151
|
Establishing a control system using QbD principles. Biologicals 2016; 44:319-31. [DOI: 10.1016/j.biologicals.2016.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022] Open
|
152
|
Pharmacokinetics interactions of monoclonal antibodies. Pharmacol Res 2016; 111:592-599. [DOI: 10.1016/j.phrs.2016.07.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022]
|
153
|
Hintersteiner B, Lingg N, Zhang P, Woen S, Hoi KM, Stranner S, Wiederkum S, Mutschlechner O, Schuster M, Loibner H, Jungbauer A. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors. MAbs 2016; 8:1548-1560. [PMID: 27559765 PMCID: PMC5098448 DOI: 10.1080/19420862.2016.1225642] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.
Collapse
Affiliation(s)
- Beate Hintersteiner
- a Department of Biotechnology , University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| | - Nico Lingg
- a Department of Biotechnology , University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| | - Peiqing Zhang
- b Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , Centros , Singapore
| | - Susanto Woen
- b Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , Centros , Singapore
| | - Kong Meng Hoi
- b Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , Centros , Singapore
| | - Stefan Stranner
- c Apeiron Biologics AG, Campus-Vienna-Biocenter , Vienna , Austria
| | | | | | - Manfred Schuster
- c Apeiron Biologics AG, Campus-Vienna-Biocenter , Vienna , Austria
| | - Hans Loibner
- c Apeiron Biologics AG, Campus-Vienna-Biocenter , Vienna , Austria
| | - Alois Jungbauer
- a Department of Biotechnology , University of Natural Resources and Life Sciences, Vienna , Vienna , Austria
| |
Collapse
|
154
|
Dorokhov YL, Sheshukova EV, Kosobokova EN, Shindyapina AV, Kosorukov VS, Komarova TV. Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies. BIOCHEMISTRY (MOSCOW) 2016; 81:835-57. [DOI: 10.1134/s0006297916080058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
155
|
Subedi GP, Barb AW. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. MAbs 2016; 8:1512-1524. [PMID: 27492264 DOI: 10.1080/19420862.2016.1218586] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Immunoglobulin G1 (IgG1) is the most abundant circulating human antibody and also the scaffold for many therapeutic monoclonal antibodies (mAbs). The destruction of IgG-coated targets by cell-mediated pathways begins with an interaction between the IgG Fc region and multiple varieties of membrane-bound Fc γ receptors (FcγRs) on the surface of leukocytes. This interaction requires the presence of an asparagine-linked (N-)glycan on the Fc, and variations in the N-glycan composition can affect the affinity of CD16A binding (an FcγR). Contemporary efforts to glycoengineer mAbs focus on increasing CD16A affinity, and thus treatment efficacy, but it is unclear how these changes affect affinity for the other FcγRs. Here, we measure binding of the extracellular Fc-binding domains for human CD16A and B, CD32A, B and C, and CD64 to 6 well-defined IgG1 Fc glycoforms that cover ∼85% of the pool of human IgG1 Fc glycoforms. Core α1-6 fucosylation showed the greatest changes with CD16B (8.5-fold decrease), CD16A (3.9-fold decrease) and CD32B/C (1.8-fold decrease), but did not affect binding to CD32A. Adding galactose to the non-reducing termini of the complex-type, biantennary glycan increased affinity for all CD16s and 32s tested by 1.7-fold. Sialylation did not change the affinity of core-fucosylated Fc, but increased the affinity of afucosylated Fc slightly by an average of 1.16-fold for all CD16s and CD32s tested. The effects of fucose and galactose modification are additive, suggesting the contributions of these residues to Fc γ receptor affinity are independent.
Collapse
Affiliation(s)
- Ganesh P Subedi
- a Roy J. Carver Department of Biochemistry , Biophysics and Molecular Biology, Iowa State University , Ames , IA , USA
| | - Adam W Barb
- a Roy J. Carver Department of Biochemistry , Biophysics and Molecular Biology, Iowa State University , Ames , IA , USA
| |
Collapse
|
156
|
Liu H, Nowak C, Shao M, Ponniah G, Neill A. Impact of cell culture on recombinant monoclonal antibody product heterogeneity. Biotechnol Prog 2016; 32:1103-1112. [DOI: 10.1002/btpr.2327] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Hongcheng Liu
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Christine Nowak
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Mei Shao
- Late Stage Upstream Development, Global Process Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Gomathinayagam Ponniah
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| | - Alyssa Neill
- Product Characterization, Global Analytical and Pharmaceutical Development; Alexion Pharmaceuticals; CT06410 Cheshire
| |
Collapse
|
157
|
Le NPL, Bowden TA, Struwe WB, Crispin M. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:1655-68. [PMID: 27105835 PMCID: PMC4922387 DOI: 10.1016/j.bbagen.2016.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022]
Abstract
Human serum IgG contains multiple glycoforms which exhibit a range of binding properties to effector molecules such as cellular Fc receptors. Emerging knowledge of how the Fc glycans contribute to the antibody structure and effector functions has opened new avenues for the exploitation of defined antibody glycoforms in the treatment of diseases. Here, we review the structure and activity of antibody glycoforms and highlight developments in antibody glycoengineering by both the manipulation of the cellular glycosylation machinery and by chemoenzymatic synthesis. We discuss wide ranging applications of antibody glycoengineering in the treatment of cancer, autoimmunity and inflammation. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Ngoc Phuong Lan Le
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
158
|
Gray C, Thomas B, Upton R, Migas L, Eyers C, Barran P, Flitsch S. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta Gen Subj 2016; 1860:1688-709. [DOI: 10.1016/j.bbagen.2016.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
159
|
Alt N, Zhang TY, Motchnik P, Taticek R, Quarmby V, Schlothauer T, Beck H, Emrich T, Harris RJ. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals 2016; 44:291-305. [PMID: 27461239 DOI: 10.1016/j.biologicals.2016.06.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/06/2023] Open
Abstract
Quality by design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody. This chapter describes the identification of critical quality attributes (CQAs) as an important first step for QbD development of biopharmaceuticals. A systematic scientific based risk ranking and filtering approach allows a thorough understanding of quality attributes and an assignment of criticality for their impact on drug safety and efficacy. To illustrate the application of the approach and tools, a few examples from monoclonal antibodies are shown. The identification of CQAs is a continuous process and will further drive the structure and function characterization of therapeutic proteins.
Collapse
Affiliation(s)
- Nadja Alt
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Taylor Y Zhang
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | - Paul Motchnik
- Biologics Quality Control, Genentech, South San Francisco, CA 94080, USA
| | - Ron Taticek
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | - Valerie Quarmby
- Research and Early Development, Genentech, South San Francisco, CA 94080 USA
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Hermann Beck
- Pharma Technical Development Biotech Europe, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Thomas Emrich
- Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Reed J Harris
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
160
|
Ganguly B, Balasa B, Efros L, Hinton PR, Hartman S, Thakur A, Xiong JM, Schmidt B, Robinson RR, Sornasse T, Vexler V, Sheridan JP. The CD25-binding antibody Daclizumab High-Yield Process has a distinct glycosylation pattern and reduced antibody-dependent cell-mediated cytotoxicity in comparison to Zenapax®. MAbs 2016; 8:1417-1424. [PMID: 27367933 PMCID: PMC5058627 DOI: 10.1080/19420862.2016.1207031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The CD25-binding antibody daclizumab high-yield process (DAC HYP) is an interleukin (IL)-2 signal modulating antibody that shares primary amino acid sequence and CD25 binding affinity with Zenapax®, a distinct form of daclizumab, which was approved for the prevention of acute organ rejection in patients receiving renal transplants as part of an immunosuppressive regimen that includes cyclosporine and corticosteroids. Comparison of the physicochemical properties of the two antibody forms revealed the glycosylation profile of DAC HYP differs from Zenapax in both glycan distribution and the types of oligosaccharides, most notably high-mannose, galactosylated and galactose-α-1,3-galactose (α-Gal) oligosaccharides, resulting in a DAC HYP antibody material that is structurally distinct from Zenapax. Although neither antibody elicited complement-dependent cytotoxicity in vitro, DAC HYP antibody had significantly reduced levels of antibody-dependent cell-mediated cytotoxicity (ADCC). The ADCC activity required natural killer (NK) cells, but not monocytes, suggesting the effects were mediated through binding to Fc-gamma RIII (CD16). Incubation of each antibody with peripheral blood mononuclear cells also caused the down-modulation of CD16 expression on NK cells and the CD16 down-modulation was greater for Zenapax in comparison to that observed for DAC HYP. The substantive glycosylation differences between the two antibody forms and corresponding greater Fc-mediated effector activities by Zenapax, including cell killing activity, manifest as a difference in the biological function and pharmacology between DAC HYP and Zenapax.
Collapse
Affiliation(s)
- Bishu Ganguly
- a Department Translational Medicine , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Balaji Balasa
- a Department Translational Medicine , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Lyubov Efros
- a Department Translational Medicine , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Paul R Hinton
- b Department Discovery Sciences , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Stephen Hartman
- c Department Analytical Development & QC , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Archana Thakur
- b Department Discovery Sciences , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Joanna M Xiong
- b Department Discovery Sciences , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Brian Schmidt
- c Department Analytical Development & QC , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Randy R Robinson
- d Department of Neuroscience Development , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Thierry Sornasse
- a Department Translational Medicine , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - Vladimir Vexler
- a Department Translational Medicine , AbbVie Biotherapeutics , Redwood City , CA , USA
| | - James P Sheridan
- a Department Translational Medicine , AbbVie Biotherapeutics , Redwood City , CA , USA
| |
Collapse
|
161
|
Villiger TK, Scibona E, Stettler M, Broly H, Morbidelli M, Soos M. Controlling the time evolution of mAb N-linked glycosylation - Part II: Model-based predictions. Biotechnol Prog 2016; 32:1135-1148. [PMID: 27273889 DOI: 10.1002/btpr.2315] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/24/2016] [Indexed: 01/04/2023]
Abstract
N-linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N-linked glycosylation patterns in a CHO-S cell fed-batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High-throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N-linked glycosylation patterns during a fed-batch process as a function of time as well as the manipulated variables. A constant and varying mAb N-linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model-based evaluation of feeding regimes using high-throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135-1148, 2016.
Collapse
Affiliation(s)
- Thomas K Villiger
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Ernesto Scibona
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Matthieu Stettler
- Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, 1809, Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, 1809, Switzerland
| | - Massimo Morbidelli
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Miroslav Soos
- Dept. of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
162
|
Pace D, Lewis N, Wu T, Gillespie R, Leiske D, Velayudhan J, Rohrbach A, Connell-Crowley L. Characterizing the effect of multiple Fc glycan attributes on the effector functions and FcγRIIIa receptor binding activity of an IgG1 antibody. Biotechnol Prog 2016; 32:1181-1192. [PMID: 27160519 DOI: 10.1002/btpr.2300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/03/2016] [Indexed: 12/29/2022]
Abstract
N-linked Fc glycosylation of IgG1 monoclonal antibody therapeutics can directly influence their mechanism of action by impacting IgG effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Therefore, identification and detailed characterization of Fc glycan critical quality attributes (CQAs) provides important information for process design and control. A two-step approach was used to identify and characterize the Fc glycan CQAs for an IgG1 Mab with effector function. First, single factor experiments were performed to identify glycan critical quality attributes that influence ADCC and CDC activities. Next, a full-factorial design of experiment (DOE) to characterize the possible interactions and relative effect of these three glycan species on ADCC, CDC, and FcγRIIIa binding was employed. Additionally, the DOE data were used to develop models to predict ADCC, CDC, and FcγRIIIa binding of a given configuration of the three glycan species for this IgG1 molecule. The results demonstrate that for ADCC, afuco mono/bi has the largest effect, followed by HM and β-gal, while FcγRIIIa binding is affected by afuco mono/bi and β-gal. CDC, in contrast, is affected by β-gal only. This type of glycan characterization and modeling can provide valuable information for development, manufacturing support and process improvements for IgG products that require effector function for efficacy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1181-1192, 2016.
Collapse
Affiliation(s)
- Danielle Pace
- Amgen Inc, 1201 Amgen Court West, Seattle, WA, 98119
| | | | - Tina Wu
- Amgen Inc, 1201 Amgen Court West, Seattle, WA, 98119
| | - Ron Gillespie
- Amgen Inc, 1201 Amgen Court West, Seattle, WA, 98119
| | - Dan Leiske
- Amgen Inc, 1201 Amgen Court West, Seattle, WA, 98119
| | | | | | | |
Collapse
|
163
|
Gallagher S, Turman S, Yusuf I, Akhgar A, Wu Y, Roskos LK, Herbst R, Wang Y. Pharmacological profile of MEDI-551, a novel anti-CD19 antibody, in human CD19 transgenic mice. Int Immunopharmacol 2016; 36:205-212. [PMID: 27163209 DOI: 10.1016/j.intimp.2016.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
B cell depletion therapy is beneficial for patients with B cell malignancies and autoimmune diseases. CD19, a transmembrane protein, is expressed on a vast majority of normal and neoplastic B cells, making it a suitable target for monoclonal antibody (MAb) mediated immunotherapy. We have developed MEDI-551, an affinity optimized and afucosylated IgG1 MAb targeting human CD19 for B cell depletion. MEDI-551 is currently under investigation in multiple clinical trials. Because MEDI-551 does not cross react with rodent and non-human primate CD19, the pharmacological characteristics of the MAb were evaluated in human CD19 transgenic mice (hCD19 Tg). Here we show that MEDI-551 potently depletes tissue and circulating B cells in hCD19 Tg mice and is more efficacious than the anti-CD19 MAb with intact fucose. The length of B cell depletion depends on MEDI-551 dose; and, B cell recovery in the circulation follows stepwise phenotypic maturation. Furthermore, intravenous (IV) and subcutaneous (SC) administration of MEDI-551 results in comparable efficacy. Lastly, the combination of MEDI-551 with the anti-CD20 MAb, rituximab, further prolongs the duration of B cell depletion. In summary, the pharmacological profile of MEDI-551 presented in hCD19 Tg mice supports further testing of MEDI-551 in clinical trials involving B cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Gallagher
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Sean Turman
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Isharat Yusuf
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Ahmad Akhgar
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Yuling Wu
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Lorin K Roskos
- Translational Sciences, MedImmune LLC, Gaithersburg, MD, United States
| | - Ronald Herbst
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States
| | - Yue Wang
- Respiratory, Inflammation and Autoimmune Research, Gaithersburg, MD, United States.
| |
Collapse
|
164
|
Comparison of surface plasmon resonance binding curves for characterization of protein interactions and analysis of screening data. Anal Biochem 2016; 502:53-63. [PMID: 27019155 DOI: 10.1016/j.ab.2016.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/05/2016] [Accepted: 03/15/2016] [Indexed: 11/21/2022]
Abstract
Label-free technologies, such as surface plasmon resonance, are typically used for characterization of protein interactions and in screening for selection of antibodies or small molecules with preferred binding properties. In characterization, complete binding curves are normally fitted to defined interaction models to provide affinity and rate constants, whereas report points indicative of binding and stability of binding are often used for analysis of screening data. As an alternative to these procedures, here we describe how the analysis, in certain cases, can be simplified by comparison with upper and lower limit binding curves that represent expected or wanted binding profiles. The use of such profiles is applied to the analysis of kinetically complex IgG-Fc receptor interactions and for selection of antibody candidates. The comparison procedure described may be particularly useful in batch-to-batch comparisons and in comparability and biosimilar studies of biotherapeutic medicines. In screening, more informed selections may become possible as entire binding profiles and not a few report points are used in the analysis and as each new sample is directly compared with a predefined outcome.
Collapse
|
165
|
Priyanka P, Fairbanks AJ. Synthesis of a hybrid type N-glycan heptasaccharide oxazoline for Endo M catalysed glycosylation. Carbohydr Res 2016; 426:40-5. [PMID: 27058295 DOI: 10.1016/j.carres.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 01/15/2023]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are versatile biocatalysts that allow access to a wide variety of defined homogenous N-linked glycoconjugates in a convergent manner. A hybrid-type N-glycan was accessed by total synthesis, converted to an oxazoline, and used as a donor substrate with both wild type Endo M and an N175Q glycosynthase Endo M mutant allowing the convergent synthesis of a glycosylated amino acid bearing a hybrid N-glycan structure.
Collapse
Affiliation(s)
- Pragya Priyanka
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Antony J Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
166
|
Brady LJ, Velayudhan J, Visone DB, Daugherty KC, Bartron JL, Coon M, Cornwall C, Hinckley PJ, Connell-Crowley L. The criticality of high-resolution N-linked carbohydrate assays and detailed characterization of antibody effector function in the context of biosimilar development. MAbs 2016; 7:562-70. [PMID: 25898160 DOI: 10.1080/19420862.2015.1016692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Accurate measurement and functional characterization of antibody Fc domain N-linked glycans is critical to successful biosimilar development. Here, we describe the application of methods to accurately quantify and characterize the N-linked glycans of 2 IgG1 biosimilars with effector function activity, and show the potential pitfalls of using assays with insufficient resolution. Accurate glycan assessment was combined with glycan enrichment using lectin chromatography or production with glycosylation inhibitors to produce enriched pools of key glycan species for subsequent assessment in cell-based antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity effector function assays. This work highlights the challenges of developing high-quality biosimilar candidates and the need for modern biotechnology capabilities. These results show that high-quality analytics, combined with sensitive cell-based assays to study in vivo mechanisms of action, is an essential part of biosimilar development.
Collapse
Key Words
- ACN, acetonitrile
- ADCC
- ADCC, antibody-dependent cell-mediated cytotoxicity
- AHGs, afucosylated hybrid glycans
- AMBGs, afucosylated monoantennary and biantennary glycans
- BGGs, β-galactosylated glycans
- CDC
- CDC, complement-dependent cytotoxicity
- CHO, Chinese hamster ovary
- CQA, critical quality attribute
- Con A, concanavalin A lectin
- EIC, extracted ion current
- FT, flow-through
- Fc domain
- HC, heavy chain
- HGs, hybrid glycans
- HILIC, hydrophilic interaction liquid chromatography
- HMGs, high-mannose glycans
- HPLC, high performance liquid chromatography
- LC, light chain
- MS, mass spectrometry
- MS/MS, tandem mass spectrometry
- N-linked carbohydrates
- PQA, product quality attribute
- SGs, sialylated glycans
- SM, starting material
- TRIS, tris(hydroxymethyl)aminomethane
- antibody
- biosimilar
- effector function
- glycosylation
- mAb
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Lowell J Brady
- a Physical Chemistry Characterization; Sandoz Biopharmaceuticals ; Oberhaching , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Aich U, Lakbub J, Liu A. State-of-the-art technologies for rapid and high-throughput sample preparation and analysis ofN-glycans from antibodies. Electrophoresis 2016; 37:1468-88. [DOI: 10.1002/elps.201500551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Udayanath Aich
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| | - Jude Lakbub
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| | - Aston Liu
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| |
Collapse
|
168
|
N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm 2016; 100:94-100. [DOI: 10.1016/j.ejpb.2016.01.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
|
169
|
Fang J, Richardson J, Du Z, Zhang Z. Effect of Fc-Glycan Structure on the Conformational Stability of IgG Revealed by Hydrogen/Deuterium Exchange and Limited Proteolysis. Biochemistry 2016; 55:860-8. [PMID: 26812426 DOI: 10.1021/acs.biochem.5b01323] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human therapeutic immunoglobulin gamma (IgG) molecules contain an N-glycan on each of their Fc CH2 domains. These glycans include high-mannose, hybrid, and complex types. Recombinant IgG molecules containing high-mannose glycans have been shown to clear faster in human blood, and exhibit decreased thermal stability. The molecular mechanism behind these observations, however, is not well understood. In this work, we used hydrogen/deuterium exchange combined with mass spectrometry (HDX MS), as well as proteolytic degradation under a native-like condition, to assess the impact of different glycoforms on the molecular structure and stability of recombinant IgG1 and IgG2 molecules expressed from Chinese hamster ovary cells. Our HDX MS data indicate that the conformation of these IgG molecules was indeed influenced by the glycan structure. IgG molecules containing high-mannose and hybrid glycans showed more conformational flexibility in the CH2 domain. This conclusion was further supported by the analysis of glycopeptides released from these molecules by trypsin digestion under a native-like condition. The higher CH2 conformational flexibility of IgG molecules with high-mannose and hybrid glycans contributes to their decreased thermal stability. IgG molecules containing sialylated glycans in the CH2 domain exhibited similar enzymatic degradation behavior as high-mannose glycans, suggesting decreased CH2-domain stability compared to shorter complex glycans, likely resulting from steric effect that decreased the glycan-CH2 domain interaction.
Collapse
Affiliation(s)
- Jing Fang
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| | - Jason Richardson
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| | - Zhimei Du
- Process Development, Amgen, Inc. , Seattle, Washington 98119, United States
| | - Zhongqi Zhang
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| |
Collapse
|
170
|
Production, Characterization, and Biological Evaluation of Well-Defined IgG1 Fc Glycoforms as a Model System for Biosimilarity Analysis. J Pharm Sci 2016; 105:559-574. [PMID: 26869419 DOI: 10.1016/j.xphs.2015.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Abstract
Four different well-defined IgG1 Fc glycoforms are proposed as a model system to examine important biological and physicochemical features for protein drug biosimilar analyses. The IgG1 Fc glycoforms were produced by yeast expression combined with in vitro enzymatic synthesis as a series of sequentially truncated high-mannose IgG1 Fc glycoforms with an anticipated range of biological activity and structural stability. Initial characterization with mass spectrometry, SDS-PAGE, size exclusion HPLC, and capillary isoelectric focusing confirmed that the glycoproteins are overall highly similar with the only major difference being glycosylation state. Binding to the activating Fc receptor, FcγRIIIa was used to evaluate the potential biological activity of the IgG1 Fc glycoproteins. Two complementary methods using biolayer interferometry, 1 with protein G-immobilized IgG1 Fc and the other with streptavidin-immobilized FcγRIIIa, were developed to assess FcγRIIIa affinity in kinetic binding studies. The high-mannose IgG1 Fc and Man5-IgG1 Fc glycoforms were highly similar to one another with high affinity for FcγRIIIa, whereas GlcNAc-Fc had weak affinity, and the nonglycosylated N297Q-Fc had no measurable affinity for FcγRIIIa. These 4 IgG1 Fc glycoforms were also evaluated in terms of physical and chemical stability profiles and then used as a model system to mathematically assess overall biosimilarity, as described in a series of companion articles.
Collapse
|
171
|
Yamada T, Kanda Y, Takayama M, Hashimoto A, Sugihara T, Satoh-Kubota A, Suzuki-Takanami E, Yano K, Iida S, Satoh M. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides. Glycobiology 2016; 26:482-92. [PMID: 26747427 PMCID: PMC4813732 DOI: 10.1093/glycob/cww001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/31/2015] [Indexed: 01/30/2023] Open
Abstract
The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood.
Collapse
Affiliation(s)
- Tsuyoshi Yamada
- Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd., Takasaki-shi, Gunma 370-0013, Japan
| | - Yutaka Kanda
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin Co., Ltd., Suntou-gun, Shizuoka 411-8731, Japan
| | - Makoto Takayama
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin Co., Ltd., Suntou-gun, Shizuoka 411-8731, Japan
| | - Akitoshi Hashimoto
- Fuji Research Park, R&D Division, Kyowa Hakko Kirin Co., Ltd., Suntou-gun, Shizuoka 411-8731, Japan
| | - Tsutomu Sugihara
- Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd., Takasaki-shi, Gunma 370-0013, Japan
| | - Ai Satoh-Kubota
- Tokyo Research Park, R&D Division, Kyowa Hakko Kirin Co., Ltd., Machida-shi, Tokyo 194-8533, Japan
| | - Eri Suzuki-Takanami
- Tokyo Research Park, R&D Division, Kyowa Hakko Kirin Co., Ltd., Machida-shi, Tokyo 194-8533, Japan
| | | | - Shigeru Iida
- Tokyo Research Park, R&D Division, Kyowa Hakko Kirin Co., Ltd., Machida-shi, Tokyo 194-8533, Japan
| | - Mitsuo Satoh
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Chiyoda-ku, Tokyo 100-8185, Japan
| |
Collapse
|
172
|
Classical galactosaemia: novel insights in IgG N-glycosylation and N-glycan biosynthesis. Eur J Hum Genet 2016; 24:976-84. [PMID: 26733289 DOI: 10.1038/ejhg.2015.254] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023] Open
Abstract
Classical galactosaemia (OMIM #230400), a rare disorder of carbohydrate metabolism, is caused by a deficient activity of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological and female fertility problems remains poorly understood. The lack of validated biomarkers to determine prognosis, monitor disease progression and responses to new therapies, pose a huge challenge. We report the detailed analysis of an automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analytical method of high glycan peak resolution applied to serum IgG. This has revealed specific N-glycan processing defects observed in 40 adult galactosaemia patients (adults and adolescents), in comparison with 81 matched healthy controls. We have identified a significant increase in core fucosylated neutral glycans (P<0.0001) and a significant decrease in core fucosylated (P<0.001), non-fucosylated (P<0.0001) bisected glycans and, of specific note, decreased N-linked mannose-5 glycans (P<0.0001), in galactosaemia patients. We also report the abnormal expression of a number of related relevant N-glycan biosynthesis genes in peripheral blood mononuclear cells from 32 adult galactosaemia patients. We have noted significant dysregulation of two key N-glycan biosynthesis genes: ALG9 upregulated (P<0.001) and MGAT1 downregulated (P<0.01) in galactosaemia patients, which may contribute to its ongoing pathophysiology. Our data suggest that the use of IgG N-glycosylation analysis with matched N-glycan biosynthesis gene profiles may provide useful biomarkers for monitoring response to therapy and interventions. They also indicate potential gene modifying steps in this N-glycan biosynthesis pathway, of relevance to galactosaemia and related N-glycan biosynthesis disorders.
Collapse
|
173
|
Dashivets T, Thomann M, Rueger P, Knaupp A, Buchner J, Schlothauer T. Multi-Angle Effector Function Analysis of Human Monoclonal IgG Glycovariants. PLoS One 2015; 10:e0143520. [PMID: 26657484 PMCID: PMC4676693 DOI: 10.1371/journal.pone.0143520] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/05/2015] [Indexed: 01/26/2023] Open
Abstract
Therapeutic performance of recombinant antibodies relies on two independent mechanisms: antigen recognition and Fc-mediated antibody effector functions. Interaction of Fc-fragment with different FcR triggers antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity and determines longevity of the antibody in serum. In context of therapeutic antibodies FcγRs play the most important role. It has been demonstrated that the Fc-attached sugar moiety is essential for IgG effector functionality, dictates its affinity to individual FcγRs and determines binding to different receptor classes: activating or inhibitory. In this study, we systematically analyze effector functions of monoclonal IgG1 and its eight enzymatically engineered glycosylation variants. The analysis of interaction of glycovariants with FcRs was performed for single, as well as for antigen-bound antibodies and IgGs in a form of immune complex. In addition to functional properties we addressed impact of glycosylation on the structural properties of the tested glycovariants. We demonstrate a clear impact of glycosylation pattern on antibody stability and interaction with different FcγRs. Consistent with previous reports, deglycosylated antibodies failed to bind all Fcγ-receptors, with the exception of high affinity FcγRI. The FcγRII and FcγRIIIa binding activity of IgG1 was observed to depend on the galactosylation level, and hypergalactosylated antibodies demonstrated increased receptor interaction. Sialylation did not decrease the FcγR binding of the tested IgGs; in contrast, sialylation of antibodies improved binding to FcγRIIa and IIb. We demonstrate that glycosylation influences to some extent IgG1 interaction with FcRn. However, independent of glycosylation pattern the interaction of IgG1 with a soluble monomeric target surprisingly resulted in an impaired receptor binding. Here, we demonstrate, that immune complexes (IC), induced by multimeric ligand, compensated for the decreased affinity of target bound antibody towards FcRs, showing the importance of the IC-formation for the FcR- mediated effector functions.
Collapse
Affiliation(s)
- Tetyana Dashivets
- Biochemical and Analytical Research, Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center, Penzberg, Germany
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, 85748, Garching, Germany
| | - Marco Thomann
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Petra Rueger
- Biochemical and Analytical Research, Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center, Penzberg, Germany
| | - Alexander Knaupp
- Biochemical and Analytical Research, Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center, Penzberg, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, 85748, Garching, Germany
| | - Tilman Schlothauer
- Biochemical and Analytical Research, Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center, Penzberg, Germany
- * E-mail:
| |
Collapse
|
174
|
Orthogonal Technologies for NISTmAb N-Glycan Structure Elucidation and Quantitation. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1201.ch004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
175
|
Isoda Y, Yagi H, Satoh T, Shibata-Koyama M, Masuda K, Satoh M, Kato K, Iida S. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors. PLoS One 2015; 10:e0140120. [PMID: 26444434 PMCID: PMC4596520 DOI: 10.1371/journal.pone.0140120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is an important effector function determining the clinical efficacy of therapeutic antibodies. Core fucose removal from N-glycans on the Fc portion of immunoglobulin G (IgG) improves the binding affinity for Fcγ receptor IIIa (FcγRIIIa) and dramatically enhances ADCC. Our previous structural analyses revealed that Tyr–296 of IgG1-Fc plays a critical role in the interaction with FcγRIIIa, particularly in the enhanced FcγRIIIa binding of nonfucosylated IgG1. However, the importance of the Tyr–296 residue in the antibody in the interaction with various Fcγ receptors has not yet been elucidated. To further clarify the biological importance of this residue, we established comprehensive Tyr–296 mutants as fucosylated and nonfucosylated anti-CD20 IgG1s rituximab variants and examined their binding to recombinant soluble human Fcγ receptors: shFcγRI, shFcγRIIa, shFcγRIIIa, and shFcγRIIIb. Some of the mutations affected the binding of antibody to not only shFcγRIIIa but also shFcγRIIa and shFcγRIIIb, suggesting that the Tyr–296 residue in the antibody was also involved in interactions with FcγRIIa and FcγRIIIb. For FcγRIIIa binding, almost all Tyr–296 variants showed lower binding affinities than the wild-type antibody, irrespective of their core fucosylation, particularly in Y296K and Y296P. Notably, only the Y296W mutant showed improved binding to FcγRIIIa. The 3.00 Å-resolution crystal structure of the nonfucosylated Y296W mutant in complex with shFcγRIIIa harboring two N-glycans revealed that the Tyr-to-Trp substitution increased the number of potential contact atoms in the complex, thus improving the binding of the antibody to shFcγRIIIa. The nonfucosylated Y296W mutant retained high ADCC activity, relative to the nonfucosylated wild-type IgG1, and showed greater binding affinity for FcγRIIa. Our data may improve our understanding of the biological importance of human IgG1-Fc Tyr–296 in interactions with various Fcγ receptors, and have applications in the modulation of the IgG1-Fc function of therapeutic antibodies.
Collapse
Affiliation(s)
- Yuya Isoda
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, Japan
- JST, PRESTO, Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Mami Shibata-Koyama
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
| | - Kazuhiro Masuda
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
| | - Mitsuo Satoh
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama, Myodaiji, Okazaki, Aichi, Japan
- GLYENCE Co., Ltd., Chikusa, Chikusa-ku, Nagoya, Japan
- The Glycoscience Institute, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Shigeru Iida
- Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd, Asahi-machi, Machida-shi, Tokyo, Japan
- * E-mail:
| |
Collapse
|
176
|
Declerck P, Farouk-Rezk M, Rudd PM. Biosimilarity Versus Manufacturing Change: Two Distinct Concepts. Pharm Res 2015; 33:261-8. [DOI: 10.1007/s11095-015-1790-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/02/2015] [Indexed: 12/23/2022]
|
177
|
De Meyer T, Laukens B, Nolf J, Van Lerberge E, De Rycke R, De Beuckelaer A, De Buck S, Callewaert N, Depicker A. Comparison of VHH-Fc antibody production in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:938-47. [PMID: 25641071 DOI: 10.1111/pbi.12330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/27/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
VHHs or nanobodies are widely acknowledged as interesting diagnostic and therapeutic tools. However, for some applications, multivalent antibody formats, such as the dimeric VHH-Fc format, are desired to increase the functional affinity. The scope of this study was to compare transient expression of diagnostic VHH-Fc antibodies in Nicotiana benthamiana leaves with their stable expression in Arabidopsis thaliana seeds and Pichia pastoris. To this end, VHH-Fc antibodies targeting green fluorescent protein or the A. thaliana seed storage proteins (albumin and globulin) were produced in the three platforms. Differences were mainly observed in the accumulation levels and glycosylation patterns. Interestingly, although in plants oligomannosidic N-glycans were expected for KDEL-tagged VHH-Fcs, several VHH-Fcs with an intact KDEL-tag carried complex-type N-glycans, suggesting a dysfunctional retention in the endoplasmic reticulum. All VHH-Fcs were equally functional across expression platforms and several outperformed their corresponding VHH in terms of sensitivity in ELISA.
Collapse
Affiliation(s)
- Thomas De Meyer
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Bram Laukens
- Department of Medical Protein Research, Unit for Medical Biotechnology, VIB, Gent, Belgium
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Gent, Belgium
| | - Jonah Nolf
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Els Van Lerberge
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ans De Beuckelaer
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Sylvie De Buck
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Nico Callewaert
- Department of Medical Protein Research, Unit for Medical Biotechnology, VIB, Gent, Belgium
- Department of Biochemistry and Microbiology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| |
Collapse
|
178
|
Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 2015; 25:1325-34. [PMID: 26263923 PMCID: PMC4634315 DOI: 10.1093/glycob/cwv065] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022] Open
Abstract
Critical quality attributes (CQA) are physical, chemical, biological or microbiological properties or characteristics that must be within an appropriate limit, range or distribution to ensure the desired product quality, safety and efficacy. For monoclonal antibody therapeutics that rely on fraction crystalizable (Fc)-mediated effector function for their clinical activity, the terminal sugars of Fc glycans have been shown to be critical for safety or efficacy. Different glycosylation variants have also been shown to influence the pharmacodynamic and pharmacokinetic behavior while other Fc glycan structural elements may be involved in adverse immune reactions. This review focuses on the role of Fc glycans as CQAs. Fc glycan information from the published literature is summarized and evaluated for impact on patient safety, immunogenicity, bioactivity and pharmacodynamics/pharmacokinetics.
Collapse
Affiliation(s)
- Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, Penzberg 82377, Germany
| | - Max L Tejada
- Biological Technologies, Genentech, CA 94080, USA
| |
Collapse
|
179
|
Tada M, Tatematsu KI, Ishii-Watabe A, Harazono A, Takakura D, Hashii N, Sezutsu H, Kawasaki N. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). MAbs 2015; 7:1138-50. [PMID: 26261057 PMCID: PMC4966511 DOI: 10.1080/19420862.2015.1078054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In response to the successful use of monoclonal antibodies (mAbs) in the treatment of various diseases, systems for expressing recombinant mAbs using transgenic animals or plants have been widely developed. The silkworm (Bombyx mori) is a highly domesticated insect that has recently been used for the production of recombinant proteins. Because of their cost-effective breeding and relatively easy production scale-up, transgenic silkworms show great promise as a novel production system for mAbs. In this study, we established a transgenic silkworm stably expressing a human-mouse chimeric anti-CD20 mAb having the same amino acid sequence as rituximab, and compared its characteristics with rituximab produced by Chinese hamster ovary (CHO) cells (MabThera®). The anti-CD20 mAb produced in the transgenic silkworm showed a similar antigen-binding property, but stronger antibody-dependent cell-mediated cytotoxicity (ADCC) and weaker complement-dependent cytotoxicity (CDC) compared to MabThera. Post-translational modification analysis was performed by peptide mapping using liquid chromatography/mass spectrometry. There was a significant difference in the N-glycosylation profile between the CHO- and the silkworm-derived mAbs, but not in other post-translational modifications including oxidation and deamidation. The mass spectra of the N-glycosylated peptide revealed that the observed biological properties were attributable to the characteristic N-glycan structures of the anti-CD20 mAbs produced in the transgenic silkworms, i.e., the lack of the core-fucose and galactose at the non-reducing terminal. These results suggest that the transgenic silkworm may be a promising expression system for the tumor-targeting mAbs with higher ADCC activity.
Collapse
Affiliation(s)
- Minoru Tada
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| | - Ken-ichiro Tatematsu
- b Transgenic Silkworm Research Unit; National Institute of Agrobiological Sciences ; Ibaraki , Japan
| | - Akiko Ishii-Watabe
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| | - Akira Harazono
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| | - Daisuke Takakura
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan.,c Manufacturing Technology Research Association of Biologics ; Kobe , Japan
| | - Noritaka Hashii
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| | - Hideki Sezutsu
- b Transgenic Silkworm Research Unit; National Institute of Agrobiological Sciences ; Ibaraki , Japan
| | - Nana Kawasaki
- a Division of Biological Chemistry and Biologicals; National Institute of Health Sciences ; Tokyo , Japan
| |
Collapse
|
180
|
Kurogochi M, Mori M, Osumi K, Tojino M, Sugawara SI, Takashima S, Hirose Y, Tsukimura W, Mizuno M, Amano J, Matsuda A, Tomita M, Takayanagi A, Shoda SI, Shirai T. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities. PLoS One 2015. [PMID: 26200113 PMCID: PMC4511734 DOI: 10.1371/journal.pone.0132848] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and revealed that the glycoform influenced ADCC activity.
Collapse
Affiliation(s)
- Masaki Kurogochi
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Masako Mori
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Kenji Osumi
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Mami Tojino
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Shu-ichi Sugawara
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Yuriko Hirose
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Wataru Tsukimura
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Junko Amano
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Akio Matsuda
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Masahiro Tomita
- Immuno-Biological Laboratories Co., Ltd., 1091-1 Naka, Fujioka-shi, Gunma, Japan
| | - Atsushi Takayanagi
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shin-Ichiro Shoda
- Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Japan
| | - Takashi Shirai
- Laboratory of Glycobiology, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
- Laboratory of Glyco-Bioengineering, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-8-1 Kaga, Itabashi-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
181
|
Piraino MS, Kelliher MT, Aburas J, Southern CA. Single molecule Förster resonance energy transfer studies of the effect of EndoS deglycosylation on the structure of IgG. Immunol Lett 2015; 167:29-33. [PMID: 26112419 DOI: 10.1016/j.imlet.2015.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
The bacterial enzyme EndoS specifically cleaves glycans bound to immunoglobulin G (IgG) molecules. Because this deglycosylation procedure leads to a diminished immune response, this enzyme has potential applications as a therapeutic for autoimmune disorders. Although the diminished immune response is attributed to a structural change in the Fc region of IgG antibodies, the specific nature of this structural change is not known due to the variety of results obtained by different experimental approaches. In order to better understand how EndoS deglycosylation impacts the structure of the Fc region of IgG antibodies, we have conducted single molecule Förster resonance energy transfer (FRET) studies of dye-labeled, freely diffusing antibodies. A comparison of the FRET efficiency histograms obtained for glycosylated and EndoS deglycosylated antibodies indicates that the Fc region can take on a wider variety of structures upon deglycosylation. This is demonstrated by the presence of additional peaks in the FRET efficiency histogram for the deglycosylated case.
Collapse
Affiliation(s)
- Mark S Piraino
- DePaul University, Department of Chemistry, 1110 West Belden Avenue, Chicago, IL 60614, United States
| | - Michael T Kelliher
- DePaul University, Department of Chemistry, 1110 West Belden Avenue, Chicago, IL 60614, United States
| | - Jihad Aburas
- DePaul University, Department of Chemistry, 1110 West Belden Avenue, Chicago, IL 60614, United States
| | - Cathrine A Southern
- DePaul University, Department of Chemistry, 1110 West Belden Avenue, Chicago, IL 60614, United States.
| |
Collapse
|
182
|
Liu L. Antibody Glycosylation and Its Impact on the Pharmacokinetics and Pharmacodynamics of Monoclonal Antibodies and Fc-Fusion Proteins. J Pharm Sci 2015; 104:1866-1884. [DOI: 10.1002/jps.24444] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/27/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
|
183
|
Nwosu C, Yau HK, Becht S. Assignment of Core versus Antenna Fucosylation Types in Protein N-Glycosylation via Procainamide Labeling and Tandem Mass Spectrometry. Anal Chem 2015; 87:5905-13. [DOI: 10.1021/ac5040743] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles Nwosu
- Pharmaceutical Product Development, 8551 Research Way, Middleton, Wisconsin 53562, United States
| | - Hoi Kei Yau
- Pharmaceutical Product Development, 8551 Research Way, Middleton, Wisconsin 53562, United States
| | - Steven Becht
- Pharmaceutical Product Development, 8551 Research Way, Middleton, Wisconsin 53562, United States
| |
Collapse
|
184
|
Gomathinayagam S, Laface D, Houston-Cummings NR, Mangadu R, Moore R, Shandil I, Sharkey N, Li H, Stadheim TA, Zha D. In vivo anti-tumor efficacy of afucosylated anti-CS1 monoclonal antibody produced in glycoengineered Pichia pastoris. J Biotechnol 2015; 208:13-21. [PMID: 26015261 DOI: 10.1016/j.jbiotec.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/21/2015] [Accepted: 05/13/2015] [Indexed: 11/15/2022]
Abstract
Monoclonal antibody (mAb) therapy has been successfully used for the treatment of B-cell lymphomas and is currently extended for the treatment of multiple myeloma (MM). New developments in MM therapeutics have achieved significant survival gains in patients but the disease still remains incurable. Elotuzumab (HuLuc63), an anti-CS1 monoclonal IgG1 antibody, is believed to induce anti-tumor activity and MM cytotoxicity through antibody dependent cellular cytotoxicity (ADCC) and inhibition of MM cell adhesion to bone marrow stromal cells (BMSCs). Modulations of the Fc glycan composition at the N297 site by selective mutations or afucosylation have been explored as strategies to develop bio-better therapeutics with enhanced ADCC activity. Afucosylated therapeutic antibodies with enhanced ADCC activity have been reported to possess greater efficacy in tumor growth inhibition at lower doses when compared to fucosylated therapeutic antibodies. The N-linked glycosylation pathway in Pichia pastoris has been engineered to produce human-like N-linked glycosylation with uniform afucosylated complex type glycans. The purpose of this study was to compare afucosylated anti-CS1 mAb expressed in glycoengineered Pichia pastoris with fucosylated anti-CS1 mAb expressed in mammalian HEK293 cells through in vitro ADCC and in vivo tumor inhibition models. Our results indicate that Fc glycosylation is critical for in vivo efficacy and afucosylated anti-CS1 mAb expressed in glycoengineered Pichia pastoris shows a better in vivo efficacy in tumor regression when compared to fucosylated anti-CS1 mAb expressed in HEK293 cells. Glycoengineered Pichia pastoris could provide an alternative platform for generating homogeneous afucosylated recombinant antibodies where Fc mediated immune effector function is important for efficacy.
Collapse
Affiliation(s)
- Sujatha Gomathinayagam
- GlycoFi Inc., A Wholly-Owned Subsidiary of Merck & Co Inc., 16 Cavendish Court, Lebanon, NH 03766, United States
| | - Drake Laface
- Biologics Discovery, Palo Alto, Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, United States
| | - Nga Rewa Houston-Cummings
- GlycoFi Inc., A Wholly-Owned Subsidiary of Merck & Co Inc., 16 Cavendish Court, Lebanon, NH 03766, United States
| | - Ruban Mangadu
- Biologics Discovery, Palo Alto, Merck Research Laboratories, 901 California Avenue, Palo Alto, CA 94304, United States
| | - Renee Moore
- GlycoFi Inc., A Wholly-Owned Subsidiary of Merck & Co Inc., 16 Cavendish Court, Lebanon, NH 03766, United States
| | - Ishaan Shandil
- GlycoFi Inc., A Wholly-Owned Subsidiary of Merck & Co Inc., 16 Cavendish Court, Lebanon, NH 03766, United States
| | - Nathan Sharkey
- GlycoFi Inc., A Wholly-Owned Subsidiary of Merck & Co Inc., 16 Cavendish Court, Lebanon, NH 03766, United States
| | - Huijuan Li
- GlycoFi Inc., A Wholly-Owned Subsidiary of Merck & Co Inc., 16 Cavendish Court, Lebanon, NH 03766, United States
| | - Terrance A Stadheim
- GlycoFi Inc., A Wholly-Owned Subsidiary of Merck & Co Inc., 16 Cavendish Court, Lebanon, NH 03766, United States
| | - Dongxing Zha
- GlycoFi Inc., A Wholly-Owned Subsidiary of Merck & Co Inc., 16 Cavendish Court, Lebanon, NH 03766, United States.
| |
Collapse
|
185
|
Hanson QM, Barb AW. A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Biochemistry 2015; 54:2931-42. [PMID: 25926001 DOI: 10.1021/acs.biochem.5b00299] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recombinant antibodies spurred a revolution in medicine that saw the introduction of powerful therapeutics for treating a wide range of diseases, from cancers to autoimmune disorders and transplant rejection, with more applications looming on the horizon. Many of these therapeutic monoclonal antibodies (mAbs) are based on human immunoglobulin G1 (IgG1) or contain at least a portion of the molecule. Most mAbs require interactions with cell surface receptors for efficacy, including the Fc γ receptors. High-resolution structural models of antibodies and antibody fragments have been available for nearly 40 years; however, a thorough description of the structural features that determine the affinity with which antibodies interact with human receptors has not been published. In this review, we will cover the relevant history of IgG-related literature and how recent developments have changed our view of critical antibody-cell interactions at the atomic level with a nod to outstanding questions in the field and future prospects.
Collapse
Affiliation(s)
- Quinlin M Hanson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, Iowa 50011, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, Iowa 50011, United States
| |
Collapse
|
186
|
Benchmarking of commercially available CHO cell culture media for antibody production. Appl Microbiol Biotechnol 2015; 99:4645-57. [PMID: 25846330 PMCID: PMC4435641 DOI: 10.1007/s00253-015-6514-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022]
Abstract
In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.
Collapse
|
187
|
Yu X, Menard M, Seabright G, Crispin M, Lazarus AH. A monoclonal antibody with anti-D-like activity in murine immune thrombocytopenia requires Fc domain function for immune thrombocytopenia ameliorative effects. Transfusion 2015; 55:1501-11. [PMID: 25752470 DOI: 10.1111/trf.13032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mechanism of action of anti-D in ameliorating immune thrombocytopenia (ITP) remains unclear. The monoclonal antibody (MoAb) Ter119, which targets murine red blood cells (RBCs), has been shown to mimic the effect of anti-D in improving antibody-mediated murine ITP. The mechanism of Ter119-mediated ITP amelioration, especially the role of the antigen-binding and Fc domains, remains untested. A functional Fc domain is crucial for many therapeutic MoAb activity; therefore, the requirement of Ter119 Fc domain in ITP amelioration is investigated using outbred CD-1 mice. STUDY DESIGN AND METHODS Ter119 variants, including Ter119 F(ab')2 fragments, deglycosylated Ter119, and afucosylated Ter119, were generated to test their effect in ameliorating antibody-induced murine ITP. In vivo inhibition of FcγRIII and FcγRIIB was achieved using the Fab fragment of the FcγRIII/FcγRIIB-specific MoAb 2.4G2. RESULTS Ter119 F(ab')2 fragments and deglycosylated Ter119 were unable to ameliorate murine ITP or mediate phagocytosis of RBCs by RAW264.7 macrophages in vitro. Inhibition of FcγRIII and FcγRIIB, as well as Ter119 defucosylation, do not affect Ter119-mediated ITP amelioration. CONCLUSION The Fc domain of Ter119, as well as its Fc glycosylation, is required for Ter119-mediated ITP amelioration. Moreover, both Fc and Fc glycosylation are required for Ter119-mediated phagocytosis in vitro. These findings demonstrate the importance of the Fc domain in a therapeutic MoAb with anti-D-like activity.
Collapse
Affiliation(s)
- Xiaojie Yu
- Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Laboratory Medicine, the Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Melissa Menard
- Department of Laboratory Medicine, the Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gemma Seabright
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom.,Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Alan H Lazarus
- Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Laboratory Medicine, the Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
188
|
Niwa R, Satoh M. The Current Status and Prospects of Antibody Engineering for Therapeutic Use: Focus on Glycoengineering Technology. J Pharm Sci 2015; 104:930-41. [DOI: 10.1002/jps.24316] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/09/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
|
189
|
Ponniah G, Nowak C, Gonzalez N, Miano D, Liu H. Detection and Quantitation of Low Abundance Oligosaccharides in Recombinant Monoclonal Antibodies. Anal Chem 2015; 87:2718-26. [DOI: 10.1021/ac504738c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gomathinayagam Ponniah
- Product
Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Christine Nowak
- Product
Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Nidia Gonzalez
- Product
Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Dino Miano
- Product
Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Hongcheng Liu
- Product
Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| |
Collapse
|
190
|
Leabman MK, Meng YG, Kelley RF, DeForge LE, Cowan KJ, Iyer S. Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys. MAbs 2015; 5:896-903. [PMID: 24492343 DOI: 10.4161/mabs.26436] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antibody interactions with Fcγ receptors (FcγRs), like FcγRIIIA, play a critical role in mediating antibody effector functions and thereby contribute significantly to the biologic and therapeutic activity of antibodies. Over the past decade, considerable work has been directed towards production of antibodies with altered binding affinity to FcγRs and evaluation of how the alterations modulate their therapeutic activity. This has been achieved by altering glycosylation status at N297 or by engineering modifications in the crystallizable fragment (Fc) region. While the effects of these modifications on biologic activity and efficacy have been examined, few studies have been conducted to understand their effect on antibody pharmacokinetics (PK). We present here a retrospective analysis in which we characterize the PK of three antibody variants with decreased FcγR binding affinity caused by amino acid substitutions in the Fc region (N297A, N297G, and L234A/L235A) and three antibody variants with increased FcγRIIIA binding affinity caused by afucosylation at N297, and compare their PK to corresponding wild type antibody PK in cynomolgus monkeys. For all antibodies, PK was examined at a dose that was known to be in the linear range. Since production of the N297A and N297G variants in Chinese hamster ovary cells results in aglycosylated antibodies that do not bind to FcγRs, we also examined the effect of expression of an aglycosylated antibody, without sequence change(s), in E. coli. All the variants demonstrated similar PK compared with that of the wild type antibodies, suggesting that, for the six antibodies presented here, altered FcγR binding affinity does not affect PK.
Collapse
Affiliation(s)
- Maya K Leabman
- Department of Pharmacokinetics and Pharmacodynamics; Genentech, Inc; San Francisco, CA USA
| | - Y Gloria Meng
- Department of Biochemical and Cellular Pharmacology; Genentech, Inc; San Francisco, CA USA
| | - Robert F Kelley
- Department of Antibody Engineering; Genentech, Inc; San Francisco, CA USA
| | - Laura E DeForge
- Department of Biochemical and Cellular Pharmacology; Genentech, Inc; San Francisco, CA USA
| | - Kyra J Cowan
- Department of BioAnalytical Sciences; Genentech, Inc; San Francisco, CA USA
| | - Suhasini Iyer
- Department of Pharmacokinetics and Pharmacodynamics; Genentech, Inc; San Francisco, CA USA
| |
Collapse
|
191
|
Saito M, Yoshitake T, Okuyama T. Separation and analysis of charged isomers of monoclonal immunoglobulin G by ceramic hydroxyapatite chromatography. Prep Biochem Biotechnol 2015; 46:215-21. [DOI: 10.1080/10826068.2014.995811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
192
|
Palmberger D, Rendic D. SweetBac: Applying MultiBac Technology Towards Flexible Modification of Insect Cell Glycosylation. Methods Mol Biol 2015; 1321:153-169. [PMID: 26082221 DOI: 10.1007/978-1-4939-2760-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Observed different glycosylation patterns of glycoconjugates (recombinantly) produced in various eukaryotic organisms are a direct consequence of differences in numerous proteins involved in biosynthesis of the relevant glycan chains in these species. The need for efficient, robust and flexible methods for recombinant expression of proteins is met by the recently described MultiBac technology, an advanced and optimized baculovirus-based system for simultaneous recombinant protein expression in insect cells. A derivative of MultiBac technology, the SweetBac system aims at the modification of the glycosylation potential of insect cells as expression hosts. The application of SweetBac, including the methods needed to investigate the glycosylation pattern of the purified recombinant protein, is described in this chapter.
Collapse
Affiliation(s)
- Dieter Palmberger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
193
|
Abstract
Complexity and heterogeneity of oligosaccharides present a considerable challenge to the biopharmaceutical industry to manufacture biotherapeutics with reproducible and consistent glycoform profiles. Mammalian cells, especially Chinese hamster ovary cells, are the most widely used platform for the production of biotherapeutics. The glycans produced are predominantly of the complex type, with some differences between human and nonhuman mammalian glycosylation existing. This review briefly summarizes metabolic glyco-engineering strategies used in mammalian cells in order to alter the glycosylation patterns attached to proteins applied for diverse biotechnology applications.
Collapse
|
194
|
|
195
|
|
196
|
Liu H, Ponniah G, Zhang HM, Nowak C, Neill A, Gonzalez-Lopez N, Patel R, Cheng G, Kita AZ, Andrien B. In vitro and in vivo modifications of recombinant and human IgG antibodies. MAbs 2014; 6:1145-54. [PMID: 25517300 DOI: 10.4161/mabs.29883] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tremendous knowledge has been gained in the understanding of various modifications of IgG antibodies, driven mainly by the fact that antibodies are one of the most important groups of therapeutic molecules and because of the development of advanced analytical techniques. Recombinant monoclonal antibody (mAb) therapeutics expressed in mammalian cell lines and endogenous IgG molecules secreted by B cells in the human body share some modifications, but each have some unique modifications. Modifications that are common to recombinant mAb and endogenous IgG molecules are considered to pose a lower risk of immunogenicity. On the other hand, modifications that are unique to recombinant mAbs could potentially pose higher risk. The focus of this review is the comparison of frequently observed modifications of recombinant monoclonal antibodies to those of endogenous IgG molecules.
Collapse
Affiliation(s)
- Hongcheng Liu
- a Protein Characterization; Alexion Pharmaceuticals Inc .; Cheshire , CT USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Reusch D, Haberger M, Kailich T, Heidenreich AK, Kampe M, Bulau P, Wuhrer M. High-throughput glycosylation analysis of therapeutic immunoglobulin G by capillary gel electrophoresis using a DNA analyzer. MAbs 2014; 6:185-96. [PMID: 24135630 DOI: 10.4161/mabs.26712] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Fc glycosylation of therapeutic antibodies is crucial for their effector functions and their behavior in pharmacokinetics and pharmacodynamics. To monitor the Fc glycosylation in bioprocess development and characterization,high-throughput techniques for glycosylation analysis are needed. Here, we describe the development of a largely automated high-throughput glycosylation profiling method with multiplexing capillary-gel-electrophoresis (CGE) with laser induced fluorescence (LIF) detection using a DNA analyzer. After PNGaseF digestion, the released glycans were labeled with 9-aminopyrene-1,3,6-trisulfonic acid (APTS) in 96-well plates, which was followed by the simultaneous analysis of up to 48 samples. The peak assignment was conducted by HILIC-UPLC-MS/MS of the APTS-labeled glycans combined with peak fractionation and subsequent CGE-LIF analysis of the MS-characterized fractions. Quantitative data evaluation of the various IgG glycans was performed automatically using an in-house developed software solution. The excellent method accuracy and repeatability of the test system was verified by comparison with two UPLC-based methods for glycan analysis. Finally, the practical value of the developed method was demonstrated by analyzing the antibody glycosylation profiles from fermentation broths after small scale protein A purification.
Collapse
|
198
|
Evaluating the impact of cell culture process parameters on monoclonal antibody N-glycosylation. J Biotechnol 2014; 188:88-96. [DOI: 10.1016/j.jbiotec.2014.08.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/24/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023]
|
199
|
Hmiel LK, Brorson KA, Boyne MT. Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem 2014; 407:79-94. [DOI: 10.1007/s00216-014-8108-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
|
200
|
Hossler P, McDermott S, Racicot C, Chumsae C, Raharimampionona H, Zhou Y, Ouellette D, Matuck J, Correia I, Fann J, Li J. Cell culture media supplementation of uncommonly used sugars sucrose and tagatose for the targeted shifting of protein glycosylation profiles of recombinant protein therapeutics. Biotechnol Prog 2014; 30:1419-31. [DOI: 10.1002/btpr.1968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/04/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Patrick Hossler
- Process Sciences-Cell Culture; AbbVie Inc.; Worcester MA 01605
| | - Sean McDermott
- Process Sciences-Cell Culture; AbbVie Inc.; Worcester MA 01605
| | | | | | | | - Yu Zhou
- Process Sciences-Cell Culture; AbbVie Inc.; Worcester MA 01605
| | - David Ouellette
- Process Sciences-Cell Culture; AbbVie Inc.; Worcester MA 01605
| | - Joseph Matuck
- Process Sciences-Cell Culture; AbbVie Inc.; Worcester MA 01605
| | - Ivan Correia
- Process Sciences-Cell Culture; AbbVie Inc.; Worcester MA 01605
| | - John Fann
- Process Sciences-Cell Culture; AbbVie Inc.; Worcester MA 01605
| | - Jianmin Li
- Oncology Biologics; AbbVie Inc.; Redwood City CA 94063
| |
Collapse
|