151
|
Arrais A, Testori F, Calligari R, Gianotti V, Roncoli M, Caramaschi A, Todeschini V, Massa N, Bona E. Extracts from Cabbage Leaves: Preliminary Results towards a “Universal” Highly-Performant Antibacterial and Antifungal Natural Mixture. BIOLOGY 2022; 11:biology11071080. [PMID: 36101458 PMCID: PMC9312816 DOI: 10.3390/biology11071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The large antibiotic consumption in the clinical, veterinary, and agricultural fields has resulted in a tremendous flow of antibiotics into the environment. This has led to enormous selective pressures driving the evolution of antimicrobial resistance in bacteria and yeasts. For this reason, the World Health Organization is promoting research to discover new natural products competitive with synthetic drugs in clinical performances. Compared with conventional drugs, the production of natural pharmaceuticals often has a lower environmental impact and lower economic costs of processes, especially when they originate from agricultural wastes. In the context of a circular economy, we aimed to successfully present preliminary results for the valorization of agricultural waste produced in cabbage cultivation by isolating a highly performant antibacterial and antifungal lipophilic natural mixture from cabbage leaves. Abstract As dramatically experienced in the recent world pandemic, viral, bacterial, fungal pathogens constitute very serious concerns in the global context of human health. Regarding this issue, the World Health Organization has promoted research studies that aim to develop new strategies using natural products. Although they are often competitive with synthetic pharmaceuticales in clinical performance, they lack their critical drawbacks, i.e., the environmental impact and the high economic costs of processing. In this paper, the isolation of a highly performant antibacterial and antifungal lipophilic natural mixture from leaves of savoy and white cabbages is proposed as successful preliminary results for the valorization of agricultural waste produced in cabbage cultivation. The fraction was chemically extracted from vegetables with diethyl ether and tested against two Candida species, as well as Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus reference strains. All the different fractions (active and not active) were chemically characterized by vibrational FT-IR spectroscopy and GC-MS analyses. The extracts showed high growth-inhibition performance on pathogens, thus demonstrating strong application potential. We think that this work, despite being at a preliminary stage, is very promising, both from pharmaceutical and industrial points of view, and can be proposed as a proof of concept for the recovery of agricultural production wastes.
Collapse
Affiliation(s)
- Aldo Arrais
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, 13100 Vercelli, Italy; (F.T.); (R.C.); (V.G.); (A.C.)
- Correspondence: (A.A.); (E.B.); Tel.: +39-0161228357 (E.B.)
| | - Fabio Testori
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, 13100 Vercelli, Italy; (F.T.); (R.C.); (V.G.); (A.C.)
| | - Roberta Calligari
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, 13100 Vercelli, Italy; (F.T.); (R.C.); (V.G.); (A.C.)
| | - Valentina Gianotti
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, 13100 Vercelli, Italy; (F.T.); (R.C.); (V.G.); (A.C.)
| | - Maddalena Roncoli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (M.R.); (V.T.); (N.M.)
| | - Alice Caramaschi
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, 13100 Vercelli, Italy; (F.T.); (R.C.); (V.G.); (A.C.)
| | - Valeria Todeschini
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (M.R.); (V.T.); (N.M.)
| | - Nadia Massa
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121 Alessandria, Italy; (M.R.); (V.T.); (N.M.)
| | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, 13100 Vercelli, Italy; (F.T.); (R.C.); (V.G.); (A.C.)
- Correspondence: (A.A.); (E.B.); Tel.: +39-0161228357 (E.B.)
| |
Collapse
|
152
|
N-Phenacyldibromobenzimidazoles—Synthesis Optimization and Evaluation of Their Cytotoxic Activity. Molecules 2022; 27:molecules27144349. [PMID: 35889223 PMCID: PMC9315981 DOI: 10.3390/molecules27144349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Antifungal N-phenacyl derivatives of 4,6- and 5,6-dibromobenzimidazoles are interesting substrates in the synthesis of new antimycotics. Unfortunately, their application is limited by the low synthesis yields and time-consuming separation procedure. In this paper, we present the optimization of the synthesis conditions and purification methods of N-phenacyldibromobenzimidazoles. The reactions were carried out in various base solvent-systems including K2CO3, NaH, KOH, t-BuOK, MeONa, NaHCO3, Et3N, Cs2CO3, DBU, DIPEA, or DABCO as a base, and MeCN, DMF, THF, DMSO, or dioxane as a solvent. The progress of the reaction was monitored using HPLC analysis. The best results were reached when the reactions were carried out in an NaHCO3–MeCN system at reflux for 24 h. Additionally, the cytotoxic activity of the synthesized compounds against MCF-7 (breast adenocarcinoma), A-549 (lung adenocarcinoma), CCRF-CEM (acute lymphoblastic leukemia), and MRC-5 (normal lung fibroblasts) was evaluated. We observed that the studied cell lines differed in sensitivity to the tested compounds with MCF-7 cells being the most sensitive, while A-549 cells were the least sensitive. Moreover, the cytotoxicity of the tested derivatives towards CCRF-CEM cells increased with the number of chlorine or fluorine substituents. Furthermore, some of the active compounds, i.e., 2-(5,6-dibromo-1H-benzimidazol-1-yl)-1-(3,4-dichlorophenyl)ethanone (4f), 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trichlorophenyl)ethanone (5g), and 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trifluorophenyl)ethanone (5j) demonstrated pro-apoptotic properties against leukemic cells with derivative 5g being the most effective.
Collapse
|
153
|
Haro-Reyes T, Díaz-Peralta L, Galván-Hernández A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. MEMBRANES 2022; 12:681. [PMID: 35877884 PMCID: PMC9316096 DOI: 10.3390/membranes12070681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
This review examined a collection of studies regarding the molecular properties of some polyene antibiotic molecules as well as their properties in solution and in particular environmental conditions. We also looked into the proposed mechanism of action of polyenes, where membrane properties play a crucial role. Given the interest in polyene antibiotics as therapeutic agents, we looked into alternative ways of reducing their collateral toxicity, including semi-synthesis of derivatives and new formulations. We follow with studies on the role of membrane structure and, finally, recent developments regarding the most important clinical applications of these compounds.
Collapse
Affiliation(s)
- Tammy Haro-Reyes
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| | - Anahi Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico; (A.R.-L.); (L.R.-F.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico; (T.H.-R.); (L.D.-P.); (A.G.-H.)
| |
Collapse
|
154
|
Duan X, Xie Z, Ma L, Jin X, Zhang M, Xu Y, Liu Y, Lou H, Chang W. Selective Metal Chelation by a Thiosemicarbazone Derivative Interferes with Mitochondrial Respiration and Ribosome Biogenesis in Candida albicans. Microbiol Spectr 2022; 10:e0195121. [PMID: 35412374 PMCID: PMC9241695 DOI: 10.1128/spectrum.01951-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
Metal chelation is generally considered as a promising antifungal approach but its specific mechanisms are unclear. Here, we identify 13 thiosemicarbazone derivatives that exert broad-spectrum antifungal activity with potency comparable or superior to that of fluconazole in vitro by screening a small compound library comprising 89 thiosemicarbazone derivatives as iron chelators. Among the hits, 19ak exhibits minimal cytotoxicity and potent activity against either azole-sensitive or azole-resistant fungal pathogens. Mechanism investigations reveal that 19ak inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation, and further reduces mitochondrial membrane potential and ATP synthesis in Candida albicans. In addition, 19ak inhibits fungal ribosome biogenesis mainly by disrupting intracellular zinc homeostasis. 19ak also stimulates the activities of antioxidant enzymes and decreases reactive oxygen species formation in C. albicans, resulting in an increase in detrimental intracellular reductive stress. However, 19ak has minor effects on mammalian cells in depleting intracellular iron and zinc. Moreover, 19ak exhibits low capacity to induce drug resistance and in vivo efficacy in a Galleria mellonella infection model. These findings uncover retarded fungal mitochondrial respiration and ribosome biogenesis as downstream effects of disruption of iron and zinc homeostasis in C. albicans and provide a basis for the thiosemicarbazone 19ak in antifungal application. IMPORTANCE The increasing incidence of fungal infections and resistance to existing antifungals call for the development of broad-spectrum antifungals with novel mechanisms of action. In this study, we demonstrate that a thiosemicarbazone derivative 19ak selectively inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation and inhibits ribosome biogenesis mainly by disrupting intracellular zinc homeostasis in C. albicans. In addition, 19ak exhibits low capacity to induce fungal resistance, minimal cytotoxicity, and in vivo antifungal efficacy. This study provides the basis of thiosemicarbazone derivative 19ak as a metal chelator for the treatment of fungal infections.
Collapse
Affiliation(s)
- Ximeng Duan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan, People’s Republic of China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuliang Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yue Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
155
|
Williams SL, Chiller T. Update on the Epidemiology, Diagnosis, and Treatment of Coccidioidomycosis. J Fungi (Basel) 2022; 8:666. [PMID: 35887423 PMCID: PMC9316141 DOI: 10.3390/jof8070666] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Coccidioidomycosis is a fungal infection caused by Coccidioides immitis and Coccidioides posadasii. The dimorphic fungi live in the soils of arid and semi-arid regions of the western United States, as well as parts of Mexico, Central America, and South America. Incidence of disease has risen consistently in recent years, and the geographic distribution of Coccidioides spp. appears to be expanding beyond previously known areas of endemicity. Climate factors are predicted to further extend the range of environments suitable for the growth and dispersal of Coccidioides species. Most infections are asymptomatic, though a small proportion result in severe or life-threatening forms of disease. Primary pulmonary coccidioidomycosis is commonly mistaken for community-acquired pneumonia, often leading to inappropriate antibacterial treatment and unnecessary healthcare costs. Diagnosis of coccidioidomycosis is challenging and often relies on clinician suspicion to pursue laboratory testing. Advancements in diagnostic tools and antifungal therapy developments seek to improve the early detection and effective management of infection. This review will highlight recent updates and summarize the current understanding of the epidemiology, diagnosis, and treatment of coccidioidomycosis.
Collapse
Affiliation(s)
- Samantha L. Williams
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | | |
Collapse
|
156
|
Gold JAW, Ahmad FB, Cisewski JA, Rossen LM, Montero AJ, Benedict K, Jackson BR, Toda M. Increased Deaths From Fungal Infections During the Coronavirus Disease 2019 Pandemic-National Vital Statistics System, United States, January 2020-December 2021. Clin Infect Dis 2022; 76:e255-e262. [PMID: 35717660 PMCID: PMC9214147 DOI: 10.1093/cid/ciac489] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19)-associated fungal infections cause severe illness, but comprehensive data on disease burden are lacking. We analyzed US National Vital Statistics System (NVSS) data to characterize disease burden, temporal trends, and demographic characteristics of persons dying of fungal infections during the COVID-19 pandemic. METHODS Using NVSS's January 2018-December 2021 Multiple Cause of Death Database, we examined numbers and age-adjusted rates (per 100 000 population) of deaths due to fungal infection by fungal pathogen, COVID-19 association, demographic characteristics, and year. RESULTS Numbers and age-adjusted rates of deaths due to fungal infection increased from 2019 (n = 4833; rate, 1.2 [95% confidence interval, 1.2-1.3]) to 2021 (n = 7199; rate, 1.8 [1.8-1.8] per 100 000); of 13 121 such deaths during 2020-2021, 2868 (21.9%) were COVID-19 associated. Compared with non-COVID-19-associated deaths (n = 10 253), COVID-19-associated deaths more frequently involved Candida (n = 776 [27.1%] vs n = 2432 [23.7%], respectively) and Aspergillus (n = 668 [23.3%] vs n = 1486 [14.5%]) and less frequently involved other specific fungal pathogens. Rates of death due to fungal infection were generally highest in nonwhite and non-Asian populations. Death rates from Aspergillus infections were approximately 2 times higher in the Pacific US census division compared with most other divisions. CONCLUSIONS Deaths from fungal infection increased during 2020-2021 compared with previous years, primarily driven by COVID-19-associated deaths, particularly those involving Aspergillus and Candida. Our findings may inform efforts to prevent, identify, and treat severe fungal infections in patients with COVID-19, especially in certain racial/ethnic groups and geographic areas.
Collapse
Affiliation(s)
- Jeremy A W Gold
- Corresponding author: Jeremy A. W. Gold, MD, MS, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Mailstop H24-10, Atlanta, GA 30329, USA,
| | - Farida B Ahmad
- National Center for Health Statistics, Hyattsville, Maryland, USA
| | - Jodi A Cisewski
- National Center for Health Statistics, Hyattsville, Maryland, USA
| | - Lauren M Rossen
- National Center for Health Statistics, Hyattsville, Maryland, USA
| | - Alejandro J Montero
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kaitlin Benedict
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan R Jackson
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mitsuru Toda
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
157
|
Gonçalves SM, Ferreira AV, Cunha C, Carvalho A. Targeting immunometabolism in host-directed therapies to fungal disease. Clin Exp Immunol 2022; 208:158-166. [PMID: 35641161 PMCID: PMC9188340 DOI: 10.1093/cei/uxab014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/03/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2024] Open
Abstract
Fungal infections affect over a billion people and are responsible for more than 1.5 million deaths each year. Despite progress in diagnostic and therapeutic approaches, the management of severe fungal infections remains a challenge. Recently, the reprogramming of cellular metabolism has emerged as a central mechanism through which the effector functions of immune cells are supported to promote antifungal activity. An improved understanding of the immunometabolic signatures that orchestrate antifungal immunity, together with the dissection of the mechanisms that underlie heterogeneity in individual immune responses, may therefore unveil new targets amenable to adjunctive host-directed therapies. In this review, we highlight recent advances in the metabolic regulation of host-fungus interactions and antifungal immune responses, and outline targetable pathways and mechanisms with promising therapeutic potential.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Anaísa V Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
158
|
Caggiano G, Apollonio F, Consiglio M, Gasparre V, Trerotoli P, Diella G, Lopuzzo M, Triggiano F, Stolfa S, Mosca A, Montagna MT. Tendency in Pulmonary Aspergillosis Investigation during the COVID-19 Era: What Is Changing? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127079. [PMID: 35742328 PMCID: PMC9222563 DOI: 10.3390/ijerph19127079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 01/08/2023]
Abstract
Aspergillosis is a disease caused by Aspergillus, and invasive pulmonary aspergillosis (IPA) is the most common invasive fungal infection leading to death in severely immuno-compromised patients. The literature reports Aspergillus co-infections in patients with COVID-19 (CAPA). Diagnosing CAPA clinically is complex since the symptoms are non-specific, and performing a bronchoscopy is difficult. Generally, the microbiological diagnosis of aspergillosis is based on cultural methods and on searching for the circulating antigens galactomannan and 1,3-β-D-glucan in the bronchoalveolar lavage fluid (bGM) or serum (sGM). In this study, to verify whether the COVID-19 period has stimulated clinicians to pay greater attention to IPA in patients with respiratory tract infections, we evaluated the number of requests for GM-Ag research and the number of positive tests found during the pre-COVID-19 and COVID-19 periods. Our data show a significant upward trend in GM-Ag requests and positivity from the pre-COVID to COVID period, which is attributable in particular to the increase in IPA risk factors as a complication of COVID-19. In the COVID period, parallel to the increase in requests, the number of positive tests for GM-Ag also increased, going from 2.5% in the first period of 2020 to 12.3% in the first period of 2021.
Collapse
Affiliation(s)
- Giuseppina Caggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
- Correspondence: ; Tel.: +39-(0)-80-5478-475
| | - Francesca Apollonio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Mila Consiglio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.); (V.G.); (M.L.); (F.T.)
| | - Valentina Gasparre
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.); (V.G.); (M.L.); (F.T.)
| | - Paolo Trerotoli
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Giusy Diella
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.); (V.G.); (M.L.); (F.T.)
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.); (V.G.); (M.L.); (F.T.)
| | - Stefania Stolfa
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Adriana Mosca
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Maria Teresa Montagna
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| |
Collapse
|
159
|
Proceedings of the Clinical Microbiology Open 2018 and 2019 - a Discussion about Emerging Trends, Challenges, and the Future of Clinical Microbiology. J Clin Microbiol 2022; 60:e0009222. [PMID: 35638361 DOI: 10.1128/jcm.00092-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical Microbiology Open (CMO), a meeting supported by the American Society for Microbiology's Clinical and Public Health Microbiology Committee (CPHMC) and Corporate Council, provides a unique interactive platform for leaders from diagnostic microbiology laboratories, industry, and federal agencies to discuss the current and future state of the clinical microbiology laboratory. The purpose is to leverage the group's diverse views and expertise to address critical challenges, and discuss potential collaborative opportunities for diagnostic microbiology, through the utilization of varied resources. The first and second CMO meetings were held in 2018 and 2019, respectively. Discussions were focused on the diagnostic potential of innovative technologies and laboratory diagnostic stewardship, including expansion of next-generation sequencing into clinical diagnostics, improvement and advancement of molecular diagnostics, emerging diagnostics, including rapid antimicrobial susceptibility and point of care testing (POCT), harnessing big data through artificial intelligence, and staffing in the clinical microbiology laboratory. Shortly after CMO 2019, the coronavirus disease 2019 (COVID-19) pandemic further highlighted the need for the diagnostic microbiology community to work together to utilize and expand on resources to respond to the pandemic. The issues, challenges, and potential collaborative efforts discussed during the past two CMO meetings proved critical in addressing the COVID-19 response by diagnostic laboratories, industry partners, and federal organizations. Planning for a third CMO (CMO 2022) is underway and will transition from a discussion-based meeting to an action-based meeting. The primary focus will be to reflect on the lessons learned from the COVID-19 pandemic and better prepare for future pandemics.
Collapse
|
160
|
Benedict K, Gold JAW, Dietz S, Anjum S, Williamson PR, Jackson BR. Testing for cryptococcosis at a major commercial laboratory—United States, 2019–202. Open Forum Infect Dis 2022; 9:ofac253. [PMID: 35855002 PMCID: PMC9280322 DOI: 10.1093/ofid/ofac253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cryptococcosis is a serious opportunistic fungal disease, and the proportion of cases among patients with immunosuppressive conditions other than HIV or organ transplant has increased. Understanding laboratory testing patterns for cryptococcosis is useful for estimating its true burden and developing testing guidance. Methods We identified cryptococcosis tests (cryptococcal antigen [CrAg], cryptococcal antibody, and fungal cultures) performed at a major national commercial laboratory ordered during March 1, 2019–October 1, 2021, and analyzed test results, patient and provider features, reasons for testing, geography, and temporal trends. Results Among 29 180 serum CrAg tests, 4422 (15.2%) were positive, and among 10 724 cerebrospinal fluid (CSF) CrAg tests, 492 (4.6%) were positive. Frequent reasons for serum CrAg testing in nonhospital settings (10 882 tests) were HIV (44.6%) and cryptococcosis (17.0%); other underlying conditions were uncommonly listed (<10% total). Serum CrAg positivity declined from 25.6% in October 2019 to 11.3% in September 2021. The South had the highest positivity for serum CrAg tests (16.6%), CSF CrAg tests (4.7%), and fungal cultures (0.15%). Among 5009 cryptococcal antibody tests, 5 (0.1%) were positive. Conclusions Few outpatient serum CrAg tests were performed for patients with immunocompromising conditions other than HIV, suggesting potential missed opportunities for early detection. Given the high positive predictive value of CrAg testing, research is needed to improve early diagnosis, particularly in patients without HIV. Conversely, the low yield of antibody testing suggests that it may be of low value. The decline in CrAg positivity during the COVID-19 pandemic warrants further investigation.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephanie Dietz
- Division of Health Informatics and Surveillance, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Seher Anjum
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Brendan R. Jackson
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
161
|
Zhang Q, Liu F, Zeng M, Zhang J, Liu Y, Xin C, Mao Y, Song Z. Antifungal Activity of Sodium New Houttuyfonate Against Aspergillus fumigatus in vitro and in vivo. Front Microbiol 2022; 13:856272. [PMID: 35558127 PMCID: PMC9087332 DOI: 10.3389/fmicb.2022.856272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Aspergillus fumigatus is an important pathogen causing invasive aspergillosis, which is associated with high morbidity and mortality in immunocompromised people. However, the treatment of A. fumigatus infection is a growing challenge, owing to the limited availability antifungal agents and the continual emergence of drug-resistant strains. Drug repurposing is a potential strategy to solve this current problem. Sodium new houttuyfonate (SNH), derived from houttuynin, extracted from Houttuynia cordata, has anti-bacterial and anti-Candida albicans effects. However, whether it has anti-A. fumigatus activity had not been reported. In this study, the antifungal properties of SNH against A. fumigatus, including the standard strain AF293, itraconazole resistant clinical strains, and voriconazole resistant clinical strains, were evaluated in vitro and in vivo. Moreover, the potential mechanism of SNH was characterized. SNH exhibited significant fungicidal activity toward various A. fumigatus strains. SNH also inhibited fungal growth, sporulation, conidial germination and pigment formation, and biofilm formation. Further investigations revealed that SNH interfered with the A. fumigatus cell steroid synthesis pathway, as indicated by transcriptomic and quantitative real-time polymerase chain reaction analyses, and inhibited ergosterol synthesis, as indicated by cell membrane stress assays and ergosterol quantification. Moreover, daily gastric gavage of SNH significantly decreased the fungal burden in mice with disseminated infection (kidney, liver, and lung) and local tissue damage. In addition, the application of SNH downregulated the production of IL-6 and IL-17A. Together, these findings provided the first confirmation that SNH may be a promising antifungal agent for the treatment of A. fumigatus infection.
Collapse
Affiliation(s)
- Qian Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fangyan Liu
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Meng Zeng
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yanfei Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caiyan Xin
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yingyu Mao
- School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| |
Collapse
|
162
|
Chakrabarti A, Mohamed N, Capparella MR, Townsend A, Sung AH, Yura R, Muñoz P. The role of diagnostics-driven antifungal stewardship in the management of invasive fungal infections: a systematic literature review. Open Forum Infect Dis 2022; 9:ofac234. [PMID: 35873300 PMCID: PMC9297315 DOI: 10.1093/ofid/ofac234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Antifungal stewardship (AFS) programs are key to optimizing antifungal use and improving outcomes in patients with invasive fungal infections. Our systematic literature review evaluated the impact of diagnostics in AFS programs by assessing performance and clinical measures. Most eligible studies were from Europe and the United States (n = 12/17). Diagnostic approaches included serum β-1–3-D-glucan test (n/N studies, 7/17), galactomannan test (4/17), computed tomography scan (3/17), magnetic resonance (2/17), matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS; 2/17), polymerase chain reaction (1/17), peptide nucleic acid fluorescent in situ hybridization (PNA-FISH) assay (1/17), and other routine methods (9/17). Time to species identification decreased significantly using MALDI-TOF and PNA-FISH (n = 2). Time to targeted therapy and length of empiric therapy also decreased (n = 3). Antifungal consumption decreased by 11.6%–59.0% (7/13). Cost-savings ranged from 13.5% to 50.6% (5/10). Mortality rate (13/16) and length of stay (6/7) also decreased. No negative impact was reported on patient outcomes. Diagnostics-driven interventions can potentially improve AFS measures (antifungal consumption, cost, mortality, and length of stay); therefore, AFS implementation should be encouraged.
Collapse
Affiliation(s)
- Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Andy Townsend
- Correspondence: Andy Townsend, PhD, 2 Valley View Congleton, CW12 4EN ()
| | | | - Renee Yura
- WRD & Medical, Pfizer, Cambridge, Massachusetts, USA
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias – CIBERES (CB06/06/0058), Madrid, Spain
| |
Collapse
|
163
|
Benedict K, Singleton AL, Jackson BR, Molinari NAM. Survey of incidence, lifetime prevalence, and treatment of self-reported vulvovaginal candidiasis, United States, 2020. BMC Womens Health 2022; 22:147. [PMID: 35538480 PMCID: PMC9092842 DOI: 10.1186/s12905-022-01741-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/27/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Vulvovaginal candidiasis (VVC) is a common gynecologic problem in the United States but estimates of its true incidence and prevalence are lacking. We estimated self-reported incidence and lifetime prevalence of healthcare provider-diagnosed VVC and recurrent VVC (RVVC), assessed treatment types, and evaluated demographic and health-related risk factors associated with VVC. METHODS An online survey sent to 4548 U.S. adults; data were weighted to be representative of the population. We conducted descriptive and bivariate analyses to examine demographic characteristics and health related factors associated with having VVC in the past year, lifetime prevalence of VVC, and over-the-counter (OTC) and prescription antifungal treatment use. We conducted multivariate analyses to assess features associated with 1) having VVC in the past year, 2) number of VVC episodes in the past year, and 3) lifetime prevalence of VVC. RESULTS Among the subset of 1869 women respondents, 98 (5.2%) had VVC in the past year; of those, 5 (4.7%) had RVVC. Total, 991 (53%) women reported healthcare provider-diagnosed VVC in their lifetime. Overall, 72% of women with VVC in the past year reported prescription antifungal treatment use, 40% reported OTC antifungal treatment use, and 16% reported both. In multivariate analyses, odds of having VVC in the past year were highest for women with less than a high school education (aOR = 6.30, CI: 1.84-21.65), with a child/children under 18 years old (aOR = 3.14, CI: 1.58-6.25), with diabetes (aOR = 2.93, CI: 1.32-6.47), who were part of a couple (aOR = 2.86, CI: 1.42-5.78), and with more visits to a healthcare provider for any reason (aOR = 2.72, CI: 1.84-4.01). Similar factors were associated with increasing number of VVC episodes in the past year and with lifetime prevalence of VVC. CONCLUSION VVC remains a common infection in the United States. Our analysis supports known clinical risk factors for VVC and suggests that antifungal treatment use is high, underscoring the need to ensure appropriate diagnosis and treatment.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H24-9, Atlanta, GA, 30329, USA.
| | - Alyson L Singleton
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H24-9, Atlanta, GA, 30329, USA
| | - Brendan R Jackson
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H24-9, Atlanta, GA, 30329, USA
| | - Noelle Angelique M Molinari
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H24-9, Atlanta, GA, 30329, USA
| |
Collapse
|
164
|
Glittenberg MT, Kounatidis I, Atilano M, Ligoxygakis P. A genetic screen in Drosophila reveals the role of fucosylation in host susceptibility to Candida infection. Dis Model Mech 2022; 15:dmm049218. [PMID: 35142345 PMCID: PMC9118035 DOI: 10.1242/dmm.049218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
Candida infections constitute a blind spot in global public health as very few new anti-fungal drugs are being developed. Genetic surveys of host susceptibilities to such infections using mammalian models have certain disadvantages in that obtaining results is time-consuming, owing to relatively long lifespans, and these results have low statistical resolution because sample sizes are usually small. Here, we report a targeted genetic screening of 5698 RNAi lines encompassing 4135 Drosophila genes with human homologues, several of which we identify as important for host survival after Candida albicans infection. These include genes in a variety of functional classes encompassing gene expression, intracellular signalling, metabolism and enzymatic regulation. Analysis of one of the screen hits, the infection-induced α-(1,3)-fucosylase FucTA, showed that N-glycan fucosylation has several targets among proteins involved in host defence, which provides multiple avenues of investigation for the mechanistic analysis of host survival to systemic C. albicans infection.
Collapse
Affiliation(s)
- Marcus T. Glittenberg
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Ilias Kounatidis
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Magda Atilano
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
165
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
166
|
Carrión-Navarro J, Argüelles A, Martínez-Gimeno ML, Lozada AT, Ayuso-Sacido A, Belda-Iniesta C, Arnás-Rodríguez M, García-Romero N. A New Natural Antimycotic Agent is Effective Against Oropharyngeal Candidiasis: The VIPROCAN Study. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2202010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The incidence of community and nosocomial candidiasis has dramatically increased in the last two decades. There are multiple treatments for this infection, but the toxicity of some and the induction of resistant strains require the development of new compounds.
Objectives:
With the aim of reducing the Candida population in the oropharyngeal cavity, we have formulated a toothpaste with VG-01 agent, composed of a mixture of carnosic acid (CA) and propolis (PP).
Methods:
We investigated the ability of VG-01 toothpaste to minimize and stabilize fungal presence in 21 patients diagnosed with clinical oropharyngeal candidiasis.
Results:
Our data indicate that VG-01 toothpaste showed an effect not only against the most frequent species of Candida, C. albicans, but also in the other species analyzed. 82% of patients stated that they would continue using it outside the study.
Conclusion:
Our data demonstrate that VG-01, composed of CA and PP is a potential antimycotic agent effective against the most common species that cause oropharyngeal candidiasis present in clinical practice.
Collapse
|
167
|
Gold JAW, Revis A, Thomas S, Perry L, Blakney RA, Chambers T, Bentz ML, Berkow EL, Lockhart SR, Lysen C, Nunnally NS, Jordan A, Kelly HC, Montero AJ, Farley MM, Oliver NT, Pouch SM, Webster AS, Jackson BR, Beer KD. Clinical Characteristics, Healthcare Utilization, and Outcomes among Patients in a Pilot Surveillance System for Invasive Mold Disease—Georgia, United States, 2017–2019. Open Forum Infect Dis 2022; 9:ofac215. [DOI: 10.1093/ofid/ofac215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Invasive mold diseases (IMD) cause severe illness, but public health surveillance data are lacking. We describe data collected from a laboratory-based, pilot IMD surveillance system.
Methods
During 2017–2019, the Emerging Infections Program conducted active IMD surveillance at three Atlanta-area hospitals. We ascertained potential cases by reviewing histopathology, culture, and Aspergillus galactomannan results and classified patients as having an IMD case (based on European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group [MSG] criteria) or a non-MSG IMD case (based on the treating clinician’s diagnosis and use of mold-active antifungal therapy). We described patient features and compared patients with MSG versus non-MSG IMD cases.
Results
Among 304 patients with potential IMD, 104 (34.2%) met an IMD case definition (41 MSG, 63 non-MSG). The most common IMD types were invasive aspergillosis (n = 66, 63.5%), mucormycosis (n = 8, 7.7%), and fusariosis (n = 4, 3.8%); the most frequently affected body sites were pulmonary (n = 66, 63.5%), otorhinolaryngologic (n = 17, 16.3%), and cutaneous/deep tissue (n = 9, 8.7%). Forty-five (43.3%) IMD patients received intensive care unit-level care, and 90-day all-cause mortality was 32.7%; these outcomes did not differ significantly between MSG and non-MSG IMD patients.
Conclusions
IMD patients had high mortality rates and a variety of clinical presentations. Comprehensive IMD surveillance is needed to assess emerging trends, and strict application of MSG criteria for surveillance might exclude > one-half of clinically significant IMD cases.
Collapse
Affiliation(s)
| | - Andrew Revis
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Stepy Thomas
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lewis Perry
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Rebekah A. Blakney
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Taylor Chambers
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | - Monica M. Farley
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nora T. Oliver
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephanie M. Pouch
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew S. Webster
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
168
|
Nyirjesy P, Brookhart C, Lazenby G, Schwebke J, Sobel JD. Vulvovaginal Candidiasis: A Review of the Evidence for the 2021 Centers for Disease Control and Prevention of Sexually Transmitted Infections Treatment Guidelines. Clin Infect Dis 2022; 74:S162-S168. [PMID: 35416967 DOI: 10.1093/cid/ciab1057] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vulvovaginal candidiasis (VVC) is a common cause of vulvovaginal itching and discharge. This article discusses the latest CDC STI Treatment Guidelines for VVC. METHODS A literature search of relevant topics was performed, and a team of experts was convened to discuss (1) diagnosis/testing modalities; treatment of (2) uncomplicated VVC , (3) complicated VVC, and (4) VVC caused by non-albicans yeast; (5) alternative treatment regimens; (6) susceptibility testing of yeast; Special Populations: (7) pregnancy and (8) HIV and VVC. RESULTS Yeast culture remains the gold standard for diagnoses. Newer molecular assays have been developed for the diagnosis of VVC and perform well. Azole antifungals remain the treatment of choice for uncomplicated VVC. Two new drugs, TOL-463 and recently FDA-approved ibrexafungerp, appeared promising in clinical trials. For recurrent VVC, oteseconazole, not yet commercially available, may represent a new option. For non-albicans yeast infections in symptomatic patients, boric acid appears useful. No evidence supports the use of alternative treatments, including probiotics. Fluconazole during pregnancy may be associated with spontaneous abortion and craniofacial and heart defects. In women with HIV infection, lower CD4+ T-cell counts are associated with increased rates of VVC, and VVC is associated with increased viral shedding. Treatment measures in women with HIV infection are identical to those women without HIV infection. CONCLUSIONS There has been significant new knowledge generated about VVC since the 2015 CDC Guidelines which have led to changing recommendations.
Collapse
Affiliation(s)
- Paul Nyirjesy
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Carolyn Brookhart
- Department of Obstetrics and Gynecology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Gweneth Lazenby
- Division of Infectious Diseases, Department of Obstetrics and Gynecology and Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jane Schwebke
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jack D Sobel
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
169
|
Workowski KA, Bachmann LH. Centers for Disease Control and Prevention's Sexually Transmitted Diseases Infection Guidelines. Clin Infect Dis 2022; 74:S89-S94. [PMID: 35416966 DOI: 10.1093/cid/ciab1055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kimberly A Workowski
- Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Laura H Bachmann
- Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
170
|
Richardson JP. Candida albicans: A Major Fungal Pathogen of Humans. Pathogens 2022; 11:pathogens11040459. [PMID: 35456133 PMCID: PMC9025087 DOI: 10.3390/pathogens11040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fungal infections kill ~1 [...]
Collapse
Affiliation(s)
- Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
171
|
Benedict K, Whitham HK, Jackson BR. Economic Burden of Fungal Diseases in the United States. Open Forum Infect Dis 2022; 9:ofac097. [PMID: 35350173 PMCID: PMC8946773 DOI: 10.1093/ofid/ofac097] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/22/2022] [Indexed: 07/25/2023] Open
Abstract
We conservatively estimated the US economic burden of fungal diseases as $11.5 billion in 2019: direct medical costs ($7.5 billion), productivity loss due to absenteeism ($870 million), and premature deaths ($3.2 billion). An alternative "value of statistical life" approach yielded >$48 billion. These are likely underestimates given underdiagnosis and underreporting.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hilary K Whitham
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
172
|
Liberato I, Lino LA, Souza JK, Neto JB, Sá LG, Cabral VP, Silva CR, Cavalcanti BC, Moraes MO, Freire VN, Júnior HV, Andrade CR. Gallic acid leads to cell death of Candida albicans by the apoptosis mechanism. Future Microbiol 2022; 17:599-606. [PMID: 35354285 DOI: 10.2217/fmb-2021-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To evaluate the antifungal activity of gallic acid (GA) against the strains of Candida spp. resistant to fluconazole and to determine its mechanism of action. Materials & methods: Antifungal activity was evaluated using the broth microdilution and flow cytometry techniques. Results: GA presented minimum inhibitory concentrations ranging from 16 to 72 μg/ml, causing alterations of the membrane integrity and mitochondrial transmembrane potential, production of reactive oxygen species and externalization of phosphatidylserine. Conclusion: GA has potential antifungal activity against Candida spp.
Collapse
Affiliation(s)
- Ito Liberato
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Leticia A Lino
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Juan Kd Souza
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Ba Neto
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Livia Gav Sá
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil.,School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vitória Pf Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília R Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bruno C Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel O Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.,Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vn Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
173
|
Perfect JR, Krysan DJ, Del Poeta M, Selmecki AM, Brown JCS, Cowen LE. Editorial: Antifungal Pipeline: Build It Strong; Build It Better! Front Cell Infect Microbiol 2022; 12:881272. [PMID: 35372097 PMCID: PMC8965832 DOI: 10.3389/fcimb.2022.881272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, United States,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States,*Correspondence: John R. Perfect,
| | - Damian J. Krysan
- Department of Pediatrics and Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States,Department of Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology and Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States, Veterans Administration Medical Center, Northport, NY, United States
| | - Anna M. Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jessica C. S. Brown
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
174
|
Veerana M, Yu N, Ketya W, Park G. Application of Non-Thermal Plasma to Fungal Resources. J Fungi (Basel) 2022; 8:jof8020102. [PMID: 35205857 PMCID: PMC8879654 DOI: 10.3390/jof8020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
In addition to being key pathogens in plants, animals, and humans, fungi are also valuable resources in agriculture, food, medicine, industry, and the environment. The elimination of pathogenic fungi and the functional enhancement of beneficial fungi have been the major topics investigated by researchers. Non-thermal plasma (NTP) is a potential tool to inactivate pathogenic and food-spoiling fungi and functionally enhance beneficial fungi. In this review, we summarize and discuss research performed over the last decade on the use of NTP to treat both harmful and beneficial yeast- and filamentous-type fungi. NTP can efficiently inactivate fungal spores and eliminate fungal contaminants from seeds, fresh agricultural produce, food, and human skin. Studies have also demonstrated that NTP can improve the production of valuable enzymes and metabolites in fungi. Further studies are still needed to establish NTP as a method that can be used as an alternative to the conventional methods of fungal inactivation and activation.
Collapse
Affiliation(s)
- Mayura Veerana
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Nannan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: ; Tel.: +82-2-940-8324
| |
Collapse
|
175
|
Ambati S, Pham T, Lewis ZA, Lin X, Meagher RB. DectiSomes: Glycan Targeting of Liposomal Drugs Improves the Treatment of Disseminated Candidiasis. Antimicrob Agents Chemother 2022; 66:e0146721. [PMID: 34633846 PMCID: PMC8765427 DOI: 10.1128/aac.01467-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Candida albicans causes life-threatening disseminated candidiasis. Individuals at greatest risk have weakened immune systems. An outer cell wall, exopolysaccharide matrix, and biofilm rich in oligoglucans and oligomannans help Candida spp. evade host defenses. Even after antifungal treatment, the 1-year mortality rate exceeds 25%. Undoubtedly, there is room to improve drug performance. The mammalian C-type lectin pathogen receptors Dectin-1 and Dectin-2 bind to fungal oligoglucans and oligomannans, respectively. We previously coated amphotericin B-loaded liposomes, AmB-LLs, pegylated analogs of AmBisome, with the ligand binding domains of these two Dectins. DectiSomes, DEC1-AmB-LLs and DEC2-AmB-LLs, showed two distinct patterns of binding to the exopolysaccharide matrix surrounding C. albicans hyphae grown in vitro. Here we showed that DectiSomes were preferentially associated with fungal colonies in the kidneys. In a neutropenic mouse model of candidiasis, DEC1-AmB-LLs and DEC2-AmB-LLs delivering only one dose of 0.2 mg/kg AmB reduced the kidney fungal burden several fold relative to AmB-LLs. DEC1-AmB-LLs and DEC2-AmB-LLs increased the percent of surviving mice 2.5-fold and 8.3-fold, respectively, relative to AmB-LLs. Dectin-2 targeting of anidulafungin loaded liposomes, DEC2-AFG-LLs, and of commercial AmBisome, DEC2-AmBisome, reduced fungal burden in the kidneys several fold over their untargeted counterparts. The data herein suggest that targeting of a variety of antifungal drugs to fungal glycans may achieve lower safer effective doses and improve drug efficacy against a variety of invasive fungal infections.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Tuyetnhu Pham
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
176
|
Rayens E, Norris KA. Prevalence and Healthcare Burden of Fungal Infections in the United States, 2018. Open Forum Infect Dis 2022; 9:ofab593. [PMID: 35036461 PMCID: PMC8754384 DOI: 10.1093/ofid/ofab593] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background Fungal infections are responsible for >1.5 million deaths globally per year, primarily in those with compromised immune function. This is concerning as the number of immunocompromised patients, especially in those without human immunodeficiency virus (HIV), has risen in the past decade. The purpose of this analysis was to provide the current prevalence and impact of fungal disease in the United States. Methods We analyzed hospital discharge data from the most recent (2018) Healthcare Cost and Utilization Project National Inpatient Sample, and outpatient visit data from the National Ambulatory Medical Care Survey and the National Hospital Ambulatory Medical Care Survey. Costs are presented in 2018 United States (US) dollars. Results In the 35.5 million inpatient visits documented in 2018 in the US, approximately 666 235 fungal infections were diagnosed, with an estimated attributable cost of $6.7 billion. Aspergillus, Pneumocystis, and Candida infections accounted for 76.3% of fungal infections diagnosed, and 81.1% of associated costs. Most fungal disease occurred in patients with elevated risk of infection. The visit costs, lengths of stay, and risks of mortality in this population were more than twice that of those without fungal diagnoses. A further 6.6 million fungal infections were diagnosed during outpatient visits. Conclusions Fungal disease is a serious clinical concern with substantial healthcare costs and significant increases in morbidity and mortality, particularly among predisposed patients. Increased surveillance, standardized treatment guidelines, and improvement in diagnostics and therapeutics are needed to support the rising numbers of at-risk patients.
Collapse
Affiliation(s)
- Emily Rayens
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Karen A Norris
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
177
|
Mendonça A, Santos H, Franco-Duarte R, Sampaio P. Fungal infections diagnosis - Past, present and future. Res Microbiol 2022; 173:103915. [PMID: 34863883 PMCID: PMC8634697 DOI: 10.1016/j.resmic.2021.103915] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Despite the scientific advances observed in the recent decades and the emergence of new methodologies, the diagnosis of systemic fungal infections persists as a problematic issue. Fungal cultivation, the standard method that allows a proven diagnosis, has numerous disadvantages, as low sensitivity (only 50% of the patients present positive fungal cultures), and long growth time. These are factors that delay the patient's treatment and, consequently, lead to higher hospital costs. To improve the accuracy and quickness of fungal infections diagnosis, several new methodologies attempt to be implemented in clinical microbiology laboratories. Most of these innovative methods are independent of pathogen isolation, which means that the diagnosis goes from being considered proven to probable. In spite of the advantage of being culture-independent, the majority of the methods lack standardization. PCR-based methods are becoming more and more commonly used, which has earned them an important place in hospital laboratories. This can be perceived now, as PCR-based methodologies have proved to be an essential tool fighting against the COVID-19 pandemic. This review aims to go through the main steps of the diagnosis for systemic fungal infection, from diagnostic classifications, through methodologies considered as "gold standard", to the molecular methods currently used, and finally mentioning some of the more futuristic approaches.
Collapse
|
178
|
Gamal A, Kadry A, Elshaer M, Ghannoum MA. Novel Antifungals for the Treatment of Vulvovaginal Candidiasis: Where Are We? Infect Dis (Lond) 2022. [DOI: 10.17925/id.2022.1.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is a common health-related issue and the second most common cause of vaginitis. Previously, azole antifungals were the mainstay of VVC treatment. Additionally, boric acid and nystatin have been used topically for management of VVC. Despite being effective and well tolerated by most patients, the use of azoles may be limited in some cases. Currently, two new antifungal agents have received US Food and Drug Administration approval for use in the management of VVC. In this article, we briefly review treatment regimens used for the management of VVC over the past decade, the newly approved agents and their possible clinical application, and future treatment considerations.
Collapse
|
179
|
Evaluation of 2-[ 18F]-Fluorodeoxysorbitol PET Imaging in Preclinical Models of Aspergillus Infection. J Fungi (Basel) 2021; 8:jof8010025. [PMID: 35049965 PMCID: PMC8780649 DOI: 10.3390/jof8010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Despite increasing associated mortality and morbidity, the diagnosis of fungal infections, especially with Aspergillus fumigatus (A. fumigatus), remains challenging. Based on known ability of Aspergillus species to utilize sorbitol, we evaluated 2-[18F]-fluorodeoxysorbitol (FDS), a recently described Enterobacterales imaging ligand, in animal models of A. fumigatus infection, in comparison with 2-[18F]-fluorodeoxyglucose (FDG). In vitro assays showed slightly higher 3H-sorbitol uptake by live compared with heat-killed A. fumigatus. However, this was 10.6-fold lower than E. coli uptake. FDS positron emission tomography (PET) imaging of A. fumigatus pneumonia showed low uptake in infected lungs compared with FDG (0.290 ± 0.030 vs. 8.416 ± 0.964 %ID/mL). This uptake was higher than controls (0.098 ± 0.008 %ID/mL) and minimally higher than lung inflammation (0.167 ± 0.007 %ID/mL). In the myositis models, FDS uptake was highest in live E. coli infections. Uptake was low in A. fumigatus myositis model and only slightly higher in live compared with the heat-killed side. In conclusion, we found low uptake of 3H-sorbitol and FDS by A. fumigatus cultures and infection models compared with E. coli, likely due to the need for induction of sorbitol dehydrogenase by sorbitol. Our findings do not support FDS as an Aspergillus imaging agent. At this point, FDS remains more selective for imaging Gram-negative Enterobacterales.
Collapse
|
180
|
Ambati S, Pham T, Lewis ZA, Lin X, Meagher RB. DC-SIGN targets amphotericin B-loaded liposomes to diverse pathogenic fungi. Fungal Biol Biotechnol 2021; 8:22. [PMID: 34952645 PMCID: PMC8709943 DOI: 10.1186/s40694-021-00126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Life-threatening invasive fungal infections are treated with antifungal drugs such as Amphotericin B (AmB) loaded liposomes. Our goal herein was to show that targeting liposomal AmB to fungal cells with the C-type lectin pathogen recognition receptor DC-SIGN improves antifungal activity. DC-SIGN binds variously crosslinked mannose-rich and fucosylated glycans and lipomannans that are expressed by helminth, protist, fungal, bacterial and viral pathogens including three of the most life-threatening fungi, Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. Ligand recognition by human DC-SIGN is provided by a carbohydrate recognition domain (CRD) linked to the membrane transit and signaling sequences. Different combinations of the eight neck repeats (NR1 to NR8) expressed in different protein isoforms may alter the orientation of the CRD to enhance its binding to different glycans. RESULTS We prepared two recombinant isoforms combining the CRD with NR1 and NR2 in isoform DCS12 and with NR7 and NR8 in isoform DCS78 and coupled them to a lipid carrier. These constructs were inserted into the membrane of pegylated AmB loaded liposomes AmB-LLs to produce DCS12-AmB-LLs and DCS78-AmB-LLs. Relative to AmB-LLs and Bovine Serum Albumin coated BSA-AmB-LLs, DCS12-AmB-LLs and DCS78-AmB-LLs bound more efficiently to the exopolysaccharide matrices produced by A. fumigatus, C. albicans and C. neoformans in vitro, with DCS12-AmB-LLs performing better than DCS78-AmB-LLs. DCS12-AmB-LLs inhibited and/or killed all three species in vitro significantly better than AmB-LLs or BSA-AmB-LLs. In mouse models of invasive candidiasis and pulmonary aspergillosis, one low dose of DCS12-AmB-LLs significantly reduced the fungal burden in the kidneys and lungs, respectively, several-fold relative to AmB-LLs. CONCLUSIONS DC-SIGN's CRD specifically targeted antifungal liposomes to three highly evolutionarily diverse pathogenic fungi and enhanced the antifungal efficacy of liposomal AmB both in vitro and in vivo. Targeting significantly reduced the effective dose of antifungal drug, which may reduce drug toxicity, be effective in overcoming dose dependent drug resistance, and more effectively kill persister cells. In addition to fungi, DC-SIGN targeting of liposomal packaged anti-infectives have the potential to alter treatment paradigms for a wide variety of pathogens from different kingdoms including protozoans, helminths, bacteria, and viruses which express its cognate ligands.
Collapse
Affiliation(s)
- Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Tuyetnhu Pham
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
181
|
Clinical and Epidemiological Profile of Patients with Invasive Aspergillosis from a Fourth Level Hospital in Bogota, Colombia: A Retrospective Study. J Fungi (Basel) 2021; 7:jof7121092. [PMID: 34947074 PMCID: PMC8707106 DOI: 10.3390/jof7121092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Invasive aspergillosis (IA) is a severe mycosis caused by Aspergillus species. The infection mainly affects immunocompromised patients with a significant clinical burden. This study aimed to determine the clinical and epidemiological characteristics of patients diagnosed with IA in a fourth level hospital in Colombia, as these data are scarce in the country. A retrospective, observational study, from a single center was conducted with 34 male and 32 female patients, between 1 month- and 90-year-old, diagnosed with proven (18.2%), probable (74.2%) and possible (7.6%) IA, during a 21-year period. The most frequent underlying conditions for IA were chemotherapy (39.4%) and corticosteroid use (34.8%). The lung was the most common affected organ (92.4%). Computed tomography (CT) imaging findings were mainly nodules (57.6%) and consolidation (31.8%). A low positive correlation was found between serum galactomannan and hospitalization length. Aspergillus fumigatus prevailed (73.3%) in sputum and bronchoalveolar lavage cultures. Most patients were hospitalized in general wards (63.6%) and treated with voriconazole (80.3%). Mortality rate was 15.2%. Common risk factors for IA were identified in the Colombian cohort, including medications and underlying diseases. However, their frequency differs from other countries, reinforcing the idea that local surveillance is essential and at-risk patients should be carefully monitored.
Collapse
|
182
|
McDonald EG, Butler-Laporte G, Del Corpo O, Hsu JM, Lawandi A, Senecal J, Sohani ZN, Cheng MP, Lee TC. On the Treatment of Pneumocystis jirovecii Pneumonia: Current Practice Based on Outdated Evidence. Open Forum Infect Dis 2021; 8:ofab545. [PMID: 34988242 PMCID: PMC8694206 DOI: 10.1093/ofid/ofab545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Pneumocystis jirovecii pneumonia (PCP) is a common opportunistic infection causing more than 400000 cases annually worldwide. Although antiretroviral therapy has reduced the burden of PCP in persons with human immunodeficiency virus (HIV), an increasing proportion of cases occur in other immunocompromised populations. In this review, we synthesize the available randomized controlled trial (RCT) evidence base for PCP treatment. We identified 14 RCTs that were conducted 25-35 years ago, principally in 40-year-old men with HIV. Trimethoprim-sulfamethoxazole, at a dose of 15-20 mg/kg per day, is the treatment of choice based on historical practice rather than on quality comparative, dose-finding studies. Treatment duration is similarly based on historical practice and is not evidence based. Corticosteroids have a demonstrated role in hypoxemic patients with HIV but have yet to be studied in RCTs as an adjunctive therapy in non-HIV populations. The echinocandins are potential synergistic treatments in need of further investigation.
Collapse
Affiliation(s)
- Emily G McDonald
- Division of General Internal Medicine, Department of Medicine, McGill University Health Centre, Montréal, Canada
- Clinical Practice Assessment Unit, Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Guillaume Butler-Laporte
- Department of Epidemiology, Occupational Health, and Biostatistics, McGill University, Montréal, Canada
| | - Olivier Del Corpo
- Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Jimmy M Hsu
- Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Alexander Lawandi
- Department of Critical Care Medicine, National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Julien Senecal
- Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Zahra N Sohani
- Department of Medicine, McGill University, Montréal, Canada
| | - Matthew P Cheng
- Division of Medical Microbiology, Department of Laboratory Medicine, McGill University Health Centre, Montréal, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Todd C Lee
- Clinical Practice Assessment Unit, Department of Medicine, McGill University Health Centre, Montréal, Canada
- Department of Epidemiology, Occupational Health, and Biostatistics, McGill University, Montréal, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
183
|
Ferreira OO, da Silva SHM, de Oliveira MS, Andrade EHDA. Chemical Composition and Antifungal Activity of Myrcia multiflora and Eugenia florida Essential Oils. Molecules 2021; 26:7259. [PMID: 34885839 PMCID: PMC8658826 DOI: 10.3390/molecules26237259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
The essential oils of three specimens of Myrcia multiflora (A, B and C) and Eugenia florida were extracted by hydrodistillation, and the chemical compositions from the essential oils were identified by gas chromatography and flame ionization detection (CG/MS and CG-FID). The fungicide potential of the EOs against five fungicide yeasts was assessed: Candida albicans INCQS-40175, C. tropicalis ATCC 6258, C. famata ATCC 62894, C. krusei ATCC 13803 and C. auris IEC-01. The essential oil of the specimen Myrcia multiflora (A) was characterized by the major compounds: α-bulnesene (26.79%), pogostol (21.27%) and δ-amorphene (6.76%). The essential oil of the specimen M. multiflora (B) was rich in (E)-nerolidol (44.4%), (E)-γ-bisabolene (10.64%) and (E,E)-α-farnesene (8.19%), while (E)-nerolidol (92.21%) was the majority of the specimen M. multiflora (C). The sesquiterpenes seline-3,11-dien-6-α-ol (12.93%), eremoligenol (11%) and γ-elemene (10.70%) characterized the chemical profile of the EOs of E. florida. The fungal species were sensitive to the essential oil of M. multiflora (B) (9-11 mm), and the lowest inhibitory concentration (0.07%) was observed in the essential oil of M. multiflora (A) against the yeasts of C. famata. Fungicidal action was observed in the essential oils of M. multiflora (A) against C. famata, with an MIC of 0.78 µL/mL and 3.12 µL/mL; C. albicans, with an MFC of 50 µL/mL and M. multiflora (C) against C. albicans; and C. krusei, with a MFC of 50 µL/mL.
Collapse
Affiliation(s)
- Oberdan Oliveira Ferreira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Brazil; (O.O.F.); (E.H.d.A.A.)
| | - Silvia Helena Marques da Silva
- Seção de Bacteriologia e Micologia LabMicol—SABMI Laboratório de Micologia, Instituto Evandro Chagas—IEC/SVS/MS, Rodovia BR 316 KM 07, Levilândia, Ananindeua 67030-000, Brazil;
| | - Mozaniel Santana de Oliveira
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Brazil
| | - Eloisa Helena de Aguiar Andrade
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Brazil; (O.O.F.); (E.H.d.A.A.)
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Brazil
| |
Collapse
|
184
|
A Systematic Study of the Antibacterial Activity of Basidiomycota Crude Extracts. Antibiotics (Basel) 2021; 10:antibiotics10111424. [PMID: 34827362 PMCID: PMC8615167 DOI: 10.3390/antibiotics10111424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
The excessive consumption of antibiotics in clinical, veterinary and agricultural fields has resulted in tremendous flow of antibiotics into the environment. This has led to enormous selective pressures driving the evolution of antimicrobial resistance genes in pathogenic and commensal bacteria. In this context, the World Health Organization (WHO) has promoted research aiming to develop medical features using natural products that are often competitive with synthetic drugs in clinical performance. Fungi are considered an important source of bioactive molecules, often effective against other fungi and/or bacteria, and thus are potential candidates in the search of new antibiotics. Fruiting bodies of sixteen different fungal species of Basidiomycota were collected in the Italian Alps. The identification of fungal species was performed through Internal Transcribed Spacer (ITS) sequencing. Most species belong to genera Cortinarius, Mycena and Ramaria, whose metabolite contents has been scarcely investigated so far. The crude extracts obtained from the above mushrooms were tested for their inhibition activity against five human pathogens: Candida albicans ATCC 14053, C. glabrata ATCC 15126, Staphylococcus aureus NCTC 6571, Pseudomonas aeruginosa ATCC 27853 and Klebsiella pneumoniae ATCC 13883. Twelve crude extracts showed activity against P. aeruginosa ATCC 27853. Highest activity was shown by some Cortinarius species, as C. nanceiensis.
Collapse
|
185
|
Crunden JL, Diezmann S. Hsp90 interaction networks in fungi-tools and techniques. FEMS Yeast Res 2021; 21:6413543. [PMID: 34718512 PMCID: PMC8599792 DOI: 10.1093/femsyr/foab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is a central regulator of cellular proteostasis. It stabilizes numerous proteins that are involved in fundamental processes of life, including cell growth, cell-cycle progression and the environmental response. In addition to stabilizing proteins, Hsp90 governs gene expression and controls the release of cryptic genetic variation. Given its central role in evolution and development, it is important to identify proteins and genes that interact with Hsp90. This requires sophisticated genetic and biochemical tools, including extensive mutant collections, suitable epitope tags, proteomics approaches and Hsp90-specific pharmacological inhibitors for chemogenomic screens. These usually only exist in model organisms, such as the yeast Saccharomyces cerevisiae. Yet, the importance of other fungal species, such as Candida albicans and Cryptococcus neoformans, as serious human pathogens accelerated the development of genetic tools to study their virulence and stress response pathways. These tools can also be exploited to map Hsp90 interaction networks. Here, we review tools and techniques for Hsp90 network mapping available in different fungi and provide a summary of existing mapping efforts. Mapping Hsp90 networks in fungal species spanning >500 million years of evolution provides a unique vantage point, allowing tracking of the evolutionary history of eukaryotic Hsp90 networks.
Collapse
Affiliation(s)
- Julia L Crunden
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
186
|
Verma N, Singh S, Singh M, Chauhan A, Pradhan P, Jaiswal N, Chakrabarti A, Singh M. Global epidemiological burden of fungal infections in cirrhosis patients: a systematic review with meta-analysis. Mycoses 2021; 65:266-284. [PMID: 34724269 DOI: 10.1111/myc.13387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND & AIMS Fungal infections (FIs) have serious implications, yet understated in cirrhosis. Therefore, we reviewed the epidemiology and trends of FIs among cirrhotics. METHODS Four electronic-databases were searched for full-text articles describing prevalence of FIs in cirrhosis. Studies from post-transplant, malignancy and classical-immuno-deficiency patients were excluded. A random-effects meta-analysis was done to pool estimates of FIs (overall, and by type and infection-site), and their variation(I2 ) was explored on moderator-analysis and meta-regression. Risk of bias and asymmetry in estimates was assessed by a checklist and Eggers-regression, respectively.(CRD42019142782) RESULTS: Thirty-four low-risk and four moderate-risk studies (31984 cirrhotics) were included. Pooled-estimates of overall-FIs (17 studies), invasive fungal infections (IFIs; 17 studies), invasive-candidiasis (23 studies), and invasive-aspergillosis (16 studies) in cirrhosis were 10.2%(6.0-16.9), 9.5%(5.4-16.2), 4.0%(2.0-8.0) and 2.8%(1.5-5.3); respectively (I2 >90%;each). Site of FIs in decreasing order of pooled-prevalence was pulmonary, urinary-tract, bloodstream, peritoneal, esophageal, and cerebral. Geographic differences in these estimates were remarkable, with highest burden of overall-FIs from Belgium, USA, and India. Non-albicans-Candida and Aspergillus infections have increased over the last-decade in cirrhosis. Intensive-care-unit (ICU)-admitted and acute-on-chronic liver failure (ACLF) patients had the highest prevalence of IFIs. MELD-score(cases), bias-score, and sample size across studies were the predictors of variance in overall-FI-estimates. Diabetes, steroid and broad-spectrum antibiotic-exposure, and multiple organ failures were the common predispositions reported in patients with FIs. CONCLUSIONS FIs impose a substantial burden in cirrhosis. ACLF and ICU-admission should be considered as a host factor for defining IFIs. Epidemiology of FIs can guide interpretation of biomarkers and antifungal treatment in cirrhosis.
Collapse
Affiliation(s)
- Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manvi Singh
- Indian Council of Medical Research Center for Evidence-Based Child Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anil Chauhan
- Indian Council of Medical Research Center for Evidence-Based Child Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranita Pradhan
- Indian Council of Medical Research Center for Evidence-Based Child Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Jaiswal
- Indian Council of Medical Research Center for Evidence-Based Child Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenu Singh
- Indian Council of Medical Research Center for Evidence-Based Child Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
187
|
Uthayakumar D, Sharma J, Wensing L, Shapiro RS. CRISPR-Based Genetic Manipulation of Candida Species: Historical Perspectives and Current Approaches. Front Genome Ed 2021; 2:606281. [PMID: 34713231 PMCID: PMC8525362 DOI: 10.3389/fgeed.2020.606281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
The Candida genus encompasses a diverse group of ascomycete fungi that have captured the attention of the scientific community, due to both their role in pathogenesis and emerging applications in biotechnology; the development of gene editing tools such as CRISPR, to analyze fungal genetics and perform functional genomic studies in these organisms, is essential to fully understand and exploit this genus, to further advance antifungal drug discovery and industrial value. However, genetic manipulation of Candida species has been met with several distinctive barriers to progress, such as unconventional codon usage in some species, as well as the absence of a complete sexual cycle in its diploid members. Despite these challenges, the last few decades have witnessed an expansion of the Candida genetic toolbox, allowing for diverse genome editing applications that range from introducing a single point mutation to generating large-scale mutant libraries for functional genomic studies. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology is among the most recent of these advancements, bringing unparalleled versatility and precision to genetic manipulation of Candida species. Since its initial applications in Candida albicans, CRISPR-Cas9 platforms are rapidly evolving to permit efficient gene editing in other members of the genus. The technology has proven useful in elucidating the pathogenesis and host-pathogen interactions of medically relevant Candida species, and has led to novel insights on antifungal drug susceptibility and resistance, as well as innovative treatment strategies. CRISPR-Cas9 tools have also been exploited to uncover potential applications of Candida species in industrial contexts. This review is intended to provide a historical overview of genetic approaches used to study the Candida genus and to discuss the state of the art of CRISPR-based genetic manipulation of Candida species, highlighting its contributions to deciphering the biology of this genus, as well as providing perspectives for the future of Candida genetics.
Collapse
Affiliation(s)
- Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
188
|
Berkes C, Franco J, Lawson M, Brann K, Mermelstein J, Laverty D, Connors A. Kinase Inhibitor Library Screening Identifies the Cancer Therapeutic Sorafenib and Structurally Similar Compounds as Strong Inhibitors of the Fungal Pathogen Histoplasma capsulatum. Antibiotics (Basel) 2021; 10:antibiotics10101223. [PMID: 34680804 PMCID: PMC8532743 DOI: 10.3390/antibiotics10101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022] Open
Abstract
Histoplasma capsulatum is a dimorphic fungal pathogen endemic to the midwestern and southern United States. It causes mycoses ranging from subclinical respiratory infections to severe systemic disease, and is of particular concern for immunocompromised patients in endemic areas. Clinical management of histoplasmosis relies on protracted regimens of antifungal drugs whose effectiveness can be limited by toxicity. In this study, we hypothesize that conserved biochemical signaling pathways in the eukaryotic domain can be leveraged to repurpose kinase inhibitors as antifungal compounds. We conducted a screen of two kinase inhibitor libraries to identify compounds inhibiting the growth of Histoplasma capsulatum in the pathogenic yeast form. Our approach identified seven compounds with an elongated hydrophobic polyaromatic structure, five of which share a molecular motif including a urea unit linking a halogenated benzene ring and a para-substituted polyaromatic group. The top hits include the cancer therapeutic Sorafenib, which inhibits growth of Histoplasma in vitro and in a macrophage infection model with low host cell cytotoxicity. Our results reveal the possibility of repurposing Sorafenib or derivatives thereof as therapy for histoplasmosis, and suggest that repurposing of libraries developed for human cellular targets may be a fruitful source of antifungal discovery.
Collapse
Affiliation(s)
- Charlotte Berkes
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
- Correspondence:
| | - Jimmy Franco
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| | - Maxx Lawson
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Katelynn Brann
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Jessica Mermelstein
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Daniel Laverty
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| | - Allison Connors
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| |
Collapse
|
189
|
Vibrational Properties of Benzoxaboroles and Their Interactions with Candida albicans’ LeuRS. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Benzoxaboroles have emerged over the past decade mainly due to their growing medicinal importance. Regarding the wide application of IR spectroscopy in the pharmaceutical industry, the vibrational properties of over a dozen of benzoxaboroles were described, based on results of DFT calculations as well as IR and Raman spectra measurements. Investigated series of compounds included the currently available antifungal drug (Tavaborole, AN2690) as well as its derivatives. An intense and well-isolated band corresponding to the B-OH group stretching vibrations was present in all experimental IR spectra in the range of 1446–1414 cm−1 and can be considered as characteristic for benzoxaboroles. The vibrational properties of benzoxaboroles are shown to be affected by the formation of intramolecular as well as intermolecular hydrogen bonds, which should also influence the interactions of benzoxaboroles with biomolecules and impact on their biological functions. Docking studies of the benzoxaboroles’ adenosine monophosphate (AMP) spiroboronates into the Candida albicans leucyl-RS synthetase binding pocket showed that the introduction of an amine substituent has a strong influence on their binding. The determined values of inhibition constants manifest high potential of some of the investigated molecules as possible inhibitors of that enzyme.
Collapse
|
190
|
Hopke A, Mela A, Ellett F, Carter-House D, Peña JF, Stajich JE, Altamirano S, Lovett B, Egan M, Kale S, Kronholm I, Guerette P, Szewczyk E, McCluskey K, Breslauer D, Shah H, Coad BR, Momany M, Irimia D. Crowdsourced analysis of fungal growth and branching on microfluidic platforms. PLoS One 2021; 16:e0257823. [PMID: 34587206 PMCID: PMC8480888 DOI: 10.1371/journal.pone.0257823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the "Fungus Olympics." The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 μm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.
Collapse
Affiliation(s)
- Alex Hopke
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Alex Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Felix Ellett
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Derreck Carter-House
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Jesús F. Peña
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian Lovett
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Martin Egan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Shiv Kale
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Ilkka Kronholm
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Paul Guerette
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Edyta Szewczyk
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Kevin McCluskey
- Bolt Threads Inc., Emeryville, California, United States of America
| | - David Breslauer
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Hiral Shah
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Bryan R. Coad
- School of Agriculture, Food & Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (DI); (MM)
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
- * E-mail: (DI); (MM)
| |
Collapse
|
191
|
Jain N, Jansone I, Obidenova T, Sīmanis R, Meisters J, Straupmane D, Reinis A. Epidemiological Characterization of Clinical Fungal Isolates from Pauls Stradinš Clinical University Hospital, Latvia: A 4-Year Surveillance Report. Life (Basel) 2021; 11:1002. [PMID: 34685374 PMCID: PMC8537438 DOI: 10.3390/life11101002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nosocomial fungal infections are an emerging global public health threat that requires urgent attention and proper management. With the limited availability of treatment options, it has become necessary to understand the emerging epidemiological trends, mechanisms, and risk factors. However, very limited surveillance reports are available in the Latvian and broader European context. We therefore conducted a retrospective analysis of laboratory data (2017-2020) from Pauls Stradinš Clinical University Hospital (PSCUH), Riga, Latvia, which is one of the largest public multispecialty hospitals in Latvia. A total of 2278 fungal isolates were analyzed during the study period, with Candida spp. comprising 95% of the isolates, followed by Aspergillus spp. and Geotrichum spp. Amongst the Candida spp., C. albicans and C. glabrata made up about 75% of the isolates. The Department of Lung Diseases and Thoracic Surgery had the highest caseload followed by Intensive Care Department. Majority of the fungal isolates were collected from the bronchoalveolar lavage (37%), followed by urine (19%) and sputum (18%) samples. A total of 34 cases of candidemia were noted during the study period with C. albicans being the most common candidemia pathogen. Proper surveillance of emerging epidemiological trends serve as the most reliable and powerful cornerstone towards tackling this emerging threat.
Collapse
Affiliation(s)
- Nityanand Jain
- Department of Biology and Microbiology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Inese Jansone
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Tatjana Obidenova
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Raimonds Sīmanis
- Department of Infectology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Jānis Meisters
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Dagnija Straupmane
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Aigars Reinis
- Department of Biology and Microbiology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| |
Collapse
|
192
|
Alaalm L, Crunden JL, Butcher M, Obst U, Whealy R, Williamson CE, O'Brien HE, Schaffitzel C, Ramage G, Spencer J, Diezmann S. Identification and Phenotypic Characterization of Hsp90 Phosphorylation Sites That Modulate Virulence Traits in the Major Human Fungal Pathogen Candida albicans. Front Cell Infect Microbiol 2021; 11:637836. [PMID: 34513723 PMCID: PMC8431828 DOI: 10.3389/fcimb.2021.637836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/24/2021] [Indexed: 01/13/2023] Open
Abstract
The highly conserved, ubiquitous molecular chaperone Hsp90 is a key regulator of cellular proteostasis and environmental stress responses. In human pathogenic fungi, which kill more than 1.6 million patients each year worldwide, Hsp90 governs cellular morphogenesis, drug resistance, and virulence. Yet, our understanding of the regulatory mechanisms governing fungal Hsp90 function remains sparse. Post-translational modifications are powerful components of nature’s toolbox to regulate protein abundance and function. Phosphorylation in particular is critical in many cellular signaling pathways and errant phosphorylation can have dire consequences for the cell. In the case of Hsp90, phosphorylation affects its stability and governs its interactions with co-chaperones and clients. Thereby modulating the cell’s ability to cope with environmental stress. Candida albicans, one of the leading human fungal pathogens, causes ~750,000 life-threatening invasive infections worldwide with unacceptably high mortality rates. Yet, it remains unknown if and how Hsp90 phosphorylation affects C. albicans virulence traits. Here, we show that phosphorylation of Hsp90 is critical for expression of virulence traits. We combined proteomics, molecular evolution analyses and structural modeling with molecular biology to characterize the role of Hsp90 phosphorylation in this non-model pathogen. We demonstrated that phosphorylation negatively affects key virulence traits, such as the thermal stress response, morphogenesis, and drug susceptibility. Our results provide the first record of a specific Hsp90 phosphorylation site acting as modulator of fungal virulence. Post-translational modifications of Hsp90 could prove valuable in future exploitations as antifungal drug targets.
Collapse
Affiliation(s)
- Leenah Alaalm
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Julia L Crunden
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mark Butcher
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Ulrike Obst
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ryann Whealy
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Heath E O'Brien
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stephanie Diezmann
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
193
|
Meagher RB, Lewis ZA, Ambati S, Lin X. Aiming for a bull's-eye: Targeting antifungals to fungi with dectin-decorated liposomes. PLoS Pathog 2021; 17:e1009699. [PMID: 34293050 PMCID: PMC8297870 DOI: 10.1371/journal.ppat.1009699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, there are several million individuals with life-threatening invasive fungal diseases such as candidiasis, aspergillosis, cryptococcosis, Pneumocystis pneumonia (PCP), and mucormycosis. The mortality rate for these diseases generally exceeds 40%. Annual medical costs to treat these invasive fungal diseases in the United States exceed several billion dollars. In addition to AIDS patients, the risks of invasive mycoses are increasingly found in immune-impaired individuals or in immunosuppressed patients following stem cell or organ transplant or implantation of medical devices. Current antifungal drug therapies are not meeting the challenge, because (1) at safe doses, they do not provide sufficient fungal clearance to prevent reemergence of infection; (2) most become toxic with extended use; (3) drug-resistant fungal isolates are emerging; and (4) only one new class of antifungal drugs has been approved for clinical use in the last 2 decades. DectiSomes represent a novel design of drug delivery to drastically increase drug efficacy. Antifungals packaged in liposomes are targeted specifically to where the pathogen is, through binding to the fungal cell walls or exopolysaccharide matrices using the carbohydrate recognition domains of pathogen receptors. Relative to untargeted liposomal drug, DectiSomes show order of magnitude increases in the binding to and killing of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus in vitro and similarly improved efficacy in mouse models of pulmonary aspergillosis. DectiSomes have the potential to usher in a new antifungal drug treatment paradigm.
Collapse
Affiliation(s)
- Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
194
|
In Vitro pH Activity of Ibrexafungerp against Fluconazole-Susceptible and -Resistant Candida Isolates from Women with Vulvovaginal Candidiasis. Antimicrob Agents Chemother 2021; 65:e0056221. [PMID: 34001513 PMCID: PMC8284466 DOI: 10.1128/aac.00562-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vaginal environment with candidiasis has a pH of 3.8 to 4.5 and this has a negative effect on the activity of antifungals. Ibrexafungerp was evaluated against 187 Candida isolates, including fluconazole-sensitive and -resistant Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, and Candida tropicalis with the media adjusted to pH 7.0 and pH 4.5. Ibrexafungerp MIC values were not adversely affected when tested at pH 4.5. Ibrexafungerp exhibited significant activity against all isolates at pH 4.5.
Collapse
|
195
|
Ruiz-Azcona L, Santibañez M, Roig FJ, Vanaclocha H, Ventero MP, Boix V, Portilla-Sogorb J, Sánchez-Paya J, Merino E, Rodriguez JC. Isolation of Candida auris in large hospitals in the Autonomous Community of Valencia; population-based study (2013-2017). Rev Iberoam Micol 2021; 38:141-144. [PMID: 34266756 DOI: 10.1016/j.riam.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant and highly virulent yeast that spreads easily among patients. AIMS To describe the characteristics of candidemia caused by C. auris in the southeast of Spain (Autonomous Community of Valencia - ACV) through a 5-year population-based study. METHODS An analysis of all the episodes of candidemia diagnosed in the ACV, with approximately 4,500,000 inhabitants, during 2013-2017, was done. Data were obtained from the Epidemiological Surveillance Valencian Network, a network that collects all the microbiological data from the hospitals in the study region. RESULTS Based on the records, 1.9% of the isolates recovered from the positive blood cultures (corresponding to 1789 patients) were yeasts. This implies an annual rate of 7.09 cases/100,000 inhabitants. Of the 23 yeast species isolated, Candida albicans was the most frequent (37.3%), showing a higher frequency than Candida parapsilosis (28.4%) and Candida glabrata (15.6%) (p<0.0001). It is remarkable the emergence of C. auris during 2016 and 2017, as this species became the fourth more prevalent in 2016 (9.2%), and the third in 2017 (15.7%). Fungemia was more common in hospitals with >500 beds (63.3% versus 36.7% in small hospitals) (p<0.0001), and C. auris was mostly isolated in large hospitals (8.5% versus 0.3%); its incidence was higher in autumn and among the age group of 65-84 years. CONCLUSIONS The information about the local epidemiology of candidemia is essential in order to decide the best empirical treatment approach. This study reports the novel presence of C. auris in large hospitals. This pathogen has usually resistance to several antifungals and causes severe fungemia, so the results of this work reveal the need to monitor the presence of this species systematically.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group, University of Cantabria-IDIVAL, Santander, Spain; Hospital Universitario Marqués de Valdecilla, Santander (Cantabria), Spain
| | - Miguel Santibañez
- Global Health Research Group, University of Cantabria-IDIVAL, Santander, Spain
| | - Francisco Javier Roig
- Dirección General de Salud Pública, Conselleria de Sanitat Universal y Salud Pública, Comunidad Valenciana, Valencia, Spain
| | - Hermelinda Vanaclocha
- Dirección General de Salud Pública, Conselleria de Sanitat Universal y Salud Pública, Comunidad Valenciana, Valencia, Spain
| | - Maria Paz Ventero
- Servicio de Microbiología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Vicente Boix
- Unidad de Enfermedades Infecciosas, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Universidad Miguel Hernández, Elche, Alicante, Spain
| | - Joaquín Portilla-Sogorb
- Unidad de Enfermedades Infecciosas, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Universidad Miguel Hernández, Elche, Alicante, Spain
| | - José Sánchez-Paya
- Universidad Miguel Hernández, Elche, Alicante, Spain; Servicio Medicina Preventiva, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Esperanza Merino
- Unidad de Enfermedades Infecciosas, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Juan Carlos Rodriguez
- Servicio de Microbiología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Universidad Miguel Hernández, Elche, Alicante, Spain
| |
Collapse
|
196
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
197
|
Benedict K, Gibbons-Burgener S, Kocharian A, Ireland M, Rothfeldt L, Christophe N, Signs K, Jackson BR. Blastomycosis Surveillance in 5 States, United States, 1987-2018. Emerg Infect Dis 2021; 27. [PMID: 33757624 PMCID: PMC8007286 DOI: 10.3201/eid2704.204078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The median time from symptom onset to diagnosis and the severity of illness suggest that surveillance underestimates the true number of cases. Blastomycosis is caused by inhalation of Blastomyces spp. fungi. Limited data are available on the incidence and geographic range of blastomycosis in the United States. To better characterize its epidemiologic features, we analyzed combined surveillance data from the 5 states in which blastomycosis is reportable: Arkansas, Louisiana, Michigan, Minnesota, and Wisconsin. Surveillance identified 4,441 cases during 1987–2018, a mean of 192 cases per year. The mean annual incidence was <1 case/100,000 population in most areas but >20 cases/100,000 population in some northern counties of Wisconsin. Median patient age was 46 years, 2,892 (65%) patients were male, 1,662 (57%) were hospitalized, and 278 (8%) died. The median time from symptom onset to diagnosis was 33 days. The severity of illness and diagnostic delays suggest that surveillance underestimates the true number of cases. More in-depth surveillance in additional states could elucidate blastomycosis incidence and inform efforts to increase awareness.
Collapse
|
198
|
Gandhi P, Benedict K, Toda M, Beer KD, Chiller TM, Jackson BR. Patient notification about suspected hospital-associated outbreaks of invasive mold infections: Considerations for public health and hospital personnel. Infect Control Hosp Epidemiol 2021; 42:871-876. [PMID: 34109919 DOI: 10.1017/ice.2021.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A common type of fungal disease investigation involves hospital-associated clusters of invasive mold infections (IMIs), which typically occur among immunocompromised patients. Responding to IMI clusters can be challenging for public health and hospital personnel for several reasons such as difficulty of confirming the existence of an outbreak, difficulty of determining source. Although many resources exist to guide patient notification about healthcare incidents (eg, bloodborne exposures, disease outbreaks), IMI clusters involve special considerations related to the complex diseases, uncertain exposures, and differential benefits and risks of notification. Early, nuanced communication about hospital-associated IMI clusters is almost always the best course of action to help reduce risks to patients' health and foster trust between patients and hospitals.
Collapse
Affiliation(s)
- Pooja Gandhi
- Applied Sciences, Research and Technology, Inc., Smyrna, Georgia
| | - Kaitlin Benedict
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mitsuru Toda
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Karlyn D Beer
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Tom M Chiller
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brendan R Jackson
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
199
|
Menon S, Vartak R, Patel K, Billack B. Evaluation of the antifungal activity of an ebselen-loaded nanoemulsion in a mouse model of vulvovaginal candidiasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102428. [PMID: 34217850 DOI: 10.1016/j.nano.2021.102428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida albicans, is a common infection in women affecting their quality of life. Standard antifungal drugs (e.g., fluconazole, itraconazole) are typically fungistatic or rendered ineffective due to drug resistance indicating an urgent need to build an arsenal of novel antifungal agents. To surmount this issue, we tested the hypothesis that the organoselenium compound ebselen (EB) possesses antifungal efficacy in a mouse model of VVC. EB is a poorly water-soluble drug and DMSO as a vehicle has the potential to exhibit cytotoxic effects when administered in vivo. EB loaded self-nanoemulsifying preconcentrate (EB-SNEP) was developed, characterized in vitro, and tested in a mouse model of VVC. In vivo studies carried out with EB-SNEP (12.5 mg/kg) showed a remarkable decrease in infection by ~562-fold compared to control (infected, untreated animals). Taken together, EB nanoemulsion proved to be an effective and promising antifungal agent.
Collapse
Affiliation(s)
- Suvidha Menon
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA
| | - Richa Vartak
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA
| | - Ketankumar Patel
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA.
| | - Blase Billack
- Department of Pharmaceutical Sciences, St. John's University, Queens, Jamaica, NY, USA.
| |
Collapse
|
200
|
Rampersad SN. Spatial pattern of genetic diversity in field populations of Fusarium incarnatum-equiseti species complex. Ecol Evol 2021; 11:9010-9020. [PMID: 34257941 PMCID: PMC8258202 DOI: 10.1002/ece3.7738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
Fusarium is associated with a number of wilt, blight, scab, and rot diseases in a range of economically important staple food crops worldwide. An assessment of the genetic structure and population stratification of Fusarium incarnatum-equiseti species complex (FIESC) pathogen populations is important to understand the evolutionary potential of such populations in adapting to environmental change. Based on intersimple sequence repeat polymerase chain reaction (ISSR-PCR), it was found that the pathogen population was structured into three genetic clusters for which genetic differentiation was higher within than among populations. There was high intrapopulation genetic diversity for population 1 (94.63%) which consisted largely of isolates collected from North Trinidad. Populations 2 and 3 had a low level of admixture among the populations based on overall population differentiation. Population 1 accounted for the highest amount of genetic variation (95.82%) followed by populations 2 and 3. Population stratification was reflected in the dendrogram topology, which consisted of three main genetic clusters and which coincided with the outcome of Bayesian and PCoA analyses. The populations were isolated by distance, and Voronoi tessellations indicated physical or structural barriers to gene flow which contributed to restricted admixture between two of three populations. These findings suggest a high evolutionary potential for this FIESC pathogen population, the implications of which directly affect disease management strategies.
Collapse
Affiliation(s)
- Sephra N. Rampersad
- Dept. of Life SciencesFaculty of Science and TechnologyThe University of the West IndiesSt. AugustineTrinidad and Tobago, West Indies
| |
Collapse
|