151
|
Xie Z, Meng J, Wu Z, Nakanishi H, Hayashi Y, Kong W, Lan F, Narengaowa, Yang Q, Qing H, Ni J. The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist 2023; 29:616-638. [PMID: 35348415 DOI: 10.1177/10738584211070273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microglia are critical players in the neuroimmune system, and their involvement in Alzheimer's disease (AD) pathogenesis is increasingly being recognized. However, whether microglia play a positive or negative role in AD remains largely controversial and the precise molecular targets for intervention are not well defined. This partly results from the opposing roles of microglia in AD pathology, and is mainly reflected in the microglia-neuron interaction. Microglia can prune synapses resulting in excessive synapse loss and neuronal dysfunction, but they can also promote synapse formation, enhancing neural network plasticity. Neuroimmune crosstalk accelerates microglial activation, which induces neuron death and enhances the microglial phagocytosis of β-amyloid to protect neurons. Moreover, microglia have dual opposing roles in developing the major pathological features in AD, such as amyloid deposition and blood-brain barrier permeability. This review summarizes the dual opposing role of microglia in AD from the perspective of the interaction between neurons and microglia. Additionally, current AD treatments targeting microglia and the advantages and disadvantages of developing microglia-targeted therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Narengaowa
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
152
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 370] [Impact Index Per Article: 185.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
153
|
Yang H, Qin Q, Wang M, Yin Y, Li R, Tang Y. Crosstalk between peripheral immunity and central nervous system in Alzheimer's disease. Cell Immunol 2023; 391-392:104743. [PMID: 37451918 DOI: 10.1016/j.cellimm.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The significance of peripheral immunity in the pathogenesis and progression of Alzheimer's diseases (AD) has been recognized. Brain-infiltrated peripheral immune components transporting across the blood-brain barrier (BBB) may reshape the central immune environment. However, mechanisms of how these components open the BBB for AD occurrence and development and correlations between peripheral and central immunity have not been fully explored. Herein, we formulate a hypothesis whereby peripheral immunity as a critical factor allows AD to progress. Peripheral central immune cell crosstalk is associated with early AD pathology and related risk factors. The damaged BBB permits peripheral immune cells to enter the central immune system to deprive its immune privilege promoting the progression toward developing AD. This review summarizes the influences of risk factors on peripheral immunity, alongside their functions, highlighting the concept of peripheral and central immunity as an integrated system in AD pathogenesis, which has received scant attention before.
Collapse
Affiliation(s)
- Hanchen Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruiyang Li
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.
| |
Collapse
|
154
|
Self WK, Holtzman DM. Emerging diagnostics and therapeutics for Alzheimer disease. Nat Med 2023; 29:2187-2199. [PMID: 37667136 DOI: 10.1038/s41591-023-02505-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
Alzheimer disease (AD) is the most common contributor to dementia in the world, but strategies that slow or prevent its clinical progression have largely remained elusive, until recently. This Review highlights the latest advances in biomarker technologies and therapeutic development to improve AD diagnosis and treatment. We review recent results that enable pathological staging of AD with neuroimaging and fluid-based biomarkers, with a particular emphasis on the role of amyloid, tau and neuroinflammation in disease pathogenesis. We discuss the lessons learned from randomized controlled trials, including some supporting the proposal that certain anti-amyloid antibodies slow cognitive decline during the mildly symptomatic phase of AD. In addition, we highlight evidence for newly identified therapeutic targets that may be able to modify AD pathogenesis and progression. Collectively, these recent discoveries-and the research directions that they open-have the potential to move AD clinical care toward disease-modifying treatment strategies with maximal benefits for patients.
Collapse
Affiliation(s)
- Wade K Self
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
155
|
Chen P, Chen F, Lei J, Zhou B. Pomegranate polyphenol punicalagin improves learning memory deficits, redox homeostasis, and neuroinflammation in aging mice. Phytother Res 2023; 37:3655-3674. [PMID: 37092799 DOI: 10.1002/ptr.7848] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive brain disorder characterized by loss of memory and cognitive dysfunction in the aged. Despite remarkable advances in drug therapy, effective pharmacological interventions are rare. Punicalagin (PU) is an active antioxidant polyphenol found in pomegranates, raspberries, blueberries, and chestnuts that has attracted considerable attention owing to its strong antioxidant and anti-inflammatory properties. The current study focused on the neuroprotective effect of PU on aging mice and its potential mechanisms. In this study, we first evaluated the protective effect of PU on neuro-2a (N2a) cell damage mediated by BV2 microglia-induced neuroinflammation. The in vivo D-galactose (D-gal)-induced brain aging model demonstrated that PU ameliorated deficits in learning and memory and prevented neuroinflammation, which was evident from the decrease in microglial activation and astrocytosis. Furthermore, PU reduced the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) and inhibited NLRP3 inflammasome activation, reducing the levels of inflammatory cytokines, such as interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a), interleukin-18 (IL-18), and interleukin-1 beta (IL-1β) in both accelerated aging and naturally senescent mouse models. PU effectively improved neuroinflammation, learning and memory deficits, and redox homeostasis in aging mice, and it could be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
156
|
Li Y, Xu H, Wang H, Yang K, Luan J, Wang S. TREM2: Potential therapeutic targeting of microglia for Alzheimer's disease. Biomed Pharmacother 2023; 165:115218. [PMID: 37517293 DOI: 10.1016/j.biopha.2023.115218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, resulting in the loss of cognitive ability and memory. However, there is no specific treatment to mechanistically inhibit the progression of Alzheimer's disease, and most drugs only provide symptom relief and do not fundamentally reverse AD. Current studies show that triggering receptor expressed on myeloid cells 2 (TREM2) is predominantly expressed in microglia of the central nervous system (CNS) and is involved in microglia proliferation, survival, migration and phagocytosis. The current academic view suggests that TREM2 and its ligands have CNS protective effects in AD. Specifically, TREM2 acts by regulating the function of microglia and promoting the clearance of neuronal toxic substances and abnormal proteins by microglia. In addition, TREM2 is also involved in regulating inflammatory response and cell signaling pathways, affecting the immune response and regulatory role of microglia. Although the relationship between TREM2 and Alzheimer's disease has been extensively studied, its specific mechanism of action is not fully understood. The purpose of this review is to provide a comprehensive analysis of the research of TREM2, including its regulation of the inflammatory response, lipid metabolism and phagocytosis in microglia of CNS in AD, and to explore the potential application prospects as well as limitations of targeting TREM2 for the treatment of AD.
Collapse
Affiliation(s)
- Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Huifang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
157
|
Siddiq MM, Toro CA, Johnson NP, Hansen J, Xiong Y, Mellado W, Tolentino RE, Johnson K, Jayaraman G, Suhail Z, Harlow L, Dai J, Beaumont KG, Sebra R, Willis DE, Cardozo CP, Iyengar R. Spinal cord injury regulates circular RNA expression in axons. Front Mol Neurosci 2023; 16:1183315. [PMID: 37692100 PMCID: PMC10483835 DOI: 10.3389/fnmol.2023.1183315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Neurons transport mRNA and translational machinery to axons for local translation. After spinal cord injury (SCI), de novo translation is assumed to enable neurorepair. Knowledge of the identity of axonal mRNAs that participate in neurorepair after SCI is limited. We sought to identify and understand how axonal RNAs play a role in axonal regeneration. Methods We obtained preparations enriched in axonal mRNAs from control and SCI rats by digesting spinal cord tissue with cold-active protease (CAP). The digested samples were then centrifuged to obtain a supernatant that was used to identify mRNA expression. We identified differentially expressed genes (DEGS) after SCI and mapped them to various biological processes. We validated the DEGs by RT-qPCR and RNA-scope. Results The supernatant fraction was highly enriched for mRNA from axons. Using Gene Ontology, the second most significant pathway for all DEGs was axonogenesis. Among the DEGs was Rims2, which is predominately a circular RNA (circRNA) in the CNS. We show that Rims2 RNA within spinal cord axons is circular. We found an additional 200 putative circRNAs in the axonal-enriched fraction. Knockdown in primary rat cortical neurons of the RNA editing enzyme ADAR1, which inhibits formation of circRNAs, significantly increased axonal outgrowth and increased the expression of circRims2. Using Rims2 as a prototype we used Circular RNA Interactome to predict miRNAs that bind to circRims2 also bind to the 3'UTR of GAP-43, PTEN or CREB1, all known regulators of axonal outgrowth. Axonally-translated GAP-43 supports axonal elongation and we detect GAP-43 mRNA in the rat axons by RNAscope. Discussion By enriching for axonal RNA, we detect SCI induced DEGs, including circRNA such as Rims2. Ablation of ADAR1, the enzyme that regulates circRNA formation, promotes axonal outgrowth of cortical neurons. We developed a pathway model using Circular RNA Interactome that indicates that Rims2 through miRNAs can regulate the axonal translation GAP-43 to regulate axonal regeneration. We conclude that axonal regulatory pathways will play a role in neurorepair.
Collapse
Affiliation(s)
- Mustafa M. Siddiq
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos A. Toro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicholas P. Johnson
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jens Hansen
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yuguang Xiong
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Rosa E. Tolentino
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kaitlin Johnson
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Gomathi Jayaraman
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zaara Suhail
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lauren Harlow
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jinye Dai
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristin G. Beaumont
- Department of Genetics and Genomic Studies, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Sebra
- Department of Genetics and Genomic Studies, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dianna E. Willis
- Burke Neurological Institute, White Plains, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ravi Iyengar
- Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
158
|
Fruhwürth S, Reinert LS, Öberg C, Sakr M, Henricsson M, Zetterberg H, Paludan SR. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. SCIENCE ADVANCES 2023; 9:eadf5808. [PMID: 37595041 PMCID: PMC10438464 DOI: 10.1126/sciadv.adf5808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Immunological control of viral infections in the brain exerts immediate protection and also long-term maintenance of brain integrity. Microglia are important for antiviral defense in the brain. Here, we report that herpes simplex virus type 1 (HSV1) infection of human induced pluripotent stem cell (hiPSC)-derived microglia down-regulates expression of genes in the TREM2 pathway. TREM2 was found to be important for virus-induced IFNB induction through the DNA-sensing cGAS-STING pathway in microglia and for phagocytosis of HSV1-infected neurons. Consequently, TREM2 depletion increased susceptibility to HSV1 infection in human microglia-neuron cocultures and in the mouse brain. TREM2 augmented STING signaling and activation of downstream targets TBK1 and IRF3. Thus, TREM2 is important for the antiviral immune response in microglia. Since TREM2 loss-of-function mutations and HSV1 serological status are both linked to Alzheimer's disease, this work poses the question whether genetic or virus-induced alterations of TREM2 activity predispose to post-infection neurological pathologies.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Line S. Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carl Öberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcelina Sakr
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Søren R. Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
159
|
Wang Y, Wu T, Tsai MC, Rezzonico MG, Abdel-Haleem AM, Xie L, Gandham VD, Ngu H, Stark K, Glock C, Xu D, Foreman O, Friedman BA, Sheng M, Hanson JE. TPL2 kinase activity regulates microglial inflammatory responses and promotes neurodegeneration in tauopathy mice. eLife 2023; 12:e83451. [PMID: 37555828 PMCID: PMC10411973 DOI: 10.7554/elife.83451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Tiffany Wu
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Mitchell G Rezzonico
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Alyaa M Abdel-Haleem
- Computational Science & Exploratory Analytics, Roche IT, Hoffmann-La Roche LimitedMississaugaCanada
| | - Luke Xie
- Department of Translational Imaging, Genentech IncSouth San FranciscoUnited States
| | - Vineela D Gandham
- Department of Translational Imaging, Genentech IncSouth San FranciscoUnited States
| | - Hai Ngu
- Department of Pathology, Genentech IncSouth San FranciscoUnited States
| | - Kimberly Stark
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| | - Caspar Glock
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Daqi Xu
- Department of Immunology, Genentech IncSouth San FranciscoUnited States
| | - Oded Foreman
- Department of Pathology, Genentech IncSouth San FranciscoUnited States
| | - Brad A Friedman
- Department of OMNI Bioinformatics, Genentech IncSouth San FranciscoUnited States
| | - Morgan Sheng
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jesse E Hanson
- Department of Neuroscience, Genentech IncSouth San FranciscoUnited States
| |
Collapse
|
160
|
Yoo Y, Neumayer G, Shibuya Y, Mader MMD, Wernig M. A cell therapy approach to restore microglial Trem2 function in a mouse model of Alzheimer's disease. Cell Stem Cell 2023; 30:1043-1053.e6. [PMID: 37541210 DOI: 10.1016/j.stem.2023.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Alzheimer's disease (AD) remains one of the grand challenges facing human society. Much controversy exists around the complex and multifaceted pathogenesis of this prevalent disease. Given strong human genetic evidence, there is little doubt, however, that microglia play an important role in preventing degeneration of neurons. For example, loss of function of the microglial gene Trem2 renders microglia dysfunctional and causes an early-onset neurodegenerative syndrome, and Trem2 variants are among the strongest genetic risk factors for AD. Thus, restoring microglial function represents a rational therapeutic approach. Here, we show that systemic hematopoietic cell transplantation followed by enhancement of microglia replacement restores microglial function in a Trem2 mutant mouse model of AD.
Collapse
Affiliation(s)
- Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yohei Shibuya
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Marc-Daniel Mader
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
161
|
Chacko L, Chaudhary A, Singh B, Dewanjee S, Kandimalla R. CRISPR-Cas9 in Alzheimer's disease: Therapeutic trends, modalities, and challenges. Drug Discov Today 2023; 28:103652. [PMID: 37290639 DOI: 10.1016/j.drudis.2023.103652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with no known cure, which has prompted the exploration of novel therapeutic approaches. The clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) tool has generated significant interest for its potential in AD therapeutics by correcting faulty genes. Our report comprehensively reviews emerging applications for CRISPR-Cas9 in developing in vitro and in vivo models for AD research and therapeutics. We further assess its ability to identify and validate genetic markers and potential therapeutic targets for AD. Moreover, we review the current challenges and delivery strategies for the in vivo application of CRISPR-Cas9 in AD therapeutics.
Collapse
Affiliation(s)
- Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132 001, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, Himachal Pradesh 176 061, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India.
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506 007, Telangana, India; Department of Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500 007, India.
| |
Collapse
|
162
|
Tamburini B, Badami GD, La Manna MP, Shekarkar Azgomi M, Caccamo N, Dieli F. Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease. Int J Mol Sci 2023; 24:11922. [PMID: 37569296 PMCID: PMC10418700 DOI: 10.3390/ijms241511922] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The inflammatory response that marks Alzheimer's disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer's disease. Understanding the intricate relationship between innate immunity and Alzheimer's disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer's disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Giusto Davide Badami
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|
163
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 446] [Impact Index Per Article: 223.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
164
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
165
|
Španić Popovački E, Babić Leko M, Langer Horvat L, Brgić K, Vogrinc Ž, Boban M, Klepac N, Borovečki F, Šimić G. Soluble TREM2 Concentrations in the Cerebrospinal Fluid Correlate with the Severity of Neurofibrillary Degeneration, Cognitive Impairment, and Inflammasome Activation in Alzheimer's Disease. Neurol Int 2023; 15:842-856. [PMID: 37489359 PMCID: PMC10366813 DOI: 10.3390/neurolint15030053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Individuals with specific TREM2 gene variants that encode for a Triggering Receptor Expressed on Myeloid cells 2 have a higher prevalence of Alzheimer's disease (AD). By interacting with amyloid and apolipoproteins, the TREM2 receptor regulates the number of myeloid cells, phagocytosis, and the inflammatory response. Higher TREM2 expression has been suggested to protect against AD. However, it is extremely difficult to comprehend TREM2 signaling in the context of AD. Previous results are variable and show distinct effects on diverse pathological changes in AD, differences between soluble and membrane isoform signaling, and inconsistency between animal models and humans. In addition, the relationship between TREM2 and inflammasome activation pathways is not yet entirely understood. OBJECTIVE This study aimed to determine the relationship between soluble TREM2 (sTREM2) levels in cerebrospinal fluid (CSF) and plasma samples and other indicators of AD pathology. METHODS Using the Enzyme-Linked Immunosorbent Assay (ELISA), we analyzed 98 samples of AD plasma, 35 samples of plasma from individuals with mild cognitive impairment (MCI), and 11 samples of plasma from healthy controls (HC), as well as 155 samples of AD CSF, 90 samples of MCI CSF, and 50 samples of HC CSF. RESULTS CSF sTREM2 levels were significantly correlated with neurofibrillary degeneration, cognitive decline, and inflammasome activity in AD patients. In contrast to plasma sTREM2, CSF sTREM2 levels in the AD group were higher than those in the MCI and HC groups. Moreover, concentrations of sTREM2 in CSF were substantially higher in the MCI group than in the HC group, indicating that CSF sTREM2 levels could be used not only to distinguish between HC and AD patients but also as a biomarker to detect earlier changes in the MCI stage. CONCLUSIONS The results indicate CSF sTREM2 levels reliably predict neurofibrillary degeneration, cognitive decline, and inflammasome activation, and also have a high diagnostic potential for distinguishing diseased from healthy individuals. To add sTREM2 to the list of required AD biomarkers, future studies will need to include a larger number of patients and utilize a standardized methodology.
Collapse
Affiliation(s)
- Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia
| | - Klara Brgić
- Department of Neurosurgery, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Željka Vogrinc
- Laboratory for Neurobiochemistry, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | - Marina Boban
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia
| |
Collapse
|
166
|
Wernberg CW, Grønkjær LL, Gade Jacobsen B, Indira Chandran V, Krag A, Graversen JH, Weissenborn K, Vilstrup H, Lauridsen MM. The prevalence and risk factors for cognitive impairment in obesity and NAFLD. Hepatol Commun 2023; 7:e00203. [PMID: 37378627 PMCID: PMC10309508 DOI: 10.1097/hc9.0000000000000203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Severe obesity may be accompanied by cognitive dysfunction and NAFLD, but the associations remain unclear. We describe the prevalence and features of cognitive dysfunction and examine the associations between cognitive dysfunction and the presence and severity of NAFLD, and the associations between cognitive dysfunction and signs of other obesity-related comorbidities and neuronal damage. METHODS A cross-sectional study of patients with a body mass index of 35 kg/m2 underwent evaluation for bariatric surgery. They were screened for adiposity-related comorbidity and underwent a liver biopsy and basic cognitive testing with the Continuous Reaction Time test, the Portosystemic Encephalopathy Syndrome test, and the Stroop Test. A representative subgroup also underwent the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The primary study outcome was "cognitive impairment," defined as ≥2 abnormal basic cognitive tests and/or an abnormal RBANS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) served as a biomarker for neuronal damage. RESULTS We included 180 patients; 72% were women, age 46 ± 12 years, 78% had NAFLD, and 30% with NASH without cirrhosis. 8% were cognitively impaired by the basic tests and 41% by RBANS results. Most impaired were executive and short-time memory functions. There were no associations between cognitive impairment and BMI, NAFLD presence or severity, or metabolic comorbidities. Male sex (OR: 3.67, 95% CI, 1.32-10.27) and using 2 or more psychoactive medications (5.24, 95% CI, 1.34-20.4) were associated with impairment. TREM2 was not associated with cognitive impairment. CONCLUSIONS Nearly half of this severely obese study cohort exhibited measurable multidomain cognitive impairment. This was not dependent on NAFLD or another adiposity comorbidity.
Collapse
Affiliation(s)
- Charlotte W. Wernberg
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
| | - Lea L. Grønkjær
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Birgitte Gade Jacobsen
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of Southern Denmark, Esbjerg, Denmark
| | | | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
| | - Jonas H. Graversen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karin Weissenborn
- Department of Neurology, Medical School, Hannover, Hannover, Germany
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette M. Lauridsen
- Department of Gastroenterology and Hepatology, Liver Research Group, University Hospital of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
167
|
Gao H, Di J, Clausen BH, Wang N, Zhu X, Zhao T, Chang Y, Pang M, Yang Y, He R, Wang Y, Zhang L, Liu B, Qiu W, Lambertsen KL, Brambilla R, Rong L. Distinct myeloid population phenotypes dependent on TREM2 expression levels shape the pathology of traumatic versus demyelinating CNS disorders. Cell Rep 2023; 42:112629. [PMID: 37289590 DOI: 10.1016/j.celrep.2023.112629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Triggering receptor expressed on myeloid cell 2 (TREM2) signaling often drives opposing effects in traumatic versus demyelinating CNS disorders. Here, we identify two distinct phenotypes of microglia and infiltrating myeloid populations dependent on TREM2 expression levels at the acute stage and elucidate how they mediate the opposing effects of TREM2 in spinal cord injury (SCI) versus multiple sclerosis animal models (experimental autoimmune encephalomyelitis [EAE]). High TREM2 levels sustain phagocytic microglia and infiltrating macrophages after SCI. In contrast, moderate TREM2 levels sustain immunomodulatory microglia and infiltrating monocytes in EAE. TREM2-ablated microglia (purine-sensing phenotype in SCI and reduced immunomodulatory phenotype in EAE) drive transient protection at the acute stage of both disorders, whereas reduced phagocytic macrophages and lysosome-activated monocytes lead to contrasting neuroprotective and demyelinating effects in SCI versus EAE, respectively. Our study provides comprehensive insights into the complex roles of TREM2 in myeloid populations across diverse CNS disorders, which has crucial implications in devising TREM2-targeting therapeutics.
Collapse
Affiliation(s)
- Han Gao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China.
| | - Jiawei Di
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Nanxiang Wang
- Department of Orthopaedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xizhong Zhu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Tianlun Zhao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33161, USA.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou 510630, China.
| |
Collapse
|
168
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
169
|
Yanaizu M, Adachi H, Araki M, Kontani K, Kino Y. Translational regulation and protein-coding capacity of the 5' untranslated region of human TREM2. Commun Biol 2023; 6:616. [PMID: 37291187 PMCID: PMC10250343 DOI: 10.1038/s42003-023-04998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
TREM2 is a transmembrane receptor expressed in microglia and macrophages. Elevated TREM2 levels in these cells are associated with age-related pathological conditions, including Alzheimer's disease. However, the regulatory mechanism underlying the protein expression of TREM2 remains unclear. In this study, we uncover the role of the 5' untranslated region (5'-UTR) of human TREM2 in translation. An upstream start codon (uAUG) in the 5'-UTR of TREM2 is specific to some primates, including humans. The expression of the conventional TREM2 protein, starting from the downstream AUG (dTREM2), is repressed by the 5'-UTR in a uAUG-mediated manner. We also detect a TREM2 protein isoform starting from uAUG (uTREM2) that is largely degraded by proteasomes. Finally, the 5'-UTR is essential for the downregulation of dTREM2 expression in response to amino acid starvation. Collectively, our study identifies a species-specific regulatory role of the 5'-UTR in TREM2 translation.
Collapse
Affiliation(s)
- Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Haruka Adachi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Makoto Araki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
170
|
Fassler M, Benaim C, George J. TREM2 Agonism with a Monoclonal Antibody Attenuates Tau Pathology and Neurodegeneration. Cells 2023; 12:1549. [PMID: 37296669 PMCID: PMC10252191 DOI: 10.3390/cells12111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 06/12/2023] Open
Abstract
TREM2 is a membrane receptor expressed on microglia that plays a pivotal role in the organization and function of these innate immune cell components within the neurodegenerated brain. Whereas TREM2 deletion has been studied extensively in experimental beta-amyloid and Tau-based models of Alzheimer's disease, its engagement, and subsequent agonism have not been tested in the context of Tau pathology. Herein, we explored the effects of Ab-T1, an agonistic TREM2 monoclonal antibody on Tau uptake, phosphorylation, seeding, and spreading as well as its therapeutic efficacy in a Tauopathy model. Ab-T1 enhanced the uptake of misfolded Tau to microglia and induced a non-cell autonomous attenuation of spontaneous Tau seeding and phosphorylation in primary neurons from human Tau transgenic mice. Ex vivo, incubation with Ab-T1 led to a significant reduction in the seeding of Tau pathology in the hTau murine organoid brain system. Systemic administration of Ab-T1 resulted in reduced Tau pathology and propagation when hTau was stereotactically injected into the hemispheres of hTau mice. Intraperitoneal treatment with Ab-T1 lead to attenuation of cognitive decline in the hTau mice that was associated with reduced neurodegeneration and synaptic preservation with amelioration of the global neuroinflammatory program. Collectively, these observations show that TREM2 engagement with an agonistic antibody result in reduced Tau burden concomitant with attenuated neurodegeneration ascribed to the education of resident microglia. These results may suggest that despite the opposing results with regard to the effect of TREM2 knockout in experimental Tau-based model systems, receptor engagement and activation by Ab-T1 appears to possess beneficial effects with respect to the various mechanisms mediating Tau-driven neurodegeneration.
Collapse
Affiliation(s)
- Michael Fassler
- Cognyxx Pharmaceuticals, Tel Aviv Israel and Kaplan Heart Center, Rehovot 6901658, Israel
| | - Clara Benaim
- Cognyxx Pharmaceuticals, Tel Aviv Israel and Kaplan Heart Center, Rehovot 6901658, Israel
| | - Jacob George
- Cognyxx Pharmaceuticals, Tel Aviv Israel and Kaplan Heart Center, Rehovot 6901658, Israel
- Kaplan Medical Center, 1 Pasternak St., Rehovot 76100, Israel
| |
Collapse
|
171
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
172
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
173
|
Wang Z, Fu Y, Chen S, Huang Y, Ma Y, Wang Y, Tan L, Yu J. Association of rs2062323 in the TREM1 gene with Alzheimer's disease and cerebrospinal fluid-soluble TREM2. CNS Neurosci Ther 2023; 29:1657-1666. [PMID: 36815315 PMCID: PMC10173721 DOI: 10.1111/cns.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION AND AIMS Genetic variations play a significant role in determining an individual's AD susceptibility. Research on the connection between AD and TREM1 gene polymorphisms (SNPs) remained lacking. We sought to examine the associations between TREM1 SNPs and AD. METHODS Based on the 1000 Genomes Project data, linkage disequilibrium (LD) analyses were utilized to screen for candidate SNPs in the TREM1 gene. AD cases (1081) and healthy control subjects (870) were collected and genotyped, and the associations between candidate SNPs and AD risk were analyzed. We explored the associations between target SNP and AD biomarkers. Moreover, 842 individuals from ADNI were selected to verify these results. Linear mixed models were used to estimate associations between the target SNP and longitudinal cognitive changes. RESULTS The rs2062323 was identified to be associated with AD risk in the Han population, and rs2062323T carriers had a lower AD risk (co-dominant model: OR, 0.67, 95% CI, 0.51-0.88, p = 0.0037; additive model: OR, 0.82, 95% CI, 0.72-0.94, p = 0.0032). Cerebrospinal fluid (CSF) sTREM2 levels were significantly increased in middle-aged rs2062323T carriers (additive model: β = 0.18, p = 0.0348). We also found significantly elevated levels of CSF sTREM2 in the ADNI. The rate of cognitive decline slowed down in rs2062323T carriers. CONCLUSIONS This study is the first to identify significant associations between TREM1 rs2062323 and AD risk. The rs2062323T may be involved in AD by regulating the expression of TREM1, TREML1, TREM2, and sTREM2. The TREM family is expected to be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Zuo‐Teng Wang
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and PharmaceuticsOcean University of ChinaQingdaoChina
| | - Yan Fu
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ya‐Hui Ma
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
| | - Lan Tan
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and PharmaceuticsOcean University of ChinaQingdaoChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
174
|
Kloske CM, Barnum CJ, Batista AF, Bradshaw EM, Brickman AM, Bu G, Dennison J, Gearon MD, Goate AM, Haass C, Heneka MT, Hu WT, Huggins LKL, Jones NS, Koldamova R, Lemere CA, Liddelow SA, Marcora E, Marsh SE, Nielsen HM, Petersen KK, Petersen M, Piña-Escudero SD, Qiu WQ, Quiroz YT, Reiman E, Sexton C, Tansey MG, Tcw J, Teunissen CE, Tijms BM, van der Kant R, Wallings R, Weninger SC, Wharton W, Wilcock DM, Wishard TJ, Worley SL, Zetterberg H, Carrillo MC. APOE and immunity: Research highlights. Alzheimers Dement 2023; 19:2677-2696. [PMID: 36975090 DOI: 10.1002/alz.13020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 03/29/2023]
Abstract
INTRODUCTION At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.
Collapse
Affiliation(s)
| | | | - Andre F Batista
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mary D Gearon
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alison M Goate
- Department of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian Haass
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 3 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA
| | - Lenique K L Huggins
- Department of Biology, Duke University, Durham, North Carolina, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Nahdia S Jones
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Radosveta Koldamova
- EOH, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shane A Liddelow
- Neuroscience Institute and Departments of Neuroscience & Physiology and of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's disease, Dept. of Genetics & Genomic Sciences, Dept. of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kellen K Petersen
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Melissa Petersen
- Department of Family Medicine, Institute of Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Stefanie D Piña-Escudero
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco, California, USA
| | - Wei Qiao Qiu
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yakeel T Quiroz
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Reiman
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
- Banner Research, Phoenix, Arizona, USA
| | | | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Julia Tcw
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rebecca Wallings
- CTRND, Department of Neuroscience, University of Florida, Florida, USA
| | | | | | - Donna M Wilcock
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Tyler James Wishard
- Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
175
|
Winfree RL, Seto M, Dumitrescu L, Menon V, De Jager P, Wang Y, Schneider J, Bennett DA, Jefferson AL, Hohman TJ. TREM2 gene expression associations with Alzheimer's disease neuropathology are region-specific: implications for cortical versus subcortical microglia. Acta Neuropathol 2023; 145:733-747. [PMID: 36966244 PMCID: PMC10175463 DOI: 10.1007/s00401-023-02564-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Previous post-mortem assessments of TREM2 expression and its association with brain pathologies have been limited by sample size. This study sought to correlate region-specific TREM2 mRNA expression with diverse neuropathological measures at autopsy using a large sample size (N = 945) of bulk RNA sequencing data from the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP). TREM2 gene expression of the dorsolateral prefrontal cortex, posterior cingulate cortex, and caudate nucleus was assessed with respect to core pathology of Alzheimer's disease (amyloid-β, and tau), cerebrovascular pathology (cerebral infarcts, arteriolosclerosis, atherosclerosis, and cerebral amyloid angiopathy), microglial activation (proportion of activated microglia), and cognitive performance. We found that cortical TREM2 levels were positively related to AD diagnosis, cognitive decline, and amyloid-β neuropathology but were not related to the proportion of activated microglia. In contrast, caudate TREM2 levels were not related to AD pathology, cognition, or diagnosis, but were positively related to the proportion of activated microglia in the same region. Diagnosis-stratified results revealed caudate TREM2 levels were inversely related to AD neuropathology and positively related to microglial activation and longitudinal cognitive performance in AD cases. These results highlight the notable changes in TREM2 transcript abundance in AD and suggest that its pathological associations are brain-region-dependent.
Collapse
Affiliation(s)
- Rebecca L Winfree
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN, 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN, 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN, 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Philip De Jager
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie Schneider
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN, 37212, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, 1207 17th Ave S, Nashville, TN, 37212, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
- Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
176
|
Abstract
As resident immune cells of the brain, microglia serve pivotal roles in regulating neuronal function under both physiological and pathological conditions, including aging and the most prevalent neurodegenerative disease, Alzheimer's disease (AD). Instructed by neurons, microglia regulate synaptic function and guard brain homeostasis throughout life. Dysregulation of microglial function, however, can lead to dire consequences, including aggravated cognitive decline during aging and exacerbated neuropathology in diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a key regulator of microglial function. Loss-of-function variants of TREM2 are associated with an increased risk of AD. TREM2 orchestrates the switch of microglial transcriptome programming that modulates microglial chemotaxis, phagocytosis, and inflammatory responses, as well as microglial regulation of synaptic function in health and disease. Intriguingly, the outcome of microglial/TREM2 function is influenced by age and the context of neuropathology. This review summarizes the rapidly growing research on TREM2 under physiological conditions and in AD, particularly highlighting the impact of TREM2 on neuronal function.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
177
|
Sun R, Han R, McCornack C, Khan S, Tabor GT, Chen Y, Hou J, Jiang H, Schoch KM, Mao DD, Cleary R, Yang A, Liu Q, Luo J, Petti A, Miller TM, Ulrich JD, Holtzman DM, Kim AH. TREM2 inhibition triggers antitumor cell activity of myeloid cells in glioblastoma. SCIENCE ADVANCES 2023; 9:eade3559. [PMID: 37172094 PMCID: PMC10181199 DOI: 10.1126/sciadv.ade3559] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/07/2023] [Indexed: 05/14/2023]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays important roles in brain microglial function in neurodegenerative diseases, but the role of TREM2 in the GBM TME has not been examined. Here, we found that TREM2 is highly expressed in myeloid subsets, including macrophages and microglia in human and mouse GBM tumors and that high TREM2 expression correlates with poor prognosis in patients with GBM. TREM2 loss of function in human macrophages and mouse myeloid cells increased interferon-γ-induced immunoactivation, proinflammatory polarization, and tumoricidal capacity. In orthotopic mouse GBM models, mice with chronic and acute Trem2 loss of function exhibited decreased tumor growth and increased survival. Trem2 inhibition reprogrammed myeloid phenotypes and increased programmed cell death protein 1 (PD-1)+CD8+ T cells in the TME. Last, Trem2 deficiency enhanced the effectiveness of anti-PD-1 treatment, which may represent a therapeutic strategy for patients with GBM.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Rowland Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin McCornack
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Saad Khan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - G. Travis Tabor
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haowu Jiang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen M. Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Diane D. Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Cleary
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allegra Petti
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
178
|
Liu XY, Du SC, Jiang FL, Jiang P, Liu Y. Regulation mechanism of human insulin fibrillation by L-lysine carbon dots: low concentration accelerates but high concentration inhibits the fibrillation process. Phys Chem Chem Phys 2023; 25:13542-13549. [PMID: 37133393 DOI: 10.1039/d3cp01083j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The fibrillation process of human insulin (HI) is closely related to the therapy for type II diabetes (T2D). Due to changes in the spatial structure of HI, the fibrillation process of HI takes place in the body, which leads to a significant decrease in normal insulin levels. L-Lysine CDs with a size of around 5 nm were synthesized and used to adjust and control the fibrillation process of HI. ThT fluorescence analysis and transmission electron microscopy (TEM) characterization of the CDs showed the role of HI fibrillation from the perspective of the kinetics of HI fibrillation and regulation. Isothermal titration calorimetry (ITC) was used to explore the regulatory mechanism of CDs at all stages of HI fibrillation from the perspective of thermodynamics. Contrary to common sense, when the concentration of CDs is less than 1/50 of the HI, CDs will promote the growth of fibres, while a high concentration of CDs will inhibit the growth of fibres. The experimental results of ITC clearly prove that different concentrations of CDs will correspond to different pathways of the combination between CDs and HI. CDs have a strong ability to combine with HI during the lag time, and the degree of combination has become the main factor influencing the fibrillation process.
Collapse
Affiliation(s)
- Xing-Yu Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Shuai-Chen Du
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
| | - Peng Jiang
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
- Hubei Jiangxia Laboratory, Wuhan 430023, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan 430072, P. R. China.
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
179
|
Zheng Q, Han Y, Fan M, Gao X, Ma M, Xu J, Liu S, Ge J. Potential role of TREM2 in high cholesterol‑induced cell injury and metabolic dysfunction in SH‑SY5Y cells. Exp Ther Med 2023; 25:205. [PMID: 37090086 PMCID: PMC10119670 DOI: 10.3892/etm.2023.11904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/01/2023] [Indexed: 04/25/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an important member of the immunoglobulin family of inflammatory stimulating receptors and is involved in a number of pathophysiological processes. The present study aimed to investigate the role of TREM2 in neurotoxicity induced by high cholesterol levels in SH-SY5Y cells and explore the potential mechanism. SH-SY5Y cells were routinely cultured and stimulated with a range of cholesterol concentrations. Cell viability was assessed using an MTT assay, morphological changes were observed, and the cell cycle distribution was measured using flow cytometry. Lipid deposition was measured by Oil red O staining, and the mRNA and protein expression levels of SRBEP-1 and SRBEP-2 were detected by quantitative PCR and western blotting, respectively. Moreover, the protein expression levels of BDNF, Copine-6, TREM1, TREM2, and key molecules of the Wnt signaling pathways were detected by western blotting. Finally, TREM2 was overexpressed to investigate its potential role in high cholesterol-induced neurotoxicity. The results showed that cell viability was significantly decreased in SH-SY5Y cells stimulated with cholesterol (0.1~100 µM) in a dose- and time-dependent manner. Stimulation with 100 µM cholesterol for 24 h resulted in morphological injuries, increased the proportion of SH-SY5Y cells at G0/G1, the degree of lipid accumulation, and the protein expression levels of sterol regulatory element binding protein (SREBP)1 and SREBP2, markedly decreased the protein expression levels of BDNF, Copine-6, and TREM2, and the p-β-catenin/β-catenin ratio, and increased the expression levels of nesfatin-1, TREM1 and the p-GSK3β/GSK3β ratio. Furthermore, the imbalanced expression of BDNF, Copine-6, nesfatin-1, and p-GSK3β induced by high cholesterol levels was reversed after overexpression of TREM2. These results suggest that a high concentration of cholesterol could induce cell injury and lipid deposition in SH-SY5Y cells and that the underlying mechanism may be associated with imbalanced TREM2 expression.
Collapse
Affiliation(s)
- Qiang Zheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yinxiu Han
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinran Gao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Mengdie Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jingxian Xu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinfang Ge
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, P.R. China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Correspondence to: Dr Jinfang Ge, School of Pharmacy, Anhui Medical University, 81 Mei-Shan Road, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
180
|
Park MD, Reyes-Torres I, LeBerichel J, Hamon P, LaMarche NM, Hegde S, Belabed M, Troncoso L, Grout JA, Magen A, Humblin E, Nair A, Molgora M, Hou J, Newman JH, Farkas AM, Leader AM, Dawson T, D'Souza D, Hamel S, Sanchez-Paulete AR, Maier B, Bhardwaj N, Martin JC, Kamphorst AO, Kenigsberg E, Casanova-Acebes M, Horowitz A, Brown BD, De Andrade LF, Colonna M, Marron TU, Merad M. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat Immunol 2023; 24:792-801. [PMID: 37081148 PMCID: PMC11088947 DOI: 10.1038/s41590-023-01475-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/23/2023] [Indexed: 04/22/2023]
Abstract
Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.
Collapse
Affiliation(s)
- Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Reyes-Torres
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica LeBerichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelson M LaMarche
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Grout
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Assaf Magen
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Humblin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Achuth Nair
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna H Newman
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M Farkas
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew M Leader
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Travis Dawson
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Hamel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alfonso Rodriguez Sanchez-Paulete
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara Maier
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Bhardwaj
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome C Martin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CHU Nantes, Laboratoire d'Immunologie, Center for ImmunoMonitoring Nantes-Atlantique (CIMNA), Nantes, France
| | - Alice O Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ephraim Kenigsberg
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Casanova-Acebes
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | - Amir Horowitz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucas Ferrari De Andrade
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
181
|
Iguchi A, Takatori S, Kimura S, Muneto H, Wang K, Etani H, Ito G, Sato H, Hori Y, Sasaki J, Saito T, Saido TC, Ikezu T, Takai T, Sasaki T, Tomita T. INPP5D modulates TREM2 loss-of-function phenotypes in a β-amyloidosis mouse model. iScience 2023; 26:106375. [PMID: 37035000 PMCID: PMC10074152 DOI: 10.1016/j.isci.2023.106375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The genetic associations of TREM2 loss-of-function variants with Alzheimer disease (AD) indicate the protective roles of microglia in AD pathogenesis. Functional deficiencies of TREM2 disrupt microglial clustering around amyloid β (Aβ) plaques, impair their transcriptional response to Aβ, and worsen neuritic dystrophy. However, the molecular mechanism underlying these phenotypes remains unclear. In this study, we investigated the pathological role of another AD risk gene, INPP5D, encoding a phosphoinositide PI(3,4,5)P3 phosphatase expressed in microglia. In a Tyrobp-deficient TREM2 loss-of-function mouse model, Inpp5d haplodeficiency restored the association of microglia with Aβ plaques, partially restored plaque compaction, and astrogliosis, and reduced phosphorylated tau+ dystrophic neurites. Mechanistic analyses suggest that TREM2/TYROBP and INPP5D exert opposing effects on PI(3,4,5)P3 signaling pathways as well as on phosphoproteins involved in the actin assembly. Our results suggest that INPP5D acts downstream of TREM2/TYROBP to regulate the microglial barrier against Aβ toxicity, thereby modulates Aβ-dependent pathological conversion of tau.
Collapse
Affiliation(s)
- Akihiro Iguchi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shingo Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Muneto
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kai Wang
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hayato Etani
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junko Sasaki
- Department of Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan
| | - Takehiko Sasaki
- Department of Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
182
|
Pham AQ, Dore K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer's disease. Semin Cell Dev Biol 2023; 139:84-92. [PMID: 35370089 DOI: 10.1016/j.semcdb.2022.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.
Collapse
Affiliation(s)
- Andrew Q Pham
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States.
| |
Collapse
|
183
|
Abstract
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative condition. Unbiased genetic studies have implicated a central role for microglia, the resident innate immune cells of the central nervous system, in AD pathogenesis. On-going efforts are clarifying the biology underlying these associations and the microglial pathways that are dysfunctional in AD. Several genetic risk factors converge to decrease the function of activating microglial receptors and increase the function of inhibitory receptors, resulting in a seemingly dampened microglial phenotype in AD. Moreover, many of these microglial proteins that are genetically associated with AD appear to interact and share pathways or regulatory mechanisms, presenting several points of convergence that may be strategic targets for therapeutic intervention. Here, we review some of these studies and their implications for microglial participation in AD pathogenesis.
Collapse
|
184
|
Hasel P, Aisenberg WH, Bennett FC, Liddelow SA. Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metab 2023; 35:555-570. [PMID: 36958329 DOI: 10.1016/j.cmet.2023.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Astrocytes and microglia are central players in a myriad of processes in the healthy and diseased brain, ranging from metabolism to immunity. The crosstalk between these two cell types contributes to pathology in many if not all neuroinflammatory and neurodegenerative diseases. Recent advancements in integrative multimodal sequencing techniques have begun to highlight how heterogeneous both cell types are and the importance of metabolism to their regulation. We discuss here the transcriptomic, metabolic, and functional heterogeneity of astrocytes and microglia and highlight their interaction in health and disease.
Collapse
Affiliation(s)
- Philip Hasel
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - William H Aisenberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - F Chris Bennett
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
185
|
Decrease in naturally occurring antibodies against epitopes of Alzheimer's disease (AD) risk gene products is associated with cognitive decline in AD. J Neuroinflammation 2023; 20:74. [PMID: 36922858 PMCID: PMC10018846 DOI: 10.1186/s12974-023-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Naturally occurring antibodies (NAbs) are germline-encoded immunoglobulins that can bind to and clear out self-neo-epitopes as well as apoptotic and necrotic cells. However, NAbs pathological relevance in Alzheimer's disease (AD) is not well-understood. METHODS Twenty-eight candidate proteins encoded by AD-associated genes were selected for this study based on a number of selection criteria, including preferential expression in the brain and B-lymphocyte cells. The levels of NAbs in plasma were analyzed according to their epitopes in age- and gender-matched cognitively normal subjects (CN, n = 56), subjects with mild cognitive impairment (MCI, n = 16) and subjects with AD (n = 56). We aimed to study the levels of their NAbs in plasma and their associations with cognitive decline in individuals with AD. RESULTS Of the 28 antigens tested, 17 showed decreased NAbs in individuals with AD; in particular, NAb-TREM2 had an area under the ROC curve of 0.806, with the highest sensitivity (0.370) at 95% specificity among all 28 tests. Further protein-protein interaction networks and functional enrichment analysis suggested that target genes were enriched in AD-related pathological processes classified under "Alzheimer's disease", "neurodegenerative disease" and "amyloidosis". The "Alzheimer's disease" and "neurodegenerative disease" clusters, which converged on the initial "recognition" step of microglial phagocytosis, showed the best diagnostic performance for AD. CONCLUSIONS This study suggests a decline in the function of the adaptive immune system in AD, and the levels of circulating NAbs are likely to serve as biomarkers for surveilling the progression of AD.
Collapse
|
186
|
The gut microbiome modulates the transformation of microglial subtypes. Mol Psychiatry 2023; 28:1611-1621. [PMID: 36914812 DOI: 10.1038/s41380-023-02017-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
Clinical and animal studies have shown that gut microbiome disturbances can affect neural function and behaviors via the microbiota-gut-brain axis, and may be implicated in the pathogenesis of several brain diseases. However, exactly how the gut microbiome modulates nervous system activity remains obscure. Here, using a single-cell nucleus sequencing approach, we sought to characterize the cell type-specific transcriptomic changes in the prefrontal cortex and hippocampus derived from germ-free (GF), specific pathogen free, and colonized-GF mice. We found that the absence of gut microbiota resulted in cell-specific transcriptomic changes. Furthermore, microglia transcriptomes were preferentially influenced, which could be effectively reversed by microbial colonization. Significantly, the gut microbiome modulated the mutual transformation of microglial subpopulations in the two regions. Cross-species analysis showed that the transcriptome changes of these microglial subpopulations were mainly associated with Alzheimer's disease (AD) and major depressive disorder (MDD), which were further supported by animal behavioral tests. Our findings demonstrate that gut microbiota mainly modulate the mutual transformation of microglial subtypes, which may lead to new insights into the pathogenesis of AD and MDD.
Collapse
|
187
|
Abstract
Loss-of-function variants of TREM2 increase the risk for Alzheimer’s disease (AD). A new study presents a therapeutic candidate, ATV:TREM2, a TREM2 activating antibody engineered with a transferrin receptor binding site to facilitating blood-to-brain transport. ATV:TREM2 treatment in AD model mice improved energy metabolism and microglial function.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD, USA.
| |
Collapse
|
188
|
van Lengerich B, Zhan L, Xia D, Chan D, Joy D, Park JI, Tatarakis D, Calvert M, Hummel S, Lianoglou S, Pizzo ME, Prorok R, Thomsen E, Bartos LM, Beumers P, Capell A, Davis SS, de Weerd L, Dugas JC, Duque J, Earr T, Gadkar K, Giese T, Gill A, Gnörich J, Ha C, Kannuswamy M, Kim DJ, Kunte ST, Kunze LH, Lac D, Lechtenberg K, Leung AWS, Liang CC, Lopez I, McQuade P, Modi A, Torres VO, Nguyen HN, Pesämaa I, Propson N, Reich M, Robles-Colmenares Y, Schlepckow K, Slemann L, Solanoy H, Suh JH, Thorne RG, Vieira C, Wind-Mark K, Xiong K, Zuchero YJY, Diaz D, Dennis MS, Huang F, Scearce-Levie K, Watts RJ, Haass C, Lewcock JW, Di Paolo G, Brendel M, Sanchez PE, Monroe KM. A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer's disease models. Nat Neurosci 2023; 26:416-429. [PMID: 36635496 PMCID: PMC9991924 DOI: 10.1038/s41593-022-01240-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Abstract
Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.
Collapse
Affiliation(s)
| | - Lihong Zhan
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Dan Xia
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Darren Chan
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - David Joy
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Joshua I Park
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | - Selina Hummel
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | | | | | - Rachel Prorok
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Philipp Beumers
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Anja Capell
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Lis de Weerd
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jason C Dugas
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Joseph Duque
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Timothy Earr
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Kapil Gadkar
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Tina Giese
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Audrey Gill
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Connie Ha
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Do Jin Kim
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Sebastian T Kunte
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Lea H Kunze
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Diana Lac
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | | | - Isabel Lopez
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Paul McQuade
- Takeda Pharmaceutical Company, Cambridge, MA, USA
| | - Anuja Modi
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | - Ida Pesämaa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | | | - Marvin Reich
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | | | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Luna Slemann
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Hilda Solanoy
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Jung H Suh
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | - Karin Wind-Mark
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Ken Xiong
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Dolo Diaz
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Mark S Dennis
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Fen Huang
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Ryan J Watts
- Denali Therapeutics, Inc., South San Francisco, CA, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | |
Collapse
|
189
|
Qiu Y, Shen X, Ravid O, Atrakchi D, Rand D, Wight AE, Kim HJ, Liraz-Zaltsman S, Cooper I, Schnaider Beeri M, Cantor H. Definition of the contribution of an Osteopontin-producing CD11c + microglial subset to Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2218915120. [PMID: 36730200 PMCID: PMC9963365 DOI: 10.1073/pnas.2218915120] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of incurable dementia and represents a critical public health issue as the world's population ages. Although microglial dysregulation is a cardinal feature of AD, the extensive heterogeneity of these immunological cells in the brain has impeded our understanding of their contribution to this disease. Here, we identify a pathogenic microglial subset which expresses the CD11c surface marker as the sole producer of Osteopontin (OPN) in the 5XFAD mouse model of AD. OPN production divides Disease-Associated Microglia (DAM) into two functionally distinct subsets, i.e., a protective CD11c+OPN- subset that robustly ingests amyloid β (Aβ) in a noninflammatory fashion and a pathogenic CD11c+OPN+ subset that produces proinflammatory cytokines and fails to ingest significant amounts of Aβ. Genetic ablation of OPN or administration of monoclonal anti-OPN antibody to 5XFAD mice reduces proinflammatory microglia, plaque formation, and numbers of dystrophic neurites and results in improved cognitive function. Analysis of brain tissue from AD patients indicates that levels of OPN-producing CD11c+ microglia correlate strongly with the degree of cognitive deficit and AD neuropathology. These findings define an OPN-dependent pathway to disease driven by a distinct microglial subset, and identify OPN as a novel therapeutic target for potentially effective immunotherapy to treat AD.
Collapse
Affiliation(s)
- Yiguo Qiu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Xianli Shen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan 5211401, Israel
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan 5211401, Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan 5211401, Israel
| | - Andrew E Wight
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan 5211401, Israel
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem 9103401, Israel
- Department of Sports Therapy, Institute for Health and Medical Professions, Ono Academic College, Kiryat Ono 5500003, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan 5211401, Israel
- School of Psychology, Interdisciplinary Center, Herzliya 4673304, Israel
- The Nehemia Rubin Excellence in Biomedical Research, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan 5211401, Israel
- School of Psychology, Interdisciplinary Center, Herzliya 4673304, Israel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
190
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
191
|
TREM2 and Microglia Contribute to the Synaptic Plasticity: from Physiology to Pathology. Mol Neurobiol 2023; 60:512-523. [PMID: 36318443 DOI: 10.1007/s12035-022-03100-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Synapses are bridges for information transmission in the central nervous system (CNS), and synaptic plasticity is fundamental for the normal function of synapses, contributing substantially to learning and memory. Numerous studies have proven that microglia can participate in the occurrence and progression of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), by regulating synaptic plasticity. In this review, we summarize the main characteristics of synapses and synaptic plasticity under physiological and pathological conditions. We elaborate the origin and development of microglia and the two well-known microglial signaling pathways that regulate synaptic plasticity. We also highlight the unique role of triggering receptor expressed on myeloid cells 2 (TREM2) in microglia-mediated regulation of synaptic plasticity and its relationship with AD. Finally, we propose four possible ways in which TREM2 is involved in regulating synaptic plasticity. This review will help researchers understand how NDDs develop from the perspective of synaptic plasticity.
Collapse
|
192
|
Wang S, Colonna M. The microglial immunoreceptor tyrosine-based motif-Syk signaling pathway is a promising target of immunotherapy for Alzheimer's disease. Clin Transl Med 2023; 13:e1200. [PMID: 36772935 PMCID: PMC9920003 DOI: 10.1002/ctm2.1200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Affiliation(s)
- Shoutang Wang
- Department of Pathology and ImmunologyWashington University School of MedicineSt LouisMissouriUSA
| | - Marco Colonna
- Department of Pathology and ImmunologyWashington University School of MedicineSt LouisMissouriUSA
| |
Collapse
|
193
|
Ayyubova G. TREM2 signalling as a multifaceted player in brain homoeostasis and a potential target for Alzheimer's disease treatment. Eur J Neurosci 2023; 57:718-733. [PMID: 36637116 DOI: 10.1111/ejn.15914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) has crucial roles in microglial physiology, differentiation, metabolism and survival. Genome-wide association studies (GWAS) show that genetic mutations of the TREM2 increase the risk of late-onset Alzheimer's disease (AD) by two to four times, disrupting the microglial function in reducing the progression of the disease. Accumulating data show that TREM2 function in AD is related primarily to the clearance of soluble and insoluble amyloid beta (Aβ42) aggregates from the brain. TREM2 also ameliorates the pathological effects of activated microglia on neuronal tau pathology, demonstrating its protective anti-inflammatory effects. However, since the excessive activation of TREM2 signalling can inhibit pro-inflammatory reactions and suppress the role of microglia in immune surveillance, at the late stages of the disease, it might promote immune tolerance, which is detrimental. The contradictory effects of TREM2 mutations on brain amyloidopathy and tauopathy in multiple mouse models, as well as studies revealing various effects of TREM2 overexpression, complicate the understanding of the role that TREM2 plays in AD aetiopathogenesis. In this review, we summarize the latest developments regarding the significance of TREM2 signalling in the stability of microglial pro- and anti-inflammatory activations and propose the mechanisms that should be targeted in the future to treat AD.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
194
|
Qiao W, Chen Y, Zhong J, Madden BJ, Charlesworth CM, Martens YA, Liu CC, Knight J, Ikezu TC, Kurti A, Zhu Y, Meneses A, Rosenberg CL, Kuchenbecker LA, Vanmaele LK, Li F, Chen K, Shue F, Dacquel MV, Fryer J, Pandey A, Zhao N, Bu G. Trem2 H157Y increases soluble TREM2 production and reduces amyloid pathology. Mol Neurodegener 2023; 18:8. [PMID: 36721205 PMCID: PMC9890893 DOI: 10.1186/s13024-023-00599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer's disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domain. Ectopic expression of TREM2-H157Y in HEK293 cells resulted in increased TREM2 shedding. However, the physiological outcomes of the TREM2 H157Y mutation remain unknown in the absence and presence of AD related pathologies. METHODS We generated a novel Trem2 H157Y knock-in mouse model through CRISPR/Cas9 technology and investigated the effects of Trem2 H157Y on TREM2 proteolytic processing, synaptic function, and AD-related amyloid pathologies by conducting biochemical assays, targeted mass spectrometry analysis of TREM2, hippocampal electrophysiology, immunofluorescent staining, in vivo micro-dialysis, and cortical bulk RNA sequencing. RESULTS Consistent with previous in vitro findings, Trem2 H157Y increases TREM2 shedding with elevated soluble TREM2 levels in the brain and serum. Moreover, Trem2 H157Y enhances synaptic plasticity without affecting microglial density and morphology, or TREM2 signaling. In the presence of amyloid pathology, Trem2 H157Y accelerates amyloid-β (Aβ) clearance and reduces amyloid burden, dystrophic neurites, and gliosis in two independent founder lines. Targeted mass spectrometry analysis of TREM2 revealed higher ratios of soluble to full-length TREM2-H157Y compared to wild-type TREM2, indicating that the H157Y mutation promotes TREM2 shedding in the presence of Aβ. TREM2 signaling was further found reduced in Trem2 H157Y homozygous mice. Transcriptomic profiling revealed that Trem2 H157Y downregulates neuroinflammation-related genes and an immune module correlated with the amyloid pathology. CONCLUSION Taken together, our findings suggest beneficial effects of the Trem2 H157Y mutation in synaptic function and in mitigating amyloid pathology. Considering the genetic association of TREM2 p.H157Y with AD risk, we speculate TREM2 H157Y in humans might increase AD risk through an amyloid-independent pathway, such as its effects on tauopathy and neurodegeneration which merit further investigation.
Collapse
Affiliation(s)
- Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| | - Benjamin J. Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, MN USA
| | | | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Joshua Knight
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Yiyang Zhu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Axel Meneses
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | | | - Lucy K. Vanmaele
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Fuyao Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - John Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259 USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN USA
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- SciNeuro Pharmaceuticals, Rockville, MD 20805 USA
| |
Collapse
|
195
|
Jain N, Lewis CA, Ulrich JD, Holtzman DM. Chronic TREM2 activation exacerbates Aβ-associated tau seeding and spreading. J Exp Med 2023; 220:e20220654. [PMID: 36219197 PMCID: PMC9559604 DOI: 10.1084/jem.20220654] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022] Open
Abstract
Variants in the triggering receptor expressed on myeloid cells 2 (TREM2) gene are associated with increased risk for late-onset AD. Genetic loss of or decreased TREM2 function impairs the microglial response to amyloid-β (Aβ) plaques, resulting in more diffuse Aβ plaques and increased peri-plaque neuritic dystrophy and AD-tau seeding. Thus, microglia and TREM2 are at a critical intersection of Aβ and tau pathologies in AD. Since genetically decreasing TREM2 function increases Aβ-induced tau seeding, we hypothesized that chronically increasing TREM2 signaling would decrease amyloid-induced tau-seeding and spreading. Using a mouse model of amyloidosis in which AD-tau is injected into the brain to induce Aβ-dependent tau seeding/spreading, we found that chronic administration of an activating TREM2 antibody increases peri-plaque microglial activation but surprisingly increases peri-plaque NP-tau pathology and neuritic dystrophy, without altering Aβ plaque burden. Our data suggest that sustained microglial activation through TREM2 that does not result in strong amyloid removal may exacerbate Aβ-induced tau pathology, which may have important clinical implications.
Collapse
Affiliation(s)
- Nimansha Jain
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO
| | - Caroline A. Lewis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
196
|
Carling G, Luo W, Gan L. Friend turned foe: TREM2 agonist in battles against tau. J Exp Med 2023; 220:e20221850. [PMID: 36399126 PMCID: PMC9680035 DOI: 10.1084/jem.20221850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this important study, Jain et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20220654) find that chronic TREM2 activation by AL002a antibody exacerbates the seeding and spread of pathological tau, enhances the disease-associated microglial signature, and increases neurite dystrophy in 5xFAD mice seeded with Alzheimer's disease tau.
Collapse
Affiliation(s)
- Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
197
|
Galea E, Graeber MB. Neuroinflammation: The Abused Concept. ASN Neuro 2023; 15:17590914231197523. [PMID: 37647500 PMCID: PMC10469255 DOI: 10.1177/17590914231197523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Scientific progress requires the relentless correction of errors and refinement of hypotheses. Clarity of terminology is essential for clarity of thought and proper experimental interrogation of nature. Therefore, the application of the same scientific term to different and even conflicting phenomena and concepts is not useful and must be corrected. Such abuse of terminology has happened and is still increasing in the case of "neuroinflammation," a term that until the 1990s meant classical inflammation affecting the central nervous system (CNS) and thereon was progressively used to mostly denote microglia activation. The resulting confusion is very wasteful and detrimental not only for scientists but also for patients, given the numerous failed clinical trials in acute and chronic CNS diseases over the last decade with "anti-inflammatory" drugs. Despite this failure, reassessments of the "neuroinflammation" concept are rare, especially considering the number of articles still using the term. This undesirable situation motivates this article. We review the origins and evolution of the term "neuroinflammation," discuss the unique tissue defense and repair strategies in the CNS, define CNS immunity, and emphasize the notion of gliopathies to help readdress, if not bury, the term "neuroinflammation" as it stands in the way of scientific progress.
Collapse
Affiliation(s)
- Elena Galea
- Departament de Bioquímica, Unitat de Bioquímica, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- ICREA, Barcelona, Spain
| | - Manuel B. Graeber
- Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| |
Collapse
|
198
|
McKee CG, Hoffos M, Vecchiarelli HA, Tremblay MÈ. Microglia: A pharmacological target for the treatment of age-related cognitive decline and Alzheimer's disease. Front Pharmacol 2023; 14:1125982. [PMID: 36969855 PMCID: PMC10034122 DOI: 10.3389/fphar.2023.1125982] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023] Open
Abstract
As individuals age, microglia, the resident immune cells of the central nervous system (CNS), become less effective at preserving brain circuits. Increases in microglial inflammatory activity are thought to contribute to age-related declines in cognitive functions and to transitions toward mild cognitive impairment (MCI) and Alzheimer's disease (AD). As microglia possess receptors for communicating with the CNS environment, pharmacological therapies targeting these pathways hold potential for promoting homeostatic microglial functions within the aging CNS. Preclinical and early phase clinical trials investigating the therapeutic effects of pharmacological agents acting on microglia, including reactive oxygen species, TREM2, fractalkine signaling, the complement cascade, and the NLRP3 inflammasome, are currently underway; however, important questions remain unanswered. Current challenges include target selectivity, as many of the signaling pathways are expressed in other cell types. Furthermore, microglia are a heterogenous cell population with transcriptomic, proteomic, and microscopy studies revealing distinct microglial states, whose activities and abundance shift across the lifespan. For example, homeostatic microglia can transform into pathological states characterized by markers of oxidative stress. Selective pharmacological targeting aimed at limiting transitions to pathological states or promoting homeostatic or protective states, could help to avoid potentially harmful off-target effects on beneficial states or other cell types. In this mini-review we cover current microglial pathways of interest for the prevention and treatment of age-related cognitive decline and CNS disorders of aging focusing on MCI and AD. We also discuss the heterogeneity of microglia described in these conditions and how pharmacological agents could target specific microglial states.
Collapse
Affiliation(s)
- Chloe G. McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Madison Hoffos
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
199
|
Li Y, Chang J, Chen X, Liu J, Zhao L. Advances in the Study of APOE and Innate Immunity in Alzheimer's Disease. J Alzheimers Dis 2023; 93:1195-1210. [PMID: 37182889 DOI: 10.3233/jad-230179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease (AD) is a progressive degenerative disease of the nervous system (CNS) with an insidious onset. Clinically, it is characterized by a full range of dementia manifestations including memory impairment, aphasia, loss of speech, loss of use, loss of recognition, impairment of visuospatial skills, and impairment of executive function, as well as changes in personality and behavior. The exact cause of AD has not yet been identified. Nevertheless, modern research indicates that genetic factors contribute to 70% of human's risk of AD. Apolipoprotein (APOE) accounts for up to 90% of the genetic predisposition. APOE is a crucial gene that cannot be overstated. In addition, innate immunity plays a significant role in the etiology and treatment of AD. Understanding the different subtypes of APOE and their interconnections is of paramount importance. APOE and innate immunity, along with their relationship to AD, are primary research motivators for in-depth research and clinical trials. The exploration of novel technologies has led to an increasing trend in the study of AD at the cellular and molecular levels and continues to make more breakthroughs and progress. As of today, there is no effective treatment available for AD around the world. This paper aims to summarize and analyze the role of APOE and innate immunity, as well as development trends in recent years. It is anticipated that APOE and innate immunity will provide a breakthrough for humans to hinder AD progression in the near future.
Collapse
Affiliation(s)
- Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
200
|
Chu YN, Akahori A, Takatori S, Tomita T. Pathological Roles of INPP5D in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:289-301. [PMID: 37525057 DOI: 10.1007/978-3-031-31978-5_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Current hypothesis of Alzheimer's disease (AD) postulates that amyloid β (Aβ) deposition in the brain causes tau inclusion in neurons and leads to cognitive decline. The discovery of the genetic association between triggering receptor expressed on myeloid cells 2 (TREM2) with increased AD risk points to a causal link between microglia and AD pathogenesis, and revealed a crucial role of TREM2-dependent clustering of microglia around amyloid plaques that prevents Aβ toxicity to facilitate tau deposition near the plaques. Here we review the physiological and pathological roles of another AD risk gene expressed in microglia, inositol polyphosphate-5-polyphosphatase D (INPP5D), which encodes a phosphoinositide phosphatase. Evidence suggests that its risk polymorphisms alter the expression level and/or function of INPP5D, while concomitantly affecting tau levels in cerebrospinal fluids. In β-amyloidosis mice, INPP5D was upregulated upon Aβ deposition and negatively regulated the microglial clustering toward amyloid plaques. INPP5D seems to exert its function by acting antagonistically at downstream of the TREM2 signaling pathway, suggesting that it is a novel regulator of the protective barrier by microglia. Further studies to elucidate INPP5D's role in AD may help in developing new therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Yung Ning Chu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Aika Akahori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|