151
|
Woo Y, Jeong D, Chung DH, Kim HY. The roles of innate lymphoid cells in the development of asthma. Immune Netw 2014; 14:171-81. [PMID: 25177249 PMCID: PMC4148487 DOI: 10.4110/in.2014.14.4.171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common pulmonary disease with several different forms. The most studied form of asthma is the allergic form, which is mainly related to the function of Th2 cells and their production of cytokines (IL-4, IL-5, and IL-13) in association with allergen sensitization and adaptive immunity. Recently, there have been many advances in understanding non-allergic asthma, which seems to be related to environmental factors such as air pollution, infection, or even obesity. Cells of the innate immune system, including macrophages, neutrophils, and natural killer T cells as well as the newly described innate lymphoid cells, are effective producers of a variety of cytokines and seem to play important roles in the development of non-allergic asthma. In this review, we focus on recent findings regarding innate lymphoid cells and their roles in asthma.
Collapse
Affiliation(s)
- Yeonduk Woo
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Hye Young Kim
- Department of Medical Science, Seoul National University College of Medicine and Hospital, Seoul 110-744, Korea
| |
Collapse
|
152
|
Geiger TL, Abt MC, Gasteiger G, Firth MA, O'Connor MH, Geary CD, O'Sullivan TE, van den Brink MR, Pamer EG, Hanash AM, Sun JC. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. ACTA ACUST UNITED AC 2014; 211:1723-31. [PMID: 25113970 PMCID: PMC4144732 DOI: 10.1084/jem.20140212] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nfil3 is critical for normal development of innate lymphoid cell (ILC) progenitors. Nfil3-deficient mice have severely reduced lung and visceral adipose tissue ILC2s and gut-associated ILC3s, and compromised innate immunity to acute bacterial infection. The bZIP transcription factor Nfil3 (also known as E4BP4) is required for the development of natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s). We find that Nfil3 plays a critical role in the development of other mucosal tissue-associated innate lymphocytes. Type 3 ILCs (ILC3s), including lymphoid tissue inducer (LTi)–like cells, are severely diminished in both numbers and function in Nfil3-deficient mice. Using mixed bone marrow chimeric mice, we demonstrate that Nfil3 is critical for normal development of gut-associated ILC3s in a cell-intrinsic manner. Furthermore, Nfil3 deficiency severely compromises intestinal innate immune defense against acute bacterial infection with Citrobacter rodentium and Clostridium difficile. Nfil3 deficiency resulted in a loss of the recently identified ILC precursor, yet conditional ablation of Nfil3 in the NKp46+ ILC3 subset did not perturb ILC3 numbers, suggesting that Nfil3 is required early during ILC3 development but not for lineage maintenance. Lastly, a marked defect in type 2 ILCs (ILC2s) was also observed in the lungs and visceral adipose tissue of Nfil3-deficient mice, revealing a general requirement for Nfil3 in the development of all ILC lineages.
Collapse
Affiliation(s)
- Theresa L Geiger
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Michael C Abt
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Georg Gasteiger
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Matthew A Firth
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Margaret H O'Connor
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Clair D Geary
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Timothy E O'Sullivan
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marcel R van den Brink
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| | - Eric G Pamer
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| | - Alan M Hanash
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Joseph C Sun
- Immunology Program; Adult Bone Marrow Transplant Service and Infectious Diseases Service, Department of Medicine; and Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
153
|
Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014; 157:340-356. [PMID: 24725403 DOI: 10.1016/j.cell.2014.03.030] [Citation(s) in RCA: 872] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/14/2014] [Accepted: 03/21/2014] [Indexed: 12/11/2022]
Abstract
Innate lymphoid cells (ILCs) are a recently recognized group of lymphocytes that have important functions in protecting epithelial barriers against infections and in maintaining organ homeostasis. ILCs have been categorized into three distinct groups, transcriptional circuitry and effector functions of which strikingly resemble the various T helper cell subsets. Here, we identify a common, Id2-expressing progenitor to all interleukin 7 receptor-expressing, "helper-like" ILC lineages, the CHILP. Interestingly, the CHILP differentiated into ILC2 and ILC3 lineages, but not into conventional natural killer (cNK) cells that have been considered an ILC1 subset. Instead, the CHILP gave rise to a peculiar NKp46(+) IL-7Rα(+) ILC lineage that required T-bet for specification and was distinct of cNK cells or other ILC lineages. Such ILC1s coproduced high levels of IFN-γ and TNF and protected against infections with the intracellular parasite Toxoplasma gondii. Our data significantly advance our understanding of ILC differentiation and presents evidence for a new ILC lineage that protects barrier surfaces against intracellular infections.
Collapse
Affiliation(s)
- Christoph S N Klose
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; Department of Medical Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; Renal Division, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Melanie Flach
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; Department of Medical Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Luisa Möhle
- Institute of Medical Microbiology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Leif Rogell
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; Department of Medical Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; Max-Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Thomas Hoyler
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; Department of Medical Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Karolina Ebert
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; Department of Medical Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; Renal Division, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Carola Fabiunke
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; Department of Medical Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; Renal Division, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Dietmar Pfeifer
- Genomics Lab, Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Diogo Fonseca-Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rita G Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sebastian J Arnold
- Renal Division, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany; BIOSS, Centre of Biological Signalling Studies, Albert Ludwigs University Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohrgasse 7, 1020 Vienna, Austria
| | - Ildiko R Dunay
- Institute of Medical Microbiology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Yakup Tanriver
- Department of Medical Microbiology and Hygiene, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; Renal Division, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Andreas Diefenbach
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| |
Collapse
|
154
|
Serafini N, Xu W, Di Santo JP. Innate lymphoid cells: of precursors and products…. Curr Biol 2014; 24:R573-R576. [PMID: 24937286 DOI: 10.1016/j.cub.2014.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent reports have identified committed innate lymphoid cell (ILC) precursors and tissue-resident ILC subsets that have unique functional attributes. Taken together, these studies provide a framework for understanding how distinct ILCs are generated during hematopoiesis and further suggest additional parallels between models of ILC and T helper cell differentiation.
Collapse
Affiliation(s)
- Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Paris, France; INSERM U668, Paris, France
| | - Wei Xu
- Innate Immunity Unit, Institut Pasteur, Paris, France; INSERM U668, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France; INSERM U668, Paris, France.
| |
Collapse
|
155
|
Nau D, Altmayer N, Mattner J. Mechanisms of innate lymphoid cell and natural killer T cell activation during mucosal inflammation. J Immunol Res 2014; 2014:546596. [PMID: 24987710 PMCID: PMC4058452 DOI: 10.1155/2014/546596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023] Open
Abstract
Mucosal surfaces in the airways and the gastrointestinal tract are critical for the interactions of the host with its environment. Due to their abundance at mucosal tissue sites and their powerful immunomodulatory capacities, the role of innate lymphoid cells (ILCs) and natural killer T (NKT) cells in the maintenance of mucosal tolerance has recently moved into the focus of attention. While NKT cells as well as ILCs utilize distinct transcription factors for their development and lineage diversification, both cell populations can be further divided into three polarized subpopulations reflecting the distinction into Th1, Th2, and Th17 cells in the adaptive immune system. While bystander activation through cytokines mediates the induction of ILC and NKT cell responses, NKT cells become activated also through the engagement of their canonical T cell receptors (TCRs) by (glyco)lipid antigens (cognate recognition) presented by the atypical MHC I like molecule CD1d on antigen presenting cells (APCs). As both innate lymphocyte populations influence inflammatory responses due to the explosive release of copious amounts of different cytokines, they might represent interesting targets for clinical intervention. Thus, we will provide an outlook on pathways that might be interesting to evaluate in this context.
Collapse
Affiliation(s)
- David Nau
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Nora Altmayer
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
156
|
Randall TD, Mebius RE. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol 2014; 7:455-66. [PMID: 24569801 DOI: 10.1038/mi.2014.11] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023]
Abstract
Mucosal surfaces are constantly exposed to environmental antigens, colonized by commensal organisms and used by pathogens as points of entry. As a result, the immune system has devoted the bulk of its resources to mucosal sites to maintain symbiosis with commensal organisms, prevent pathogen entry, and avoid unnecessary inflammatory responses to innocuous antigens. These functions are facilitated by a variety of mucosal lymphoid organs that develop during embryogenesis in the absence of microbial stimulation as well as ectopic lymphoid tissues that develop in adults following microbial exposure or inflammation. Each of these lymphoid organs samples antigens from different mucosal sites and contributes to immune homeostasis, commensal containment, and immunity to pathogens. Here we discuss the mechanisms, mostly based on mouse studies, that control the development of mucosal lymphoid organs and how the various lymphoid tissues cooperate to maintain the integrity of the mucosal barrier.
Collapse
Affiliation(s)
- T D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham Alabama, USA
| | - R E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
157
|
Abstract
Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of particular transcription factors for their development and function. Group 1 ILCs (ILC1s) produce interferon γ and depend on Tbet, group 2 ILCs (ILC2s) produce type 2 cytokines like interleukin-5 (IL-5) and IL-13 and require GATA3, and group 3 ILCs (ILC3s) include lymphoid tissue inducer cells, produce IL-17 and/or IL-22, and are dependent on RORγt. Whereas ILCs play essential roles in the innate immune system, uncontrolled activation and proliferation of ILCs can contribute to inflammatory autoimmune diseases. In this review, we provide an overview of the characteristics of ILCs in the context of health and disease. We will focus on human ILCs but refer to mouse studies if needed to clarify aspects of ILC biology.
Collapse
|
158
|
Upadhyay V, Fu YX. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells. Cytokine Growth Factor Rev 2014; 25:227-33. [PMID: 24411493 PMCID: PMC3999173 DOI: 10.1016/j.cytogfr.2013.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/15/2013] [Indexed: 01/02/2023]
Abstract
The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Committee on Immunology, University of Chicago, United States; Department of Pathology, University of Chicago, United States
| | - Yang-Xin Fu
- Committee on Immunology, University of Chicago, United States; Department of Pathology, University of Chicago, United States.
| |
Collapse
|
159
|
|
160
|
Development and regulation of RORγt(+) innate lymphoid cells. FEBS Lett 2014; 588:4176-81. [PMID: 24681095 DOI: 10.1016/j.febslet.2014.03.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
RORγt(+) innate lymphoid cells (ILCs), or ILC3, play a fundamental role in the development of lymphoid tissues, as well as in homeostasis and defence of mucosal tissues. These cells produce IL-22, IL-17A and LTα1β2, key cytokines for the activation of epithelial defences and the recruitment of polymorphonuclear phagocytes. In the absence of ILC3, the early defence to infection and resistance to injury are compromised. Given the importance of ILC3 in mucosal immunity, significant efforts are made to discover their multiple functions and decipher their mode of action and regulation.
Collapse
|
161
|
van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, Almeida FF, Ibiza S, Barbosa I, Goverse G, Labão-Almeida C, Godinho-Silva C, Konijn T, Schooneman D, O'Toole T, Mizee MR, Habani Y, Haak E, Santori FR, Littman DR, Schulte-Merker S, Dzierzak E, Simas JP, Mebius RE, Veiga-Fernandes H. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 2014; 508:123-7. [PMID: 24670648 PMCID: PMC4932833 DOI: 10.1038/nature13158] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
The impact of the nutritional status during foetal life in the overall health of adults has been recognised1. However dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs (SLOs) occurs during embryogenesis and is considered to be developmentally programmed2,3. SLO formation dependents on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells2,3,4,5. Here we show that foetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero pre-setting the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi differentiation was controlled by maternal retinoid intake and foetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, while RA receptors directly regulated the Rorc locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.
Collapse
Affiliation(s)
- Serge A van de Pavert
- 1] Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands [2] Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands. [3]
| | - Manuela Ferreira
- 1] Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal [2]
| | - Rita G Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Hélder Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rosalie Molenaar
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Lara Moreira-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisca F Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sales Ibiza
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Inês Barbosa
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gera Goverse
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Carlos Labão-Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Cristina Godinho-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Dennis Schooneman
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Tom O'Toole
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Mark R Mizee
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Yasmin Habani
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands
| | - Esther Haak
- Erasmus Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Fabio R Santori
- Howard Hughes Medical Institute, Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Dan R Littman
- Howard Hughes Medical Institute, Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Elaine Dzierzak
- Erasmus Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - J Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
| | - Reina E Mebius
- 1] Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands [2]
| | - Henrique Veiga-Fernandes
- 1] Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal [2]
| |
Collapse
|
162
|
Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S, Hu G, Barron L, Sharma S, Nakayama T, Belkaid Y, Zhao K, Zhu J. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 2014; 40:378-88. [PMID: 24631153 DOI: 10.1016/j.immuni.2014.01.012] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
Innate lymphoid cells (ILCs) are critical in innate immune responses to pathogens and lymphoid organ development. Similar to CD4(+) T helper (Th) cell subsets, ILC subsets positive for interleukin-7 receptor α (IL-7Rα) produce distinct sets of effector cytokines. However, the molecular control of IL-7Rα(+) ILC development and maintenance is unclear. Here, we report that GATA3 was indispensable for the development of all IL-7Rα(+) ILC subsets and T cells but was not required for the development of classical natural killer cells. Conditionally Gata3-deficient mice had no lymph nodes and were susceptible to Citrobactor rodentium infection. After the ILCs had fully developed, GATA3 remained important for the maintenance and functions of ILC2s. Genome-wide gene expression analyses indicated that GATA3 regulated a similar set of cytokines and receptors in Th2 cells and ILC2s, but not in ILC3s. Thus, GATA3 plays parallel roles in regulating the development and functions of CD4(+) T cells and IL-7Rα(+) ILCs.
Collapse
Affiliation(s)
- Ryoji Yagi
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao Zhong
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Northrup
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fang Yu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean Spencer
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gangqing Hu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luke Barron
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suveena Sharma
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasmine Belkaid
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
163
|
Tanriver Y, Diefenbach A. Transcription factors controlling development and function of innate lymphoid cells. Int Immunol 2014; 26:119-28. [DOI: 10.1093/intimm/dxt063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
164
|
Serafini N, Klein Wolterink RG, Satoh-Takayama N, Xu W, Vosshenrich CA, Hendriks RW, Di Santo JP. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J Exp Med 2014; 211:199-208. [PMID: 24419270 PMCID: PMC3920560 DOI: 10.1084/jem.20131038] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/24/2013] [Indexed: 12/12/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3) include IL-22-producing NKp46(+) cells and IL-17A/IL-22-producing CD4(+) lymphoid tissue inducerlike cells that express RORγt and are implicated in protective immunity at mucosal surfaces. Whereas the transcription factor Gata3 is essential for T cell and ILC2 development from hematopoietic stem cells (HSCs) and for IL-5 and IL-13 production by T cells and ILC2, the role for Gata3 in the generation or function of other ILC subsets is not known. We found that abundant GATA-3 protein is expressed in mucosa-associated ILC3 subsets with levels intermediate between mature B cells and ILC2. Chimeric mice generated with Gata3-deficient fetal liver hematopoietic precursors lack all intestinal RORγt(+) ILC3 subsets, and these mice show defective production of IL-22 early after infection with the intestinal pathogen Citrobacter rodentium, leading to impaired survival. Further analyses demonstrated that ILC3 development requires cell-intrinsic Gata3 expression in fetal liver hematopoietic precursors. Our results demonstrate that Gata3 plays a generalized role in ILC lineage determination and is critical for the development of gut RORγt(+) ILC3 subsets that maintain mucosal barrier homeostasis. These results further extend the paradigm of Gata3-dependent regulation of diversified innate ILC and adaptive T cell subsets.
Collapse
Affiliation(s)
- Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France
- INSERM U668, 75724 Paris, France
| | - Roel G.J. Klein Wolterink
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France
- INSERM U668, 75724 Paris, France
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, 3000CA Rotterdam, Netherlands
| | - Naoko Satoh-Takayama
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France
- INSERM U668, 75724 Paris, France
| | - Wei Xu
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France
- INSERM U668, 75724 Paris, France
| | - Christian A.J. Vosshenrich
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France
- INSERM U668, 75724 Paris, France
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, 3000CA Rotterdam, Netherlands
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France
- INSERM U668, 75724 Paris, France
| |
Collapse
|
165
|
Abstract
Innate lymphoid cells (ILCs) specialize in the rapid secretion of polarized sets of cytokines and chemokines to combat infection and promote tissue repair at mucosal barriers. Their diversity and similarities with previously characterized natural killer (NK) cells and lymphoid tissue inducers (LTi) have prompted a provisional classification of all innate lymphocytes into groups 1, 2 and 3 solely on the basis of cytokine properties, but their developmental pathways and lineage relationships remain elusive. Here we identify and characterize a novel subset of lymphoid precursors in mouse fetal liver and adult bone marrow that transiently express high amounts of PLZF, a transcription factor previously associated with NK T cell development, by using lineage tracing and transfer studies. PLZF(high) cells were committed ILC progenitors with multiple ILC1, ILC2 and ILC3 potential at the clonal level. They excluded classical LTi and NK cells, but included a peculiar subset of NK1.1(+)DX5(-) 'NK-like' cells residing in the liver. Deletion of PLZF markedly altered the development of several ILC subsets, but not LTi or NK cells. PLZF(high) precursors also expressed high amounts of ID2 and GATA3, as well as TOX, a known regulator of PLZF-independent NK and LTi lineages. These findings establish novel lineage relationships between ILC, NK and LTi cells, and identify the common precursor to ILCs, termed ILCP. They also reveal the broad, defining role of PLZF in the differentiation of innate lymphocytes.
Collapse
|
166
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
167
|
van de Pavert SA, Mebius RE. Development of secondary lymphoid organs in relation to lymphatic vasculature. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:81-91. [PMID: 24276888 DOI: 10.1007/978-3-7091-1646-3_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the initial event in lymphatic endothelial specification occurs slightly before the initiation of lymph node formation in mice, the development of lymphatic vessels and lymph nodes occurs within the same embryonic time frame. Specification of lymphatic endothelial cells starts around embryonic day 10 (E10), followed by endothelial cell budding and formation of the first lymphatic structures. Through lymphatic endothelial cell sprouting these lymph sacs give rise to the lymphatic vasculature which is complete by E15.5 in mice. It is within this time frame that lymph node formation is initiated and the first structure is secured in place. As lymphatic vessels are crucially involved in the functionality of the lymph nodes, the recent insight that both structures depend on common developmental signals for their initiation provides a molecular mechanism for their coordinated formation. Here, we will describe the common developmental signals needed to properly start the formation of lymphatic vessels and lymph nodes and their interdependence in adult life.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Royal Netherlands Academy of Arts and Sciences, Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands,
| | | |
Collapse
|
168
|
Kumar V. Innate lymphoid cells: New paradigm in immunology of inflammation. Immunol Lett 2014; 157:23-37. [DOI: 10.1016/j.imlet.2013.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/20/2013] [Accepted: 11/04/2013] [Indexed: 12/27/2022]
|
169
|
Luetke-Eversloh M, Killig M, Romagnani C. Signatures of human NK cell development and terminal differentiation. Front Immunol 2013; 4:499. [PMID: 24416035 PMCID: PMC3874559 DOI: 10.3389/fimmu.2013.00499] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/18/2013] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cells are part of the innate lymphoid cell (ILC) family and represent the main cytotoxic population. NK cells develop from bone marrow common lymphoid progenitors and undergo terminal differentiation in the periphery, where they finally gain their cytotoxic competence as well as the ability to produce IFN-γ in response to engagement of activating receptors. This process has been at least partially elucidated and several markers have been identified to discriminate different NK cell stages and other ILC populations. NK cell terminal differentiation is not only associated with progressive phenotypic changes but also with defined effector signatures. In this essay, we will describe the phenotypic and functional characteristics of the main stages of NK cell development and terminal differentiation and discuss them in light of recent discoveries of novel ILC populations.
Collapse
Affiliation(s)
- Merlin Luetke-Eversloh
- Innate Immunity, Deutsches Rheuma-Forschungszentrum, Berlin - A Leibniz Institute , Berlin , Germany
| | - Monica Killig
- Innate Immunity, Deutsches Rheuma-Forschungszentrum, Berlin - A Leibniz Institute , Berlin , Germany
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum, Berlin - A Leibniz Institute , Berlin , Germany
| |
Collapse
|
170
|
Ramond C, Berthault C, Burlen-Defranoux O, de Sousa AP, Guy-Grand D, Vieira P, Pereira P, Cumano A. Two waves of distinct hematopoietic progenitor cells colonize the fetal thymus. Nat Immunol 2013; 15:27-35. [PMID: 24317038 DOI: 10.1038/ni.2782] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/06/2013] [Indexed: 12/14/2022]
Abstract
The generation of T cells depends on the migration of hematopoietic progenitor cells to the thymus throughout life. The identity of the thymus-settling progenitor cells has been a matter of considerable debate. Here we found that thymopoiesis was initiated by a first wave of T cell lineage-restricted progenitor cells with limited capacity for population expansion but accelerated differentiation into mature T cells. They gave rise to αβ and γδ T cells that constituted Vγ3(+) dendritic epithelial T cells. Thymopoiesis was subsequently maintained by less-differentiated progenitor cells that retained the potential to develop into B cells and myeloid cells. In that second wave, which started before birth, progenitor cells had high proliferative capacity but delayed differentiation capacity and no longer gave rise to embryonic γδ T cells. Our work reconciles conflicting hypotheses on the nature of thymus-settling progenitor cells.
Collapse
Affiliation(s)
- Cyrille Ramond
- 1] Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France. [2] Université Pierre et Marie Curie, Paris, France. [3]
| | - Claire Berthault
- 1] Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France. [2] Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France. [3]
| | | | | | - Delphine Guy-Grand
- Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France
| | - Paulo Vieira
- Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France
| | - Pablo Pereira
- Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France
| | - Ana Cumano
- Unit for Lymphopoiesis, Immunology Department, INSERM U668 Paris, France
| |
Collapse
|
171
|
Gentek R, Munneke JM, Helbig C, Blom B, Hazenberg MD, Spits H, Amsen D. Modulation of Signal Strength Switches Notch from an Inducer of T Cells to an Inducer of ILC2. Front Immunol 2013; 4:334. [PMID: 24155745 PMCID: PMC3804867 DOI: 10.3389/fimmu.2013.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are emerging key players of the immune system with close lineage relationship to T cells. ILC2 play an important role in protective immunity against multicellular parasites, but are also involved in the pathogenesis of type 2 immune diseases. Here, we have studied the developmental requirements for human ILC2. We report that ILC2 are present in the thymus of young human donors, possibly reflecting local differentiation. Furthermore, we show that uncommitted lineage−CD34+CD1a−human thymic progenitors have the capacity to develop into ILC2 in vitro under the influence of Notch signaling, either by stimulation with the Notch ligand Delta like 1 (Dll1) or by expression of the active intracellular domain of NOTCH1 (NICD1). The capacity of NICD1 to mobilize the ILC2 differentiation program was sufficiently potent to override commitment to the T cell lineage in CD34+CD1a+ progenitors and force them into the ILC2 lineage. As Notch is an important factor also for T cell development, these results raise the question how one and the same signaling pathway can elicit such distinct developmental outcomes from the same precursors. We provide evidence that Notch signal strength is a critical determinant in this decision: by tuning signal amplitude, Notch can be converted from a T cell inducer (low signal strength) to an ILC2 inducer (high signal strength). Thus, this study enhances our understanding of human ILC2 development and identifies a mechanism determining specificity of Notch signal output during T cell and ILC2 differentiation.
Collapse
Affiliation(s)
- Rebecca Gentek
- Department of Cell Biology and Histology, Academic Medical Center , Amsterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
172
|
Diefenbach A. Innate lymphoid cells in the defense against infections. Eur J Microbiol Immunol (Bp) 2013; 3:143-51. [PMID: 24265932 DOI: 10.1556/eujmi.3.2013.3.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 01/07/2023] Open
Abstract
Barrier surfaces are under constant attack by potentially dangerous microbes. Interestingly, mucosal tissues contain a large number of innate lymphocytes now collectively referred to as innate lymphoid cells (ILCs). Different groups of ILCs are being distinguished, each of which produce an array of cytokines strikingly resembling the profile of the various T helper cell effector subsets. Over the last couple of years, evidence has been emerging that the various ILC subsets play important roles in immune defense against mucosal infections. In this review, I will introduce the various groups of ILCs and then focus on their roles for immunity to mucosal infections.
Collapse
Affiliation(s)
- Andreas Diefenbach
- Section of Molecular Infection Biology, Department of Medical Microbiology and Hygiene, University of Freiburg Hermann-Herder-Strasse 11, D-79104 Freiburg Germany
| |
Collapse
|
173
|
Björkström NK, Kekäläinen E, Mjösberg J. Tissue-specific effector functions of innate lymphoid cells. Immunology 2013; 139:416-27. [PMID: 23489335 DOI: 10.1111/imm.12098] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans.
Collapse
Affiliation(s)
- Niklas K Björkström
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
174
|
Qiu J, Zhou L. Aryl hydrocarbon receptor promotes RORγt⁺ group 3 ILCs and controls intestinal immunity and inflammation. Semin Immunopathol 2013; 35:657-70. [PMID: 23975386 DOI: 10.1007/s00281-013-0393-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022]
Abstract
Unlike adaptive immune cells that require antigen recognition and functional maturation during infection, innate lymphoid cells (ILCs) usually respond to pathogens promptly and serve as the first line of defense in infectious diseases. RAR-related orphan receptor (RORγt)⁺ group 3 ILCs are one of the innate cell populations that have recently been intensively studied. During the fetal stage of development, RORγt⁺ group 3 ILCs (e.g., lymphoid tissue inducer cells) are required for lymphoid organogenesis. In adult mice, RORγt⁺ group 3 ILCs are abundantly present in the gut to exert immune defensive functions. Under certain circumstances, however, RORγt⁺ group 3 ILCs can be pathogenic and contribute to intestinal inflammation. Aryl hydrocarbon receptor (Ahr), a ligand-dependent transcriptional factor, is widely expressed by various immune and non-immune cells. In the gut, the ligand for Ahr can be derived/generated from diet, microflora, and/or host cells. Ahr has been shown to regulate different cell populations in the immune system including RORγt⁺ group 3 ILCs, T helper (Th)17/22 cells, γδT cells, regulatory T cells (Tregs), Tr1 cells, and antigen presenting cells. In this review, we will focus on the development and function of RORγt⁺ group 3 ILCs, and discuss the role of Ahr in intestinal immunity and inflammation in mice and in humans. A better understanding of the function of Ahr in the gut is important for developing new therapeutic means to target Ahr in future treatment of infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Ju Qiu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Street, Chicago, IL, 60611, USA
| | | |
Collapse
|
175
|
Shao J, Katika MR, Schmeits PCJ, Hendriksen PJM, van Loveren H, Peijnenburg AACM, Volger OL. Toxicogenomics-based identification of mechanisms for direct immunotoxicity. Toxicol Sci 2013; 135:328-46. [PMID: 23824090 DOI: 10.1093/toxsci/kft151] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Compounds with direct immunotoxic properties, including metals, mycotoxins, agricultural pesticides, and industrial chemicals, form potential human health risks due to exposure through food, drinking water, and the environment. Insights into the mechanisms of action are currently lacking for the majority of these direct immunotoxicants. Therefore, the present work aimed to gain insights into the molecular mechanisms underlying direct immunotoxicity. To this end, we assessed in vitro the effects of 31 test compounds on the transcriptome of the human Jurkat T-cell line. These compounds included direct immunotoxicants, immunosuppressive drugs with different mode of actions, and nonimmunotoxic control chemicals. Pathway analysis of the microarray data allowed us to identify canonical pathways and Gene Ontology processes that were transcriptionally regulated in common by immunotoxicants (1) with structural similarities, such as tributyltin chloride and tributyltin oxide that activated the retinoic acid/X receptor signaling pathway and (2) without structural similarities, such as As2O3, dibutyltin chloride, diazinon, MeHg, ochratoxin A (OTA), S9-treated OTA, S9-treated cyclophosphamide, and S9-treated benzo[a]pyrene, which activated unfolded protein response, and FTY720, lindane, and propanil, which activated the cholesterol biosynthesis pathway. In addition, processes uniquely affected by individual immunotoxicants were identified, such as the induction of Notch receptor signaling and the downregulation of acute-phase response genes by OTA. These findings were validated by quantitative real-time PCR analysis of genes involved in these processes. Our study indicated that diverse modes of action are involved in direct immunotoxicity and that a set of pathways or genes, rather than one single gene, can be used to screen compounds for direct immunotoxicity.
Collapse
Affiliation(s)
- Jia Shao
- * RIKILT-Institute of Food Safety, Wageningen University and Research Centre, 6700 AE Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
176
|
Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc Natl Acad Sci U S A 2013; 110:10240-5. [PMID: 23733962 DOI: 10.1073/pnas.1217158110] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s; also called nuocytes, innate helper cells, or natural helper cells) provide protective immunity during helminth infection and play an important role in influenza-induced and allergic airway hyperreactivity. Whereas the transcription factor GATA binding protein 3 (Gata3) is important for the production of IL-5 and -13 by ILC2s in response to IL-33 or -25 stimulation, it is not known whether Gata3 is required for ILC2 development from hematopoietic stem cells. Here, we show that chimeric mice generated with Gata3-deficient fetal liver hematopoietic stem cells fail to develop systemically dispersed ILC2s. In these chimeric mice, in vivo administration of IL-33 or -25 fails to expand ILC2 numbers or to induce characteristic ILC2-dependent IL-5 or -13 production. Moreover, cell-intrinsic Gata3 expression is required for ILC2 development in vitro and in vivo. Using mutant and transgenic mice in which Gata3 gene copy number is altered, we show that ILC2 generation from common lymphoid progenitors, as well as ILC2 homeostasis and cytokine production, is regulated by Gata3 expression levels in a dose-dependent fashion. Collectively, these results identify Gata3 as a critical early regulator of ILC2 development, thereby extending the paradigm of Gata3-dependent control of type 2 immunity to include both innate and adaptive lymphocytes.
Collapse
|
177
|
Abstract
Coordinated function of the innate and adaptive arms of the immune system in vertebrates is essential to promote protective immunity and to avoid immunopathology. The Notch signalling pathway, which was originally identified as a pleiotropic mediator of cell fate in invertebrates, has recently emerged as an important regulator of immune cell development and function. Notch was initially shown to be a key determinant of cell-lineage commitment in developing lymphocytes, but it is now known to control the homeostasis of several innate cell populations. Moreover, the roles of Notch in adaptive immunity have expanded to include the regulation of T cell differentiation and function. The aim of this Review is to summarize the current status of immune regulation by Notch. A better understanding of Notch function in both innate and adaptive immunity will hopefully provide multiple avenues for therapeutic intervention in disease.
Collapse
|
178
|
Walker JA, McKenzie ANJ. Development and function of group 2 innate lymphoid cells. Curr Opin Immunol 2013; 25:148-55. [PMID: 23562755 PMCID: PMC3776222 DOI: 10.1016/j.coi.2013.02.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 11/26/2022]
Abstract
The innate lymphoid cell (ILC) family has recently expanded with the discovery of type-2 innate lymphoid cells (ILC2). These cells arise from lymphoid progenitors in the bone marrow and, under the control of the transcriptional regulators RORα and Gata3, they mature to give rise to IL-5, IL-9 and IL-13 producing ILC2. These cells are critical components of the innate immune response to parasitic worm infections and have also been implicated in the pathogenesis of asthma and allergy. Recent advances in our understanding of the molecular regulation of ILC2 development and function now present the opportunity to develop new genetic models to assess ILC2 immune function and to investigate possible therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer A Walker
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
179
|
Hoyler T, Connor CA, Kiss EA, Diefenbach A. T-bet and Gata3 in controlling type 1 and type 2 immunity mediated by innate lymphoid cells. Curr Opin Immunol 2013; 25:139-47. [DOI: 10.1016/j.coi.2013.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022]
|
180
|
Upadhyay V, Fu YX. Lymphotoxin signalling in immune homeostasis and the control of microorganisms. Nat Rev Immunol 2013; 13:270-9. [PMID: 23524463 PMCID: PMC3900493 DOI: 10.1038/nri3406] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphotoxin (LT) is a member of the tumour necrosis factor (TNF) superfamily that was originally thought to be functionally redundant to TNF, but these proteins were later found to have independent roles in driving lymphoid organogenesis. More recently, LT-mediated signalling has been shown to actively contribute to effector immune responses. LT regulates dendritic cell and CD4(+) T cell homeostasis in the steady state and determines the functions of these cells during pathogenic challenges. The LT receptor pathway is essential for controlling pathogens and even contributes to the regulation of the intestinal microbiota, with recent data suggesting that LT-induced changes in the microbiota promote metabolic disease. In this Review, we discuss these newly defined roles for LT, with a particular focus on how the LT receptor pathway regulates innate and adaptive immune responses to microorganisms.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
181
|
Vosshenrich CAJ, Di Santo JP. Developmental programming of natural killer and innate lymphoid cells. Curr Opin Immunol 2013; 25:130-8. [PMID: 23490162 DOI: 10.1016/j.coi.2013.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
Abstract
In recent years we have witnessed a blooming interest in innate lymphoid cell (ILC) biology thanks to the discovery of novel lineages of ILC that are phenotypically and functionally distinct from NK cells. While the importance of these novel ILC subsets as essential functional components of the early immune responses are now clearly established, many questions remain as to how early ILC developmental fates are determined and how specific effector functions associated with individual ILC subsets are achieved. As the founding member of the ILC family, properties of NK cells have defining attributes that characterize this group of innate effectors. Analysing their developmental rules may provide clues to principles that guide ILC development in general.
Collapse
|
182
|
Tait Wojno ED, Artis D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 2013; 12:445-57. [PMID: 23084914 DOI: 10.1016/j.chom.2012.10.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently described group of innate immune cells that can regulate immunity, inflammation, and tissue repair in multiple anatomical compartments, particularly the barrier surfaces of the skin, airways, and intestine. Broad categories of ILCs have been defined based on transcription factor expression and the ability to produce distinct patterns of effector molecules. Recent studies have revealed that ILC populations can regulate commensal bacterial communities, contribute to resistance to helminth and bacterial pathogens, promote inflammation, and orchestrate tissue repair and wound healing. This review will examine the phenotype and function of murine and human ILCs and discuss the critical roles these innate immune cells play in health and disease.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
183
|
Rankin L, Groom J, Mielke LA, Seillet C, Belz GT. Diversity, function, and transcriptional regulation of gut innate lymphocytes. Front Immunol 2013; 4:22. [PMID: 23508190 PMCID: PMC3600536 DOI: 10.3389/fimmu.2013.00022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
The innate immune system plays a critical early role in host defense against viruses, bacteria, and tumor cells. Until recently, natural killer (NK) cells and lymphoid tissue inducer (LTi) cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.
Collapse
Affiliation(s)
- Lucille Rankin
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Joanna Groom
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Lisa A. Mielke
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Cyril Seillet
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| | - Gabrielle T. Belz
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
- Department of Medical Biology, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
184
|
Nakagawa R, Togawa A, Nagasawa T, Nishikawa SI. Peyer’s Patch Inducer Cells Play a Leading Role in the Formation of B and T Cell Zone Architecture. THE JOURNAL OF IMMUNOLOGY 2013; 190:3309-18. [DOI: 10.4049/jimmunol.1202766] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
185
|
Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA, McKenzie ANJ, Carotta S, Nutt SL, Belz GT. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol 2013; 14:389-95. [PMID: 23455676 DOI: 10.1038/ni.2545] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 12/12/2022]
Abstract
NKp46+ innate lymphoid cells (ILCs) serve important roles in regulating the intestinal microbiota and defense against pathogens. Whether NKp46+ ILCs arise directly from lymphoid tissue-inducer (LTi) cells or represent a separate lineage remains controversial. We report here that the transcription factor T-bet (encoded by Tbx21) was essential for the development of NKp46+ ILCs but not of LTi cells or nuocytes. Deficiency in interleukin 22 (IL-22)-producing NKp46+ ILCs resulted in greater susceptibility of Tbx21-/- mice to intestinal infection. Haploinsufficient T-bet expression resulted in lower expression of the signaling molecule Notch, and Notch signaling was necessary for the transition of LTi cells into NKp46+ ILCs. Furthermore, NKp46+ ILCs differentiated solely from the CD4- LTi population, not the CD4+ LTi population. Our results pinpoint the regulation of Notch signaling by T-bet as a distinct molecular pathway that guides the development of NKp46+ ILCs.
Collapse
Affiliation(s)
- Lucille C Rankin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Grogan JL, Ouyang W. A role for Th17 cells in the regulation of tertiary lymphoid follicles. Eur J Immunol 2013; 42:2255-62. [PMID: 22949324 DOI: 10.1002/eji.201242656] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immune responses propagate in secondary lymphoid organs (SLOs), such as the spleen and lymph nodes. These highly organized structures are typified by distinct B-cell follicles and T-cell zones, and are orchestrated by interactions between the TNF superfamily molecules expressed on hematopoietic cells and their receptors on mesenchymal cells and the subsequent cytokines and chemokines that are elicited. During chronic immune responses, cellular effectors of the immune response can infiltrate target tissue and organize anatomically into de novo B-cell follicles and T-cell areas, a phenomenon called lymphoid neogenesis or the formation of tertiary lymphoid organs (TLOs). Critical to the development of SLOs are lymphoid-tissue inducer (LTi) cells, that is innate lymphoid cells that arise from common precursor cells within the fetal liver. Of interest, Th17 cells, a subset of CD4(+) T cells most associated with autoimmune pathogenesis, share many developmental and effector markers with LTi cells. Here, we compare and contrast LTi and Th17 cells, and review recent evidence that Th17 cells and Th17 cytokines, such as IL-17 and IL-22, contribute to the development of ectopic lymphoid structures in chronic-ally inflamed tissue.
Collapse
Affiliation(s)
- Jane L Grogan
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA.
| | | |
Collapse
|
187
|
Sanos SL, Diefenbach A. Innate lymphoid cells: from border protection to the initiation of inflammatory diseases. Immunol Cell Biol 2013; 91:215-24. [PMID: 23357882 DOI: 10.1038/icb.2013.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Innate lymphoid cells (ILC) are a recently discovered group of innate lymphocytes found at mucosal surfaces. The transcriptional and effector programs of ILC strikingly resemble those of the various T-helper (Th) cell fates (that is, Th1, Th2, Th9, Th17, Th22). ILC are involved in protecting the mucosal borders by producing tissue protective factors. More recently, evidence has been provided that inappropriately activated ILC can be drivers of various inflammatory disorders. Here, we will highlight recent developments in our understanding of the transcriptional and developmental programs controlling ILC specification and fate decisions. We will also review the roles assigned to ILC in protecting barriers and in promoting inflammatory diseases. Finally, we will outline how the power of ILC may be harnessed for clinical application, and how interference with ILC function may be used as a new strategy to treat inflammatory diseases.
Collapse
Affiliation(s)
- Stephanie L Sanos
- IMMH, Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Centre, Freiburg, Germany.
| | | |
Collapse
|
188
|
Abstract
Innate lymphoid cells (ILCs) are newly identified members of the lymphoid lineage that have emerging roles in mediating immune responses and in regulating tissue homeostasis and inflammation. Here, we review the developmental relationships between the various ILC lineages that have been identified to date and summarize their functions in protective immunity to infection and their pathological roles in allergic and autoimmune diseases.
Collapse
|
189
|
Innate Lymphoid Cells in Immunity and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 785:9-26. [DOI: 10.1007/978-1-4614-6217-0_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
190
|
Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 2012. [PMID: 23084357 DOI: 10.1016/j.immuni.2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian intestine harbors trillions of beneficial commensal bacteria that are essential for the development of the immune system and for maintenance of physiologic processes in multiple organs. However, numerous chronic infectious, inflammatory, and metabolic diseases in humans have been associated with alterations in the composition or localization of commensal bacteria that result in dysregulated host-commensal bacteria relationships. The mammalian immune system plays an essential role in regulating the acquisition, composition, and localization of commensal bacteria in the intestine. Emerging research has implicated innate lymphoid cells (ILCs) as a critical immune cell population that orchestrates some of these host-commensal bacteria relationships that can impact immunity, inflammation, and tissue homeostasis in the intestine. This review will discuss reciprocal interactions between intestinal commensal bacteria and ILCs in the context of health and disease.
Collapse
Affiliation(s)
- Gregory F Sonnenberg
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.
| | | |
Collapse
|
191
|
Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 2012; 37:601-10. [PMID: 23084357 DOI: 10.1016/j.immuni.2012.10.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Indexed: 02/08/2023]
Abstract
The mammalian intestine harbors trillions of beneficial commensal bacteria that are essential for the development of the immune system and for maintenance of physiologic processes in multiple organs. However, numerous chronic infectious, inflammatory, and metabolic diseases in humans have been associated with alterations in the composition or localization of commensal bacteria that result in dysregulated host-commensal bacteria relationships. The mammalian immune system plays an essential role in regulating the acquisition, composition, and localization of commensal bacteria in the intestine. Emerging research has implicated innate lymphoid cells (ILCs) as a critical immune cell population that orchestrates some of these host-commensal bacteria relationships that can impact immunity, inflammation, and tissue homeostasis in the intestine. This review will discuss reciprocal interactions between intestinal commensal bacteria and ILCs in the context of health and disease.
Collapse
Affiliation(s)
- Gregory F Sonnenberg
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.
| | | |
Collapse
|
192
|
Mjösberg J, Bernink J, Peters C, Spits H. Transcriptional control of innate lymphoid cells. Eur J Immunol 2012; 42:1916-23. [DOI: 10.1002/eji.201242639] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
193
|
Ferreira M, Domingues RG, Veiga-Fernandes H. Stroma cell priming in enteric lymphoid organ morphogenesis. Front Immunol 2012; 3:219. [PMID: 22837761 PMCID: PMC3402974 DOI: 10.3389/fimmu.2012.00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/07/2012] [Indexed: 12/18/2022] Open
Abstract
The lymphoid system is equipped with a network of specialized platforms located at strategic sites, which grant strict immune-surveillance and efficient immune responses. The development of these peripheral secondary lymphoid organs (SLO) occurs mainly in utero, while tertiary lymphoid structures can form in adulthood generally in response to persistent infection and inflammation. Regardless of the lymphoid tissue and intrinsic cellular and molecular differences, it is now well established that the recruitment of fully functional lymphoid tissue inducer (LTi) cells to presumptive lymphoid organ sites, and their consequent close and reciprocal interaction with resident stroma cells, are central to SLO formation. In contrast, the nature of events that initially prime resident sessile stroma cells to recruit and retain LTi cells remains poorly understood. Recently, new findings revealed early phases of SLO development putting emphasis on mesenchymal and lymphoid tissue initiator cells. Herein we discuss the main tenets of enteric lymphoid organs genesis and focus in the most recent findings that open new perspectives to the understanding of the early phases of lymphoid morphogenesis.
Collapse
Affiliation(s)
- Manuela Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
194
|
Development and function of intestinal innate lymphoid cells. Curr Opin Immunol 2012; 24:277-83. [DOI: 10.1016/j.coi.2012.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/05/2023]
|
195
|
Cherrier M, Eberl G. The development of LTi cells. Curr Opin Immunol 2012; 24:178-83. [PMID: 22386930 DOI: 10.1016/j.coi.2012.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 01/20/2012] [Accepted: 02/06/2012] [Indexed: 12/17/2022]
Abstract
Lymphoid tissue inducer (LTi) cells are programmed by the mammalian fetus to induce the development of lymph nodes and Peyer's patches. LTi cells share a pro-inflammatory profile with Th17 cells, as well as their requirement for the transcription factor RORγt. We discuss here the latest data on the fetal and post-natal development of LTi cells, and their relationship with the larger family of innate lymphoid cells (ILCs). We suggest that the re-programming of RORγt in a subset of common lymphoid progenitors allowed mammals to develop lymphoid organs before birth, whereas other vertebrates only develop such organs in response to infection or injury.
Collapse
Affiliation(s)
- Marie Cherrier
- Institut Pasteur, Lymphoid Tissue Development Unit, Paris 75724, France
| | | |
Collapse
|