorylation. Thus, our data suggest that the counter-regulation of H receptor subtypes by RvD2 and RvD1 to inhibit mucin secretion are separately regulated.
Collapse
|
185
|
Human leukocytes selectively convert 4 S,5 S-epoxy-resolvin to resolvin D3, resolvin D4, and a cys-resolvin isomer. Proc Natl Acad Sci U S A 2021; 118:2116559118. [PMID: 34911767 DOI: 10.1073/pnas.2116559118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/09/2023] Open
Abstract
Human phagocytes have key functions in the resolution of inflammation. Here, we assessed the role of the proposed 4S,5S-epoxy-resolvin intermediate in the biosynthesis of both resolvin D3 and resolvin D4. We found that human neutrophils converted this synthetic intermediate to resolvin D3 and resolvin D4. M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a previously unknown cysteinyl-resolvin isomer without appreciable amounts of resolvin D3. M2 macrophages play critical roles in the resolution of inflammation and in wound healing. Human M2 macrophages also converted leukotriene A4 to lipoxins. The cysteinyl-resolvin isomer significantly accelerated tissue regeneration of surgically injured planaria. In a model of human granuloma formation, the cysteinyl-resolvin isomer significantly inhibited granuloma development by human peripheral blood leukocytes. Together, these results provide evidence for a human cell type-specific role of 4S,5S-epoxy-resolvin in the biosynthesis of resolvin D3 by neutrophils, resolvin D4 by both M2 macrophages and neutrophils, and a unique cysteinyl-resolvin isomer produced by M2 macrophages that carries potent biological activities in granuloma formation and tissue regeneration.
Collapse
|
186
|
Capó X, Martorell M, Tur JA, Sureda A, Pons A. 5-Dodecanolide, a Compound Isolated from Pig Lard, Presents Powerful Anti-Inflammatory Properties. Molecules 2021; 26:7363. [PMID: 34885945 PMCID: PMC8658921 DOI: 10.3390/molecules26237363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pork lard (PL) is traditionally used as an anti-inflammatory agent. We propose to demonstrate the anti-inflammatory properties of PL, and elucidate which compounds could be responsible for the anti-inflammatory effects. METHODS The anti-inflammatory effects of PL were tested in a rat model of zymosan-induced hind paw inflammation. Further, the hydroalcoholic extract from PL was obtained, the composition analyzed, and the anti-inflammatory activity of the extracts and isolated components assayed using immune cells stimulated with lipopolysaccharide (LPS). RESULTS Applying the ointment on the inflamed rat feet reduced the foot diameter, foot weight, and activities of antioxidant enzymes and inflammatory markers of circulating neutrophils. The main components of the hydroalcoholic extract were 5-dodecanolide, oleamide, hexadecanoic acid, 9-octadecenoic acid, hexadecanamide, and resolvin D1. CONCLUSIONS PL reduces the immune response in an animal model stimulated with zymosan. Hydroalcoholic PL extract and its components (5-Dodecanolide, Oleamide, and Resolvin D1) exerted an anti-inflammatory effect on LPS-stimulated neutrophils and peripheral mononuclear cells reducing the capability to produce TNFα, as well as the activities of antioxidant and pro-inflammatory enzymes. These effects are attributable to 5-dodecanolide, although the effects of this compound alone do not reach the magnitude of the anti-inflammatory effects observed by the complete hydroalcoholic extract.
Collapse
Affiliation(s)
- Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (X.C.); (J.A.T.); (A.S.)
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, University of the Balearic Islands, 07122 Palma, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepcion, Concepcion 4070386, Chile;
| | - Josep A. Tur
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (X.C.); (J.A.T.); (A.S.)
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, University of the Balearic Islands, 07122 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (X.C.); (J.A.T.); (A.S.)
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, University of the Balearic Islands, 07122 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, 28029 Madrid, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (X.C.); (J.A.T.); (A.S.)
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, University of the Balearic Islands, 07122 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
187
|
|
188
|
Tanaka K, Kandori S, Sakka S, Nitta S, Tanuma K, Shiga M, Nagumo Y, Negoro H, Kojima T, Mathis BJ, Shimazui T, Watanabe M, Sato TA, Miyamoto T, Matsuzaka T, Shimano H, Nishiyama H. ELOVL2 promotes cancer progression by inhibiting cell apoptosis in renal cell carcinoma. Oncol Rep 2021; 47:23. [PMID: 34841437 PMCID: PMC8674704 DOI: 10.3892/or.2021.8234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Renal cell carcinoma (RCC) is an aggressive genitourinary malignancy which has been associated with a poor prognosis, particularly in patients with metastasis, its major subtypes being clear cell RCC (ccRCC), papillary PCC (pRCC) and chromophobe RCC (chRCC). The presence of intracellular lipid droplets (LDs) is considered to be a hallmark of ccRCC. The importance of an altered lipid metabolism in ccRCC has been widely recognized. The elongation of very-long-chain fatty acid (ELOVL) catalyzes the elongation of fatty acids (FAs), modulating lipid composition, and is required for normal bodily functions. However, the involvement of elongases in RCC remains unclear. In the present study, the expression of ELOVL2 in ccRCC was examined; in particular, high levels of seven ELOVL isozymes were observed in primary tumors. Of note, elevated ELOVL2 expression levels were observed in ccRCC, as well as in pRCC and chRCC. Furthermore, a higher level of ELOVL2 was significantly associated with the increased incidence of a poor prognosis of patients with ccRCC and pRCC. The CRISPR/Cas9-mediated knockdown of ELOVL2 resulted in the suppression of the elongation of long-chain polyunsaturated FAs and increased LD production in renal cancer cells. Moreover, ELOVL2 ablation resulted in the suppression of cellular proliferation via the induction of apoptosis in vitro and the attenuation of tumor growth in vivo. On the whole, the present study provides new insight into the tumor proliferation mechanisms involving lipid metabolism, and suggests that ELOVL2 may be an attractive novel target for RCC therapy.
Collapse
Affiliation(s)
- Ken Tanaka
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Shotaro Sakka
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Satoshi Nitta
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Kozaburo Tanuma
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Masanobu Shiga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba, Ibaraki 305‑8576, Japan
| | - Toru Shimazui
- Department of Urology, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki 309‑1793, Japan
| | - Makoto Watanabe
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto 604‑8511, Japan
| | - Taka-Aki Sato
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto 604‑8511, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| |
Collapse
|
189
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:12803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
190
|
Fredman G, MacNamara KC. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc Res 2021; 117:2563-2574. [PMID: 34609505 PMCID: PMC8783387 DOI: 10.1093/cvr/cvab309] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
The resolution of inflammation (or inflammation-resolution) is an active and highly coordinated process. Inflammation-resolution is governed by several endogenous factors, and specialized pro-resolving mediators (SPMs) are one such class of molecules that have robust biological function. Non-resolving inflammation is associated with a variety of human diseases, including atherosclerosis. Moreover, non-resolving inflammation is a hallmark of ageing, an inevitable process associated with increased risk for cardiovascular disease. Uncovering mechanisms as to why inflammation-resolution is impaired in ageing and in disease and identifying useful biomarkers for non-resolving inflammation are unmet needs. Recent work has pointed to a critical role for balanced ratios of SPMs and pro-inflammatory lipids (i.e. leucotrienes and/or specific prostaglandins) as a key determinant of timely inflammation resolution. This review will focus on the accumulating findings that support the role of non-resolving inflammation and imbalanced pro-resolving and pro-inflammatory mediators in atherosclerosis. We aim to provide insight as to why these imbalances occur, the importance of ageing in disease progression, and how haematopoietic function impacts inflammation-resolution and atherosclerosis. We highlight open questions regarding therapeutic strategies and mechanisms of disease to provide a framework for future studies that aim to tackle this important human disease.
Collapse
Affiliation(s)
- Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Katherine C MacNamara
- The Department of Immunology and Infectious Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
191
|
Zhao D, Yang B, Ye C, Zhang S, Lv X, Chen Q. Enteral nutrition ameliorates the symptoms of Crohn's disease in mice via activating special pro-resolving mediators through innate lymphoid cells. Innate Immun 2021; 27:533-542. [PMID: 34791916 PMCID: PMC8762089 DOI: 10.1177/17534259211057038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Crohn's disease activates the inflammatory reactions to induce intestinal disorders. Enteral nutrition (EN) could exert general immunomodulatory effects. Cecal ligation and perforation (CLP) surgery was utilized to establish Crohn's disease mice models. Survival analysis, hematoxylin-eosin staining, flow cytometry, ELISA, Western blot and liquid chromatography-tandem MS were applied. Baicalein was added to inhibit lipoxygenases. The survival rate was restored and inflammatory injury, exudate neutrophils in peritoneal lavage and serum levels of IL-6 and TNF-α were ameliorated by EN treatment as compared with CLP treatment. EN also increased ILC-3 content, 5/15-LOX level and RvD1-RvD5 in peritoneal lavage. Baicalein reversed all the detected effects of EN except ILC-3 content. EN could activate special pro-resolving mediators (SPMs) through ILCs to mitigate injuries of Crohn's disease.
Collapse
Affiliation(s)
- Di Zhao
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Yang
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Ye
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaoyi Zhang
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqiong Lv
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiyi Chen
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China.,Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
192
|
Thornton JM, Yin K. Role of Specialized Pro-Resolving Mediators in Modifying Host Defense and Decreasing Bacterial Virulence. Molecules 2021; 26:molecules26226970. [PMID: 34834062 PMCID: PMC8618792 DOI: 10.3390/molecules26226970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial infection activates the innate immune system as part of the host’s defense against invading pathogens. Host response to bacterial pathogens includes leukocyte activation, inflammatory mediator release, phagocytosis, and killing of bacteria. An appropriate host response requires resolution. The resolution phase involves attenuation of neutrophil migration, neutrophil apoptosis, macrophage recruitment, increased phagocytosis, efferocytosis of apoptotic neutrophils, and tissue repair. Specialized Pro-resolving Mediators (SPMs) are bioactive fatty acids that were shown to be highly effective in promoting resolution of infectious inflammation and survival in several models of infection. In this review, we provide insight into the role of SPMs in active host defense mechanisms for bacterial clearance including a new mechanism of action in which an SPM acts directly to reduce bacterial virulence.
Collapse
|
193
|
Llauradó-Calero E, Badiola I, Delpino-Rius A, Lizardo R, Torrallardona D, Esteve-Garcia E, Tous N. Fish oil rich in eicosapentaenoic acid and docosahexaenoic acid in sow diets modifies oxylipins and immune indicators in colostrum and milk. Animal 2021; 15:100403. [PMID: 34794096 DOI: 10.1016/j.animal.2021.100403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
Colostrum and milk are the first nutrient sources for newborn piglets. In addition, n-3 fatty acids (FAs) and their oxygenated derivatives (oxylipins) have the capacity to modulate immune components. The aim of the current study was to include a fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in sow diets to promote an increase of anti-inflammatory molecules in colostrum and milk to benefit piglets. Thirty-six sows were randomly assigned from insemination to the end of lactation to either a control diet with animal fat (15 g/kg in gestation and 30 g/kg in lactation) or an n-3 diet in which animal fat was totally (gestation) or half (lactation) replaced by an equivalent amount of solid fish oil. Performance of sows and piglets was monitored during the study. Colostrum and milk samples were obtained after the birth of the first piglet and at weaning, respectively. From all samples (n = 18 per treatment), FAs were quantified by gas chromatography and immunoglobulins and cytokines by ELISA. Three samples per treatment were randomly selected to analyse oxylipin composition by liquid chromatography-tandem mass spectrometry. In colostrum and in milk, the n-3 FA (P = 0.020 and P < 0.001), particularly EPA (P < 0.001 and P < 0.001) and DHA (P < 0.001 and P < 0.001), and also their oxygenated derivatives were increased in samples from sows fed n-3 diet. Fish oil had no effect on immunoglobulin concentrations, but reduced tumour necrosis factor α (TNFα) (P = 0.011) and a tendency to reduce interleukin 10 (IL10) (P = 0.059) were observed in milk. In conclusion, fish oil in sow diets increased n-3 FA, particularly EPA and DHA, and their oxygenated derivatives in colostrum and milk, reducing TNFα and IL10 in milk.
Collapse
Affiliation(s)
- E Llauradó-Calero
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain
| | - I Badiola
- Animal Health-CReSA, Institute for Food and Agricultural Research and Technology (IRTA), E-08193 Bellaterra, Spain
| | - A Delpino-Rius
- Centre for Omic Sciences (Joint Unit Eurecat-Universitat Rovira i Virgili), Eurecat, Centre Tecnològic de Catalunya, Unique Scientific and Technical Infrastructure (ICTS), E-43204 Reus, Spain
| | - R Lizardo
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain
| | - D Torrallardona
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain
| | - E Esteve-Garcia
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain
| | - N Tous
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), E-43120 Constantí, Spain.
| |
Collapse
|
194
|
Alqahtani S, Xia L, Jannasch A, Ferreira C, Franco J, Shannahan JH. Disruption of pulmonary resolution mediators contribute to exacerbated silver nanoparticle-induced acute inflammation in a metabolic syndrome mouse model. Toxicol Appl Pharmacol 2021; 431:115730. [PMID: 34601004 PMCID: PMC8545917 DOI: 10.1016/j.taap.2021.115730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Pre-existing conditions modulate sensitivity to numerous xenobiotic exposures such as air pollution. Specifically, individuals suffering from metabolic syndrome (MetS) demonstrate enhanced acute inflammatory responses following particulate matter inhalation. The mechanisms associated with these exacerbated inflammatory responses are unknown, impairing interventional strategies and our understanding of susceptible populations. We hypothesize MetS-associated lipid dysregulation influences mediators of inflammatory resolution signaling contributing to increased acute pulmonary toxicity. To evaluate this hypothesis, healthy and MetS mouse models were treated with either 18-hydroxy eicosapentaenoic acid (18-HEPE), 14-hydroxy docosahexaenoic acid (14-HDHA), 17-hydroxy docosahexaenoic acid (17-HDHA), or saline (control) via intraperitoneal injection prior to oropharyngeal aspiration of silver nanoparticles (AgNP). In mice receiving saline treatment, AgNP exposure resulted in an acute pulmonary inflammatory response that was exacerbated in MetS mice. A targeted lipid assessment demonstrated 18-HEPE, 14-HDHA, and 17-HDHA treatments altered lung levels of specialized pro-resolving lipid mediators (SPMs). 14-HDHA and 17-HDHA treatments more efficiently reduced the exacerbated acute inflammatory response in AgNP exposed MetS mice as compared to 18-HEPE. This included decreased neutrophilic influx, diminished induction of inflammatory cytokines/chemokines, and reduced alterations in SPMs. Examination of SPM receptors determined baseline reductions in MetS mice compared to healthy as well as decreases due to AgNP exposure. Overall, these results demonstrate AgNP exposure disrupts inflammatory resolution, specifically 14-HDHA and 17-HDHA derived SPMs, in MetS contributing to exacerbated acute inflammatory responses. Our findings identify a potential mechanism responsible for enhanced susceptibility in MetS that can be targeted for interventional therapeutic approaches.
Collapse
Affiliation(s)
- Saeed Alqahtani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States; National Center for Pharmaceuticals, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Amber Jannasch
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN, United States
| | - Christina Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN, United States
| | - Jackeline Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
195
|
Abstract
AbstractA total synthesis of resolvin T4 was achieved by connecting three intermediates by Wittig reactions. The enal in the C1–C10 part was constructed through reduction of a propargylic alcohol with Red-Al followed by oxidation. The enal moiety in the C11–C16 part was synthesized by a ring-opening reaction of a silyl epoxide followed by a Peterson elimination. The chiral centers at C7 and C13 were constructed by ruthenium-catalyzed asymmetric transfer hydrogenation.
Collapse
Affiliation(s)
| | - Kohei Arai
- Department of Applied Chemistry, Meiji University
| | - Yuichi Kobayashi
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University
| |
Collapse
|
196
|
Jordan PM, Werz O. Specialized pro-resolving mediators: biosynthesis and biological role in bacterial infections. FEBS J 2021; 289:4212-4227. [PMID: 34741578 DOI: 10.1111/febs.16266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/05/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022]
Abstract
Acute inflammation caused by bacterial infections is an essential biological defence mechanism of the host in order to neutralize and clear the invaders and to return to homeostasis. Despite its protective function, inflammation may become persistent and uncontrolled, resulting in chronic diseases and tissue destruction as consequence of the unresolved inflammatory process. Therefore, spatiotemporal induction of endogenous inflammation resolution programs that govern bacterial clearance as well as tissue repair and regeneration, are of major importance in order to enable tissues to restore functions. Lipid mediators that are de-novo biosynthesized from polyunsaturated fatty acids (PUFAs) mainly by lipoxygenases and cyclooxygenases, critically regulate the initiation, the maintenance but also the resolution of infectious inflammation and tissue regeneration. The discovery of specialized pro-resolving mediators (SPMs) generated from omega-3 PUFAs stimulated intensive research in inflammation resolution, especially in infectious inflammation elicited by bacteria. SPMs are immunoresolvents that actively terminate inflammation by limiting neutrophil influx, stimulating phagocytosis, bacterial killing and clearance as well as efferocytosis of apoptotic neutrophils and cellular debris by macrophages. Moreover, SPMs prevent collateral tissue damage, promote tissue repair and regeneration and lower antibiotic requirement. Here, we review the biosynthesis of SPMs in bacterial infections and cover specific mechanisms of SPMs that govern the resolution of bacteria-initiated inflammation.
Collapse
Affiliation(s)
- Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
197
|
Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Adv Drug Deliv Rev 2021; 178:113965. [PMID: 34508793 DOI: 10.1016/j.addr.2021.113965] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/26/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
198
|
Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227:107879. [PMID: 33915177 DOI: 10.1016/j.pharmthera.2021.107879] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
199
|
Abstract
Current cancer therapies aim at eradicating cancer cells from the body. However, killing cells generates cell “debris” which can promote tumor progression. Thus, therapy can be a double-edged sword. Specifically, injury and debris generated by cancer therapies, including chemotherapy, radiation, and surgery, may offset their benefit by promoting the secretion of pro-tumorigenic factors (e.g., eicosanoid-driven cytokines) that stimulate regrowth and metastasis of surviving cells. The debris produced by cytotoxic cancer therapy can also contribute to a tumor microenvironment that promotes tumor progression and recurrence. Although not well understood, several molecular mechanisms have been implicated in debris-stimulated tumor growth that we review here, such as the involvement of extracellular vesicles, exosomal miR-194-5p, Bax, Bak, Smac, HMGB1, cytokines, and caspase-3. We discuss the cases of pancreatic and other cancer types where debris promotes postoperative tumor recurrence and metastasis, thus offering a new opportunity to prevent cancer progression intrinsically linked to treatment by stimulating resolution of tumor-promoting debris.
Collapse
Affiliation(s)
- Victoria M Haak
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
200
|
Deng J, Golub LM, Lee HM, Raja V, Johnson F, Kucine A, Lee W, Xu TM, Gu Y. A Novel Modified-Curcumin Promotes Resolvin-Like Activity and Reduces Bone Loss in Diabetes-Induced Experimental Periodontitis. J Inflamm Res 2021; 14:5337-5347. [PMID: 34703272 PMCID: PMC8528548 DOI: 10.2147/jir.s330157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Clinically, it is challenging to manage diabetic patients with periodontitis. Biochemically, both involve a wide range of inflammatory/collagenolytic conditions which exacerbate each other in a "bi-directional manner." However, standard treatments for this type of periodontitis rely on reducing the bacterial burden and less on controlling hyper-inflammation/excessive-collagenolysis. Thus, there is a crucial need for new therapeutic strategies to modulate this excessive host response and to promote enhanced resolution of inflammation. The aim of the current study is to evaluate the impact of a novel chemically-modified curcumin 2.24 (CMC2.24) on host inflammatory response in diabetic rats. METHODS Type I diabetes was induced by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC2.24, or the vehicle-alone, was administered by oral gavage daily for 3 weeks to the diabetics. Micro-CT was used to analyze morphometric changes and quantify bone loss. MMPs were analyzed by gelatin zymography. Cell function was examined by cell migration assay, and cytokines and resolvins were measured by ELISA. RESULTS In this severe inflammatory disease model, administration of the pleiotropic CMC2.24 was found to normalize the excessive accumulation and impaired chemotactic activity of macrophages in peritoneal exudates, significantly decrease MMP-9 and pro-inflammatory cytokines to near normal levels, and markedly increase resolvin D1 (RvD1) levels in the thioglycolate-elicited peritoneal exudates (tPE). Similar effects on MMPs and RvD1 were observed in the non-elicited resident peritoneal washes (rPW). Regarding clinical relevance, CMC2.24 significantly inhibited the loss of alveolar bone height, volume and mineral density (ie, diabetes-induced periodontitis and osteoporosis). CONCLUSION In conclusion, treating hyperglycemic diabetic rats with CMC2.24 (a tri-ketonic phenylaminocarbonyl curcumin) promotes the resolution of local and systemic inflammation, reduces bone loss, in addition to suppressing collagenolytic MMPs and pro-inflammatory cytokines, suggesting a novel therapeutic strategy for treating periodontitis complicated by other chronic diseases.
Collapse
Affiliation(s)
- Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People’s Republic of China
| | - Lorne M Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Veena Raja
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Francis Johnson
- Department of Chemistry and Pharmacological Sciences, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Allan Kucine
- Department of Oral & Maxillofacial Surgery, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Wonsae Lee
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tian-Min Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People’s Republic of China
| | - Ying Gu
- Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|