151
|
HSP90 Inhibitors, Geldanamycin and Radicicol, Enhance Fisetin-Induced Cytotoxicity via Induction of Apoptosis in Human Colonic Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:987612. [PMID: 23840275 PMCID: PMC3693119 DOI: 10.1155/2013/987612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 01/30/2023]
Abstract
We revealed the cytotoxic effect of the flavonoid, fisetin (FIS), on human COLO205 colon cancer cells in the presence and absence of the HSP90 inhibitors, geldanamycin (GA) and radicicol (RAD). Compared to FIS treatment alone of COLO205 cells, GA and RAD significantly enhanced FIS-induced cytotoxicity, increased expression of cleaved caspase-3 and the PAPR protein, and produced a greater density of DNA ladder formation. GA and RAD also reduced the MMPs with induction of caspase-9 protein cleavage in FIS-treated COLO205 cells. Increased caspase-3 and -9 activities were detected in COLO205 cells treated with FIS+GA or FIS+RAD, and the intensity of DNA ladder formation induced by FIS+GA was reduced by adding the caspase-3 inhibitor, DEVD-FMK. A decrease in Bcl-2 but not Bcl-XL or Bax protein by FIS+GA or FIS+RAD was identified in COLO205 cells by Western blotting. A reduction in p53 protein with increased ubiquitin-tagged proteins was observed in COLO205 cells treated with FIS+GA or FIS+RAD. Furthermore, GA and RAD reduced the stability of the p53 protein in COLO205 cells under FIS stimulation. The evidence supports HSP90 inhibitors possibly sensitizing human colon cancer cells to FIS-induced apoptosis, and treating colon cancer by combining HSP90 inhibitors with FIS deserves further in vivo study.
Collapse
|
152
|
Pandith H, Zhang X, Thongpraditchote S, Wongkrajang Y, Gritsanapan W, Baek SJ. Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:434-441. [PMID: 23535395 DOI: 10.1016/j.jep.2013.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/22/2013] [Accepted: 03/10/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Siam weed (Chromolaena odorata (L.) King and Robinson) is a medicinal herb used for wound healing and inflammation-related diseases. AIM OF THE STUDY In this study, we evaluated the molecular mechanism by which Siam weed extract (SWE) and its bioactive components, scutellarein tetramethyl ether (scu), stigmasterol, and isosakuranetin affect anti-inflammatory activity. MATERIALS AND METHODS The expression of several inflammatory proteins in RAW 264.7 (murine) macrophages was assessed by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Biochemical assays including prostaglandin E2 (PGE2) and nitric-oxide (NO) quantification were performed. Luciferase promoter activity and immunocytochemistry of Nuclear factor-κB (NF-κB) were investigated. RESULTS Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are critical pro-inflammatory proteins. The level of protein and mRNA expression of these enzymes induced by lipopolysaccharide (LPS) was dramatically suppressed by treatment with SWE, scu, or stigmasterol compounds in a dose-dependent manner. They also reduced PGE2 and NO release. We further analyzed the NF-κB pathway and found that the scu compound suppressed IκB kinase complex alpha/beta (IKKα/β) and Inhibitory-kappa-B-alpha (IκBα), thereby suppressing COX-2 and iNOS expression. CONCLUSION This is the first report of the anti-inflammatory molecular mechanism in SWE and/or its bioactive component scu, indicating alteration NF-κB pathway and further providing potential uses in the treatment of inflammatory-related diseases.
Collapse
Affiliation(s)
- Hataichanok Pandith
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
153
|
Involvement of Nrf2-mediated upregulation of heme oxygenase-1 in mollugin-induced growth inhibition and apoptosis in human oral cancer cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:210604. [PMID: 23738323 PMCID: PMC3659465 DOI: 10.1155/2013/210604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 11/17/2022]
Abstract
Although previous studies have shown that mollugin, a bioactive phytochemical isolated from Rubia cordifolia L. (Rubiaceae), exhibits antitumor effects, its biological activity in oral cancer has not been reported. We thus investigated the effects and putative mechanism of apoptosis induced by mollugin in human oral squamous cell carcinoma cells (OSCCs). Results show that mollugin induces cell death in a dose-dependent manner in primary and metastatic OSCCs. Mollugin-induced cell death involved apoptosis, characterized by the appearance of nuclear shrinkage, flow cytometric analysis of sub-G1 phase arrest, and annexin V-FITC and propidium iodide staining. Western blot analysis and RT-PCR revealed that mollugin suppressed activation of NF-κB and NF-κB-dependent gene products involved in antiapoptosis (Bcl-2 and Bcl-xl), invasion (MMP-9 and ICAM-1), and angiogenesis (FGF-2 and VEGF). Furthermore, mollugin induced the activation of p38, ERK, and JNK and the expression of heme oxygenase-1 (HO-1) and nuclear factor E2–related factor 2 (Nrf2). Mollugin-induced growth inhibition and apoptosis of HO-1 were reversed by an HO-1 inhibitor and Nrf2 siRNA. Collectively, this is the first report to demonstrate the effectiveness of mollugin as a candidate for a chemotherapeutic agent in OSCCs via the upregulation of the HO-1 and Nrf2 pathways and the downregulation of NF-κB.
Collapse
|
154
|
Extract of Rhus verniciflua Bark Suppresses 2,4-Dinitrofluorobenzene-Induced Allergic Contact Dermatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:879696. [PMID: 23710240 PMCID: PMC3655595 DOI: 10.1155/2013/879696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 12/12/2022]
Abstract
Rhus verniciflua Stokes (RV) has traditionally been used as a food supplement and a traditional herbal medicine for centuries in Korea. Recent studies suggest that RV has potent antioxidative, antitumor, and anti-inflammatory properties. In this study, the anti-inflammatory effects of RV from mice sensitized with 2,4-dinitrofluorobenzene (DNFB) and activated macrophages were investigated. The results showed that RV reduced ear swelling and hyperplasia of ear tissue as well as an increase in vascular permeability, which are characteristics of allergic contact dermatitis (ACD) with evident histomorphological changes in epidermis and dermis. Decreased numbers of infiltrated mast cells were seen in RV extract treated group, using toluidine blue staining. RV extract significantly regulates the expression of inducible nitric oxide synthase (iNOS) at the translational level in activated macrophages. Furthermore, RV extract and its active compound, fisetin, attenuated the level of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) mRNA in LPS-stimulated macrophages. Anti-ACD effect of RV extract may be due to the suppression of iNOS and proinflammatory cytokines which might be mediated via the NFκB signaling pathways. Collectively, RV extract has potential for alleviating ACD-like symptoms induced by DNFB in the mouse.
Collapse
|
155
|
Zhou Y, Lu N, Zhang H, Wei L, Tao L, Dai Q, Zhao L, Lin B, Ding Q, Guo Q. HQS-3, a newly synthesized flavonoid, possesses potent anti-tumor effect in vivo and in vitro. Eur J Pharm Sci 2013; 49:649-58. [PMID: 23619285 DOI: 10.1016/j.ejps.2013.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 04/14/2013] [Indexed: 12/21/2022]
Abstract
HQS-3 is a newly baicalein derivative with a benzene substitution. We investigated the anticancer effect of HQS-3 in vivo and in vitro. HQS-3 significantly decreased tumor growth in mice inoculated with Heps and HepG2 cells; and had little influence on the state and weight of animals. After treatment with 20 mg/kg HQS-3, the inhibitory rate of tumor weight in mice inoculated with Heps and HepG2 cells were 63.62% and 68.03%, respectively. Meanwhile, HQS-3 inhibited the viability of various kinds of tumor cells with IC50 values in the range of 22.98-54.32 μM after 48 h treatment measured by MTT-assay. HQS-3 remarkably inhibited viability of hepatoma cells in a concentration- and time-dependent manner and induced apoptosis in HepG2 cells by DAPI staining and Annexin V/PI double staining. The apoptosis-induction effect of HQS-3 was attributed to its ability to modulate the activity of caspase-9, caspase-3 and PARP. Moreover, the expression of bax protein was increased while the bcl-2 protein was decreased, leading to an increase in Bax/Bcl-2 ratio. The accumulation of ROS induced by HQS-3 in HepG2 cells was also observed. The further results suggested that HQS-3 induced mitochondrial-mediated apoptosis by increasing ROS level and inhibiting the expression of anti-oxidative protein SOD2. HQS-3 exerted anti-tumor activity both in vitro and in vivo via inducing tumor cells apoptosis, and these results suggested that it deserves further investigation as a novel chemotherapy for human tumors.
Collapse
Affiliation(s)
- Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Aggarwal B, Prasad S, Sung B, Krishnan S, Guha S. Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature. CURRENT COLORECTAL CANCER REPORTS 2013; 9:37-56. [PMID: 23814530 PMCID: PMC3693477 DOI: 10.1007/s11888-012-0154-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States after cancers of the lung and the breast/prostate. While the incidence of CRC in the United States is among the highest in the world (approximately 52/100,000), its incidence in countries in India is among the lowest (approximately 7/100,000), suggesting that lifestyle factors may play a role in development of the disease. Whereas obesity, excessive alcohol consumption, a high-calorie diet, and a lack of physical activity promote this cancer, evidence indicates that foods containing folates, selenium, Vitamin D, dietary fiber, garlic, milk, calcium, spices, vegetables, and fruits are protective against CRC in humans. Numerous agents from "mother nature" (also called "nutraceuticals,") that have potential to both prevent and treat CRC have been identified. The most significant discoveries relate to compounds such as cardamonin, celastrol, curcumin, deguelin, diosgenin, thymoquinone, tocotrienol, ursolic acid, and zerumbone. Unlike pharmaceutical drugs, these agents modulate multiple targets, including transcription factors, growth factors, tumor cell survival factors, inflammatory pathways, and invasion and angiogenesis linked closely to CRC. We describe the potential of these dietary agents to suppress the growth of human CRC cells in culture and to inhibit tumor growth in animal models. We also describe clinical trials in which these agents have been tested for efficacy in humans. Because of their safety and affordability, these nutraceuticals provide a novel opportunity for treatment of CRC, an "old age" disease with an "age old" solution.
Collapse
Affiliation(s)
- Bharat Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics
| | | | | | | | | |
Collapse
|
157
|
Woo HD, Kim J. Dietary flavonoid intake and risk of stomach and colorectal cancer. World J Gastroenterol 2013; 19:1011-1019. [PMID: 23467443 PMCID: PMC3581988 DOI: 10.3748/wjg.v19.i7.1011] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
Stomach and colorectal cancers are common cancers and leading causes of cancer deaths. Because the alimentary tract can interact directly with dietary components, stomach and colorectal cancer may be closely related to dietary intake. We systematically searched published literature written in English via PubMed by searching for terms related to stomach and colorectal cancer risk and dietary flavonoids up to June 30, 2012. Twenty-three studies out of 209 identified articles were finally selected for the analysis. Log point effect estimates and the corresponding standard errors were calculated using covariate-adjusted point effect estimates and 95%CIs from the selected studies. Total dietary flavonoid intake was not associated with a reduced risk of colorectal or stomach cancer [odds ratio (OR) (95%CI) = 1.00 (0.90-1.11) and 1.07 (0.70-1.61), respectively]. Among flavonoid subclasses, the intake of flavonols, flavan-3-ols, anthocyanidins, and proanthocyanidins showed a significant inverse association with colorectal cancer risk [OR (95%CI) = 0.71 (0.63-0.81), 0.88 (0.79-0.97), 0.68 (0.56-0.82), and 0.72 (0.61-0.85), respectively]. A significant association was found only between flavonols and stomach cancer risk based on a limited number of selected studies [OR (95%CI) = 0.68 (0.46-0.99)]. In the summary estimates from case-control studies, all flavonoid subclasses except flavones and flavanones were inversely associated with colorectal cancer risk, whereas neither total flavonoids nor any subclasses of flavonoids were associated with colorectal cancer risk in the summary estimates based on the cohort studies. The significant association between flavonoid subclasses and cancer risk might be closely related to bias derived from the case-control design. There was no clear evidence that dietary flavonoids are associated with reduced risk of stomach and colorectal cancer.
Collapse
|
158
|
Seguin J, Brullé L, Boyer R, Lu YM, Ramos Romano M, Touil YS, Scherman D, Bessodes M, Mignet N, Chabot GG. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm 2013; 444:146-54. [DOI: 10.1016/j.ijpharm.2013.01.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
|
159
|
Firdaus M, Prihanto AA, Nurdiani R. Antioxidant and cytotoxic activity of Acanthus ilicifolius flower. Asian Pac J Trop Biomed 2013; 3:17-21. [PMID: 23570011 PMCID: PMC3609388 DOI: 10.1016/s2221-1691(13)60017-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/16/2012] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the antioxidant and cytotoxic activity of the flower of Acanthus ilicifolius (A. ilicifolius). METHODS Antioxidant activity was determined as antiradical efficiency with diphenyl picrylhydrazil (DPPH) method and cytotoxic assay was undertaken using brine shrimp lethal toxicity test. RESULTS A. ilicifolius flower contained terpenoid, phenolic compounds, and alkaloid. The methanol extract of A. ilicifolius flower showed the highest antiradical efficiency (AE=1.41×10(-3)) against DPPH radicals and the highest cytotoxicity (LC50=22 µg/mL) against brine shrimp nauplii. CONCLUSIONS It is suggested that active compounds of A. ilicifolius flower solved in methanol play a role to inhibit free radical activity and kill Artemia salina nauplii. The substances can be considered as potential antioxidant and cytotoxic agents as well as imminent candidate for cancer therapy.
Collapse
Affiliation(s)
| | - Asep Awaludin Prihanto
- Laboratory of Biochemistry, Faculty of Fisheries and Marine Science, Brawijaya University, Malang-65145, Indonesia
| | | |
Collapse
|
160
|
Coffee polyphenols change the expression of STAT5B and ATF-2 modifying cyclin D1 levels in cancer cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:390385. [PMID: 22919439 PMCID: PMC3424007 DOI: 10.1155/2012/390385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 12/31/2022]
Abstract
Background. Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. Objective. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole-genome microarrays. Results. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Conclusions. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.
Collapse
|
161
|
Adhami VM, Syed DN, Khan N, Mukhtar H. Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol 2012; 84:1277-81. [PMID: 22842629 DOI: 10.1016/j.bcp.2012.07.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 12/19/2022]
Abstract
Epidemiologic and case control population based studies over the past few decades have identified diet as an important determinant of cancer risk. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds has been fisetin (3,7,3',4'-tetrahydroxyflavone), a flavonol and a member of the flavonoid polyphenols that also include quercetin, myricetin and kaempferol. Fisetin is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. We evaluated the effects of fisetin against melanoma and cancers of the prostate, pancreas and the lungs. Using prostate and lung adenocarcinoma cells, we demonstrated that fisetin acts as a dual inhibitor of the PI3K/Akt and the mTOR pathways. This is a significant finding considering the fact that mTOR is phosphorylated and its activation is more frequent in tumors with overexpression of PI3K/Akt. Dual inhibitors of PI3K/Akt and mTOR signaling have been suggested as valuable agents for treating such cancers. Here, we summarize our findings on the dietary flavonoid fisetin and its effects on cancer with particular focus on prostate cancer. Our observations and findings from other laboratories suggest that fisetin could be a useful chemotherapeutic agent that could be used either alone or as an adjuvant with conventional chemotherapeutic drugs for the management of prostate and other cancers.
Collapse
Affiliation(s)
- Vaqar Mustafa Adhami
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
162
|
Khan N, Afaq F, Khusro FH, Adhami VM, Suh Y, Mukhtar H. Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer 2012; 130:1695-705. [PMID: 21618507 PMCID: PMC3267899 DOI: 10.1002/ijc.26178] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/03/2011] [Indexed: 01/08/2023]
Abstract
Lung cancer is one of the most commonly occurring malignancies. It has been reported that mammalian target of rapamycin (mTOR) is phosphorylated in lung cancer and its activation was more frequent in tumors with overexpression of phosphatidylinositol 3-kinase (PI3K)/Akt. Therefore, dual inhibitors of PI3K/Akt and mTOR signaling could be valuable agents for treating lung cancer. In the present study, we show that fisetin, a dietary tetrahydroxyflavone inhibits cell growth with the concomitant suppression of PI3K/Akt and mTOR signaling in human nonsmall cell lung cancer (NSCLC) cells. Using autodock 4, we found that fisetin physically interacts with the mTOR complex at two sites. Fisetin treatment was also found to reduce the formation of A549 cell colonies in a dose-dependent manner. Treatment of cells with fisetin caused decrease in the protein expression of PI3K (p85 and p110), inhibition of phosphorylation of Akt, mTOR, p70S6K1, eIF-4E and 4E-BP1. Fisetin-treated cells also exhibited dose-dependent inhibition of the constituents of mTOR signaling complex such as Rictor, Raptor, GβL and PRAS40. There was an increase in the phosphorylation of AMPKα and a decrease in the phosphorylation of TSC2 on treatment of cells with fisetin. We also found that treatment of cells with mTOR inhibitor rapamycin and mTOR-siRNA caused decrease in phosphorylation of mTOR and its target proteins which were further downregulated on treatment with fisetin, suggesting that these effects are mediated in part, through mTOR signaling. Our results show that fisetin suppressed PI3K/Akt and mTOR signaling in NSCLC cells and thus, could be developed as a chemotherapeutic agent against human lung cancer.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | - Farrukh Afaq
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | - Fatima H. Khusro
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | | | - Yewseok Suh
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, Madison, WI 53706, USA
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
163
|
Dias T, Liu B, Jones P, Houghton PJ, Mota-Filipe H, Paulo A. Cytoprotective effect of Coreopsis tinctoria extracts and flavonoids on tBHP and cytokine-induced cell injury in pancreatic MIN6 cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:485-92. [PMID: 22143153 DOI: 10.1016/j.jep.2011.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/02/2011] [Accepted: 11/19/2011] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE [corrected] Coreopsis tinctoria flowering tops infusion is traditionally used in Portugal for treating the symptoms of diabetes. Recent studies have revealed its antihyperglycemic activity when administered for 3 weeks to a STZ-induced glucose intolerance model in the rat and glucose tolerance regain was even clearer and pancreatic function recovery was achieved when administering Coreopsis tinctoria flavonoid-rich AcOEt fraction. In this study we aimed to evaluate the protective effect of Coreopsis tinctoria flowering tops aqueous extract, AcOEt fraction and the pure compounds marein and flavanomarein, against beta-cell injury, in a mouse insulinoma cell line (MIN6) challenged with pro-oxidant tert-butyl-hydroperoxide (tBHP) or cytokines. MATERIALS AND METHODS The protective effects of Coreopsis tinctoria flowering tops extracts and pure compounds were evaluated through pre-incubating MIN6 cells with samples followed by treatment with tBHP (400 μM for 2 h) after which viability was determined through ATP measurements. In order to assess whether plant extracts were involved in decreasing reactive oxygen species, superoxide anion production was determined through a lucigenin-enhanced chemiluminescent method. Lastly, the direct influence of Coreopsis tinctoria extracts and main compounds on cell survival/apoptosis was determined measuring caspase 3 and 7 cleavage induced by cytokines. RESULTS Coreopsis tinctoria flowering tops extracts (25-100 μg/mL) and pure compounds (200-400 μM), when pre-incubated with MIN6 cells did not present any cytotoxicity, instead they increased cell viability in a dose dependent manner when challenged with tBHP. Treatment with this pro-oxidant also showed a rise in superoxide radical anion formation in MIN6 cells. This increase was significantly reduced by treatment with superoxide dismutase enzyme (SOD) but not by pre-treatment with Coreopsis tinctoria flowering tops extracts. Caspase 3/7 activation measurements show that Coreopsis tinctoria flowering tops extracts, as well as marein and flavanomarein, significantly inhibit apoptosis. CONCLUSIONS Coreopsis tinctoria extracts and pure compounds show cytoprotection that seems to be due to inhibition of the apoptotic pathway, and not through a decrease on superoxide radical production.
Collapse
Affiliation(s)
- Teresa Dias
- i.Med-UL-Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
164
|
Goh FY, Upton N, Guan S, Cheng C, Shanmugam MK, Sethi G, Leung BP, Wong WSF. Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB. Eur J Pharmacol 2012; 679:109-16. [PMID: 22290391 DOI: 10.1016/j.ejphar.2012.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/10/2011] [Accepted: 01/10/2012] [Indexed: 12/31/2022]
Abstract
Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway.
Collapse
Affiliation(s)
- Fera Y Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Anitha P, Priyadarsini RV, Kavitha K, Thiyagarajan P, Nagini S. Ellagic acid coordinately attenuates Wnt/β-catenin and NF-κB signaling pathways to induce intrinsic apoptosis in an animal model of oral oncogenesis. Eur J Nutr 2011; 52:75-84. [PMID: 22160170 DOI: 10.1007/s00394-011-0288-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023]
Abstract
PURPOSE Constitutive activation of the Wnt signaling pathway and its downstream effectors plays a key role in neoplastic transformation. The objective of this study was to investigate the effect of ellagic acid, a plant-derived polyphenol on Wnt/β-catenin signaling and its downstream circuits- NF-κB and mitochondrial apoptosis in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model. METHODS Hamsters were divided into six groups. The right buccal pouches of animals in groups 1-4 were painted with 0.5% DMBA three times a week for 14 weeks. Animals in groups 2-4 received in addition basal diet containing ellagic acid at a concentration of 0.1, 0.2, and 0.4% in the diet. Group 5 animals were given 0.4% ellagic acid alone. Group 6 animals served as control. The expression of the members of Wnt and NF-κB signaling and intrinsic apoptosis was evaluated by western blot analysis. RESULTS Dietary supplementation of 0.4% ellagic acid suppressed the development of HBP carcinomas by preventing the constitutive activation of Wnt pathway through the downregulation of Fz, Dvl-2, GSK-3β and nuclear translocation of β-catenin. Abrogation of Wnt signaling by ellagic acid was also associated with inactivation of NF-κB and modulation of key components of the mitochondrial apoptotic network. CONCLUSIONS Our findings suggest a functional crosstalk between Wnt and NF-κB signaling pathways in HBP carcinomas that is blocked by ellagic acid supplementation. Dietary ellagic acid that targets the Wnt/β-catenin pathway as well as its downstream signaling mediators is a unique candidate for cancer chemoprevention.
Collapse
Affiliation(s)
- Prabukumar Anitha
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | | | | | | | | |
Collapse
|
166
|
Johnson JJ, Petiwala SM, Syed DN, Rasmussen JT, Adhami VM, Siddiqui IA, Kohl AM, Mukhtar H. α-Mangostin, a xanthone from mangosteen fruit, promotes cell cycle arrest in prostate cancer and decreases xenograft tumor growth. Carcinogenesis 2011; 33:413-9. [PMID: 22159229 DOI: 10.1093/carcin/bgr291] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
There is a need to characterize promising dietary agents for chemoprevention and therapy of prostate cancer (PCa). We examined the anticancer effect of α-mangostin, derived from the mangosteen fruit, in human PCa cells and its role in targeting cell cycle-related proteins involved in prostate carcinogenesis. Using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, we found that α-mangostin significantly decreases PCa cell viability in a dose-dependent manner. Further analysis using flow cytometry identified cell cycle arrest along with apoptosis. To establish a more precise mechanism of action, we performed a cell free biochemical kinase assay against multiple cyclins/cyclin-dependent kinases (CDKs) involved in cell cycle progression; the most significant inhibition in the cell free-based assays was CDK4, a critical component of the G1 phase. Through molecular modeling, we evaluated α-mangostin against the adenosine triphosphate-binding pocket of CDK4 and propose three possible orientations that may result in CDK4 inhibition. We then performed an in vivo animal study to evaluate the ability of α-mangostin to suppress tumor growth. Athymic nude mice were implanted with 22Rv1 cells and treated with vehicle or α-mangostin (100 mg/kg) by oral gavage. At the conclusion of the study, mice in the control cohort had a tumor volume of 1190 mm(3), while the treatment group had a tumor volume of 410 mm(3) (P < 0.01). The ability of α-mangostin to inhibit PCa in vitro and in vivo suggests α-mangostin may be a novel agent for the management of PCa.
Collapse
Affiliation(s)
- Jeremy J Johnson
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, 833 South Wood Street, Chicago, IL 60612-7230, USA.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Bhat TA, Nambiar D, Pal A, Agarwal R, Singh RP. Fisetin inhibits various attributes of angiogenesis in vitro and in vivo--implications for angioprevention. Carcinogenesis 2011; 33:385-93. [DOI: 10.1093/carcin/bgr282] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
168
|
|
169
|
Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway. Arch Toxicol 2011; 86:263-73. [DOI: 10.1007/s00204-011-0754-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
|
170
|
Lee YM, Kim YC, Choi BJ, Lee DW, Yoon JH, Kim EC. Mechanism of sappanchalcone-induced growth inhibition and apoptosis in human oral cancer cells. Toxicol In Vitro 2011; 25:1782-8. [PMID: 21963806 DOI: 10.1016/j.tiv.2011.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/26/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
Sappanchalcone, a flavonoid extracted from Caesalpinia sappan, exhibits cytoprotective activity, but the molecular basis for the anticancer effect of sappanchalcone has not been reported. In this study, we examined whether sappanchalcone could inhibit the growth of human primary and metastatic oral cancer cells, and we analyzed the signaling pathway underlying the apoptotic effects of the compound in this process using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assays, fluorescence microscopy, flow cytometry, and Western blotting. Sappanchalcone-treated oral cancer cells showed an increased cytosolic level of cytochrome c, downregulated Bcl-2 expression, upregulated Bax and p53 expression, caspase-3 and -9 activation, and poly (ADP-ribose) polymerase cleavage. Furthermore, sappanchalcone induced activation of p38, extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and Nuclear factor k B (NF-κB), as demonstrated by the phosphorylation of each mitogen-activated protein kinases (MAPKs), the degradation of inhibitor of NF-κα (IκB-α), increased expression of nuclear p65, and NF-κB-DNA binding. Inhibition of the expression of p38, ERK, JNK, and NF-κB by pharmacological inhibitors reversed sappanchalcone-induced growth inhibition and apoptosis. These results provide the first evidence that sappanchalcone suppresses oral cancer cell growth and induces apoptosis through the activation of p53-dependent mitochondrial, p38, ERK, JNK, and NF-κB signaling. Thus, it has potential as a chemotherapeutic agent for oral cancer.
Collapse
Affiliation(s)
- Young-Man Lee
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
171
|
Miene C, Weise A, Glei M. Impact of polyphenol metabolites produced by colonic microbiota on expression of COX-2 and GSTT2 in human colon cells (LT97). Nutr Cancer 2011; 63:653-62. [PMID: 21598179 DOI: 10.1080/01635581.2011.552157] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyphenols may play an important role in colon cancer prevention. After entering the colon, they are subjected to metabolism by the human gut microbiota. The objective of the present study was to analyze the impact of selected intestinal metabolites on modulation of enzymes involved in detoxification and inflammation in human adenoma cells LT97. LT97 cells were incubated with 3,4-dihydroxyphenylacetic acid (ES) and 3-(3,4-dihydroxyphenyl)-propionic acid (PS), metabolites of quercetin and chlorogenic acid/caffeic acid, respectively. The effect on cell number was analyzed using 4'- 6-diamino-2-phenylindole-dihydrochloride (DAPI)-staining. Modulation of glutathione S-transferase T2 (GSTT2) and cyclooxygenase-2 (COX-2) was measured by real-time PCR and Western blot. Comet assay was performed to assess the impact on DNA damage caused by the GSTT2 substrate cumene hydroperoxide (CumOOH). Polyphenol metabolites did not affect cell number but significantly upregulated GSTT2 expression and decreased COX-2. The latter was confirmed via Western blot. CumOOH-induced DNA damage was significantly reduced compared to the control. An upregulation of GSTT2 and downregulation of COX-2 could possibly contribute to the chemopreventive potential of polyphenols after degradation in the gut. Working with polyphenol metabolites is an important prerequisite to better understand the in vivo effects of pure polyphenols.
Collapse
Affiliation(s)
- Claudia Miene
- Institute for Nutrition, Department of Nutritional Toxicology, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | |
Collapse
|
172
|
Abstract
Extensive research in the past decade has revealed cancer to be a multigenic disease caused by perturbation of multiple cell signalling pathways and dysregulation of numerous gene products, all of which have been linked to inflammation. It is also becoming evident that various lifestyle factors, such as tobacco and alcohol use, diet, environmental pollution, radiation and infections, can cause chronic inflammation and lead to tumourigenesis. Chronic diseases caused by ongoing inflammation therefore require chronic, not acute, treatment. Nutraceuticals, compounds derived from fruits, vegetables, spices and cereals, can be used chronically. This study discusses the molecular targets of some nutraceuticals that happen to be markers of chronic inflammation and how they can prevent or treat cancer. These naturally-occurring agents in the diet have great potential as anti-cancer drugs, thus proving Hippocrates, who proclaimed 25 centuries ago, 'Let food be thy medicine and medicine be thy food'.
Collapse
Affiliation(s)
- Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
173
|
Jawabrah Al-Hourani B, Sharma SK, Suresh M, Wuest F. Cyclooxygenase-2 inhibitors: a literature and patent review (2009 - 2010). Expert Opin Ther Pat 2011; 21:1339-432. [PMID: 21714592 DOI: 10.1517/13543776.2011.593510] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION COXs catalyze the complex conversion of arachidonic acid to prostaglandins and thromboxanes, which trigger as autacoids with autocrine and paracrine biological effects many physiological and pathophysiological responses. The structural similarities of the COX-1 and -2 enzymes make the search for selective inhibitors for COX-2 versus -1 a formidable challenge. AREAS COVERED The present review provides a survey of the development of novel COX-2 inhibitors covering literature and patents between 2009 and 2010. The presence of a central, typically 1,2-diaryl substituted, heterocycle or carbocycle as a characteristic structural motif in many selective COX-2 inhibitors represents the basis of their classification in this review. The classification in this review includes COX-2 inhibitors based on five- and six-membered heterocycles, benzoheterocycles (e.g., benzopyrans, benzopyranones, indoles and quinolines), quinones, chalcones, natural products and miscellaneous. When available, COX-2 inhibitors are presented with their related COX-2 inhibitory potency and selectivity. EXPERT OPINION The availability of detailed information on the crystal structure of the COX-2 enzyme with various substrates, cofactors and inhibitors, and the recently reported increased risk of cardiovascular events associated with selective COX-2 inhibitors will further stimulate development of COX-2 inhibitors with favorable COX-2 inhibition profiles without adverse effects to the cardiovascular system.
Collapse
|
174
|
Miene C, Weise A, Glei M. Impact of Polyphenol Metabolites Produced by Colonic Microbiota on Expression of COX-2 and GSTT2 in Human Colon Cells (LT97). Nutr Cancer 2011. [DOI: 10.1080/01635581.2011.552157 pmid: 21598179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Claudia Miene
- a Institute for Nutrition, Department of Nutritional Toxicology , Friedrich-Schiller-University Jena , Jena, Germany
| | - Anja Weise
- b Institute of Human Genetics and Anthropology , Friedrich-Schiller-University Jena , Jena, Germany
| | - Michael Glei
- a Institute for Nutrition, Department of Nutritional Toxicology , Friedrich-Schiller-University Jena , Jena, Germany
| |
Collapse
|
175
|
Ji RL, Di Y, Xia SH, Li F. Oxymatrine inhibits MMP-2 expression and reduces cell invasion in human pancreatic carcinoma cell line SW1990. Shijie Huaren Xiaohua Zazhi 2011; 19:19-24. [DOI: 10.11569/wcjd.v19.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effects of treatment with oxymatrine (OM) on MMP-2 expression and cell invasion in human pancreatic carcinoma cell line SW1990.
METHODS: Cultured SW1990 cells were randomly divided into two groups: control group and OM group. The OM group was further divided into three subgroups, which were treated with three different doses of OM (1, 2 and 4 g/L). MMP-2 expression in SW1990 cells was analyzed by real-time RT-PCR. Cell invasion, migration and proliferation were measured by scratch assay, transwell invasion assay and MTT assay, respectively.
RESULTS: The expression levels of MMP-2 mRNA in SW1990 cells in the three OM subgroups were significantly lower than that in the control group (0.53 ± 0.03, 0.42 ± 0.02, 0.29 ± 0.03 vs 0.70 ± 0.03, all P < 0.05). The invasion of cells in the three OM subgroups was markedly lower than that in the control group (325 ± 64.43, 206 ± 84.76, 124 ± 46.78 vs 498 ± 78.54, all P < 0.05). The mobility of cells in the three OM subgroups was also significantly lower than that in the control group (385.0 ± 58.9, 287.0 ± 79.8, 186.0 ± 60.9 vs 586.0 ± 85.8, all P < 0.05).
CONCLUSION: OM reduces the invasion of SW1990 cells possibly by inhibiting the expression of MMP-2.
Collapse
|
176
|
Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, Tian B. Fisetin, a Dietary Flavonoid, Induces Cell Cycle Arrest and Apoptosis through Activation of p53 and Inhibition of NF-Kappa B Pathways in Bladder Cancer Cells. Basic Clin Pharmacol Toxicol 2010; 108:84-93. [DOI: 10.1111/j.1742-7843.2010.00613.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
177
|
Securin depletion sensitizes human colon cancer cells to fisetin-induced apoptosis. Cancer Lett 2010; 300:96-104. [PMID: 20974518 DOI: 10.1016/j.canlet.2010.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/22/2010] [Accepted: 09/27/2010] [Indexed: 12/22/2022]
Abstract
Securin is highly-expressed in various tumors including those of the colon. In this study, the role of securin in the anticancer effects of fisetin on human colon cancer cells was investigated. Fisetin-induced apoptosis in HCT116 cells as indicated by TUNEL assay, Annexin V-FITC/PI double staining, Ser15-phosphorylation of p53, and cleavages of procaspase-3 and PARP. These effects were enhanced in HCT116 securin-null cells or in wild-type cells in which securin was knockdown by siRNA, but attenuated when wild-type or non-degradable securin was reconstituted. Moreover, fisetin did not induce apoptosis in HCT116 p53-null and HT-29 p53-mutant cells. Knockdown of securin in HCT116 p53-null cells potentiated fisetin-induced cytotoxicity by induction of apoptosis. Our results provide the first evidence to support that securin depletion sensitizes human colon cancer cells to fisetin-induced apoptosis.
Collapse
|
178
|
Constantin RP, Constantin J, Pagadigorria CLS, Ishii-Iwamoto EL, Bracht A, de Castro CV, Yamamoto NS. Prooxidant activity of fisetin: effects on energy metabolism in the rat liver. J Biochem Mol Toxicol 2010; 25:117-26. [PMID: 20957679 DOI: 10.1002/jbt.20367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/18/2010] [Accepted: 07/07/2010] [Indexed: 11/08/2022]
Abstract
Flavonols, which possess the B-catechol ring, as quercetin, are capable of producing o-hemiquinones and to oxidize NADH in a variety of mammalian cells. The purpose of this study was to investigate whether fisetin affects the liver energy metabolism and the mitochondrial NADH to NAD+ ratio. The action of fisetin on hepatic energy metabolism was investigated in the perfused rat liver and isolated mitochondria. In isolated mitochondria, fisetin decreased the respiratory control and ADP/O ratios with the substrates α-ketoglutarate and succinate. In the presence of ADP, respiration of isolated mitochondria was inhibited with both substrates, indicating an inhibitory action on the ATP-synthase. The stimulation of the ATPase activity of coupled mitochondria and the inhibition of NADH-oxidase activity pointed toward a possible uncoupling action and the interference of fisetin with mitochondrial energy transduction mechanisms. In livers from fasted rats, fisetin inhibited ketogenesis from endogenous sources. The β-hydroxybutyrate/ acetoacetate ratio, which reflects the mitochondrial NADH/NAD+ redox ratio, was also decreased. In addition, fisetin (200 μM) increased the production of (14)CO2 from exogenous oleate. The results of this investigation suggest that fisetin causes a shift in the mitochondrial redox potential toward a more oxidized state with a clear predominance of its prooxidant activity.
Collapse
|
179
|
Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 2010; 29:405-34. [PMID: 20737283 PMCID: PMC2996866 DOI: 10.1007/s10555-010-9235-2] [Citation(s) in RCA: 555] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed "Let food be thy medicine and medicine be thy food." Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, gamma-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed.
Collapse
Affiliation(s)
- Subash C. Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
180
|
Johnson JJ, Syed DN, Suh Y, Heren CR, Saleem M, Siddiqui IA, Mukhtar H. Disruption of androgen and estrogen receptor activity in prostate cancer by a novel dietary diterpene carnosol: implications for chemoprevention. Cancer Prev Res (Phila) 2010; 3:1112-23. [PMID: 20736335 PMCID: PMC2978906 DOI: 10.1158/1940-6207.capr-10-0168] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging data are suggesting that estrogens, in addition to androgens, may also be contributing to the development of prostate cancer (PCa). In view of this notion, agents that target estrogens, in addition to androgens, may be a novel approach for PCa chemoprevention and treatment. Thus, the identification and development of nontoxic dietary agents capable of disrupting androgen receptor (AR) in addition to estrogen receptor (ER) could be extremely useful in the management of PCa. Through molecular modeling, we found that carnosol, a dietary diterpene, fits within the ligand-binding domain of both AR and ER-alpha. Using a time-resolved fluorescence resonance energy transfer assay, we found that carnosol interacts with both AR and ER-alpha and additional experiments confirmed that it functions as a receptor antagonist with no agonist effects. LNCaP, 22Rv1, and MCF7 cells treated with carnosol (20-40 mumol/L) showed decreased protein expression of AR and ER-alpha. Oral administration of carnosol at 30 mg/kg 5 days weekly for 28 days to 22Rv1 PCa xenografted mice suppressed tumor growth by 36% (P = 0.028) and was associated with a decrease in serum prostate-specific antigen by 26% (P = 0.0042). These properties make carnosol unique to any known antiandrogen or antiestrogen investigated thus far for the simultaneous disruption of AR and ER-alpha. We suggest that carnosol may be developed or chemically modified through more rigorous structure-activity relationship studies for a new class of investigational agents-a dual AR/ER modulator.
Collapse
Affiliation(s)
- Jeremy J Johnson
- Division of Pharmacy Practice, University of Wisconsin School of Pharmacy, 1031 Rennebohm Hall, Madison, WI 53705, USA.
| | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3'-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 John R Street, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
182
|
Enhancement of p53-mutant human colorectal cancer cells radiosensitivity by flavonoid fisetin. Int J Radiat Oncol Biol Phys 2010; 77:1527-35. [PMID: 20637980 DOI: 10.1016/j.ijrobp.2010.02.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/23/2022]
Abstract
PURPOSE The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. METHODS AND MATERIALS Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of gamma-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. RESULTS Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G(2)/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. CONCLUSIONS To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.
Collapse
|
183
|
Kim JY, Jeon YK, Jeon W, Nam MJ. Fisetin induces apoptosis in Huh-7 cells via downregulation of BIRC8 and Bcl2L2. Food Chem Toxicol 2010; 48:2259-64. [DOI: 10.1016/j.fct.2010.05.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/29/2010] [Accepted: 05/19/2010] [Indexed: 02/08/2023]
|
184
|
Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem Pharmacol 2010; 80:1801-15. [PMID: 20615394 DOI: 10.1016/j.bcp.2010.06.050] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase (COX)-2 is a pro-inflammatory immediate early response protein, chronically up-regulated in many pathological conditions. In autoimmune diseases, it is responsible for degenerative effects whereas in cancer, it correlates with poor prognosis. A constitutive expression of COX-2 is triggered since the earliest steps of carcinogenesis. Consequently, strategies aimed at inhibiting COX-2 enzymatic activity have been clinically applied for the treatment of autoimmune disorders; in addition, the same approaches are currently investigated for anti-cancer purposes. However, COX-2 protein inhibitors (i.e., NSAIDs and COXIBs) are not amenable to prolonged administration since they may cause severe side effects, and efforts are underway to identify alternative approaches for chemoprevention/therapy. COX-2 expression is a multi-step process, highly regulated at transcriptional and post-transcriptional levels. Defects in the modulation of one or both of these steps may be found in pathological conditions. Targeting COX-2 expression may therefore represent a promising strategy, by which the same preventive and therapeutic benefits may be gained while avoiding the severe side effects of COX-2 enzymatic inhibition. Naturally occurring compounds derived from plants/organisms represent a huge source of biologically active molecules, that remains largely unexplored. Derived from plants/organisms used in traditional forms of medicine or as dietary supplements, these compounds have been experimentally investigated for their anti-inflammatory and anti-cancer potential. In this review, we will analyze how natural compounds may modulate the multistep regulation of COX-2 gene expression and discuss their potential as a new generation of COX-2 targeting agents alternative to the synthetic COX-2 inhibitors.
Collapse
|
185
|
Yin JB, Li BX, Xie XY, Liu BR, Lv ZW, Guan JM, Gao SL. Celecoxib inhibits the expression of MMP-2 and ICAM-1 in hepatocellular carcinoma xenografts in nude mice. Shijie Huaren Xiaohua Zazhi 2010; 18:1206-1210. [DOI: 10.11569/wcjd.v18.i12.1206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the antitumor effects of celecoxib (a selective cyclooxygenase-2 inhibitor) against hepatocellular carcinoma in vivo.
METHODS: Human hepatoma cells (HepG2, BEL-7402 and SMMC-7721) were injected beneath the hepatic capsule of six-week-old nude mice. The mice were then randomly divided into three groups: negative control group (intragastrically given normal saline), experimental group (intragastrically given celecoxib), and positive control group (intragastrically given normal saline and intraperitoneally injected with adriamycin). Three weeks later, tumor tissue samples were taken for immunohistochemical analysis to examine the expression of matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinases-2 (TIMP-2) and intercellular adhesion molecule-1 (ICAM-1).
RESULTS: Compared to the negative control group, the expression of MMP-2 was down-regulated (P < 0.05) and that of TIMP-2 was up-regulated (P < 0.05) in hepatocellular carcinoma xenografts derived from HepG2, BEL-7402 and SMMC-7721 cells in the experimental group. The expression of ICAM-1 was also down-regulated in hepatocellular carcinoma xenografts derived from BEL-7402 and SMMC-7721 cells in the experimental group when compared with the negative control group (P < 0.05).
CONCLUSION: Celecoxib may be able to inhibit the metastasis and improve the prognosis of hepatocellular carcinoma.
Collapse
|
186
|
Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP. Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3965-9. [PMID: 20014760 PMCID: PMC2850963 DOI: 10.1021/jf902857v] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent data suggest that ellagitannins (ETs), a class of hydrolyzable tannins found in some fruits and nuts, may have beneficial effects against colon cancer. In the stomach and gut, ETs hydrolyze to release ellagic acid (EA) and are converted by gut microbiota to urolithin A (UA; 3,8-dihydroxy-6H-dibenzopyran-6-one) type metabolites, which may persist in the colon through enterohepatic circulation. However, little is known about the mechanisms of action of either the native compounds or their metabolites on colon carcinogenesis. Components of Wnt signaling pathways are known to play a pivotal role in human colon carcinogenesis, and inappropriate activation of the signaling cascade is observed in 90% of colorectal cancers. This study investigated the effects of UA, EA, and ET-rich fruit extracts on Wnt signaling in a human 293T cell line using a luciferase reporter of canonical Wnt pathway-mediated transcriptional activation. The ET extracts were obtained from strawberry (Fragaria annassa), Jamun berry (Eugenia jambolana), and pomegranate (Punica granatum) fruit and were all standardized to phenolic content (as gallic acid equivalents, GAEs, by the Folin-Ciocalteu method) and to EA content (by high-performance liquid chromatography methods): strawberry = 20.5% GAE, 5.0% EA; Jamun berry = 20.5% GAE, 4.2% EA; pomegranate = 55% GAE, 3.5% EA. The ET extracts (IC(50) = 28.0-30.0 microg/mL), EA (IC(50) = 19.0 microg/mL; 63 microM), and UA (IC(50) = 9.0 microg/mL; 39 microM) inhibited Wnt signaling, suggesting that ET-rich foods have potential against colon carcinogenesis and that urolithins are relevant bioactive constituents in the colon.
Collapse
Affiliation(s)
| | | | | | | | - Abraham Kovoor
- Address correspondence to either author: , Phone/Fax: 401-874-9367/5787; , Phone/Fax: 401-874-4727/5787
| | - Navindra P. Seeram
- Address correspondence to either author: , Phone/Fax: 401-874-9367/5787; , Phone/Fax: 401-874-4727/5787
| |
Collapse
|
187
|
The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010; 2010:215158. [PMID: 20339581 PMCID: PMC2841246 DOI: 10.1155/2010/215158] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/18/2009] [Indexed: 12/13/2022] Open
Abstract
It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously expressed COX-1, which is involved in homeostasis; the inducible COX-2 isoform, which is upregulated during both inflammation and cancer; and COX-3, expressed in brain and spinal cord, whose functions remain to be elucidated. COX-2 was described to modulate cell proliferation and apoptosis mainly in solid tumors, that is, colorectal, breast, and prostate cancers, and, more recently, in hematological malignancies. These findings prompt us to analyze here the effects of a combination of COX-2 inhibitors together with different clinically used therapeutic strategies in order to further improve the efficiency of future anticancer treatments. COX-2 modulation is a promising field investigated by many research groups.
Collapse
|
188
|
Murtaza I, Adhami VM, Hafeez BB, Saleem M, Mukhtar H. Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3-mediated inhibition of NF-kappaB. Int J Cancer 2009; 125:2465-73. [PMID: 19670328 PMCID: PMC2944651 DOI: 10.1002/ijc.24628] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Death receptors of the tumor necrosis factor (TNF) receptor super family have been implicated in constitutive activation of nuclear factor-kappa B (NF-kappaB) in pancreatic cancer (PaC) cells. In this study, we demonstrate that fisetin, a natural flavonoid, induces apoptosis and inhibits invasion of chemoresistant PaC AsPC-1 cells through suppression of DR3-mediated NF-kappaB activation. Fisetin treatment resulted in dose-dependent inhibition of PaC cell growth and cell proliferation with concomitant induction of apoptosis. A cDNA array analysis revealed that fisetin modulates expression of more than 20 genes at transcription level with maximum decrease observed in DR3 expression and a parallel increase observed in the expression levels of IkappaBalpha, an NF-kappaB inhibitor. Down-regulation of DR3 in PaC cells was found to down regulate activated pNF-kappaB/p65, pIkBalpha/beta kinases (pIKK's), MMP9 and XIAP that mostly impart chemoresistance in PaC. Immunoblotting and EMSA analysis showed a marked decrease in pNF-kappaB and NF-kappaB DNA binding activity, respectively, with modest decrease in NF-kappaB promoter activity and significant decrease in MMP9 promoter activity with fisetin treatment. Importantly, consistent with these findings, we further found that transient down-regulation of DR3 by RNA interference significantly augmented fisetin induced changes in cell proliferation, cell invasion and apoptosis paralleled with decrease in pNF-kappaB, pIKKalpha/beta, MMP9, XIAP and NF-kappaB DNA binding activity. Blocking of DR3 receptor with an extra cellular domain blocking antibody demonstrated similar effects. These data provide evidence that fisetin could provide a biological rationale for treatment of pancreatic cancer or as an adjuvant with conventional therapeutic regimens.
Collapse
MESH Headings
- Apoptosis/drug effects
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Electrophoretic Mobility Shift Assay
- Flavonoids/pharmacology
- Flavonols
- Gene Expression Profiling
- Humans
- I-kappa B Proteins/metabolism
- Matrix Metalloproteinase 9/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Neoplasm Invasiveness
- Oligonucleotide Array Sequence Analysis
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Promoter Regions, Genetic
- RNA, Small Interfering/pharmacology
- Receptors, Tumor Necrosis Factor, Member 25/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Member 25/genetics
- Receptors, Tumor Necrosis Factor, Member 25/metabolism
- Signal Transduction
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Imtiyaz Murtaza
- Department of Dermatology, University of Wisconsin-Madison, WI 53706 USA
| | | | - Bilal Bin Hafeez
- Department of Dermatology, University of Wisconsin-Madison, WI 53706 USA
| | - Mohammad Saleem
- Department of Dermatology, University of Wisconsin-Madison, WI 53706 USA
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin-Madison, WI 53706 USA
| |
Collapse
|
189
|
Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Invest New Drugs 2009; 29:207-24. [PMID: 19876598 DOI: 10.1007/s10637-009-9342-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 10/01/2009] [Indexed: 02/07/2023]
Abstract
Colon cancer is the third most malignant neoplasm in the world and it remains an important cause of mortality in Asian and Western countries. Astaxanthin (AST), a major component of carotenoids possesses attractive remedial features. The purpose of this study is to investigate the possible mechanism of action of astaxanthin against 1, 2 dimethyl hydrazine (DMH)-induced rat colon carcinogenesis. Wistar male rats were randomized into five groups, group 1 were control rats, group 2 were rats that received AST (15 mg/kg body wt p.o. everyday), rats in group 3 were induced with DMH (40 mg/kg body wt, s.c.), DMH-induced rats in groups 4 and 5 were either pre or post initiated with AST, respectively as in group 2. DMH-induced rats exhibited elevated expressions of Nuclear factor kappa B-p65 (NF-κB-p65), Cyclooxygenase-2 (COX-2), Matrixmetallo proteinases (MMP) 2/9, Proliferating cell nuclear antigen (PCNA), and Extracellular signal-regulated kinase-2 (ERK-2) as confirmed by immunofluorescence. Further, Westernblot analysis of MMPs-2/9, ERK-2 and Protein kinase B (Akt) revealed increased expressions of these proteins in DMH-induced groups of rats. AST-treatment decreased the expressions of all these vital proteins, involved in colon carcinogenesis. The ability of AST to induce apoptosis in the colon of DMH-induced rats was confirmed by Annexin-V/PI staining in a confocal microscopy, DNA fragmentation analysis and expression of caspase-3 by Western blotting. In conclusion, astaxanthin exhibits anti-inflammatory and anti-cancer effects by inducing apoptosis in DMH-induced rat colon carcinogenesis by modulating the expressions of NFkB, COX-2, MMPs-2/9, Akt and ERK-2.
Collapse
|
190
|
Zeng S, Liu W, Nie FF, Zhao Q, Rong JJ, Wang J, Tao L, Qi Q, Lu N, Li ZY, Guo QL. LYG-202, a new flavonoid with a piperazine substitution, shows antitumor effects in vivo and in vitro. Biochem Biophys Res Commun 2009; 385:551-6. [DOI: 10.1016/j.bbrc.2009.05.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 05/21/2009] [Indexed: 11/16/2022]
|
191
|
Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 2009; 11:495-510. [PMID: 19590964 PMCID: PMC2758121 DOI: 10.1208/s12248-009-9128-x] [Citation(s) in RCA: 503] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/17/2009] [Indexed: 02/03/2023] Open
Abstract
Cancer is a hyperproliferative disorder that is usually treated by chemotherapeutic agents that are toxic not only to tumor cells but also to normal cells, so these agents produce major side effects. In addition, these agents are highly expensive and thus not affordable for most. Moreover, such agents cannot be used for cancer prevention. Traditional medicines are generally free of the deleterious side effects and usually inexpensive. Curcumin, a component of turmeric (Curcuma longa), is one such agent that is safe, affordable, and efficacious. How curcumin kills tumor cells is the focus of this review. We show that curcumin modulates growth of tumor cells through regulation of multiple cell signaling pathways including cell proliferation pathway (cyclin D1, c-myc), cell survival pathway (Bcl-2, Bcl-xL, cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3, 9), tumor suppressor pathway (p53, p21) death receptor pathway (DR4, DR5), mitochondrial pathways, and protein kinase pathway (JNK, Akt, and AMPK). How curcumin selectively kills tumor cells, and not normal cells, is also described in detail.
Collapse
Affiliation(s)
- Jayaraj Ravindran
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, BOX 143, Houston, TX 77030 USA
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, BOX 143, Houston, TX 77030 USA
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, BOX 143, Houston, TX 77030 USA
| |
Collapse
|
192
|
Kim SM, Lee SY, Yuk DY, Moon DC, Choi SS, Kim Y, Han SB, Oh KW, Hong JT. Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res 2009; 32:755-65. [PMID: 19471891 DOI: 10.1007/s12272-009-1515-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/02/2009] [Accepted: 03/09/2009] [Indexed: 01/19/2023]
Abstract
Ginsenoside Rg3, the main constituent isolated from Panax ginseng, has been of interest for use as a cancer preventive or therapeutic agent. We investigated here whether Rg3 can inhibit the activity of NF-kappaB, a key transcriptional factor constitutively activated in colon cancer that confers cancer cell resistance to chemotherapeutic agents. To investigate whether RG3 can suppress activation of NF-kappaB, and thus inhibit cancer cell growth, we examined the susceptibility of colon cancer cells (SW620 and HCT116) to treatment with Rg3 (25, 50, 75, 100 microM) and RG3-induced activation of NF-kappaB. RG3 dose-dependently inhibited cancer cell growth through induction of apoptosis and decreased NF-kappaB activity. In a further study of compounds in colon cancer, we used half of the IC(50) dose, values in combined treatments of Rg3 (50 microM) with conventional agents - docetaxel (5 nM), paclitaxel (10 nM) cisplatin (10 microM) and doxorubicin (2 microM). Compared to treatment with Rg3 or chemotherapy alone, combined treatment was more effective (i.e., there were synergistic effects) in the inhibition of cancer cell growth and induction of apoptosis and these effects were accompanied by significant inhibition of NF-kappaB activity. NF-kappaB target gene expression of apoptotic cell death proteins (Bax, caspase-3, caspase-9) was significantly enhanced, but the expression of anti-apoptotic genes and cell proliferation marker genes (Bcl-2, inhibitor of apoptosis protein (IAP-1) and X chromosome IAP (XIAP), Cox-2, c-Fos, c-Jun and cyclin D1) was significantly inhibited by the combined treatment compared to Rg3 or docetaxel alone. These results indicate that ginsenoside Rg3 inhibits NF-kappaB, and enhances the susceptibility of colon cancer cells to docetaxel and other chemotherapeutics. Thus, ginsenoside Rg3 could be useful as an anti-cancer or adjuvant anti-cancer agent.
Collapse
Affiliation(s)
- Sun Mi Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|