151
|
Feng S, Liu Z, Cheng J, Li Z, Tian L, Liu M, Yang T, Liu Y, Liu Y, Dai H, Yang Z, Zhang Q, Wang G, Zhang J, Jiang H, Wei A. Zanthoxylum-specific whole genome duplication and recent activity of transposable elements in the highly repetitive paleotetraploid Z. bungeanum genome. HORTICULTURE RESEARCH 2021; 8:205. [PMID: 34480029 PMCID: PMC8417289 DOI: 10.1038/s41438-021-00665-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 05/14/2023]
Abstract
Zanthoxylum bungeanum is an important spice and medicinal plant that is unique for its accumulation of abundant secondary metabolites, which create a characteristic aroma and tingling sensation in the mouth. Owing to the high proportion of repetitive sequences, high heterozygosity, and increased chromosome number of Z. bungeanum, the assembly of its chromosomal pseudomolecules is extremely challenging. Here, we present a genome sequence for Z. bungeanum, with a dramatically expanded size of 4.23 Gb, assembled into 68 chromosomes. This genome is approximately tenfold larger than that of its close relative Citrus sinensis. After the divergence of Zanthoxylum and Citrus, the lineage-specific whole-genome duplication event η-WGD approximately 26.8 million years ago (MYA) and the recent transposable element (TE) burst ~6.41 MYA account for the substantial genome expansion in Z. bungeanum. The independent Zanthoxylum-specific WGD event was followed by numerous fusion/fission events that shaped the genomic architecture. Integrative genomic and transcriptomic analyses suggested that prominent species-specific gene family expansions and changes in gene expression have shaped the biosynthesis of sanshools, terpenoids, and anthocyanins, which contribute to the special flavor and appearance of Z. bungeanum. In summary, the reference genome provides a valuable model for studying the impact of WGDs with recent TE activity on gene gain and loss and genome reconstruction and provides resources to accelerate Zanthoxylum improvement.
Collapse
Affiliation(s)
- Shijing Feng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Zhenshan Liu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zihe Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shanxi, China
| | - Lu Tian
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Tuxi Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - Yonghong Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing, China
| | - Zujun Yang
- Center for Information in Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Shaanxi, China.
| |
Collapse
|
152
|
Gao Y, Yang Q, Yan X, Wu X, Yang F, Li J, Wei J, Ni J, Ahmad M, Bai S, Teng Y. High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. HORTICULTURE RESEARCH 2021; 8:197. [PMID: 34465760 PMCID: PMC8408243 DOI: 10.1038/s41438-021-00632-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
Dormancy-associated MADS-box (DAM) genes serve as crucial regulators of the endodormancy cycle in rosaceous plants. Although pear DAM genes have been identified previously, the lack of a high-quality reference genome and techniques to study gene function have prevented accurate genome-wide analysis and functional verification of such genes. Additionally, the contribution of other genes to the regulation of endodormancy release remains poorly understood. In this study, a high-quality genome assembly for 'Cuiguan' pear (Pyrus pyrifolia), which is a leading cultivar with a low chilling requirement cultivated in China, was constructed using PacBio and Hi-C technologies. Using this genome sequence, we revealed that pear DAM genes were tandemly clustered on Chr8 and Chr15 and were differentially expressed in the buds between 'Cuiguan' and the high-chilling-requirement cultivar 'Suli' during the dormancy cycle. Using a virus-induced gene silencing system, we determined the repressive effects of DAM genes on bud break. Several novel genes potentially involved in the regulation of endodormancy release were identified by RNA sequencing and H3K4me3 chromatin immunoprecipitation sequencing analyses of 'Suli' buds during artificial chilling using the new reference genome. Our findings enrich the knowledge of the regulatory mechanism underlying endodormancy release and chilling requirements and provide a foundation for the practical regulation of dormancy release in fruit trees as an adaptation to climate change.
Collapse
Affiliation(s)
- Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Xinhui Yan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Feng Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianzhao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- College of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, 572000, China
| |
Collapse
|
153
|
Huang C, Ying H, Yang X, Gao Y, Li T, Wu B, Ren M, Zhang Z, Ding J, Gao J, Wen D, Ye X, Liu L, Wang H, Sun G, Zou Y, Chen N, Wang L. The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance. Cell Discov 2021; 7:62. [PMID: 34373445 PMCID: PMC8352907 DOI: 10.1038/s41421-021-00286-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Cardamine enshiensis is a well-known selenium (Se)-hyperaccumulating plant. Se is an essential trace element associated with many health benefits. Despite its critical importance, genomic information of this species is limited. Here, we report a chromosome-level genome assembly of C. enshiensis, which consists of 443.4 Mb in 16 chromosomes with a scaffold N50 of 24 Mb. To elucidate the mechanism of Se tolerance and hyperaccumulation in C. enshiensis, we generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes. The results reveal that flavonoid, glutathione, and lignin biosynthetic pathways may play important roles in protecting C. enshiensis from stress induced by Se. Hi-C analysis of chromatin interaction patterns showed that the chromatin of C. enshiensis is partitioned into A and B compartments, and strong interactions between the two telomeres of each chromosome were correlated with histone modifications, epigenetic markers, DNA methylation, and RNA abundance. Se supplementation could affect the 3D chromatin architecture of C. enshiensis at the compartment level. Genes with compartment changes after Se treatment were involved in selenocompound metabolism, and genes in regions with topologically associated domain insulation participated in cellular responses to Se, Se binding, and flavonoid biosynthesis. This multiomics research provides molecular insight into the mechanism underlying Se tolerance and hyperaccumulation in C. enshiensis.
Collapse
Affiliation(s)
- Chuying Huang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China. .,Hubei Selenium and Human Health Institute, Enshi, Hubei, China.
| | - Hongqin Ying
- Hubei Selenium Industrial Technology Research Institute, Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi, Hubei, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuan Gao
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 405 30, Gothenburg, Sweden
| | - Tuo Li
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Bo Wu
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Meng Ren
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zixiong Zhang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Jun Ding
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Jianhua Gao
- South China Potato Research Center, Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Dan Wen
- Bureau of Agricultural & Rural Affairs of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Xingzhi Ye
- South China Potato Research Center, Enshi Autonomous Prefecture Academy of Agricultural Sciences, Enshi, Hubei, China
| | - Ling Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Guogen Sun
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Yi Zou
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| | - Nansheng Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Li Wang
- Hubei Minzu University Affiliated Enshi Clinical Medical School, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.,Hubei Selenium and Human Health Institute, Enshi, Hubei, China
| |
Collapse
|
154
|
Yang C, Ma L, Xiao D, Liu X, Jiang X, Ying Z, Lin Y. Chromosome-scale assembly of the Sparassis latifolia genome obtained using long-read and Hi-C sequencing. G3 (BETHESDA, MD.) 2021; 11:jkab173. [PMID: 34021320 PMCID: PMC8496284 DOI: 10.1093/g3journal/jkab173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022]
Abstract
Sparassis latifolia is a valuable edible mushroom cultivated in China. In 2018, our research group reported an incomplete and low-quality genome of S. latifolia obtained by Illumina HiSeq 2500 sequencing. These limitations in the available genome have constrained genetic and genomic studies in this mushroom resource. Herein, an updated draft genome sequence of S. latifolia was generated by Oxford Nanopore sequencing and the high-through chromosome conformation capture (Hi-C) technique. A total of 8.24 Gb of Oxford Nanopore long reads representing ∼198.08X coverage of the S. latifolia genome were generated. Subsequently, a high-quality genome of 41.41 Mb, with scaffold and contig N50 sizes of 3.31 and 1.51 Mb, respectively, was assembled. Hi-C scaffolding of the genome resulted in 12 pseudochromosomes containing 93.56% of the bases in the assembled genome. Genome annotation further revealed that 17.47% of the genome was composed of repetitive sequences. In addition, 13,103 protein-coding genes were predicted, among which 98.72% were functionally annotated. BUSCO assay results further revealed that there were 92.07% complete BUSCOs. The improved chromosome-scale assembly and genome features described here will aid further molecular elucidation of various traits, breeding of S. latifolia, and evolutionary studies with related taxa.
Collapse
Affiliation(s)
- Chi Yang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Lu Ma
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Donglai Xiao
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoyu Liu
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoling Jiang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Zhenghe Ying
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Yanquan Lin
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| |
Collapse
|
155
|
Qu M, Liu Y, Zhang Y, Wan S, Ravi V, Qin G, Jiang H, Wang X, Zhang H, Zhang B, Gao Z, Huysseune A, Zhang Z, Zhang H, Chen Z, Yu H, Wu Y, Tang L, Li C, Zhong J, Ma L, Wang F, Zheng H, Yin J, Witten PE, Meyer A, Venkatesh B, Lin Q. Seadragon genome analysis provides insights into its phenotype and sex determination locus. SCIENCE ADVANCES 2021; 7:eabg5196. [PMID: 34407945 PMCID: PMC8373133 DOI: 10.1126/sciadv.abg5196] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/01/2021] [Indexed: 05/29/2023]
Abstract
The iconic phenotype of seadragons includes leaf-like appendages, a toothless tubular mouth, and male pregnancy involving incubation of fertilized eggs on an open "brood patch." We de novo-sequenced male and female genomes of the common seadragon (Phyllopteryx taeniolatus) and its closely related species, the alligator pipefish (Syngnathoides biaculeatus). Transcription profiles from an evolutionary novelty, the leaf-like appendages, show that a set of genes typically involved in fin development have been co-opted as well as an enrichment of transcripts for potential tissue repair and immune defense genes. The zebrafish mutants for scpp5, which is lost in all syngnathids, were found to lack or have deformed pharyngeal teeth, supporting the hypothesis that the loss of scpp5 has contributed to the loss of teeth in syngnathids. A putative sex-determining locus encoding a male-specific amhr2y gene shared by common seadragon and alligator pipefish was identified.
Collapse
Affiliation(s)
- Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Shiming Wan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A*STAR, 138673 Biopolis, Singapore
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Han Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ann Huysseune
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Zhixin Zhang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Yongli Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Lu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Chunyan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Jia Zhong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Liming Ma
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Fengling Wang
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Paul Eckhard Witten
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany.
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 138673 Biopolis, Singapore.
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
156
|
Wang F, Qi J, Tian M, Gao Y, Xiong X, Wang J, Song F, Li D. Genome Sequence Resource for Stagonosporopsis cucurbitacearum, a Cause of Gummy Stem Blight Disease of Watermelon. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:977-980. [PMID: 33797947 DOI: 10.1094/mpmi-02-21-0048-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gummy stem blight (GSB), which is caused by three related species of Stagonosporopsis, is a worldwide devastating disease of cucurbit crops including watermelon. Previously S. cucurbitacearum was reported to be the major fungal cause of watermelon GSB in Southern China, where it causes a significant decrease in watermelon yield. Here, we present the draft whole genome sequence, gene prediction and annotation of S. cucurbitacearum strain DBTL4, isolated from diseased watermelon plants. To our knowledge, this is the first publicly available genome sequence of this species, and knowledge of this genome sequence will help further understand the pathogenic mechanism of S. cucurbitacearum to cucurbit plants.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Fahao Wang
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahui Qi
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Miao Tian
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhou Gao
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaohui Xiong
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiajing Wang
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fengming Song
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dayong Li
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
157
|
Xu P, Wang Y, Sun F, Wu R, Du H, Wang Y, Jiang L, Wu X, Wu X, Yang L, Xing N, Hu Y, Wang B, Huang Y, Tao Y, Gao Q, Liang C, Li Y, Lu Z, Li G. Long-read genome assembly and genetic architecture of fruit shape in the bottle gourd. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:956-968. [PMID: 34043857 DOI: 10.1111/tpj.15358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The bottle gourd (Lagenaria siceraria, Cucurbitaceae) is an important horticultural crop exhibiting tremendous diversity in fruit shape. The genetic architecture of fruit shape variation in this species remains unknown. We assembled a long-read-based, high-quality reference genome (ZAAS_Lsic_2.0) with a contig N50 value over 390-fold greater than the existing reference genomes. We then focused on dissection of fruit shape using a one-step geometric morphometrics-based functional mapping approach. We identified 11 quantitative trait loci (QTLs) responsible for fruit shape (fsQTLs), reconstructed their visible effects and revealed syntenic relationships of bottle gourd fsQTLs with 12 fsQTLs previously reported in cucumber, melon or watermelon. Homologs of several well-known and newly identified fruit shape genes, including SUN, OFP, AP2 and auxin transporters, were comapped with bottle gourd QTLs.
Collapse
Affiliation(s)
- Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Fengshuo Sun
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, USA
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Wang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Nailin Xing
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yaowen Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yunping Huang
- Institute of Vegetables, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ye Tao
- Biozeron Biotechnology Co., Ltd, Shanghai, China
| | - Qiang Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanwei Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
158
|
Xiao SJ, Mou ZB, Yang RB, Fan DD, Liu JQ, Zou Y, Zhu SL, Zou M, Zhou CW, Liu HP. Genome and population evolution and environmental adaptation of Glyptosternon maculatum on the Qinghai-Tibet Plateau. Zool Res 2021; 42:502-513. [PMID: 34254744 PMCID: PMC8317186 DOI: 10.24272/j.issn.2095-8137.2021.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Persistent uplift means the Qinghai-Tibet Plateau (QTP) is an ideal natural laboratory to investigate genome evolution and adaptation within highland environments. However, how paleogeographic and paleoclimatic events influence the genome and population of endemic fish species remains unclear. Glyptosternon maculatum is an ancient endemic fish found on the QTP and the only critically endangered species in the Sisoridae family. Here, we found that major transposons in the G. maculatum genome showed episodic bursts, consistent with contemporaneous geological and climatic events during the QTP formation. Notably, histone genes showed significant expansion in the G. maculatum genome, which may be mediated by long interspersed nuclear elements (LINE) repetitive element duplications. Population analysis showed that ancestral G. maculatum populations experienced two significant depressions 2.6 million years ago (Mya) and 10 000 years ago, exhibiting excellent synchronization with Quaternary glaciation and the Younger Dryas, respectively. Thus, we propose that paleogeography and paleoclimate were dominating driving forces for population dynamics in endemic fish on the QTP. Tectonic movements and temperature fluctuation likely destroyed the habitat and disrupted the drainage connectivity among populations. These factors may have caused severe bottlenecks and limited migration among ancestral G. maculatum populations, resulting in the low genetic diversity and endangered status of the species today.
Collapse
Affiliation(s)
- Shi-Jun Xiao
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 810000, China.,Department of Computer Science, Wuhan University of Technology, Wuhan, Hubei 430070, China.,College of Plant Protection, Jilin Agriculture University, Changchun, Jilin 130118, China.,Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing, Zhejiang 314000, China
| | - Zen-Bo Mou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 810000, China
| | - Rui-Bin Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ding-Ding Fan
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia-Qi Liu
- Department of Computer Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yu Zou
- Department of Computer Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Shi-Lin Zhu
- Department of Computer Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Ming Zou
- Department of Computer Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Chao-Wei Zhou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 810000, China.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 402400, China. E-mail:
| | - Hai-Ping Liu
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 810000, China. E-mail:
| |
Collapse
|
159
|
Geng Y, Guan Y, Qiong L, Lu S, An M, Crabbe MJC, Qi J, Zhao F, Qiao Q, Zhang T. Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation. BMC Biol 2021; 19:143. [PMID: 34294107 PMCID: PMC8296595 DOI: 10.1186/s12915-021-01079-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Understanding how organisms evolve and adapt to extreme habitats is of crucial importance in evolutionary ecology. Altitude gradients are an important determinant of the distribution pattern and range of organisms due to distinct climate conditions at different altitudes. High-altitude regions often provide extreme environments including low temperature and oxygen concentration, poor soil, and strong levels of ultraviolet radiation, leading to very few plant species being able to populate elevation ranges greater than 4000 m. Field pennycress (Thlaspi arvense) is a valuable oilseed crop and emerging model plant distributed across an elevation range of nearly 4500 m. Here, we generate an improved genome assembly to understand how this species adapts to such different environments. Results We sequenced and assembled de novo the chromosome-level pennycress genome of 527.3 Mb encoding 31,596 genes. Phylogenomic analyses based on 2495 single-copy genes revealed that pennycress is closely related to Eutrema salsugineum (estimated divergence 14.32–18.58 Mya), and both species form a sister clade to Schrenkiella parvula and genus Brassica. Field pennycress contains the highest percentage (70.19%) of transposable elements in all reported genomes of Brassicaceae, with the retrotransposon proliferation in the Middle Pleistocene being likely responsible for the expansion of genome size. Moreover, our analysis of 40 field pennycress samples in two high- and two low-elevation populations detected 1,256,971 high-quality single nucleotide polymorphisms. Using three complementary selection tests, we detected 130 candidate naturally selected genes in the Qinghai-Tibet Plateau (QTP) populations, some of which are involved in DNA repair and the ubiquitin system and potential candidates involved in high-altitude adaptation. Notably, we detected a single base mutation causing loss-of-function of the FLOWERING LOCUS C protein, responsible for the transition to early flowering in high-elevation populations. Conclusions Our results provide a genome-wide perspective of how plants adapt to distinct environmental conditions across extreme elevation differences and the potential for further follow-up research with extensive data from additional populations and species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01079-0.
Collapse
Affiliation(s)
- Yupeng Geng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China
| | - Yabin Guan
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China.,School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - La Qiong
- Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China
| | - Shugang Lu
- School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Miao An
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, UK.,Institute of Biomedical and Environmental Science & Technology, School of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK.,School of Life Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ji Qi
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Fangqing Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China. .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qin Qiao
- School of Agriculture, Yunnan University, Kunming, 650504, China.
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
160
|
The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat Commun 2021; 12:4247. [PMID: 34253727 PMCID: PMC8275611 DOI: 10.1038/s41467-021-24528-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The gymnosperm Welwitschia mirabilis belongs to the ancient, enigmatic gnetophyte lineage. It is a unique desert plant with extreme longevity and two ever-elongating leaves. We present a chromosome-level assembly of its genome (6.8 Gb/1 C) together with methylome and transcriptome data to explore its astonishing biology. We also present a refined, high-quality assembly of Gnetum montanum to enhance our understanding of gnetophyte genome evolution. The Welwitschia genome has been shaped by a lineage-specific ancient, whole genome duplication (~86 million years ago) and more recently (1-2 million years) by bursts of retrotransposon activity. High levels of cytosine methylation (particularly at CHH motifs) are associated with retrotransposons, whilst long-term deamination has resulted in an exceptionally GC-poor genome. Changes in copy number and/or expression of gene families and transcription factors (e.g. R2R3MYB, SAUR) controlling cell growth, differentiation and metabolism underpin the plant's longevity and tolerance to temperature, nutrient and water stress.
Collapse
|
161
|
Ling J, Xie X, Gu X, Zhao J, Ping X, Li Y, Yang Y, Mao Z, Xie B. High-quality chromosome-level genomes of Cucumis metuliferus and Cucumis melo provide insight into Cucumis genome evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:136-148. [PMID: 33866620 DOI: 10.1111/tpj.15279] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Cucumis metuliferus (African horned cucumber), a wild relative of Cucumis sativus (cucumber) and Cucumis melo (melon), displays high-level resistance to several important plant pathogens (e.g., root-knot nematodes and several viruses). Here, we report a chromosome-level genome assembly for C. metuliferus, with a 316 Mb genome sequence comprising 29 039 genes. Phylogenetic analysis of related species in family Cucurbitaceae indicated that the divergence time between C. metuliferus and melon was 17.8 million years ago. Comparisons between the C. metuliferus and melon genomes revealed large structural variations (inversions and translocations >1 Mb) in eight chromosomes of these two species. Gene family comparison showed that C. metuliferus has the largest number of resistance-related nucleotide-binding site leucine-rich repeat (NBS-LRR) genes in Cucurbitaceae. The loss of NBS-LRR loci caused by large insertions or deletions (indels) and pseudogenization caused by small indels explained the loss of NBS-LRR genes in Cucurbitaceae. Population structure analysis suggested that C. metuliferus originated in Zimbabwe, then spread to other southern African regions where it likely underwent similar domestic selection as melon. This C. metuliferus reference sequence will accelerate the understanding of the molecular evolution of resistance-related genes and enhance cucurbit crop improvement efforts.
Collapse
Affiliation(s)
- Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiaoxiao Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xingxing Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
162
|
Zhang Y, Mao F, Mu H, Huang M, Bao Y, Wang L, Wong NK, Xiao S, Dai H, Xiang Z, Ma M, Xiong Y, Zhang Z, Zhang L, Song X, Wang F, Mu X, Li J, Ma H, Zhang Y, Zheng H, Simakov O, Yu Z. The genome of Nautilus pompilius illuminates eye evolution and biomineralization. Nat Ecol Evol 2021; 5:927-938. [PMID: 33972735 PMCID: PMC8257504 DOI: 10.1038/s41559-021-01448-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Nautilus is the sole surviving externally shelled cephalopod from the Palaeozoic. It is unique within cephalopod genealogy and critical to understanding the evolutionary novelties of cephalopods. Here, we present a complete Nautilus pompilius genome as a fundamental genomic reference on cephalopod innovations, such as the pinhole eye and biomineralization. Nautilus shows a compact, minimalist genome with few encoding genes and slow evolutionary rates in both non-coding and coding regions among known cephalopods. Importantly, multiple genomic innovations including gene losses, independent contraction and expansion of specific gene families and their associated regulatory networks likely moulded the evolution of the nautilus pinhole eye. The conserved molluscan biomineralization toolkit and lineage-specific repetitive low-complexity domains are essential to the construction of the nautilus shell. The nautilus genome constitutes a valuable resource for reconstructing the evolutionary scenarios and genomic innovations that shape the extant cephalopods.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Huawei Mu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Minwei Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Nai-Kei Wong
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shu Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Mingli Ma
- Biomarker Technologies Corporation, Beijing, China
| | - Yuanyan Xiong
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Zhang
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lvping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaoyuan Song
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fan Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xiyu Mu
- Biomarker Technologies Corporation, Beijing, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | | | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
163
|
Wang R, Yang Y, Jing Y, Segar ST, Zhang Y, Wang G, Chen J, Liu QF, Chen S, Chen Y, Cruaud A, Ding YY, Dunn DW, Gao Q, Gilmartin PM, Jiang K, Kjellberg F, Li HQ, Li YY, Liu JQ, Liu M, Machado CA, Ming R, Rasplus JY, Tong X, Wen P, Yang HM, Yang JJ, Yin Y, Zhang XT, Zhang YY, Yu H, Yue Z, Compton SG, Chen XY. Molecular mechanisms of mutualistic and antagonistic interactions in a plant-pollinator association. Nat Ecol Evol 2021; 5:974-986. [PMID: 34002050 DOI: 10.1038/s41559-021-01469-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Many insects metamorphose from antagonistic larvae into mutualistic adult pollinators, with reciprocal adaptation leading to specialized insect-plant associations. It remains unknown how such interactions are established at molecular level. Here we assemble high-quality genomes of a fig species, Ficus pumila var. pumila, and its specific pollinating wasp, Wiebesia pumilae. We combine multi-omics with validation experiments to reveal molecular mechanisms underlying this specialized interaction. In the plant, we identify the specific compound attracting pollinators and validate the function of several key genes regulating its biosynthesis. In the pollinator, we find a highly reduced number of odorant-binding protein genes and an odorant-binding protein mainly binding the attractant. During antagonistic interaction, we find similar chemical profiles and turnovers throughout the development of galled ovules and seeds, and a significant contraction of detoxification-related gene families in the pollinator. Our study identifies some key genes bridging coevolved mutualists, establishing expectations for more diffuse insect-pollinator systems.
Collapse
Affiliation(s)
- Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yang Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yi Jing
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, UK
| | - Yu Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jin Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | | | - Shan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | | | - Yuan-Yuan Ding
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Derek W Dunn
- College of Life Sciences, Northwest University, Xi'an, China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Philip M Gilmartin
- Department of Biological and Marine Science, University of Hull, Hull, UK
| | - Kai Jiang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Finn Kjellberg
- CEFE, CNRS, University of Montpellier, Paul Valéry University Montpellier, EPHE, IRD, Montpellier, France
| | - Hong-Qing Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jian-Quan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Min Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Xin Tong
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ping Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | | | - Jing-Jun Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ye Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xing-Tan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. .,School of Life Sciences, Qufu Normal University, Qufu, China.
| | - Zhen Yue
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.
| | | | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China. .,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
164
|
Wang J, Li S, Lan L, Xie M, Cheng S, Gan X, Huang G, Du G, Yu K, Ni X, Liu B, Peng G. De novo genome assembly of a foxtail millet cultivar Huagu11 uncovered the genetic difference to the cultivar Yugu1, and the genetic mechanism of imazethapyr tolerance. BMC PLANT BIOLOGY 2021; 21:271. [PMID: 34118890 PMCID: PMC8196518 DOI: 10.1186/s12870-021-03003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Setaria italica is the second-most widely planted species of millets in the world and an important model grain crop for the research of C4 photosynthesis and abiotic stress tolerance. Through three genomes assembly and annotation efforts, all genomes were based on next generation sequencing technology, which limited the genome continuity. RESULTS Here we report a high-quality whole-genome of new cultivar Huagu11, using single-molecule real-time sequencing and High-throughput chromosome conformation capture (Hi-C) mapping technologies. The total assembly size of the Huagu11 genome was 408.37 Mb with a scaffold N50 size of 45.89 Mb. Compared with the other three reported millet genomes based on the next generation sequencing technology, the Huagu11 genome had the highest genomic continuity. Intraspecies comparison showed about 94.97 and 94.66% of the Yugu1 and Huagu11 genomes, respectively, were able to be aligned as one-to-one blocks with four chromosome inversion. The Huagu11 genome contained approximately 19.43 Mb Presence/absence Variation (PAV) with 627 protein-coding transcripts, while Yugu1 genomes had 20.53 Mb PAV sequences encoding 737 proteins. Overall, 969,596 Single-nucleotide polymorphism (SNPs) and 156,282 insertion-deletion (InDels) were identified between these two genomes. The genome comparison between Huagu11 and Yugu1 should reflect the genetic identity and variation between the cultivars of foxtail millet to a certain extent. The Ser-626-Aln substitution in acetohydroxy acid synthase (AHAS) was found to be relative to the imazethapyr tolerance in Huagu11. CONCLUSIONS A new improved high-quality reference genome sequence of Setaria italica was assembled, and intraspecies genome comparison determined the genetic identity and variation between the cultivars of foxtail millet. Based on the genome sequence, it was inferred that the Ser-626-Aln substitution in AHAS was responsible for the imazethapyr tolerance in Huagu11. The new improved reference genome of Setaria italica will promote the genic and genomic studies of this species and be beneficial for cultivar improvement.
Collapse
Affiliation(s)
- Jie Wang
- Genetic, Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Agro Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, 430090, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Agro Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, 430090, China
| | - Lei Lan
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mushan Xie
- Genetic, Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shu Cheng
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaolong Gan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Crop Molecular Breeding, Xining, 810008, Qinghai, China
| | - Gang Huang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Agro Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, 430090, China
| | - Guohua Du
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Agro Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, 430090, China
| | - Xuemei Ni
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Key Laboratory of Crop Molecular Breeding, Xining, 810008, Qinghai, China.
| | - Guoxiong Peng
- Genetic, Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
165
|
Huang Y, Mustapha UF, Huang Y, Tian C, Yang W, Chen H, Deng S, Zhu C, Jiang D, Li G. A Chromosome-Level Genome Assembly of the Spotted Scat (Scatophagus argus). Genome Biol Evol 2021; 13:evab092. [PMID: 34146395 PMCID: PMC8214404 DOI: 10.1093/gbe/evab092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
The spotted scat, Scatophagus argus is a member of the family Scatophagidae found in Indo-Pacific coastal waters. It is an emerging commercial aquaculture species, particularly in East and Southeast Asia. In this study, the first chromosome-level genome of S. argus was constructed using PacBio and Hi-C sequencing technologies. The genome is 572.42 Mb, with a scaffold N50 of 24.67 Mb. Using Hi-C data, 563.28 Mb (98.67% of the genome) sequences were anchored and oriented in 24 chromosomes, ranging from 12.57 Mb to 30.38 Mb. The assembly is of high integrity, containing 94.26% conserved single-copy orthologues, based on BUSCO analysis. A total of 24,256 protein-coding genes were predicted in the genome, and 96.30% of the predicted genes were functionally annotated. Evolutionary analysis showed that S. argus diverged from the common ancestor of Japanese puffer (Takifugu rubripes) approximately 114.8 Ma. The chromosomes of S. argus showed significant correlation to T. rubripes chromosomes. A comparative genomic analysis identified 49 unique and 90 expanded gene families. These genomic resources provide a solid foundation for functional genomics studies to decipher the economic traits of this species.
Collapse
Affiliation(s)
- Yuanqing Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Umar Farouk Mustapha
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Changxu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Wei Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Guangdong, China
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Siping Deng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
166
|
Xu X, Yuan H, Yu X, Huang S, Sun Y, Zhang T, Liu Q, Tong H, Zhang Y, Wang Y, Liu C, Wu L, Hou M, Yang Y. The chromosome-level Stevia genome provides insights into steviol glycoside biosynthesis. HORTICULTURE RESEARCH 2021; 8:129. [PMID: 34059662 PMCID: PMC8166950 DOI: 10.1038/s41438-021-00565-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 05/10/2023]
Abstract
Stevia (Stevia rebaudiana Bertoni) is well known for its very sweet steviol glycosides (SGs) consisting of a common tetracyclic diterpenoid steviol backbone and a variable glycone. Steviol glycosides are 150-300 times sweeter than sucrose and are used as natural zero-calorie sweeteners. However, the most promising compounds are biosynthesized in small amounts. Based on Illumina, PacBio, and Hi-C sequencing, we constructed a chromosome-level assembly of Stevia covering 1416 Mb with a contig N50 value of 616.85 kb and a scaffold N50 value of 106.55 Mb. More than four-fifths of the Stevia genome consisted of repetitive elements. We annotated 44,143 high-confidence protein-coding genes in the high-quality genome. Genome evolution analysis suggested that Stevia and sunflower diverged ~29.4 million years ago (Mya), shortly after the whole-genome duplication (WGD) event (WGD-2, ~32.1 Mya) that occurred in their common ancestor. Comparative genomic analysis revealed that the expanded genes in Stevia were mainly enriched for biosynthesis of specialized metabolites, especially biosynthesis of terpenoid backbones, and for further oxidation and glycosylation of these compounds. We further identified all candidate genes involved in SG biosynthesis. Collectively, our current findings on the Stevia reference genome will be very helpful for dissecting the evolutionary history of Stevia and for discovering novel genes contributing to SG biosynthesis and other important agronomic traits in future breeding programs.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Suzhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Yuming Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Ting Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Haiying Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Yinjie Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Chunxiao Liu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, Jiangsu, China
| | - Lei Wu
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Menglan Hou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| | - Yongheng Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences/Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
167
|
Genome assembly of Scorias spongiosa and comparative genomics provide insights into ecological adaptation of honeydew-dependent sooty mould fungi. Genomics 2021; 113:2189-2198. [PMID: 34022339 DOI: 10.1016/j.ygeno.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Sooty moulds are fungi of economic importance and with unique lifestyle mainly growing on insect honeydew. However, the lack of genomic data hinders investigation of genetic mechanisms underlying their ecological adaptation. With long-read sequencing technology, we generated the genome of Scorias spongiosa, an extraordinary sooty mould fungus associated with honeydew of colony aphids and producing large fruiting bodies. A 24.21 Mb high-quality genome assembly with a N50 length of 3.37 Mb was obtained. The genome contained 7758 protein coding genes, 97.13% of which were homologous to known genes, and approximately 0.29 Mb repeat sequences. Comparative genomics showed S. spongiosa lost relatively more gene families and contained fewer species-specific genes and gene families, with many CAZyme families and sugar transporters reduced or absent. This study not only promotes understanding of the ecological adaptation of sooty moulds, but also provides valuable genomic data resource for future comparative genomic and genetic studies.
Collapse
|
168
|
Yu X, Wang P, Li J, Zhao Q, Ji C, Zhu Z, Zhai Y, Qin X, Zhou J, Yu H, Cheng X, Isshiki S, Jahn M, Doyle JJ, Ottosen C, Bai Y, Cai Q, Cheng C, Lou Q, Huang S, Chen J. Whole-Genome Sequence of Synthesized Allopolyploids in Cucumis Reveals Insights into the Genome Evolution of Allopolyploidization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004222. [PMID: 33977063 PMCID: PMC8097326 DOI: 10.1002/advs.202004222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/14/2021] [Indexed: 05/16/2023]
Abstract
The importance of allopolyploidy in plant evolution has been widely recognized. The genetic changes triggered by allopolyploidy, however, are not yet fully understood due to inconsistent phenomena reported across diverse species. The construction of synthetic polyploids offers a controlled approach to systematically reveal genomic changes that occur during the process of polyploidy. This study reports the first fully sequenced synthetic allopolyploid constructed from a cross between Cucumis sativus and C. hystrix, with high-quality assembly. The two subgenomes are confidently partitioned and the C. sativus-originated subgenome predominates over the C. hystrix-originated subgenome, retaining more sequences and showing higher homeologous gene expression. Most of the genomic changes emerge immediately after interspecific hybridization. Analysis of a series of genome sequences from several generations (S0, S4-S13) of C. ×hytivus confirms that genomic changes occurred in the very first generations, subsequently slowing down as the process of diploidization is initiated. The duplicated genome of the allopolyploid with double genes from both parents broadens the genetic base of C. ×hytivus, resulting in enhanced phenotypic plasticity. This study provides novel insights into plant polyploid genome evolution and demonstrates a promising strategy for the development of a wide array of novel plant species and varieties through artificial polyploidization.
Collapse
Affiliation(s)
- Xiaqing Yu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Panqiao Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Ji Li
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Qinzheng Zhao
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Changmian Ji
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikou571101China
- Biomarker TechnologiesBeijing101300China
| | - Zaobing Zhu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Yufei Zhai
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xiaodong Qin
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Junguo Zhou
- College of Horticulture and LandscapeHenan Institute of Science and TechnologyXinxiang453000China
| | - Haiyan Yu
- Biomarker TechnologiesBeijing101300China
| | | | - Shiro Isshiki
- Faculty of AgricultureSaga UniversitySaga840‐8502Japan
| | - Molly Jahn
- Jahn Research GroupUSDA/FPLMadisonWI53726USA
| | - Jeff J. Doyle
- Section of Plant Breeding and GeneticsSchool of Integrated Plant SciencesCornell UniversityIthacaNY14853USA
| | | | - Yuling Bai
- Department of Plant SciencesWageningen University and ResearchWageningen6700 AJNetherlands
| | - Qinsheng Cai
- College of Life ScienceNanjing Agricultural UniversityNanjing210095China
| | - Chunyan Cheng
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Sanwen Huang
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
169
|
Yang C, Li X, Wang Q, Yuan H, Huang Y, Xiao H. Genome-wide analyses of the relict gull (Larus relictus): insights and evolutionary implications. BMC Genomics 2021; 22:311. [PMID: 33926388 PMCID: PMC8082828 DOI: 10.1186/s12864-021-07616-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The relict gull (Larus relictus), was classified as vulnerable on the IUCN Red List and is a first-class national protected bird in China. Genomic resources for L. relictus are lacking, which limits the study of its evolution and its conservation. RESULTS In this study, based on the Illumina and PacBio sequencing platforms, we successfully assembled the genome of L. relictus, one of the few known reference genomes in genus Larus. The size of the final assembled genome was 1.21 Gb, with a contig N50 of 8.11 Mb. A total of 18,454 genes were predicted from the assembly results, with 16,967 (91.94%) of these genes annotated. The genome contained 92.52 Mb of repeat sequence, accounting for 7.63% of the assembly. A phylogenetic tree was constructed using 4902 single-copy orthologous genes, which showed L. relictus had closest relative of L. smithsonianus, with divergence time of 14.7 Mya estimated between of them. PSMC analyses indicated that L. relictus had been undergoing a long-term population decline during 0.01-0.1 Mya with a small effective population size fom 8800 to 2200 individuals. CONCLUSIONS This genome will be a valuable genomic resource for a range of genomic and conservation studies of L. relictus and will help to establish a foundation for further studies investigating whether the breeding population is a complex population. As the species is threatened by habitat loss and fragmentation, actions to protect L. relictus are suggested to alleviate the fragmentation of breeding populations.
Collapse
Affiliation(s)
- Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
- Shaanxi Institute of Zoology, Xi'an, 710032, China
| | - Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | | | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| | - Hong Xiao
- Shaanxi Institute of Zoology, Xi'an, 710032, China.
| |
Collapse
|
170
|
Engelbrecht J, Duong TA, Prabhu SA, Seedat M, van den Berg N. Genome of the destructive oomycete Phytophthora cinnamomi provides insights into its pathogenicity and adaptive potential. BMC Genomics 2021; 22:302. [PMID: 33902447 PMCID: PMC8074420 DOI: 10.1186/s12864-021-07552-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/24/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Phytophthora cinnamomi is an oomycete pathogen of global relevance. It is considered as one of the most invasive species, which has caused irreversible damage to natural ecosystems and horticultural crops. There is currently a lack of a high-quality reference genome for this species despite several attempts that have been made towards sequencing its genome. The lack of a good quality genome sequence has been a setback for various genetic and genomic research to be done on this species. As a consequence, little is known regarding its genome characteristics and how these contribute to its pathogenicity and invasiveness. RESULTS In this work we generated a high-quality genome sequence and annotation for P. cinnamomi using a combination of Oxford Nanopore and Illumina sequencing technologies. The annotation was done using RNA-Seq data as supporting gene evidence. The final assembly consisted of 133 scaffolds, with an estimated genome size of 109.7 Mb, N50 of 1.18 Mb, and BUSCO completeness score of 97.5%. Genome partitioning analysis revealed that P. cinnamomi has a two-speed genome characteristic, similar to that of other oomycetes and fungal plant pathogens. In planta gene expression analysis revealed up-regulation of pathogenicity-related genes, suggesting their important roles during infection and host degradation. CONCLUSION This study has provided a high-quality reference genome and annotation for P. cinnamomi. This is among the best assembled genomes for any Phytophthora species assembled to date and thus resulted in improved identification and characterization of pathogenicity-related genes, some of which were undetected in previous versions of genome assemblies. Phytophthora cinnamomi harbours a large number of effector genes which are located in the gene-poor regions of the genome. This unique genomic partitioning provides P. cinnamomi with a high level of adaptability and could contribute to its success as a highly invasive species. Finally, the genome sequence, its annotation and the pathogenicity effectors identified in this study will serve as an important resource that will enable future studies to better understand and mitigate the impact of this important pathogen.
Collapse
Affiliation(s)
- Juanita Engelbrecht
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - S Ashok Prabhu
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Mohamed Seedat
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
171
|
Zhao T, Ma W, Yang Z, Liang L, Chen X, Wang G, Ma Q, Wang L. A chromosome-level reference genome of the hazelnut, Corylus heterophylla Fisch. Gigascience 2021; 10:giab027. [PMID: 33871007 PMCID: PMC8054262 DOI: 10.1093/gigascience/giab027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Corylus heterophylla Fisch. is a species of the Betulaceae family native to China. As an economically and ecologically important nut tree, C. heterophylla can survive in extremely low temperatures (-30 to -40 °C). To deepen our knowledge of the Betulaceae species and facilitate the use of C. heterophylla for breeding and its genetic improvement, we have sequenced the whole genome of C. heterophylla. FINDINGS Based on >64.99 Gb (∼175.30×) of Nanopore long reads, we assembled a 370.75-Mb C. heterophylla genome with contig N50 and scaffold N50 sizes of 2.07 and 31.33 Mb, respectively, accounting for 99.23% of the estimated genome size (373.61 Mb). Furthermore, 361.90 Mb contigs were anchored to 11 chromosomes using Hi-C link data, representing 97.61% of the assembled genome sequences. Transcriptomes representing 4 different tissues were sequenced to assist protein-coding gene prediction. A total of 27,591 protein-coding genes were identified, of which 92.02% (25,389) were functionally annotated. The phylogenetic analysis showed that C. heterophylla is close to Ostrya japonica, and they diverged from their common ancestor ∼52.79 million years ago. CONCLUSIONS We generated a high-quality chromosome-level genome of C. heterophylla. This genome resource will promote research on the molecular mechanisms of how the hazelnut responds to environmental stresses and serves as an important resource for genome-assisted improvement in cold and drought resistance of the Corylus genus.
Collapse
Affiliation(s)
- Tiantian Zhao
- Research Institute of Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, No.1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
- National Hazelnut Industry Innovation Alliance/Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Wenxu Ma
- Research Institute of Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, No.1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
- National Hazelnut Industry Innovation Alliance/Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Zhen Yang
- Research Institute of Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, No.1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
- National Hazelnut Industry Innovation Alliance/Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Lisong Liang
- Research Institute of Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, No.1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
- National Hazelnut Industry Innovation Alliance/Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Xin Chen
- National Hazelnut Industry Innovation Alliance/Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Xiangshan Road, Haidian District, Beijing 100091, China
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, No. 66 Longtan Road, Taishan District, Taian 271000, China
| | - Guixi Wang
- Research Institute of Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, No.1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
- National Hazelnut Industry Innovation Alliance/Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Qinghua Ma
- Research Institute of Forestry, Chinese Academy of Forestry/Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, No.1 Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
- National Hazelnut Industry Innovation Alliance/Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Lujun Wang
- National Hazelnut Industry Innovation Alliance/Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Xiangshan Road, Haidian District, Beijing 100091, China
- Anhui Academy of Forestry, No. 820 Changjiangxi Road, Shushan District, Hefei 230031, China
| |
Collapse
|
172
|
Yan F, Xi RM, She RX, Chen PP, Yan YJ, Yang G, Dang M, Yue M, Pei D, Woeste K, Zhao P. Improved de novo chromosome-level genome assembly of the vulnerable walnut tree Juglans mandshurica reveals gene family evolution and possible genome basis of resistance to lesion nematode. Mol Ecol Resour 2021; 21:2063-2076. [PMID: 33817972 DOI: 10.1111/1755-0998.13394] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Manchurian walnut (Juglans mandshurica Maxim.) is a synonym of J. cathayensis, a diploid, vulnerable, temperate deciduous tree valued for its wood and nut. It is also valued as a rootstock for Juglans regia because of its reported tolerance of lesion nematode. Reference genomes are available for several Juglans species, our goal was to produce a de novo, chromosome-level assembly of the J. mandshurica genome. Here, we reported an improved assembly of J. mandshurica with a contig N50 size of 6.49 Mb and a scaffold N50 size of 36.1 Mb. The total genome size was 548 Mb encoding 29,032 protein coding genes which were annotated. The collinearity analysis showed that J. mandshurica and J. regia originated from a common ancestor, with both species undergoing two WGD events. A genomic comparison showed that J. mandshurica was missing 1657 genes found in J. regia, and J. mandshurica includes 2827 genes not found in of the J. regia genome. The J. mandshurica contained 1440 unique paralogues that were highly enriched for flavonoid biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction. Four gene families related to disease resistance notable contraction (rapidly evolving; LEA, WAK, PPR, and PR) in J. mandshurica compared to eight species. JmaPR10 and JmaPR8 contained three orthologous gene pairs with J. regia that were highly expressed in root bark. JmaPR10 is a strong candidate gene for lesion nematodes resistance in J. mandshurica. The J. mandshurica genome should be a useful resource for study of the evolution, breeding, and genetic variation in walnuts (Juglans).
Collapse
Affiliation(s)
- Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Rui-Min Xi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Rui-Xue She
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Peng-Peng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yu-Jie Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Ge Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Meng Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Ming Yue
- Xi'an Botanical Garden of Shaanxi Province, Xi'an, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Keith Woeste
- Department of Forestry and Natural Resources, USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Purdue University, West Lafayette, IN, USA
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
173
|
Xue HJ, Niu YW, Segraves KA, Nie RE, Hao YJ, Zhang LL, Cheng XC, Zhang XW, Li WZ, Chen RS, Yang XK. The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae). BMC Genomics 2021; 22:243. [PMID: 33827435 PMCID: PMC8028732 DOI: 10.1186/s12864-021-07558-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. RESULTS The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. CONCLUSIONS The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.
Collapse
Affiliation(s)
- Huai-Jun Xue
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yi-Wei Niu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Archbold Biological Station, 123 Main Drive, Venus, FL, 33960, USA
| | - Rui-E Nie
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya-Jing Hao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Li Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Chao Cheng
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Xue-Wen Zhang
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Wen-Zhu Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Run-Sheng Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Ke Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
174
|
Li M, Xiao Y, Mount S, Liu Z. An Atlas of Genomic Resources for Studying Rosaceae Fruits and Ornamentals. FRONTIERS IN PLANT SCIENCE 2021; 12:644881. [PMID: 33868343 PMCID: PMC8047320 DOI: 10.3389/fpls.2021.644881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 05/12/2023]
Abstract
Rosaceae, a large plant family of more than 3,000 species, consists of many economically important fruit and ornamental crops, including peach, apple, strawberry, raspberry, cherry, and rose. These horticultural crops are not only important economic drivers in many regions of the world, but also major sources of human nutrition. Additionally, due to the diversity of fruit types in Rosaceae, this plant family offers excellent opportunities for investigations into fleshy fruit diversity, evolution, and development. With the development of high-throughput sequencing technologies and computational tools, an increasing number of high-quality genomes and transcriptomes of Rosaceae species have become available and will greatly facilitate Rosaceae research and breeding. This review summarizes major genomic resources and genome research progress in Rosaceae, highlights important databases, and suggests areas for further improvement. The availability of these big data resources will greatly accelerate research progress and enhance the agricultural productivity of Rosaceae.
Collapse
Affiliation(s)
| | | | | | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
175
|
Song X, Sun P, Yuan J, Gong K, Li N, Meng F, Zhang Z, Li X, Hu J, Wang J, Yang Q, Jiao B, Nie F, Liu T, Chen W, Feng S, Pei Q, Yu T, Kang X, Zhao W, Cui C, Yu Y, Wu T, Shan L, Liu M, Qin Z, Lin H, Varshney RK, Li X, Paterson AH, Wang X. The celery genome sequence reveals sequential paleo-polyploidizations, karyotype evolution and resistance gene reduction in apiales. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:731-744. [PMID: 33095976 PMCID: PMC8051603 DOI: 10.1111/pbi.13499] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/18/2020] [Indexed: 05/04/2023]
Abstract
Celery (Apium graveolens L. 2n = 2x = 22), a member of the Apiaceae family, is among the most important and globally grown vegetables. Here, we report a high-quality genome sequence assembly, anchored to 11 chromosomes, with total length of 3.33 Gb and N50 scaffold length of 289.78 Mb. Most (92.91%) of the genome is composed of repetitive sequences, with 62.12% of 31 326 annotated genes confined to the terminal 20% of chromosomes. Simultaneous bursts of shared long-terminal repeats (LTRs) in different Apiaceae plants suggest inter-specific exchanges. Two ancestral polyploidizations were inferred, one shared by Apiales taxa and the other confined to Apiaceae. We reconstructed 8 Apiales proto-chromosomes, inferring their evolutionary trajectories from the eudicot common ancestor to extant plants. Transcriptome sequencing in three tissues (roots, leaves and petioles), and varieties with different-coloured petioles, revealed 4 and 2 key genes in pathways regulating anthocyanin and coumarin biosynthesis, respectively. A remarkable paucity of NBS disease-resistant genes in celery (62) and other Apiales was explained by extensive loss and limited production of these genes during the last ~10 million years, raising questions about their biotic defence mechanisms and motivating research into effects of chemicals, for example coumarins, that give off distinctive odours. Celery genome sequencing and annotation facilitates further research into important gene functions and breeding, and comparative genomic analyses in Apiales.
Collapse
|
176
|
Sun X, Liu W, Li R, Zhao C, Pan L, Yan C. A chromosome level genome assembly of Propsilocerus akamusi to understand its response to heavy metal exposure. Mol Ecol Resour 2021; 21:1996-2012. [PMID: 33710757 DOI: 10.1111/1755-0998.13377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022]
Abstract
Chironomidae species are universally used for studying the impact of pollutants in aquatic systems. The nonbiting midge Propsilocerus akamusi is often found in urban streams and is suitable for use as a toxicological bioindicator. However, few studies have previously examined metal stress in this species. We sequenced the genome of this urban midge to address this question. Here, we present the first chromosome-level genome of P. akamusi, obtained from Illumina short-read and PacBio long-read sequences with Hi-C technology. The size of the very small assembled genome was 85.83 Mb with a contig N50 of 6.2 Mb and a scaffold N50 of 26.1 Mb. This assembly revealed significant expansion of haemoglobin (Hb) genes, some of which formed large tandem repeats. Transcriptomic studies for copper tolerance identified four genes in the tandem array that were highly expressed, all of which presented intron loss. This characteristic might highlight the potential role of Hb genes in copper tolerance. Additionally, detoxification genes, chemosensory genes and heat shock protein genes of this midge were identified, some of which are associated with metal stress. The high-quality assembled genome of P. akamusi and the transcriptomic analyses provide new insight into the molecular mechanisms of heavy metal stress. Our comparison of the P. akamusi genome with other dipteran genomes provides valuable resources for understanding the evolutionary history, genetics, and ecology of this species as well as those of other midges.
Collapse
Affiliation(s)
- Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Ruoqun Li
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Cong Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Lina Pan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.,Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| |
Collapse
|
177
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
178
|
Chen L, Li B, Chen B, Li C, Zhou Z, Zhou T, Yang W, Xu P. Chromosome-level genome of Poropuntius huangchuchieni provides a diploid progenitor-like reference genome for the allotetraploid Cyprinus carpio. Mol Ecol Resour 2021; 21:1658-1669. [PMID: 33624395 DOI: 10.1111/1755-0998.13365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
The diploid Poropuntius huangchuchieni in the cyprinid family, which is widely distributed in the Mekong and Red River basins, is one of the most closely related diploid progenitor-like species of allotetraploid common carp, which was generated by merging of two diploid genomes during evolution. Therefore, the P. huangchuchieni genome is essential for polyploid evolution studies in Cyprinidae. Here, we report a high-quality chromosome-level genome assembly of P. huangchuchieni by integrating Oxford Nanopore and Hi-C technologies. The assembled genome size was 1,021.38 Mb, 895.66 Mb of which was anchored onto 25 chromosomes with a N50 of 32.93 Mb. The genome contained 486.28 Mb repetitive elements and 24,099 protein-coding genes. Approximately 95.9% of the complete BUSCOs were detected, suggesting a high completeness of the genome. Evolutionary analysis revealed that P. huangchuchieni diverged from Cyprinus carpio at approximately 12 Mya. Genome comparison between P. huangchuchieni and the B subgenome of C. carpio provided insights into chromosomal rearrangements during the allotetraploid speciation. With the complete gene set, 17,474 orthologous genes were identified between P. huangchuchieni and C. carpio, providing a broad view of the gene component in the allotetraploid genome, which is critical for future genetic analyses. The high-quality genomic data set created for P. huangchuchieni provides a diploid progenitor-like reference for the evolution and adaptation of allotetraploid carps.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Bijun Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Chengyu Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Weidi Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
179
|
Wang P, Zhou G, Jian J, Yang H, Renshaw D, Aubert MK, Clements J, He T, Sweetingham M, Li C. Whole-genome assembly and resequencing reveal genomic imprint and key genes of rapid domestication in narrow-leafed lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1192-1210. [PMID: 33249667 DOI: 10.1111/tpj.15100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 05/04/2023]
Abstract
Shifting from a livestock-based protein diet to a plant-based protein diet has been proposed as an essential requirement to maintain global food sustainability, which requires the increased production of protein-rich crops for direct human consumption. Meanwhile, the lack of sufficient genetic diversity in crop varieties is an increasing concern for sustainable food supplies. Countering this concern requires a clear understanding of the domestication process and dynamics. Narrow-leafed lupin (Lupinus angustifolius L.) has experienced rapid domestication and has become a new legume crop over the past century, with the potential to provide protein-rich seeds. Here, using long-read whole-genome sequencing, we assembled the third-generation reference genome for the narrow-leafed lupin cultivar Tanjil, comprising 20 chromosomes with a total genome size of 615.8 Mb and contig N50 = 5.65 Mb. We characterized the original mutation and putative biological pathway resulting in low seed alkaloid level that initiated the recent domestication of narrow-leafed lupin. We identified a 1133-bp insertion in the cis-regulatory region of a putative gene that may be associated with reduced pod shattering (lentus). A comparative analysis of genomic diversity in cultivars and wild types identified an apparent domestication bottleneck, as precisely predicted by the original model of the bottleneck effect on genetic variability in populations. Our results identify the key domestication genetic loci and provide direct genomic evidence for a domestication bottleneck, and open up the possibility of knowledge-driven de novo domestication of wild plants as an avenue to broaden crop plant diversity to enhance food security and sustainable low-carbon emission agriculture.
Collapse
Affiliation(s)
- Penghao Wang
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
- Western Crop Genetics Alliance, Western Australian Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Gaofeng Zhou
- Western Crop Genetics Alliance, Western Australian Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huaan Yang
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Daniel Renshaw
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Matthew K Aubert
- Australian Grain Technologies Pty Ltd, 100 Byfield Street, Northam, WA, 6041, Australia
| | - Jonathan Clements
- Green Blueprint Pty Ltd, 117C Hastings Street, Scarborough, WA, 6019, Australia
- Glycemic Lupin Company Pty Ltd, 33 Commercial St, Coorow, WA, 6515, Australia
| | - Tianhua He
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
- Western Crop Genetics Alliance, Western Australian Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Mark Sweetingham
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Chengdao Li
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
- Western Crop Genetics Alliance, Western Australian Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Department of Primary Industries and Regional Development, Government of Western Australia, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| |
Collapse
|
180
|
Lin X, Huang Y, Jiang D, Chen H, Deng S, Zhang Y, Du T, Zhu C, Li G, Tian C. Chromosomal-Level Genome Assembly of Silver Sillago (Sillago sihama). Genome Biol Evol 2021; 13:evaa272. [PMID: 33367716 PMCID: PMC7875006 DOI: 10.1093/gbe/evaa272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Silver sillago, Sillago sihama is a member of the family Sillaginidae and found in all Chinese inshore waters. It is an emerging commercial marine aquaculture species in China. In this study, high-quality chromosome-level reference genome of S. sihama was first constructed using PacBio Sequel sequencing and high-throughput chromosome conformation capture (Hi-C) technique. A total of 66.16 Gb clean reads were generated by PacBio sequencing platforms. The genome-scale was 521.63 Mb with 556 contigs, and 13.54 Mb of contig N50 length. Additionally, Hi-C scaffolding of the genome resulted in 24 chromosomes containing 96.93% of the total assembled sequences. A total of 23,959 protein-coding genes were predicted in the genome, and 96.51% of the genes were functionally annotated in public databases. A total of 71.86 Mb repetitive elements were detected, accounting for 13.78% of the genome. The phylogenetic relationships of silver sillago with other teleosts showed that silver sillago was separated from the common ancestor of Sillago sinica ∼7.92 Ma. Comparative genomic analysis of silver sillago with other teleosts showed that 45 unique and 100 expansion gene families were identified in silver sillago. In this study, the genomic resources provide valuable reference genomes for functional genomics research of silver sillago.
Collapse
Affiliation(s)
- Xinghua Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Dongneng Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Siping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Tao Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
181
|
Ji YT, Xiu Z, Chen CH, Wang Y, Yang JX, Sui JJ, Jiang SJ, Wang P, Yue SY, Zhang QQ, Jin JL, Wang GS, Wei QQ, Wei B, Wang J, Zhang HL, Zhang QY, Liu J, Liu CJ, Jian JB, Qu CQ. Long read sequencing of Toona sinensis (A. Juss) Roem: A chromosome-level reference genome for the family Meliaceae. Mol Ecol Resour 2021; 21:1243-1255. [PMID: 33421343 DOI: 10.1111/1755-0998.13318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
Chinese mahogany (Toona sinensis) is a woody plant that is widely cultivated in China and Malaysia. Toona sinensis is important economically, including as a nutritious food source, as material for traditional Chinese medicine and as a high-quality hardwood. However, the absence of a reference genome has hindered in-depth molecular and evolutionary studies of this plant. In this study, we report a high-quality T. sinensis genome assembly, with scaffolds anchored to 28 chromosomes and a total assembled length of 596 Mb (contig N50 = 1.5 Mb and scaffold N50 = 21.5 Mb). A total of 34,345 genes were predicted in the genome after homology-based and de novo annotation analyses. Evolutionary analysis showed that the genomes of T. sinensis and Populus trichocarpa diverged ~99.1-103.1 million years ago, and the T. sinensis genome underwent a recent genome-wide duplication event at ~7.8 million years and one more ancient whole genome duplication event at ~71.5 million years. These results provide a high-quality chromosome-level reference genome for T. sinensis and confirm its evolutionary position at the genomic level. Such information will offer genomic resources to study the molecular mechanism of terpenoid biosynthesis and the formation of flavour compounds, which will further facilitate its molecular breeding. As the first chromosome-level genome assembled in the family Meliaceae, it will provide unique insights into the evolution of members of the Meliaceae.
Collapse
Affiliation(s)
- Yun-Tao Ji
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Zhihui Xiu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Youru Wang
- Hubei Engineering Research Center of Typical Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Jing-Xia Yang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Juan-Juan Sui
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | | | - Ping Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shao-Yun Yue
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | | | - Ji-Liang Jin
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | | | | | - Bing Wei
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Juan Wang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | | | - Qiu-Yan Zhang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Jun Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Chang-Jin Liu
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Jian-Bo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.,Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen, Shenzhen, China
| | - Chang-Qing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang, China
| |
Collapse
|
182
|
Tian HF, Hu QM, Li Z. A high-quality de novo genome assembly of one swamp eel (Monopterus albus) strain with PacBio and Hi-C sequencing data. G3 (BETHESDA, MD.) 2021; 11:jkaa032. [PMID: 33561235 PMCID: PMC8022708 DOI: 10.1093/g3journal/jkaa032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
The swamp eel (Monopterus albus) is one economically important fish in China and South-Eastern Asia and a good model species to study sex inversion. There are different genetic lineages and multiple local strains of swamp eel in China, and one local strain of M. albus with deep yellow and big spots has been selected for consecutive selective breeding due to superiority in growth rate and fecundity. A high-quality reference genome of the swamp eel would be a very useful resource for future selective breeding program. In the present study, we applied PacBio single-molecule sequencing technique (SMRT) and the high-throughput chromosome conformation capture (Hi-C) technologies to assemble the M. albus genome. A 799 Mb genome was obtained with the contig N50 length of 2.4 Mb and scaffold N50 length of 67.24 Mb, indicating 110-fold and ∼31.87-fold improvement compared to the earlier released assembly (∼22.24 Kb and 2.11 Mb, respectively). Aided with Hi-C data, a total of 750 contigs were reliably assembled into 12 chromosomes. Using 22,373 protein-coding genes annotated here, the phylogenetic relationships of the swamp eel with other teleosts showed that swamp eel separated from the common ancestor of Zig-zag eel ∼49.9 million years ago, and 769 gene families were found expanded, which are mainly enriched in the immune system, sensory system, and transport and catabolism. This highly accurate, chromosome-level reference genome of M. albus obtained in this work will be used for the development of genome-scale selective breeding.
Collapse
Affiliation(s)
- Hai-Feng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Qiao-Mu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| |
Collapse
|
183
|
Liu R, Wang Y, Li P, Sun L, Jiang J, Fan X, Liu C, Zhang Y. Genome Assembly and Transcriptome Analysis of the Fungus Coniella diplodiella During Infection on Grapevine ( Vitis vinifera L.). Front Microbiol 2021; 11:599150. [PMID: 33505371 PMCID: PMC7829486 DOI: 10.3389/fmicb.2020.599150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Grape white rot caused by Coniella diplodiella (Speg.) affects the production and quality of grapevine in China and other grapevine-growing countries. Despite the importance of C. diplodiella as a serious disease-causing agent in grape, the genome information and molecular mechanisms underlying its pathogenicity are poorly understood. To bridge this gap, 40.93 Mbp of C. diplodiella strain WR01 was de novo assembled. A total of 9,403 putative protein-coding genes were predicted. Among these, 608 and 248 genes are potentially secreted proteins and candidate effector proteins (CEPs), respectively. Additionally, the transcriptome of C. diplodiella was analyzed after feeding with crude grapevine leaf homogenates, which reveals the transcriptional expression of 9,115 genes. Gene ontology enrichment analysis indicated that the highly enriched genes are related with carbohydrate metabolism and secondary metabolite synthesis. Forty-three putative effectors were cloned from C. diplodiella, and applied for further functional analysis. Among them, one protein exhibited strong effect in the suppression of BCL2-associated X (BAX)-induced hypersensitive response after transiently expressed in Nicotiana benthamiana leaves. This work facilitates valuable genetic basis for understanding the molecular mechanism underlying C. diplodiella-grapevine interaction.
Collapse
Affiliation(s)
- Ruitao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yiming Wang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Peng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
184
|
Huo J, Wang Y, Hao Y, Yao Y, Wang Y, Zhang K, Tan X, Li Z, Wang W. Genome Sequence Resource for Colletotrichum scovillei, the Cause of Anthracnose Disease of Chili. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:122-126. [PMID: 33006530 DOI: 10.1094/mpmi-03-20-0055-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colletotrichum species cause anthracnose disease on the economically important spice crop chili. A total of 24 Colletotrichum species are known to infect chili and cause anthracnose. C. scovillei belongs to the C. acutatum species complex, and it shows greater aggressiveness than other species, particularly in the case of inoculation onto the nonwounded fruits of chili plants. The current work introduces an initial Illumina-Nanopore hybrid draft genome for C. scovillei TJNH1 together with the related annotations. Knowledge of this genome sequence provides an important reference genome of C. scovillei and will help further understand the pathogenic mechanism of C. scovillei to plant.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jianfei Huo
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, 300381 Tianjin, China
| | - Yafei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Yongjuan Hao
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, 300381 Tianjin, China
| | - Yurong Yao
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, 300381 Tianjin, China
| | - Yong Wang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, 300381 Tianjin, China
| | - Kai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, 410125 Changsha, Hunan Province, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Wanli Wang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, 300381 Tianjin, China
| |
Collapse
|
185
|
Li Y, Liu GF, Ma LM, Liu TK, Zhang CW, Xiao D, Zheng HK, Chen F, Hou XL. A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. HORTICULTURE RESEARCH 2020; 7:212. [PMID: 33372175 PMCID: PMC7769993 DOI: 10.1038/s41438-020-00449-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 05/12/2023]
Abstract
Non-heading Chinese cabbage (NHCC) is an important leafy vegetable cultivated worldwide. Here, we report the first high-quality, chromosome-level genome of NHCC001 based on PacBio, Hi-C, and Illumina sequencing data. The assembled NHCC001 genome is 405.33 Mb in size with a contig N50 of 2.83 Mb and a scaffold N50 of 38.13 Mb. Approximately 53% of the assembled genome is composed of repetitive sequences, among which long terminal repeats (LTRs, 20.42% of the genome) are the most abundant. Using Hi-C data, 97.9% (396.83 Mb) of the sequences were assigned to 10 pseudochromosomes. Genome assessment showed that this B. rapa NHCC001 genome assembly is of better quality than other currently available B. rapa assemblies and that it contains 48,158 protein-coding genes, 99.56% of which are annotated in at least one functional database. Comparative genomic analysis confirmed that B. rapa NHCC001 underwent a whole-genome triplication (WGT) event shared with other Brassica species that occurred after the WGD events shared with Arabidopsis. Genes related to ascorbic acid metabolism showed little variation among the three B. rapa subspecies. The numbers of genes involved in glucosinolate biosynthesis and catabolism were higher in NHCC001 than in Chiifu and Z1, due primarily to tandem duplication. The newly assembled genome will provide an important resource for research on B. rapa, especially B. rapa ssp. chinensis.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crop, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gao-Feng Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crop, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li-Ming Ma
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Tong-Kun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crop, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chang-Wei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crop, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crop, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Kun Zheng
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Fei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crop, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P. R. China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crop, Ministry of Education of the P. R. China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
186
|
Zhang J, Yuan H, Li Y, Chen Y, Liu G, Ye M, Yu C, Lian B, Zhong F, Jiang Y, Xu J. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz. HORTICULTURE RESEARCH 2020; 7:201. [PMID: 33328474 PMCID: PMC7705746 DOI: 10.1038/s41438-020-00424-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 05/11/2023]
Abstract
Polyploidy is a common phenomenon among willow species. In this study, genome sequencing was conducted for Salix matsudana Koidz (also named Chinese willow), an important greening and arbor tree species, and the genome of this species was compared with those of four other tree species in Salicaceae. The total genome sequence of S. matsudana was 655.72 Mb in size, with repeated sequences accounting for 45.97% of the total length. In total, 531.43 Mb of the genome sequence could be mapped onto 38 chromosomes using the published genetic map as a reference. The genome of S. matsudana could be divided into two groups, the A and B genomes, through homology analysis with the genome of Populus trichocarpa, and the A and B genomes contained 23,985 and 25,107 genes, respectively. 4DTv combined transposon analysis predicted that allotetraploidy in S. matsudana appeared ~4 million years ago. The results from this study will help reveal the evolutionary history of S. matsudana and lay a genetic basis for its breeding.
Collapse
Affiliation(s)
- Jian Zhang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, 226019, Nantong, China.
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, China
| | - Yujuan Li
- Jiangsu Riverine Institute of Agricultural Sciences, 226541, Nantong, Jiangsu, China
| | - Yanhong Chen
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, 226019, Nantong, China
| | - Guoyuan Liu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, 226019, Nantong, China
| | - Meixia Ye
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Chunmei Yu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, 226019, Nantong, China
| | - Bolin Lian
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, 226019, Nantong, China
| | - Fei Zhong
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, 226019, Nantong, China
| | - Yuna Jiang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, 226019, Nantong, China
| | - Jichen Xu
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China.
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
187
|
Yu J, Li L, Wang S, Dong S, Chen Z, Patel N, Goffinet B, Chen H, Liu H, Liu Y. Draft genome of the aquatic moss Fontinalis antipyretica (Fontinalaceae, Bryophyta). GIGABYTE 2020; 2020:gigabyte8. [PMID: 36824590 PMCID: PMC9631980 DOI: 10.46471/gigabyte.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Mosses comprise one of three lineages forming a sister group to extant vascular plants. Having emerged from an early split in the diversification of embryophytes, mosses may offer complementary insights into the evolution of traits following the transition to, and colonization of, land. Here, we report the draft nuclear genome of Fontinalis antipyretica (Fontinalaceae, Hypnales), a charismatic aquatic moss that is widespread in temperate regions of the Northern Hemisphere. We sequenced and de novo-assembled its genome using the 10X Genomics method. The genome comprises 385.2 Mbp, with a scaffold N50 of 45.8 Kbp. The assembly captured 87.2% of the 430 genes in the BUSCO Viridiplantae odb10 dataset. The newly generated F. antipyretica genome is the third moss genome, and the second seedless aquatic plant genome, to be sequenced and assembled to date.
Collapse
Affiliation(s)
- Jin Yu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen & China National GeneBank, Shenzhen 518083, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen & China National GeneBank, Shenzhen 518083, China
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen & China National GeneBank, Shenzhen 518083, China
| | - Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
| | - Ziqiang Chen
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun 130012, China
| | - Nikisha Patel
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Hongfeng Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen & China National GeneBank, Shenzhen 518083, China
| | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen & China National GeneBank, Shenzhen 518083, China
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
| |
Collapse
|
188
|
Ma Q, Sun T, Li S, Wen J, Zhu L, Yin T, Yan K, Xu X, Li S, Mao J, Wang Y, Jin S, Zhao X, Li Q. The Acer truncatum genome provides insights into nervonic acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:662-678. [PMID: 32772482 PMCID: PMC7702125 DOI: 10.1111/tpj.14954] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/10/2023]
Abstract
Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). However, the lack of a complete genome sequence has limited both basic and applied research on A. truncatum. We describe a high-quality draft genome assembly comprising 633.28 Mb (contig N50 = 773.17 kb; scaffold N50 = 46.36 Mb) with at least 28 438 predicted genes. The genome underwent an ancient triplication, similar to the core eudicots, but there have been no recent whole-genome duplication events. Acer yangbiense and A. truncatum are estimated to have diverged about 9.4 million years ago. A combined genomic, transcriptomic, metabonomic, and cell ultrastructural analysis provided new insights into the biosynthesis of very long-chain monounsaturated fatty acids. In addition, three KCS genes were found that may contribute to regulating nervonic acid biosynthesis. The KCS paralogous gene family expanded to 28 members, with 10 genes clustered together and distributed in the 0.27-Mb region of pseudochromosome 4. Our chromosome-scale genomic characterization may facilitate the discovery of agronomically important genes and stimulate functional genetic research on A. truncatum. Furthermore, the data presented also offer important foundations from which to study the molecular mechanisms influencing the production of nervonic acids.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Tianlin Sun
- Novogene Bioinformatics InstituteBeijing100083China
| | - Shushun Li
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Jing Wen
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Lu Zhu
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Tongming Yin
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjing210037China
| | - Kunyuan Yan
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| | - Xiao Xu
- Novogene Bioinformatics InstituteBeijing100083China
| | - Shuxian Li
- The Southern Modern Forestry Collaborative Innovation CenterNanjing Forestry UniversityNanjing210037China
| | - Jianfeng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijing100083China
| | - Ya‐nan Wang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjing210037China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Xing Zhao
- Novogene Bioinformatics InstituteBeijing100083China
| | - Qianzhong Li
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing210014China
| |
Collapse
|
189
|
de Melo ES, Wallau GL. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genet 2020; 16:e1008946. [PMID: 33253164 PMCID: PMC7728395 DOI: 10.1371/journal.pgen.1008946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize basically all eukaryotic species genomes. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, while it varied substantially among Anopheles species (0.13%-19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been extensively exchanged by horizontal transfer (172 TE families of 16 different superfamilies) among mosquitoes in the last 30 million years. Horizontally transferred TEs represents around 7% of the genome in Aedes species and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more than 32,000 genomes, we also uncovered transfers between mosquitoes and two different Phyla-Cnidaria and Nematoda-and two subphyla-Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are frequently exchanged by horizontal transfers among mosquitoes, influencing mosquito's genome size and variability.
Collapse
Affiliation(s)
- Elverson Soares de Melo
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
190
|
Song Z, Lin C, Xing P, Fen Y, Jin H, Zhou C, Gu YQ, Wang J, Li X. A high-quality reference genome sequence of Salvia miltiorrhiza provides insights into tanshinone synthesis in its red rhizomes. THE PLANT GENOME 2020; 13:e20041. [PMID: 33217202 DOI: 10.1002/tpg2.20041] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/02/2020] [Accepted: 05/26/2020] [Indexed: 05/21/2023]
Abstract
Salvia miltiorrhiza Bunge, also known as red sage or Danshen, is an important traditional Chinese medicine (TCM) that has been used for thousands of years to treat cardiovascular and other diseases. It is also considered an important model TCM plant. Here, a high-quality reference genome of S. miltiorrhiza was generated by combining PacBio long-read sequencing and chromatin interaction mapping (Hi-C) technologies, resulting in the chromosome-scale assembly of a 594.75-Mb genome sequence with a contig N50 of 2.70 Mb. This assembly shows the highest level of continuity for a Danshen genome generated thus far. The S. miltiorrhiza genome contained 32,483 protein-coding genes, with a repetitive DNA content of approximately 64.84%. The high percentage of young LTRs suggests that multiple TE transposition bursts occurred recently in S. miltiorrhiza. Genes unique to secondary metabolism pathways were expanded in the S. miltiorrhiza genome. A new CYP450 gene cluster was identified in the phloem of red roots where active components were synthesized. This reference genome sequence will facilitate future studies aimed at the elucidation of the secondary metabolism synthesis pathway and the genetic improvement of S. miltiorrhiza.
Collapse
Affiliation(s)
- Zhenqiao Song
- Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271028, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271028, China
| | - Caicai Lin
- Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271028, China
| | - Piyi Xing
- Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271028, China
| | - Yuanyuan Fen
- Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271028, China
| | - Hua Jin
- Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271028, China
| | - Changhao Zhou
- Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271028, China
| | - Yong Q Gu
- Crop Improvement & Genetics Research, Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA
| | - Jianhua Wang
- Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271028, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271028, China
| | - Xingfeng Li
- Agronomy College, Shandong Agricultural University, Tai'an, Shandong, 271028, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271028, China
| |
Collapse
|
191
|
Zhao J, Zhang D, Wang Z, Tian Z, Yang F, Lu X, Long CA. Genome sequencing and transcriptome analysis of Geotrichum citri-aurantii on citrus reveal the potential pathogenic- and guazatine-resistance related genes. Genomics 2020; 112:4063-4071. [DOI: 10.1016/j.ygeno.2020.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/16/2020] [Accepted: 07/04/2020] [Indexed: 11/26/2022]
|
192
|
Zhao Q, Wu J, Zhang L, Yan C, Jiang S, Li Z, Sun D, Lai Y, Gong Z. Genome-scale analyses and characteristics of putative pathogenicity genes of Stagonosporopsis cucurbitacearum, a pumpkin gummy stem blight fungus. Sci Rep 2020; 10:18065. [PMID: 33093634 PMCID: PMC7581720 DOI: 10.1038/s41598-020-75235-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Outbreaks of gummy stem blight (GSB), an emerging seed pumpkin disease, have increased in number and have become more widespread in recent years. Previously we reported that Stagonosporopsis cucurbitacearum (Sc.) is the dominant fungal cause of pumpkin seedling GSB in Northeast China, where it has greatly reduced crop yields in that region. Here, high-throughput whole-genome sequencing and assembly of the Sc. genome were conducted toward revealing pathogenic molecular regulatory mechanisms involved in fungal growth and development. Zq-1 as representative Sc. strain, DNA of Zq-1was prepared for genomic sequencing, we obtained 5.24 Gb of high-quality genomic sequence data via PacBio RS II sequencing. After sequence data was processed to filter out low quality reads, a hierarchical genome-assembly process was employed that generated a genome sequence of 35.28 Mb in size. A total of 9844 genes were predicted, including 237 non-coding RNAs, 1024 genes encoding proteins with signal peptides, 2066 transmembrane proteins and 756 secretory proteins.Transcriptional identification revealed 54 differentially expressed secretory proteins. Concurrently, 605, 130 and 2869 proteins were matched in the proprietary databases Carbohydrate-Active EnZymes database (CAZyme), Transporter Classification Database (TCDB) and Pathogen-Host Interactions database (PHI), respectively. And 96 and 36 DEGs were identified form PHI database and CAZyme database, respectively. In addition, contig00011.93 was an up-regulated DEG involving ATP-binding cassette metabolism in the procession of infection. In order to test relevance of gene predictions to GSB, DEGs with potential pathogenic relevance were revealed through transcriptome data analysis of Sc. strains pre- and post-infection of pumpkin. Interestingly, Sc. and Leptosphaeria maculans (Lm.) exhibited relatively similar with genome lengths, numbers of protein-coding genes and other characteristics. This work provides a foundation for future exploration of additional Sc. gene functions toward the development of more effective GSB control strategies.
Collapse
Affiliation(s)
- Qian Zhao
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jianzhong Wu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liyan Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chao Yan
- College of Agriculture, Northeast Agriculture University, Harbin, China
| | - Shukun Jiang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhugang Li
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Dequan Sun
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences, Harbin, China.
| | - Zhenping Gong
- College of Agriculture, Northeast Agriculture University, Harbin, China.
| |
Collapse
|
193
|
Construction of Pseudomolecules for the Chinese Chestnut ( Castanea mollissima) Genome. G3-GENES GENOMES GENETICS 2020; 10:3565-3574. [PMID: 32847817 PMCID: PMC7534444 DOI: 10.1534/g3.120.401532] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Chinese chestnut (Castanea mollissima Bl.) is a woody nut crop with a high ecological value. Although many cultivars have been selected from natural seedlings, elite lines with comprehensive agronomic traits and characters remain rare. To explore genetic resources with aid of whole genome sequence will play important roles in modern breeding programs for chestnut. In this study, we generated a high-quality C. mollissima genome assembly by combining 90× Pacific Biosciences long read and 170× high-throughput chromosome conformation capture data. The assembly was 688.93 Mb in total, with a contig N50 of 2.83 Mb. Most of the assembled sequences (99.75%) were anchored onto 12 chromosomes, and 97.07% of the assemblies were accurately anchored and oriented. A total of 33,638 protein-coding genes were predicted in the C. mollissima genome. Comparative genomic and transcriptomic analyses provided insights into the genes expressed in specific tissues, as well as those associated with burr development in the Chinese chestnut. This highly contiguous assembly of the C. mollissima genome provides a valuable resource for studies aiming at identifying and characterizing agronomical-important traits, and will aid the design of breeding strategies to develop more focused, faster, and predictable improvement programs.
Collapse
|
194
|
Yin J, Jiang L, Wang L, Han X, Guo W, Li C, Zhou Y, Denton M, Zhang P. A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world's oldest crops. Mol Ecol Resour 2020; 21:68-77. [PMID: 32790213 DOI: 10.1111/1755-0998.13239] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023]
Abstract
Taro (Colocasia esculenta (L.), Schott), from the Araceae family, is one of the oldest crops with important edible, medicinal, nutritional and economic value. Taro is a highly polymorphic species including diverse genotypes adapted to a broad range of environments, but the taro genome has rarely been investigated. Here, a high-quality chromosome-level genome of C. esculenta was assembled using data sequenced by Illumina, PacBio and Nanopore platforms. The assembled genome size was 2,405 Mb with a contig N50 of 400.0 kb and a scaffold N50 of 159.4 Mb. In total, 2,311 Mb (96.09%) of the contig sequences was anchored onto 14 chromosomes to form pseudomolecules, and 2,126 Mb (88.43%) was annotated as repetitive sequences. Of the 28,695 predicted protein-coding genes, 26,215 genes (91.4%) could be functionally annotated. On the basis of phylogenetic analysis using 769 genes, C. esculenta and Spirodela polyrhiza were placed on one branch of the tree that diverged approximately 73.23 million years ago. The synteny analyses showed that there have been two whole-genome duplication events in C. esculenta separated by a relatively short gap. According to comparative genome analysis, a larger number (1,189) of distinct gene families and long terminal repeats were enriched in C. esculenta. Our high-quality taro genome will provide valuable resources for further genetic, ecological and evolutionary analyses of taro or other species in the Araceae.
Collapse
Affiliation(s)
- Jianmei Yin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lu Jiang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyong Han
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenqi Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chunhong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yi Zhou
- School of Agriculture, Food & Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Matthew Denton
- School of Agriculture, Food & Wine, The University of Adelaide, Urrbrae, SA, Australia
| | - Peitong Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
195
|
Yi XG, Yu XQ, Chen J, Zhang M, Liu SW, Zhu H, Li M, Duan YF, Chen L, Wu L, Zhu S, Sun ZS, Liu XH, Wang XR. The genome of Chinese flowering cherry ( Cerasus serrulata) provides new insights into Cerasus species. HORTICULTURE RESEARCH 2020; 7:165. [PMID: 33082971 PMCID: PMC7527954 DOI: 10.1038/s41438-020-00382-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 05/11/2023]
Abstract
Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.
Collapse
Affiliation(s)
- Xian-Gui Yi
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Xia-Qing Yu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Jie Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Min Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Shao-Wei Liu
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu China
| | - Hong Zhu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Meng Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Yi-Fan Duan
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Lin Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| | - Lei Wu
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Shun Zhu
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Zhong-Shuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 318000 Taizhou, Zhejiang China
| | - Xin-Hong Liu
- Zhejiang Academy of Forestry, 310023 Hangzhou, Zhejiang China
| | - Xian-Rong Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment; Cerasus Research Center, Nanjing Forestry University, 210037 Nanjing, Jiangsu China
| |
Collapse
|
196
|
Liang P, Saqib HSA, Ni X, Shen Y. Long-read sequencing and de novo genome assembly of marine medaka (Oryzias melastigma). BMC Genomics 2020; 21:640. [PMID: 32938378 PMCID: PMC7493909 DOI: 10.1186/s12864-020-07042-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Marine medaka (Oryzias melastigma) is considered as an important ecotoxicological indicator to study the biochemical, physiological and molecular responses of marine organisms towards increasing amount of pollutants in marine and estuarine waters. RESULTS In this study, we reported a high-quality and accurate de novo genome assembly of marine medaka through the integration of single-molecule sequencing, Illumina paired-end sequencing, and 10X Genomics linked-reads. The 844.17 Mb assembly is estimated to cover more than 98% of the genome and is more continuous with fewer gaps and errors than the previous genome assembly. Comparison of O. melastigma with closely related species showed significant expansion of gene families associated with DNA repair and ATP-binding cassette (ABC) transporter pathways. We identified 274 genes that appear to be under significant positive selection and are involved in DNA repair, cellular transportation processes, conservation and stability of the genome. The positive selection of genes and the considerable expansion in gene numbers, especially related to stimulus responses provide strong supports for adaptations of O. melastigma under varying environmental stresses. CONCLUSIONS The highly contiguous marine medaka genome and comparative genomic analyses will increase our understanding of the underlying mechanisms related to its extraordinary adaptation capability, leading towards acceleration in the ongoing and future investigations in marine ecotoxicology.
Collapse
Affiliation(s)
- Pingping Liang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaomin Ni
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fudan University, Shanghai, 200240, China
| | - Yingjia Shen
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
197
|
Zhang J, Lei Y, Wang B, Li S, Yu S, Wang Y, Li H, Liu Y, Ma Y, Dai H, Wang J, Zhang Z. The high-quality genome of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1908-1924. [PMID: 32003918 PMCID: PMC7415782 DOI: 10.1111/pbi.13351] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 05/11/2023]
Abstract
Fragaria nilgerrensis is a wild diploid strawberry species endemic to east and southeast region in Asia and provides a rich source of genetic variations for strawberry improvement. Here, we present a chromosome-scale assembly of F. nilgerrensis using single-molecule real-time (SMRT) Pacific Biosciences sequencing and chromosome conformation capture (Hi-C) genome scaffolding. The genome assembly size was 270.3 Mb, with a contig N50 of ∼8.5 Mb. A total of 28 780 genes and 117.2 Mb of transposable elements were annotated for this genome. Next, detailed comparative genomics with the high-quality F. vesca reference genome was conducted to obtain the difference among transposable elements, SNPs, Indels, and so on. The genome size of F. nilgerrensis was enhanced by around 50 Mb relatively to F. vesca, which is mainly due to expansion of transposable elements. In comparison with the F. vesca genome, we identified 4 561 825 SNPs, 846 301 Indels, 4243 inversions, 35 498 translocations and 10 099 relocations. We also found a marked expansion of genes involved in phenylpropanoid biosynthesis, starch and sucrose metabolism, cyanoamino acid metabolism, plant-pathogen interaction, brassinosteroid biosynthesis and plant hormone signal transduction in F. nilgerrensis, which may account for its specific phenotypes and considerable environmental adaptability. Interestingly, we found sequence variations in the upstream regulatory region of FnMYB10, a core transcriptional activator of anthocyanin biosynthesis, resulted in the low expression level of the FnMYB10 gene, which is likely responsible for white fruit phenotype of F. nilgerrensis. The high-quality F. nilgerrensis genome will be a valuable resource for biological research and comparative genomics research.
Collapse
Affiliation(s)
- Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Yingying Lei
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Baotian Wang
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Song Li
- Biomarker Technologies CorporationBeijingChina
| | - Shuang Yu
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Yan Wang
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Yuexue Liu
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Yue Ma
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Hongyan Dai
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| | | | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and CultivationCollege of HorticultureShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
198
|
Yang Z, Zhang H, Li X, Shen H, Gao J, Hou S, Zhang B, Mayes S, Bennett M, Ma J, Wu C, Sui Y, Han Y, Wang X. A mini foxtail millet with an Arabidopsis-like life cycle as a C 4 model system. NATURE PLANTS 2020; 6:1167-1178. [PMID: 32868891 DOI: 10.1038/s41477-020-0747-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
Foxtail millet (Setaria italica) is an important crop species and an emerging model plant for C4 grasses. However, functional genomics research on foxtail millet is challenging because of its long generation time, relatively large stature and recalcitrance to genetic transformation. Here we report the development of xiaomi, a rapid-cycling mini foxtail millet mutant as a C4 model system. Five to six generations of xiaomi can be grown in a year in growth chambers due to its short life cycle and small plant size, similar to Arabidopsis. A point mutation in the Phytochrome C (PHYC) gene was found to be causal for these characteristics. PHYC encodes a light receptor essential for photoperiodic flowering. A reference-grade xiaomi genome comprising 429.94 Mb of sequence was assembled and a gene-expression atlas from 11 different tissues was developed. These resources, together with an established highly efficient transformation system and a multi-omics database, make xiaomi an ideal model system for functional studies of C4 plants.
Collapse
Affiliation(s)
- Zhirong Yang
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, China
- College of Arts and Sciences, Shanxi Agricultural University, Taigu, China
| | - Haoshan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xukai Li
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, China
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Huimin Shen
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Jianhua Gao
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, China
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Siyu Hou
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Bin Zhang
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Sean Mayes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Malcolm Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yuanhuai Han
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, China.
| | - Xingchun Wang
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, China.
- College of Life Sciences, Shanxi Agricultural University, Taigu, China.
| |
Collapse
|
199
|
Hong Z, Li J, Liu X, Lian J, Zhang N, Yang Z, Niu Y, Cui Z, Xu D. The chromosome-level draft genome of Dalbergia odorifera. Gigascience 2020; 9:giaa084. [PMID: 32808664 PMCID: PMC7433187 DOI: 10.1093/gigascience/giaa084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/09/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dalbergia odorifera T. Chen (Fabaceae) is an International Union for Conservation of Nature red-listed tree. This tree is of high medicinal and commercial value owing to its officinal, insect-proof, durable heartwood. However, there is a lack of genome reference, which has hindered development of studies on the heartwood formation. FINDINGS We presented the first chromosome-scale genome assembly of D. odorifera obtained on the basis of Illumina paired-end sequencing, Pacific Biosciences single-molecule real-time sequencing, 10x Genomics linked reads, and Hi-C technology. We assembled 97.68% of the 653.45 Mb D. odorifera genome with scaffold N50 and contig sizes of 56.16 and 5.92 Mb, respectively. Ten super-scaffolds corresponding to the 10 chromosomes were assembled, with the longest scaffold reaching 79.61 Mb. Repetitive elements account for 54.17% of the genome, and 30,310 protein-coding genes were predicted from the genome, of which ∼92.6% were functionally annotated. The phylogenetic tree showed that D. odorifera diverged from the ancestor of Arabidopsis thaliana and Populus trichocarpa and then separated from Glycine max and Cajanus cajan. CONCLUSIONS We sequence and reveal the first chromosome-level de novo genome of D. odorifera. These studies provide valuable genomic resources for the research of heartwood formation in D. odorifera and other timber trees. The high-quality assembled genome can also be used as reference for comparative genomics analysis and future population genetic studies of D. odorifera.
Collapse
Affiliation(s)
- Zhou Hong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Jiang Li
- Biozeron Shenzhen Inc., Shenzhen 518000, China
| | - Xiaojin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Jinmin Lian
- Biozeron Shenzhen Inc., Shenzhen 518000, China
| | - Ningnan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Zengjiang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | | | - Zhiyi Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Daping Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
200
|
Liang Y, Chen S, Wei K, Yang Z, Duan S, Du Y, Qu P, Miao J, Chen W, Dong Y. Chromosome Level Genome Assembly of Andrographis paniculata. Front Genet 2020; 11:701. [PMID: 32714378 PMCID: PMC7340177 DOI: 10.3389/fgene.2020.00701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
Andrographis paniculata (Chinese name: Chuanxinlian) is an annual dicotyledonous medicinal plant widely grown in China and Southeast Asia. The dried plant has a highly acclaimed usage in the traditional Chinese medicine for its antipyretic, anti-inflammatory, and analgesic effects. In order to help delineate the biosynthetic pathways of various secondary metabolites, we report in this study a high-quality reference genome for A. paniculata. With the help of both PacBio single molecule real time sequencing and Illumina sequencing reads for error correction, the A. paniculata genome was assembled into a total size of 284 Mb with a contig N50 size of 5.14 Mb. The contigs were further assembled into 24 pseudo-chromosomes by the Hi-C technique. We also analyzed the gene families (e.g., KSL, and CYP450) whose protein products are essential for synthesizing bioactive compounds in A. paniculata. In conclusion, the high-quality A. paniculata genome assembly builds the foundation for decoding the biosynthetic pathways of various medicinal compounds.
Collapse
Affiliation(s)
- Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | | | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zijiang Yang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | | | - Yuan Du
- NowBio Biotechnology Company, Kunming, China
| | - Peng Qu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Yang Dong
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| |
Collapse
|