151
|
Implantable electrical stimulation bioreactor with liquid crystal polymer-based electrodes for enhanced bone regeneration at mandibular large defects in rabbit. Med Biol Eng Comput 2019; 58:383-399. [PMID: 31853774 DOI: 10.1007/s11517-019-02046-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
The osseous regeneration of large bone defects is still a major clinical challenge in maxillofacial and orthopedic surgery. Previous studies demonstrated that biphasic electrical stimulation (ES) stimulates bone formation; however, polyimide electrode should be removed after regeneration. This study presents an implantable electrical stimulation bioreactor with electrodes based on liquid crystal polymer (LCP), which can be permanently implanted due to excellent biocompatibility to bone tissue. The bioreactor was implanted into a critical-sized bone defect and subjected to ES for one week, where bone regeneration was evaluated four weeks after surgery using micro-CT. The effect of ES via the bioreactor was compared with a sham control group and a positive control group that received recombinant human bone morphogenetic protein (rhBMP)-2 (20 μg). New bone volume per tissue volume (BV/TV) in the ES and rhBMP-2 groups increased to 132% (p < 0.05) and 174% (p < 0.01), respectively, compared to that in the sham control group. In the histological evaluation, there was no inflammation within the bone defects and adjacent to LCP in all the groups. This study showed that the ES bioreactor with LCP electrodes could enhance bone regeneration at large bone defects, where LCP can act as a mechanically resistant outer box without inflammation. Graphical abstract To enhance bone regeneration, a bioreactor comprising collagen sponge and liquid crystal polymer-based electrode was implanted in the bone defect. Within the defect, electrical current pulses having biphasic waveform were applied from the implanted bioreactor.
Collapse
|
152
|
Liu K, Han L, Tang P, Yang K, Gan D, Wang X, Wang K, Ren F, Fang L, Xu Y, Lu Z, Lu X. An Anisotropic Hydrogel Based on Mussel-Inspired Conductive Ferrofluid Composed of Electromagnetic Nanohybrids. NANO LETTERS 2019; 19:8343-8356. [PMID: 31659907 DOI: 10.1021/acs.nanolett.9b00363] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Anisotropic hydrogels with a hierarchical structure can mimic biological tissues, such as neurons or muscles that show directional functions, which are important factors for signal transduction and cell guidance. Here, we report a mussel-inspired approach to fabricate an anisotropic hydrogel based on a conductive ferrofluid. First, polydopamine (PDA) was used to mediate the formation of PDA-chelated carbon nanotube-Fe3O4 (PFeCNT) nanohybrids and also used as a dispersion medium to stabilize the nanohybrids to form a conductive ferrofluid. The ferrofluid can respond to an orientated magnetic field and be programed to form aligned structures, which were then frozen in a hydrogel network formed via in situ free-radical polymerization and gelation. The resulted hydrogel shows directional conductive and mechanical properties, mimicking an oriented biological tissue. Under external electrical stimulation, the orientated PFeCNT nanohybrids can be sensed by the myoblasts cultured on the hydrogel, resulting in the oriented growth of cells. In summary, the mussel-inspired anisotropic hydrogel with its aligned structural complexity and anisotropic properties together with the cell affinity and tissue adhesiveness is a potent multifunctional biomaterial for mimicking oriented tissues to guide cell proliferation and tissue regeneration.
Collapse
Affiliation(s)
- Kezhi Liu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Lu Han
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Pengfei Tang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Kaiming Yang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Donglin Gan
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Xiao Wang
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials , Research Center for Materials Genome Engineering , Chengdu , Sichuan 610064 , China
| | - Fuzeng Ren
- Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Liming Fang
- Department of Polymer Science and Engineering, School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Yonggang Xu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| | | | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031 , China
| |
Collapse
|
153
|
Chen C, Bai X, Ding Y, Lee IS. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 2019; 23:25. [PMID: 31844552 PMCID: PMC6896676 DOI: 10.1186/s40824-019-0176-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, electrical stimulation as a physical stimulus draws lots of attention. It shows great potential in disease treatment, wound healing, and mechanism study because of significant experimental performance. Electrical stimulation can activate many intracellular signaling pathways, and influence intracellular microenvironment, as a result, affect cell migration, cell proliferation, and cell differentiation. Electrical stimulation is using in tissue engineering as a novel type of tool in regeneration medicine. Besides, with the advantages of biocompatible conductive materials coming into view, the combination of electrical stimulation with suitable tissue engineered scaffolds can well combine the benefits of both and is ideal for the field of regenerative medicine. In this review, we summarize the various materials and latest technologies to deliver electrical stimulation. The influences of electrical stimulation on cell alignment, migration and its underlying mechanisms are discussed. Then the effect of electrical stimulation on cell proliferation and differentiation are also discussed.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 People’s Republic of China
| | - Xue Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Yahui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, 310014 People’s Republic of China
- People’s Hospital of Hangzhou Medical College, Hangzhou, 310014 People’s Republic of China
| | - In-Seop Lee
- Institute of Natural Sciences, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
154
|
Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. Int J Biol Macromol 2019; 141:636-662. [DOI: 10.1016/j.ijbiomac.2019.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
|
155
|
Escobar JF, Vaca-González JJ, Guevara JM, Vega JF, Hata YA, Garzón-Alvarado DA. In Vitro Evaluation of the Effect of Stimulation with Magnetic Fields on Chondrocytes. Bioelectromagnetics 2019; 41:41-51. [PMID: 31736106 DOI: 10.1002/bem.22231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
Magnetic fields (MFs) have been used as an external stimulus to increase cell proliferation in chondrocytes and extracellular matrix (ECM) synthesis of articular cartilage. However, previously published studies have not shown that MFs are homogeneous through cell culture systems. In addition, variables such as stimulation times and MF intensities have not been standardized to obtain the best cellular proliferative rate or an increase in molecular synthesis of ECM. In this work, a stimulation device, which produces homogeneous MFs to stimulate cell culture surfaces was designed and manufactured using a computational model. Furthermore, an in vitro culture of primary rat chondrocytes was established and stimulated with two MF schemes to measure both proliferation and ECM synthesis. The best proliferation rate was obtained with an MF of 2 mT applied for 3 h, every 6 h for 8 days. In addition, the increase in the synthesis of glycosaminoglycans was statistically significant when cells were stimulated with an MF of 2 mT applied for 5 h, every 6 h for 8 days. These findings suggest that a stimulation with MFs is a promising tool that could be used to improve in vitro treatments such as autologous chondrocyte implantation, either to increase cell proliferation or stimulate molecular synthesis. Bioelectromagnetics. 2020;41:41-51 © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Juan Felipe Escobar
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia.,Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Jairo Vaca-González
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia.,Nefertiti, Wellness and New Technologies, Surgical Instrumentation Department, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Johana Maria Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jose Félix Vega
- Electromagnetic Compatibility Research Group (EMC-UN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Yoshie Adriana Hata
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia.,Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Alexander Garzón-Alvarado
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia.,Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
156
|
Du Y, Guo JL, Wang J, Mikos AG, Zhang S. Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials 2019; 218:119334. [PMID: 31306826 PMCID: PMC6663598 DOI: 10.1016/j.biomaterials.2019.119334] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Bone tissue engineering utilizes three critical elements - cells, scaffolds, and bioactive factors - to recapitulate the bone tissue microenvironment, inducing the formation of new bone. Recent advances in materials development have enabled the production of scaffolds that more effectively mimic the hierarchical features of bone matrix, ranging from molecular composition to nano/micro-scale biochemical and physical features. This review summarizes recent advances within the field in utilizing these features of native bone to guide the hierarchical design of materials and scaffolds. Biomimetic strategies discussed in this review cover several levels of hierarchical design, including the development of element-doped compositions of bioceramics, the usage of molecular templates for in vitro biomineralization at the nanoscale, the fabrication of biomimetic scaffold architecture at the micro- and nanoscale, and the application of external physical stimuli at the macroscale to regulate bone growth. Developments at each level are discussed with an emphasis on their in vitro and in vivo outcomes in promoting osteogenic tissue development. Ultimately, these hierarchically designed scaffolds can complement or even replace the usage of cells and biological elements, which present clinical and regulatory barriers to translation. As the field progresses ever closer to clinical translation, the creation of viable therapies will thus benefit from further development of hierarchically designed materials and scaffolds.
Collapse
Affiliation(s)
- Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jason L Guo
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA.
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
157
|
Srirussamee K, Mobini S, Cassidy NJ, Cartmell SH. Direct electrical stimulation enhances osteogenesis by inducing Bmp2 and Spp1 expressions from macrophages and preosteoblasts. Biotechnol Bioeng 2019; 116:3421-3432. [PMID: 31429922 PMCID: PMC6899728 DOI: 10.1002/bit.27142] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
The capability of electrical stimulation (ES) in promoting bone regeneration has already been addressed in clinical studies. However, its mechanism is still being investigated and discussed. This study aims to investigate the responses of macrophages (J774A.1) and preosteoblasts (MC3T3-E1) to ES and the faradic by-products from ES. It is found that pH of the culture media was not significantly changed, whereas the average hydrogen peroxide concentration was increased by 3.6 and 5.4 µM after 1 and 2 hr of ES, respectively. The upregulation of Bmp2 and Spp1 messenger RNAs was observed after 3 days of stimulation, which is consistent among two cell types. It is also found that Spp1 expression of macrophages was partially enhanced by faradic by-products. Osteogenic differentiation of preosteoblasts was not observed during the early stage of ES as the level of Runx2 expression remains unchanged. However, cell proliferation was impaired by the excessive current density from the electrodes, and also faradic by-products in the case of macrophages. This study shows that macrophages could respond to ES and potentially contribute to the bone formation alongside preosteoblasts. The upregulation of Bmp2 and Spp1 expressions induced by ES could be one of the mechanisms behind the electrically stimulated osteogenesis.
Collapse
Affiliation(s)
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología IMN-CNM, The Spanish National Research Council (CSIC), Madrid, Spain.,Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Nigel J Cassidy
- Department of Civil Engineering, University of Birmingham, Birmingham, UK
| | - Sarah H Cartmell
- Department of Materials, The University of Manchester, Manchester, UK
| |
Collapse
|
158
|
Gonzalez-Fernandez T, Sikorski P, Leach JK. Bio-instructive materials for musculoskeletal regeneration. Acta Biomater 2019; 96:20-34. [PMID: 31302298 PMCID: PMC6717669 DOI: 10.1016/j.actbio.2019.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
The prevalence and cost of disorders affecting the musculoskeletal system are predicted to rise significantly in the coming years due to the aging global population and the increase of associated risk factors. Despite being the second largest cause of disability, the clinical options for therapeutic intervention remain limited. The clinical translation of cell-based therapies for the treatment of musculoskeletal disorders faces many challenges including maintenance of cell survival in the harsh in vivo environment and the lack of control over regulating cell phenotype upon implantation. In order to address these challenges, the development of bio-instructive materials to modulate cell behavior has taken center stage as a strategy to increase the therapeutic potential of various cell populations. However, the determination of the necessary cues for a specific application and how these signals should be presented from a biomaterial remains elusive. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues. There is a particular emphasis on emerging efforts such as the engineering of immunomodulatory and antibacterial materials, as well as the incorporation of these strategies into biofabrication and organ-on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Disorders affecting the musculoskeletal system affect individuals across the lifespan and have a profound effect on mobility and quality of life. While small defects in many tissues can heal successfully, larger defects are often unable to heal or instead heal with inferior quality fibrous tissue and require clinical intervention. Cell-based therapies are a promising option for clinical translation, yet challenges related to maintaining cell survival and instructing cell phenotype upon implantation have limited the success of this approach. Bio-instructive materials provide an exciting opportunity to modulate cell behavior and enhance the efficacy of cell-based approaches for musculoskeletal repair. However, the identification of critical instructive cues and how to present these stimuli is a focus of intense investigation. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues, while also considering exciting progress in the engineering of immunomodulatory and antibacterial materials.
Collapse
Affiliation(s)
| | - Pawel Sikorski
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Physics, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA.
| |
Collapse
|
159
|
Zhu B, Li Y, Huang F, Chen Z, Xie J, Ding C, Li J. Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical stimulation. Biomater Sci 2019; 7:4730-4737. [PMID: 31497814 DOI: 10.1039/c9bm01203f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrical stimulation (ES) exhibits a positive role in promoting the cell activity of osteoblasts. Conducting polymers have the advantages of biocompatibility, good environmental stability and easy synthesis, which have been widely used as charge carriers for electrical stimulation; moreover, considering clinical applications, biomaterial-related infection is an important issue that needs to be solved. Thus, conducting polymers with both antibacterial and osteogenic properties are highly demanded for effect repair. However, it remains a challenge to combine these two characteristics efficiently in a simple way. Herein, an Ag-loaded poly(amide-amine) dendrimer was prepared by a simple chemical reduction procedure, which acted as a dopant for the polymerization of polyaniline (PANI) on biomedical titanium (Ti) sheets. The obtained PANI coating showed outstanding antibacterial properties against Gram-negative (E. coli) and Gram-positive (S. aureus) microbes with a 1000-fold increase when compared with that of pure Ti. In addition, note that the polymer coating together with ES facilitated the proliferation and differentiation of MC3T3. The alkaline phosphatase (ALP) activity and intracellular calcium content of the cells showed a 19.09% and 24.02% increase, respectively, when compared with the case of electrically stimulated Ti after 12 days. Moreover, the existence of PAMAM facilitated mineralization. The strategy developed herein is simple and can be easily manipulated, which shows potential applications in the coating of implants for hard tissue repair.
Collapse
Affiliation(s)
- Bengao Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuhan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Fuhui Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhuoxin Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chunmei Ding
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
160
|
Farooqi AR, Zimmermann J, Bader R, van Rienen U. Numerical Simulation of Electroactive Hydrogels for Cartilage-Tissue Engineering. MATERIALS 2019; 12:ma12182913. [PMID: 31505797 PMCID: PMC6774344 DOI: 10.3390/ma12182913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
The intrinsic regeneration potential of hyaline cartilage is highly limited due to the absence of blood vessels, lymphatics, and nerves, as well as a low cell turnover within the tissue. Despite various advancements in the field of regenerative medicine, it remains a challenge to remedy articular cartilage defects resulting from trauma, aging, or osteoarthritis. Among various approaches, tissue engineering using tailored electroactive scaffolds has evolved as a promising strategy to repair damaged cartilage tissue. In this approach, hydrogel scaffolds are used as artificial extracellular matrices, and electric stimulation is applied to facilitate proliferation, differentiation, and cell growth at the defect site. In this regard, we present a simulation model of electroactive hydrogels to be used for cartilage–tissue engineering employing open-source finite-element software FEniCS together with a Python interface. The proposed mathematical formulation was first validated with an example from the literature. Then, we computed the effect of electric stimulation on a circular hydrogel sample that served as a model for a cartilage-repair implant.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
- Department of Electronics Engineering, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
| | - Rainer Bader
- Department of Orthopaedics, University Medical Center Rostock, 18057 Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany.
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany.
| |
Collapse
|
161
|
Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019; 95:91-111. [PMID: 31004844 PMCID: PMC6710161 DOI: 10.1016/j.actbio.2019.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Biological systems continuously interact with the surrounding environment because they are dynamically evolving. The interaction is achieved through mechanical, electrical, chemical, biological, thermal, optical, or a synergistic combination of these cues. To provide a fundamental understanding of the interaction, recent efforts that integrate biological systems with the electronic-mechanical assemblies create unique opportunities for simultaneous monitoring and eliciting the responses to the biological system. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual. In this short review, we will provide a brief overview of the recent development on the integration of the biological systems with electronic-mechanical assemblies across multiple scales, with applications ranging from healthcare monitoring to therapeutic options such as drug delivery and rehabilitation therapies. STATEMENT OF SIGNIFICANCE: An overview of the recent progress on the integration of the biological system with both electronic and mechanical assemblies is discussed. The integration creates the unique opportunity to simultaneously monitor and elicit the responses to the biological system, which provides a fundamental understanding of the interaction between the biological system and the electronic-mechanical assemblies. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Departments of Electrical and Computer Engineering, Biomedical Engineering, and Medicine, The George Washington University, Washington DC 20052, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
162
|
Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. Biomaterials 2019; 209:54-66. [DOI: 10.1016/j.biomaterials.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/09/2023]
|
163
|
Heo DN, Lee SJ, Timsina R, Qiu X, Castro NJ, Zhang LG. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:582-590. [DOI: 10.1016/j.msec.2019.02.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 01/07/2023]
|
164
|
Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens Bioelectron 2019; 135:50-63. [DOI: 10.1016/j.bios.2019.04.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 01/20/2023]
|
165
|
Kitsara M, Blanquer A, Murillo G, Humblot V, De Bragança Vieira S, Nogués C, Ibáñez E, Esteve J, Barrios L. Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. NANOSCALE 2019; 11:8906-8917. [PMID: 31016299 DOI: 10.1039/c8nr10384d] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomimetic functional scaffolds for tissue engineering should fulfil specific requirements concerning structural, bio-chemical and electro-mechanical characteristics, depending on the tissue that they are designed to resemble. In bone tissue engineering, piezoelectric materials based on poly(vinylidene fluoride) (PVDF) are on the forefront, due to their inherent ability to generate surface charges under minor mechanical deformations. Nevertheless, PVDF's high hydrophobicity hinders sufficient cell attachment and expansion, which are essential in building biomimetic scaffolds. In this study, PVDF nanofibrous scaffolds were fabricated by electrospinning to achieve high piezoelectricity, which was compared with drop-cast membranes, as it was confirmed by XRD and FTIR measurements. Oxygen plasma treatment of the PVDF surface rendered it hydrophilic, and surface characterization revealed a long-term stability. XPS analysis and contact angle measurements confirmed an unparalleled two-year stability of hydrophilicity. Osteoblast cell culture on the permanently hydrophilic PVDF scaffolds demonstrated better cell spreading over the non-treated ones, as well as integration into the scaffold as indicated by SEM cross-sections. Intracellular calcium imaging confirmed a higher cell activation on the piezoelectric electrospun nanofibrous scaffolds. Combining these findings, and taking advantage of the self-stimulation of the cells due to their attachment on the piezoelectric PVDF nanofibers, a 3D tissue-like functional self-sustainable scaffold for bone tissue engineering was fabricated.
Collapse
Affiliation(s)
- Maria Kitsara
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, 08193, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Stone H, Lin S, Mequanint K. Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:324-332. [DOI: 10.1016/j.msec.2018.12.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022]
|
167
|
Dwenger M, Kowalski WJ, Ye F, Yuan F, Tinney JP, Setozaki S, Nakane T, Masumoto H, Campbell P, Guido W, Keller BB. Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. J Tissue Eng 2019; 10:2041731419841748. [PMID: 31024681 PMCID: PMC6472158 DOI: 10.1177/2041731419841748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
The immaturity of human induced pluripotent stem cell derived engineered cardiac
tissues limits their ability to regenerate damaged myocardium and to serve as
robust in vitro models for human disease and drug toxicity
studies. Several chronic biomimetic conditioning protocols, including mechanical
stretch, perfusion, and/or electrical stimulation promote engineered cardiac
tissue maturation but have significant technical limitations. Non-contacting
chronic optical stimulation using heterologously expressed channelrhodopsin
light-gated ion channels, termed optogenetics, may be an advantageous
alternative to chronic invasive electrical stimulation for engineered cardiac
tissue conditioning. We designed proof-of-principle experiments to successfully
transfect human induced pluripotent stem cell derived engineered cardiac tissues
with a desensitization resistant, chimeric channelrhodopsin protein, and then
optically paced engineered cardiac tissues to accelerate maturation. We
transfected human induced pluripotent stem cell engineered cardiac tissues using
an adeno-associated virus packaged chimeric channelrhodopsin and then verified
optically paced by whole cell patch clamp. Engineered cardiac tissues were then
chronically optically paced above their intrinsic beat rates in
vitro from day 7 to 14. Chronically optically paced resulted in
improved engineered cardiac tissue electrophysiological properties and subtle
changes in the expression of some cardiac relevant genes, though active force
generation and histology were unchanged. These results validate the feasibility
of a novel chronically optically paced paradigm to explore non-invasive and
scalable optically paced–induced engineered cardiac tissue maturation
strategies.
Collapse
Affiliation(s)
- Marc Dwenger
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - William J Kowalski
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA.,Laboratory of Stem Cell and Neurovascular Biology, Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fei Ye
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Fangping Yuan
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Joseph P Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Shuji Setozaki
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Cardiovascular Surgery, Okamura Memorial Hospital, Shimizu, Japan
| | - Takeichiro Nakane
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hidetoshi Masumoto
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), Wako, Japan
| | - Peter Campbell
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Bradley B Keller
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
168
|
Vaca-González JJ, Guevara JM, Moncayo MA, Castro-Abril H, Hata Y, Garzón-Alvarado DA. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage. Cartilage 2019; 10:157-172. [PMID: 28933195 PMCID: PMC6425540 DOI: 10.1177/1947603517730637] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. DESIGN Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. RESULTS It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. CONCLUSION The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.
Collapse
Affiliation(s)
- Juan J. Vaca-González
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Johana M. Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Miguel A. Moncayo
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Hector Castro-Abril
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| | - Yoshie Hata
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
| | - Diego A. Garzón-Alvarado
- Biomimetics Laboratory, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogota, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
169
|
Shi X, Wu H, Yan H, Wang Y, Wang Z, Zhang P. Electroactive Nanocomposite Porous Scaffolds of PAPn/op-HA/PLGA Enhance Osteogenesis in Vivo. ACS APPLIED BIO MATERIALS 2019; 2:1464-1476. [DOI: 10.1021/acsabm.8b00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xincui Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Haitao Wu
- Department of Orthopedics, Jilin Provincial People’s Hospital, 1183 Gongnong Street, Changchun 130021, China
| | - Huanhuan Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
170
|
Jing W, Huang Y, Wei P, Cai Q, Yang X, Zhong W. Roles of electrical stimulation in promoting osteogenic differentiation of BMSCs on conductive fibers. J Biomed Mater Res A 2019; 107:1443-1454. [PMID: 30786145 DOI: 10.1002/jbm.a.36659] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 01/22/2023]
Abstract
The strategy of using conductive materials in regenerating bone defects is attractive, benefiting from the bioelectricity feature of natural bone tissues. Thereby, POP conductive fibers were fabricated by coating polypyrrole (PPY) onto electrospun poly(l-lactide) (PLLA) fibers, and their potentials in promoting osteogenic differentiation of bone mesenchymal stromal cells (BMSCs) were investigated. Different from the smooth-surfaced PLLA fibers, POP fibers were rough-surfaced and favorable for protein adsorption and mineralization nucleation. When electrical stimulation (ES) was applied, the surface charges on the conductive POP fibers further promoted the protein adsorption and the mineral deposition, while the non-conductive PLLA fibers displayed no such promotion. When BMSCs were cultured on these fibers, strong cell viability was detected, indicating their good biocompatibility and cell affinity. In osteogenic differentiation studies, BMSCs demonstrated the strongest ability in differentiating toward osteoblasts when they were cultured on the POP fibers under ES, followed by the case without ES. In comparison with the conductive POP fibers, the non-conductive PLLA fibers displayed significantly weaker ability in inducing the osteogenic differentiation of BMSCs with ES being applied or not. Alongside the differentiation, both the calcium deposition on BMSC/material complexes and the intracellular Ca2+ concentration were identified the most abundant when BMSCs grew on the POP fibers under ES. These findings suggested that the surface charges of conductive fibers played roles in regulating protein adsorption, ion migration and nucleation, particularly under ES, which contributed much to the increased intracellular Ca2+ ions, and thus accelerated the osteogenic differentiation of the seeded cells. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Wei Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weihong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
171
|
Nakayama KH, Shayan M, Huang NF. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration. Adv Healthc Mater 2019; 8:e1801168. [PMID: 30725530 PMCID: PMC6589032 DOI: 10.1002/adhm.201801168] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Indexed: 11/12/2022]
Abstract
Although skeletal muscle is highly regenerative following injury or disease, endogenous self-regeneration is severely impaired in conditions of volume traumatic muscle loss. Consequently, tissue engineering approaches are a promising means to regenerate skeletal muscle. Biological scaffolds serve as not only structural support for the promotion of cellular ingrowth but also impart potent modulatory signaling cues that may be beneficial for tissue regeneration. In this work, the progress of tissue engineering approaches for skeletal muscle engineering and regeneration is overviewed, with a focus on the techniques to create biomimetic engineered tissue using extracellular cues. These factors include mechanical and electrical stimulation, geometric patterning, and delivery of growth factors or other bioactive molecules. The progress of evaluating the therapeutic efficacy of these approaches in preclinical models of muscle injury is further discussed.
Collapse
Affiliation(s)
- Karina H Nakayama
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
172
|
Jing W, Zuo D, Cai Q, Chen G, Wang L, Yang X, Zhong W. Promoting neural transdifferentiation of BMSCs via applying synergetic multiple factors for nerve regeneration. Exp Cell Res 2019; 375:80-91. [DOI: 10.1016/j.yexcr.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
|
173
|
Elashnikov R, Rimpelová S, Děkanovský L, Švorčík V, Lyutakov O. Polypyrrole-coated cellulose nanofibers: influence of orientation, coverage and electrical stimulation on SH-SY5Y behavior. J Mater Chem B 2019; 7:6500-6507. [DOI: 10.1039/c9tb01300h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combined effect of the surface morphology and electrical stimulation of the conducive randomly- and uniaxially-aligned polypyrrole-coated cellulose acetate butyrate nanofibers on SH-SY5Y cell behavior and growth was shown.
Collapse
Affiliation(s)
- R. Elashnikov
- Department of Solid State Engineering
- University of Chemistry and Technology Prague
- Prague 6
- Czech Republic
| | - S. Rimpelová
- Department of Biochemistry and Microbiology
- University of Chemistry and Technology Prague
- Prague 6
- Czech Republic
| | - L. Děkanovský
- Department of Solid State Engineering
- University of Chemistry and Technology Prague
- Prague 6
- Czech Republic
| | - V. Švorčík
- Department of Solid State Engineering
- University of Chemistry and Technology Prague
- Prague 6
- Czech Republic
| | - O. Lyutakov
- Department of Solid State Engineering
- University of Chemistry and Technology Prague
- Prague 6
- Czech Republic
| |
Collapse
|
174
|
Saberianpour S, Heidarzadeh M, Geranmayeh MH, Hosseinkhani H, Rahbarghazi R, Nouri M. Tissue engineering strategies for the induction of angiogenesis using biomaterials. J Biol Eng 2018; 12:36. [PMID: 30603044 PMCID: PMC6307144 DOI: 10.1186/s13036-018-0133-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is touted as a fundamental procedure in the regeneration and restoration of different tissues. The induction of de novo blood vessels seems to be vital to yield a successful cell transplantation rate loaded on various scaffolds. Scaffolds are natural or artificial substances that are considered as one of the means for delivering, aligning, maintaining cell connection in a favor of angiogenesis. In addition to the potential role of distinct scaffold type on vascularization, the application of some strategies such as genetic manipulation, and conjugation of pro-angiogenic factors could intensify angiogenesis potential. In the current review, we focused on the status of numerous scaffolds applicable in the field of vascular biology. Also, different strategies and priming approaches useful for the induction of pro-angiogenic signaling pathways were highlighted.
Collapse
Affiliation(s)
- Shirin Saberianpour
- 1Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, 5166614756 Iran
- 2Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- 1Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, 5166614756 Iran
| | - Mohammad Hossein Geranmayeh
- 3Neuroscience Research Center, Imam Reza Medical Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- 1Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, 5166614756 Iran
- 5Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- 2Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- 1Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, 5166614756 Iran
- 5Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
175
|
Alegret N, Dominguez-Alfaro A, Mecerreyes D. 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules 2018; 20:73-89. [PMID: 30543402 DOI: 10.1021/acs.biomac.8b01382] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell-matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.
Collapse
Affiliation(s)
- Nuria Alegret
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Cardiovascular Institute, School of Medicine, Division of Cardiology , University of Colorado Denver Anschutz Medical Campus , 12700 E. 19th Avenue, Building P15 , Aurora , Colorado 80045 , United States
| | - Antonio Dominguez-Alfaro
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Carbon Nanobiotechnology Group, CIC biomaGUNE , Paseo de Miramón 182 , 2014 Donostia-San Sebastián , Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Ikerasque, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
176
|
Zhang Z, Klausen LH, Chen M, Dong M. Electroactive Scaffolds for Neurogenesis and Myogenesis: Graphene-Based Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801983. [PMID: 30264534 DOI: 10.1002/smll.201801983] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/28/2018] [Indexed: 05/24/2023]
Abstract
One of the major issues in tissue engineering is constructing a functional scaffold to support cell growth and also provide proper synergistic guidance cues. Graphene-based nanomaterials have emerged as biocompatible and electroactive scaffolds for neurogenesis and myogenesis, due to their excellent tunable chemical, physical, and mechanical properties. This review first assesses the recent investigations focusing on the fabrication and applications of graphene-based nanomaterials for neurogenesis and myogenesis, in the form of either 2D films, 3D scaffolds, or composite architectures. Besides, because of their outstanding electrical properties, graphene family materials are particularly suitable for designing electroactive scaffolds that could provide proper electrical stimulation (i.e., electrical or photo stimuli) to promote the regeneration of excitable neurons and muscle cells. Therefore, the effects and mechanism of electrical and/or photo stimulations on neurogenesis and myogenesis are followed. Furthermore, studies on their biocompatibilities and toxicities especially to neural and muscle cells are evaluated. Finally, the future challenges and perspectives in facilitating the development of clinical translation of graphene-family nanomaterials in treating neurodegenerative and muscle diseases are discussed.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
| | | | - Menglin Chen
- Department of Engineering, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
177
|
Farooqi AR, Bader R, van Rienen U. Numerical Study on Electromechanics in Cartilage Tissue with Respect to Its Electrical Properties. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:152-166. [PMID: 30351244 PMCID: PMC6486674 DOI: 10.1089/ten.teb.2018.0214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyaline cartilage undergoes many substantial age-related physiochemical and biomechanical changes that reduce its ability to overcome the effects of mechanical stress and injury. In quest of therapeutic options, magnetic stimulation and electrical stimulation (ES) have been proposed for improving tissue engineering approaches for the repair of articular cartilage. The aim of this study is to summarize in silico investigations involving induced electrical properties of cartilage tissue due to various biophysical stimuli along their respective mathematical descriptions. Based on these, a preliminary numerical study involving electromechanical transduction in bovine cartilage tissue has been carried out using an open source finite element computational software. The simulation results have been compared to experimental results from the literature. This study serves as a basis for further in silico studies to better understand the behavior of hyaline cartilage tissue due to ES and to find an optimal stimulation protocol for the cartilage regeneration. Moreover, it provides an overview of the basic models along with mathematical description and scope for future research regarding electrical behavior of the cartilage tissue using open source software.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- 1 Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany
| | - Rainer Bader
- 2 Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, University Medicine Rostock, Rostock, Germany.,3 Department Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Ursula van Rienen
- 1 Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Rostock, Germany.,3 Department Life, Light & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
178
|
Ribeiro S, Gomes AC, Etxebarria I, Lanceros-Méndez S, Ribeiro C. Electroactive biomaterial surface engineering effects on muscle cells differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:868-874. [PMID: 30184816 DOI: 10.1016/j.msec.2018.07.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
Abstract
Even though skeletal muscle cells can naturally regenerate as a response to insignificant tissue damages, more severe injuries can cause irreversible loss of muscle cells mass and/or function. Until now, cell therapies are not a good approach to treat those injuries. Biomaterials such as poly(vinylidene fluoride), PVDF, can improve muscle regeneration by presenting physical cues to muscle cells that mimic the natural regeneration environment. In this way, the ferroelectric and piezoelectric properties of PVDF offer new opportunities for skeletal muscle tissue engineering once the piezoelectricity is an electromechanical effect that can be used to provide electrical signals to the cells, upon mechanical solicitations, similar to the ones found in several body tissues. Thus, previous to dynamic experiments, it is important to determine how the surface properties of the material, both in terms of the poling state (positive or negative net surface charge) and of the morphology (films or fibers) influence myoblast differentiation. It was observed that PVDF promotes myogenic differentiation of C2C12 cells as evidenced by quantitative analysis of myotube fusion, maturation index, length, diameter and number. Charged surfaces improve the fusion of muscle cells into differentiated myotubes, as demonstrated by fusion and maturation index values higher than the control samples. Finally, the use of random and oriented β-PVDF electrospun fibers scaffolds has revealed differences in cell morphology. Contrary to the randomly oriented fibers, oriented PVDF electrospun fibers have promoted the alignment of the cells. It is thus demonstrated that the use of this electroactive polymer represents a suitable approach for the development of electroactive microenvironments for effective muscle tissue engineering.
Collapse
Affiliation(s)
- S Ribeiro
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal; Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - A C Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - I Etxebarria
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - S Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - C Ribeiro
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal; CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
179
|
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M, Zhang LG. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 2018; 132:252-269. [PMID: 30053441 PMCID: PMC6226324 DOI: 10.1016/j.addr.2018.07.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Compared to traditional therapeutic strategies, three-dimensional (3D) bioprinting is one of the most advanced techniques for creating complicated cardiovascular implants with biomimetic features, which are capable of recapitulating both the native physiochemical and biomechanical characteristics of the cardiovascular system. The present review provides an overview of the cardiovascular system, as well as describes the principles of, and recent advances in, 3D bioprinting cardiovascular tissues and models. Moreover, this review will focus on the applications of 3D bioprinting technology in cardiovascular repair/regeneration and pharmacological modeling, further discussing current challenges and perspectives.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chengyu Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, USA
| | | | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
180
|
Jafarkhani M, Salehi Z, Kowsari-Esfahan R, Shokrgozar MA, Rezaa Mohammadi M, Rajadas J, Mozafari M. Strategies for directing cells into building functional hearts and parts. Biomater Sci 2018; 6:1664-1690. [PMID: 29767196 DOI: 10.1039/c7bm01176h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
The increasing population of patients with heart disease and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate healthy implantable cardiac tissues. One of the main challenges in cardiac tissue engineering is to direct cell behaviors to form functional three-dimensional (3D) biomimetic constructs. This article provides a brief review on various cell sources used in cardiac tissue engineering and highlights the effect of scaffold-based signals such as topographical and biochemical cues and stiffness. Then, conventional and novel micro-engineered bioreactors for the development of functional cardiac tissues will be explained. Bioreactor-based signals including mechanical and electrical cues to control cardiac cell behavior will also be elaborated in detail. Finally, the application of computational fluid dynamics to design suitable bioreactors will be discussed. This review presents the current state-of-the-art, emerging directions and future trends that critically appraise the concepts involved in various approaches to direct cells for building functional hearts and heart parts.
Collapse
Affiliation(s)
- Mahboubeh Jafarkhani
- School of Chemical Engineering, College of Engineering, University of Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
181
|
Molsberger A, McCaig CD. Percutaneous direct current stimulation - a new electroceutical solution for severe neurological pain and soft tissue injuries. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:205-214. [PMID: 29950908 PMCID: PMC6011884 DOI: 10.2147/mder.s163368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a high medical need to improve the effectiveness of the treatment of pain and traumatic soft tissue injuries. In this context, electrostimulating devices have been used with only sporadic success. There is also much evidence of endogenous electrical signals that play key roles in regulating the development and regeneration of many tissues. Transepithelial potential gradients are one source of the direct current (DC) electrical signals that stimulate and guide the migration of inflammatory cells, epithelial cells, fibroblasts and mesenchymal stem cells to achieve effective wound healing. Up to now, this electrophysiological knowledge has not been adequately translated into a clinical treatment. Here, we present a mobile, handheld electroceutical smart device based on a microcontroller, an analog front end and a battery, which generates DC electric fields (EFs), mimicking and modulating the patient’s own physiological electrical signals. The electrical stimulation is applied to percutaneous metal probes, which are located close to the inflamed or injured tissue of the patient. The treatment can be used in an ambulatory or stationary environment. It shows unexpectedly, highly effective treatment for certain severe neurological pain conditions, as well as traumatic soft tissue injuries (muscle/ligament ruptures, joint sprains). Without EF intervention, these conditions, respectively, are either virtually incurable or take several months to heal. We present three cases – severe chronic cluster headache, acute massive muscle rupture of the rectus femoris and an acute ankle sprain with a ruptured anterior talofibular ligament – to demonstrate clinical effectiveness and discuss the fundamental differences between mimicking DC simulation and conventional transcutaneous electric nerve stimulation (TENS) or TENS-like implanted devices as used for peripheral nerve cord, spinal cord or dorsal root stimulation.
Collapse
Affiliation(s)
- Albrecht Molsberger
- Department of Orthopedics, Ruhr-University Bochum, Bochum, Germany.,Clinic for Orthopedics and Pain Treatment, Düsseldorf, Germany
| | - Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
182
|
Eischen-Loges M, Oliveira KMC, Bhavsar MB, Barker JH, Leppik L. Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects. PeerJ 2018; 6:e4959. [PMID: 29910982 PMCID: PMC6001709 DOI: 10.7717/peerj.4959] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Background Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES’s demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. Methods Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. Results We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1, Osteopontin, Osterix and Calmodulin. We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days) after discontinuing ES exposure. Discussion This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.
Collapse
Affiliation(s)
- Maria Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Karla M C Oliveira
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Mit B Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| |
Collapse
|
183
|
Shuai C, Yang W, Peng S, Gao C, Guo W, Lai Y, Feng P. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprint 2018; 4:138. [PMID: 33102916 PMCID: PMC7581999 DOI: 10.18063/ijb.v4i2.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Physical stimulations such as magnetic, electric and mechanical stimulation could enhance cell activity and promote bone formation in bone repair process via activating signal pathways, modulating ion channels, regulating bonerelated gene expressions, etc. In this paper, bioeffects of physical stimulations on cell activity, tissue growth and bone healing were systematically summarized, which especially focused on their osteogenesis-inducing mechanisms. Detailedly, magnetic stimulation could produce Hall effect which improved the permeability of cell membrane and promoted the migration of ions, especially accelerating the extracellular calcium ions to pass through cell membrane. Electric stimulation could induce inverse piezoelectric effect which generated electric signals, accordingly up-regulating intracellular calcium levels and growth factor synthesis. And mechanical stimulation could produce mechanical signals which were converted into corresponding biochemical signals, thus activating various signaling pathways on cell membrane and inducing a series of gene expressions. Besides, bioeffects of physical stimulations combined with bone scaffolds which fabricated using 3D printing technology on bone cells were discussed. The equipments of physical stimulation system were described. The opportunities and challenges of physical stimulations were also presented from the perspective of bone repair.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China.,Jiangxi University of Science and Technology, Ganzhou, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Wang Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yuxiao Lai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
184
|
Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018; 73:1-20. [PMID: 29673838 DOI: 10.1016/j.actbio.2018.04.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Abstract
The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. STATEMENT OF SIGNIFICANCE Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers.
Collapse
|
185
|
Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep 2018; 8:6307. [PMID: 29679025 PMCID: PMC5910383 DOI: 10.1038/s41598-018-24892-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Bone Tissue engineering (BTE) has recently been introduced as an alternative to conventional treatments for large non-healing bone defects. BTE approaches mimic autologous bone grafts, by combining cells, scaffold, and growth factors, and have the added benefit of being able to manipulate these constituents to optimize healing. Electrical stimulation (ES) has long been used to successfully treat non-healing fractures and has recently been shown to stimulate bone cells to migrate, proliferate, align, differentiate, and adhere to bio compatible scaffolds, all cell behaviors that could improve BTE treatment outcomes. With the above in mind we performed in vitro experiments and demonstrated that exposing Mesenchymal Stem Cells (MSC) + scaffold to ES for 3 weeks resulted in significant increases in osteogenic differentiation. Then in in vivo experiments, for the first time, we demonstrated that exposing BTE treated rat femur large defects to ES for 8 weeks, caused improved healing, as indicated by increased bone formation, strength, vessel density, and osteogenic gene expression. Our results demonstrate that ES significantly increases osteogenic differentiation in vitro and that this effect is translated into improved healing in vivo. These findings support the use of ES to help BTE treatments achieve their full therapeutic potential.
Collapse
|
186
|
Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev 2018; 129:148-168. [PMID: 29262296 DOI: 10.1016/j.addr.2017.12.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
Electrical stimulation for delivery of biochemical agents such as genes, proteins and RNA molecules amongst others, holds great potential for controlled therapeutic delivery and in promoting tissue regeneration. Electroactive biomaterials have the capability of delivering these agents in a localized, controlled, responsive and efficient manner. These systems have also been combined for the delivery of both physical and biochemical cues and can be programmed to achieve enhanced effects on healing by establishing control over the microenvironment. This review focuses on current state-of-the-art research in electroactive-based materials towards the delivery of drugs and other therapeutic signalling agents for wound care treatment. Future directions and current challenges for developing effective electroactive approach based therapies for wound care are discussed.
Collapse
|
187
|
Hsu CC, Serio A, Amdursky N, Besnard C, Stevens MM. Fabrication of Hemin-Doped Serum Albumin-Based Fibrous Scaffolds for Neural Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5305-5317. [PMID: 29381329 PMCID: PMC5814958 DOI: 10.1021/acsami.7b18179] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 05/06/2023]
Abstract
Neural tissue engineering (TE) represents a promising new avenue of therapy to support nerve recovery and regeneration. To recreate the complex environment in which neurons develop and mature, the ideal biomaterials for neural TE require a number of properties and capabilities including the appropriate biochemical and physical cues to adsorb and release specific growth factors. Here, we present neural TE constructs based on electrospun serum albumin (SA) fibrous scaffolds. We doped our SA scaffolds with an iron-containing porphyrin, hemin, to confer conductivity, and then functionalized them with different recombinant proteins and growth factors to ensure cell attachment and proliferation. We demonstrated the potential for these constructs combining topographical, biochemical, and electrical stimuli by testing them with clinically relevant neural populations derived from human induced pluripotent stem cells (hiPSCs). Our scaffolds could support the attachment, proliferation, and neuronal differentiation of hiPSC-derived neural stem cells (NSCs), and were also able to incorporate active growth factors and release them over time, which modified the behavior of cultured cells and substituted the need for growth factor supplementation by media change. Electrical stimulation on the doped SA scaffold positively influenced the maturation of neuronal populations, with neurons exhibiting more branched neurites compared to controls. Through promotion of cell proliferation, differentiation, and neurite branching of hiPSC-derived NSCs, these conductive SA fibrous scaffolds are of broad application in nerve regeneration strategies.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Andrea Serio
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Nadav Amdursky
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Cyril Besnard
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
188
|
Oftadeh MO, Bakhshandeh B, Dehghan MM, Khojasteh A. Sequential application of mineralized electroconductive scaffold and electrical stimulation for efficient osteogenesis. J Biomed Mater Res A 2018; 106:1200-1210. [DOI: 10.1002/jbm.a.36316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Mohammad Omid Oftadeh
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
- Stem Cell Technology Research Center; Tehran Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology; Faculty of Veterinary Medicine, University of Tehran; Tehran Iran
- Institute of Biomedical Research; University of Tehran; Tehran Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
189
|
Xu Q, Jin L, Li C, Kuddannayai S, Zhang Y. The effect of electrical stimulation on cortical cells in 3D nanofibrous scaffolds. RSC Adv 2018; 8:11027-11035. [PMID: 35541524 PMCID: PMC9079102 DOI: 10.1039/c8ra01323c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022] Open
Abstract
Cellular behaviors are significantly affected by cellular microenvironment, including mechanical supports, electrical and chemical cues, etc. Three dimensional conductive nanofibers (3D-CNFs) provide the capability to regulate cellular behaviors using mechanical, geometrical and electrical cues together, which are especially important in neural tissue engineering. However, very few studies were conducted to address combined effects of 3D nanofibrous scaffolds and electrical stimulation (ES) on cortical cell cultures. In the present study, polypyrrole (PPy)-coated electrospun polyacrylonitrile (PAN) nanofibers with a 3D structure were successfully prepared for the cortical cell culture, which was compared to cells cultured in the 2D-CNFs meshes, as well as that in the bare PAN nanofibers, both in 2D and 3D. While smooth PAN 3D nanofibers showed dispersive cell distribution, PPy coated 3D-CNFs showed clusters of cortical cells. The combined effects of 3D conductive nanofibers and ES on neurons and glial cells were studied. Different from previous observations on 2D substrates, pulsed electrical stimulations could prevent formation of cell clusters if applied at the beginning of culture, but could not disperse the clusters of cortical cells already formed. Furthermore, the electrical stimulations improved the proliferation of glial cells and accelerate neuron maturation. This study enriched the growing body of evidence for using electrical stimulation and 3D conductive nanofibers to control the culture of cortical cells, which have broad applications in neural engineering, such as implantation, biofunctional in vitro model, etc. Cellular behaviors are significantly affected by cellular microenvironment, including mechanical supports, electrical and chemical cues, etc.![]()
Collapse
Affiliation(s)
- Qinwei Xu
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Lin Jin
- Henan Provincial People's Hospital
- Zhengzhou 450003
- P. R. China
- Henan Key Laboratory of Rare Earth Functional Materials
- Zhoukou Normal University
| | - Cheng Li
- Singapore Centre for Environmental Life Sciences Engineering
- Interdisciplinary Graduate School
- Nanyang Technological University
- Singapore 637551
- Singapore
| | - Shreyas Kuddannayai
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yilei Zhang
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
190
|
Liu Z, Dong L, Wang L, Wang X, Cheng K, Luo Z, Weng W. Mediation of cellular osteogenic differentiation through daily stimulation time based on polypyrrole planar electrodes. Sci Rep 2017; 7:17926. [PMID: 29263335 PMCID: PMC5738366 DOI: 10.1038/s41598-017-17120-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
In electrical stimulation (ES), daily stimulation time means the interacting duration with cells per day, and is a vital factor for mediating cellular function. In the present study, the effect of stimulation time on osteogenic differentiation of MC3T3-E1 cells was investigated under ES on polypyrrole (Ppy) planar interdigitated electrodes (IDE). The results demonstrated that only a suitable daily stimulation time supported to obviously upregulate the expression of ALP protein and osteogenesis-related genes (ALP, Col-I, Runx2 and OCN), while a short or long daily stimulation time showed no significant outcomes. These might be attributed to the mechanism that an ES induced transient change in intracellular calcium ion concentration, which was responsible for activating calcium ion signaling pathway to enhance cellular osteogenic differentiation. A shorter daily time could lead to insufficient duration for the transient change in intracellular calcium ion concentration, and a longer daily time could give rise to cellular fatigue with no transient change. This work therefore provides new insights into the fundamental understanding of cell responses to ES and will have an impact on further designing materials to mediate cell behaviors.
Collapse
Affiliation(s)
- Zongguang Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Liming Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Xiaozhao Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Zhongkuan Luo
- Zhejiang-California International NanoSystems Institute, Hangzhou, 310058, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
191
|
Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications. Polymers (Basel) 2017; 9:polym9120687. [PMID: 30965990 PMCID: PMC6418902 DOI: 10.3390/polym9120687] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
As electroactive polymers have recently presented potential in applications in the tissue engineering and biomedical field, this study is aiming at the fabrication of composite nanofibrous membranes containing conducting polyaniline and at the evaluation of their biocompatibility. For that purpose, conducting polyaniline–chitosan (PANI/CS) defect free nanofibres of different ratios (1:3; 3:5 and 1:1) were produced with the electrospinning method. They were characterized as for their morphology, hydrophilicity and electrical conductivity. The membranes were then evaluated for their cellular biocompatibility in terms of cell attachment, morphology and cell proliferation. The effect of the PANI content on the membrane properties is discussed. Increase in PANI content resulted in membranes with higher hydrophobicity and higher electrical conductivity. It was found that none of the membranes showed any toxic effects on osteoblasts and fibroblasts, and that they all supported cell attachment and growth, even to a greater extent than tissue culture plastic. The membrane with the PANI/CS ratio 1:3 supports better cell attachment and proliferation for both cell lines due to a synergistic effect of hydrophilicity retention due to the high chitosan content and the conductivity that PANI introduced to the membrane.
Collapse
|
192
|
Weidenbacher L, Abrishamkar A, Rottmar M, Guex A, Maniura-Weber K, deMello A, Ferguson S, Rossi R, Fortunato G. Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs. Acta Biomater 2017; 64:137-147. [PMID: 29030306 DOI: 10.1016/j.actbio.2017.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
The fabrication of functional 3D tissues is a major goal in tissue engineering. While electrospinning is a promising technique to manufacture a structure mimicking the extracellular matrix, cell infiltration into electrospun scaffolds remains challenging. The robust and in situ delivery of cells into such biomimetic scaffolds would potentially enable the design of tissue engineered constructs with spatial control over cellular distribution but often solvents employed in the spinning process are problematic due to their high cytotoxicity. Herein, microfluidic cell encapsulation is used to establish a temporary protection vehicle for the in situ delivery of cells for the development of a fibrous, cell-laden hybrid biograft. Therefore a layer-by-layer process is used by alternating fiber electrospinning and cell spraying procedures. Both encapsulation and subsequent electrospraying of capsules has no negative effect on the viability and myogenic differentiation of murine myoblast cells. Propidium iodide positive stained cells were analyzed to quantify the amount of dead cells and the presence of myosin heavy chain positive cells after the processes was shown. Furthermore, encapsulation successfully protects cells from cytotoxic solvents (such as dimethylformamide) during in situ delivery of the cells into electrospun poly(vinylidene fluoride-co-hexafluoropropylene) scaffolds. The resulting cell-populated biografts demonstrate the clear potential of this approach in the creation of viable tissue engineering constructs. STATEMENT OF SIGNIFICANCE Infiltration of cells and their controlled spatial distribution within fibrous electrospun membranes is a challenging task but allows for the development of functional highly organized 3D hybrid tissues. Combining polymer electrospinning and cell electrospraying in a layer-by-layer approach is expected to overcome current limitations of reduced cell infiltration after traditional static seeding. However, organic solvents, used during the electrospinning process, impede often major issues due to their high cytotoxicity. Utilizing microfluidic encapsulation as a mean to embed cells within a protective polymer casing enables the controlled deposition of viable cells without interfering with the cellular phenotype. The presented techniques allow for novel cell manipulation approaches being significant for enhanced 3D tissue engineering based on its versatility in terms of material and cell selection.
Collapse
|
193
|
Mishra S, Vazquez M. A Gal-MµS Device to Evaluate Cell Migratory Response to Combined Galvano-Chemotactic Fields. BIOSENSORS-BASEL 2017; 7:bios7040054. [PMID: 29160793 PMCID: PMC5746777 DOI: 10.3390/bios7040054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023]
Abstract
Electric fields have been studied extensively in biomedical engineering (BME) for numerous regenerative therapies. Recent studies have begun to examine the biological effects of electric fields in combination with other environmental cues, such as tissue-engineered extracellular matrices (ECM), chemical gradient profiles, and time-dependent temperature gradients. In the nervous system, cell migration driven by electrical fields, or galvanotaxis, has been most recently studied in transcranial direct stimulation (TCDS), spinal cord repair and tumor treating fields (TTF). The cell migratory response to galvano-combinatory fields, such as magnetic fields, chemical gradients, or heat shock, has only recently been explored. In the visual system, restoration of vision via cellular replacement therapies has been limited by low numbers of motile cells post-transplantation. Here, the combinatory application of electrical fields with other stimuli to direct cells within transplantable biomaterials and/or host tissues has been understudied. In this work, we developed the Gal-MµS device, a novel microfluidics device capable of examining cell migratory behavior in response to single and combinatory stimuli of electrical and chemical fields. The formation of steady-state, chemical concentration gradients and electrical fields within the Gal-MµS were modeled computationally and verified experimentally within devices fabricated via soft lithography. Further, we utilized real-time imaging within the device to capture cell trajectories in response to electric fields and chemical gradients, individually, as well as in combinatory fields of both. Our data demonstrated that neural cells migrated longer distances and with higher velocities in response to combined galvanic and chemical stimuli than to either field individually, implicating cooperative behavior. These results reveal a biological response to galvano-chemotactic fields that is only partially understood, as well as point towards novel migration-targeted treatments to improve cell-based regenerative therapies.
Collapse
Affiliation(s)
- Shawn Mishra
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Maribel Vazquez
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| |
Collapse
|
194
|
Jeong GJ, Oh JY, Kim YJ, Bhang SH, Jang HK, Han J, Yoon JK, Kwon SM, Lee TI, Kim BS. Therapeutic Angiogenesis via Solar Cell-Facilitated Electrical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38344-38355. [PMID: 29043772 DOI: 10.1021/acsami.7b13322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell therapy has been suggested as a treatment modality for ischemic diseases, but the poor survival and engraftment of implanted cells limit its therapeutic efficacy. To overcome such limitation, we used electrical stimulation (ES) derived from a wearable solar cell for inducing angiogenesis in ischemic tissue. ES enhanced the secretion of angiogenic growth factors and the migration of mesenchymal stem cells (MSCs), myoblasts, endothelial progenitor cells, and endothelial cells in vitro. In a mouse ischemic hindlimb model, ES generated by a solar cell and applied to the ischemic region promoted migration of MSCs toward the ischemic site and upregulated expression of angiogenic paracrine factors (vascular endothelial, basic fibroblast, and hepatocyte growth factors; and stromal cell-derived factor-1α). Importantly, solar cell-generated ES promoted the formation of capillaries and arterioles at the ischemic region, attenuated muscle necrosis and fibrosis, and eventually prevented loss of the ischemic limb. Solar cell ES therapy showed higher angiogenic efficacy than conventional MSC therapy. This study shows the feasibility of using solar cell ES as a novel treatment for therapeutic angiogenesis.
Collapse
Affiliation(s)
| | - Jin Young Oh
- Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Republic of Korea
| | - Yeon-Ju Kim
- Department of Physiology, School of Medicine, Pusan National University , Yangsan, 50612 Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | | | | | - Sang-Mo Kwon
- Department of Physiology, School of Medicine, Pusan National University , Yangsan, 50612 Republic of Korea
| | - Tae Il Lee
- Department of BioNano Technology, Gachon University , Seongnam 13120, Republic of Korea
| | | |
Collapse
|
195
|
Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2017; 150:60-86. [PMID: 29032331 DOI: 10.1016/j.biomaterials.2017.10.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Electric field (EF) stimulation can play a vital role in eliciting appropriate stem cell response. Such an approach is recently being established to guide stem cell differentiation through osteogenesis/neurogenesis/cardiomyogenesis. Despite significant recent efforts, the biophysical mechanisms by which stem cells sense, interpret and transform electrical cues into biochemical and biological signals still remain unclear. The present review critically analyses the variety of EF stimulation approaches that can be employed to evoke appropriate stem cell response and also makes an attempt to summarize the underlying concepts of this notion, placing special emphasis on stem cell based tissue engineering and regenerative medicine. This review also discusses the major signaling pathways and cellular responses that are elicited by electric stimulation, including the participation of reactive oxygen species and heat shock proteins, modulation of intracellular calcium ion concentration, ATP production and numerous other events involving the clustering or reassembling of cell surface receptors, cytoskeletal remodeling and so on. The specific advantages of using external electric stimulation in different modalities to regulate stem cell fate processes are highlighted with explicit examples, in vitro and in vivo.
Collapse
|
196
|
Zhu S, Jing W, Hu X, Huang Z, Cai Q, Ao Y, Yang X. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers. J Biomed Mater Res A 2017; 105:3369-3383. [PMID: 28795778 DOI: 10.1002/jbm.a.36181] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/28/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering using bone mesenchymal stromal cells (BMSCs) is a multidisciplinary strategy that requires biodegradable scaffold, cell, various promoting cues to work simultaneously. Electrical stimulation (ES) is known able to promote osteogenic differentiation of BMSCs, but it is interesting to know how can it play the strongest promotion effect. To strengthen local ES on BMSCs, parallel-aligned conductive nanofibers were electrospun from the mixtures of poly(L-lactide) (PLLA) and multi-walled carbon nanotubes (MWCNTs), and used for cell culture. Osteogenic differentiation of BMSCs was conducted by applying ES (direct current, 1.5 V, 1.5 h/day) perpendicular to the fiber direction during the day 1-7, day 8-14, or day 15-21 period of the osteoinductive culture. In comparison with ES-free groups, bone-related markers and genes were found significantly up-regulated when ES was applied on BMSCs growing on nanofibers having higher conductivity. When the ES was applied at the earlier stage of osteoinductive culture, the promotion effect on osteogenic differentiation would be stronger. In the presence of a BMP blocker, the down-regulated expressions of bone-related genes were able to be slightly recovered by ES, especially when the ES was applied at the beginning of osteoinductive culture (i.e. day 1-7). The promotion effect generated by ES in the early stage was found sustainable to later stages of differentiation, while those ES applied at later stages of differentiation should have missed the optimal point. In other words, later ES was not so necessary in inducing the osteogenic differentiation of BMSCs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3369-3383, 2017.
Collapse
Affiliation(s)
- Siqi Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Zirong Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
197
|
Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties. Sci Rep 2017; 7:4345. [PMID: 28659629 PMCID: PMC5489531 DOI: 10.1038/s41598-017-04280-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022] Open
Abstract
Conventional methods to engineer electroconductive hydrogels (ECHs) through the incorporation of conductive nanomaterials and polymers exhibit major technical limitations. These are mainly associated with the cytotoxicity, as well as poor solubility, processability, and biodegradability of their components. Here, we describe the engineering of a new class of ECHs through the functionalization of non-conductive polymers with a conductive choline-based bio-ionic liquid (Bio-IL). Bio-IL conjugated hydrogels exhibited a wide range of highly tunable physical properties, remarkable in vitro and in vivo biocompatibility, and high electrical conductivity without the need for additional conductive components. The engineered hydrogels could support the growth and function of primary cardiomyocytes in both two dimentinal (2D) and three dimensional (3D) cultures in vitro. Furthermore, they were shown to be efficiently biodegraded and possess low immunogenicity when implanted subcutaneously in rats. Taken together, our results suggest that Bio-IL conjugated hydrogels could be implemented and readily tailored to different biomedical and tissue engineering applications.
Collapse
|
198
|
Zhu W, George JK, Sorger VJ, Grace Zhang L. 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication 2017; 9:025002. [PMID: 28349897 DOI: 10.1088/1758-5090/aa6999] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
3D printing has shown promise for neural regeneration by providing customized nerve scaffolds to structurally support and bridge the defect gap as well as deliver cells or various bioactive substances. Low-level light therapy (LLLT) exhibits positive effects on rehabiliation of degenerative nerves and neural disorders. With this in mind, we postulate that 3D printed neural scaffold coupling with LLLT will generate a new strategy to repair neural degeneration. To achieve this goal, we applied red laser light to stimualte neural stem cells on 3D printed scaffolds and investigated the subsequent cell response with respect to cell proliferation and differentiation. Here we show that cell prolifeartion rate and intracellular reactive oxgen species synthesis were significantly increased after 15 s laser stimulation follwed by 1 d culture. Over culturing time of 14 d in vitro, the laser stimulation promoted neuronal differentiation of neural stem cells, while the glial differentiation was suppressed based on results of both immunocytochemistry studies and real-time quantitative reverse transcription polymerase chain reaction testing. These findings suggest that integration of 3D printing and LLLT might provide a powerful methodology for neural tissue engineering.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, United States of America
| | | | | | | |
Collapse
|
199
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
200
|
Robinson VS, Garner AL, Loveless AM, Neculaes VB. Calculated plasma membrane voltage induced by applying electric pulses using capacitive coupling. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa630a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|