151
|
Acacetin inhibits VEGF expression, tumor angiogenesis and growth through AKT/HIF-1α pathway. Biochem Biophys Res Commun 2011; 413:299-305. [PMID: 21893035 DOI: 10.1016/j.bbrc.2011.08.091] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 11/23/2022]
Abstract
Acacetin (5,7-dihydroxy-4'-methoxyflavone) is a flavone compound, some of which have anti-cancerous effects. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and tumor growth. In this study, we found that acacetin decreased the steady level of VEGF mRNA level and inhibited VEGF transcriptional activation. To further determine the potential mechanism of acacetin in inhibiting VEGF expression, we showed that acacetin inhibited HIF-1α expression and AKT activation. Over-expression of HIF-1α or AKT restored acacetin-decreasing VEGF transcriptional activation, indicating that AKT and HIF-1 are the essential downstream targets of acacetin for inhibiting VEGF expression in the cells. Moreover, acacetin significantly inhibited ovarian cancer cell-induced angiogenesis and tumor growth in vivo through inhibiting HIF-1α and VEGF expression. Acacetin did not change HIF-1α mRNA level, but inhibited HIF-1α protein level through increasing its degradation and decreasing its stability. These results indicate that acacetin may be a useful natural compound for ovarian cancer prevention and treatment.
Collapse
|
152
|
Evaluation of Selected Flavonoids as Antiangiogenic, Anticancer, and Radical Scavenging Agents: An Experimental and In Silico Analysis. Cell Biochem Biophys 2011; 61:651-63. [DOI: 10.1007/s12013-011-9251-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
153
|
Zhao YW, Jin L, Li ZM, Zhao CJ, Wei YQ, Yang HS. Enhanced antitumor efficacy by blocking activation of the phosphatidylinositol 3-kinase/Akt pathway during anti-angiogenesis therapy. Cancer Sci 2011; 102:1469-75. [PMID: 21561530 DOI: 10.1111/j.1349-7006.2011.01979.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anti-angiogenesis has been a promising strategy for cancer therapy. However, many signal pathways are activated during anti-angiogenic treatment to counteract the therapeutic efficacy. Among these pathways, evidence has directly pointed to the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway, whose activation resulted in tolerance to the absence of nutrients and oxygen when tumor angiogenesis has been inhibited. In the present study, we investigated the effects of blocking activation of the PI3K/Akt pathway on cell survival in vitro and tumor growth in vivo during anti-angiogenesis therapy. In modeled microenvironments in vitro, we observed that the phosphorylation of Akt in tumor cells was increased gradually in the absence of serum and oxygen in a time-dependent manner. The specific inhibitors of PI3K inhibited the proliferation of tumor cells in a dose-dependent manner in vitro. Moreover, inhibition was enhanced gradually with increased serum deprivation and/or hypoxia. In a mouse tumor model, we found the phosphorylation of Akt obviously increased following anti-angiogenic therapy using plasmids encoding soluble vascular endothelial growth factor receptor-2, but significantly reduced after treatment with LY294002. Consequently, the combinational treatment exhibited better antitumor effects compared with single treatments, presenting larger necrosis-like areas, more apoptotic cells, less microvessel density and less phosphorylated Akt in tumors. These results suggest that blocking activation of the PI3K/Akt pathway during anti-angiogenesis therapy could enhance antitumor efficacy. Thus, targeting the PI3K/Akt pathway might be a promising strategy to reverse tumor resistance to anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Yu Wei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|
154
|
Tarallo V, Lepore L, Marcellini M, Dal Piaz F, Tudisco L, Ponticelli S, Lund FW, Roepstorff P, Orlandi A, Pisano C, De Tommasi N, De Falco S. The biflavonoid amentoflavone inhibits neovascularization preventing the activity of proangiogenic vascular endothelial growth factors. J Biol Chem 2011; 286:19641-51. [PMID: 21471210 PMCID: PMC3103343 DOI: 10.1074/jbc.m110.186239] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 04/04/2011] [Indexed: 11/15/2022] Open
Abstract
The proangiogenic members of VEGF family and related receptors play a central role in the modulation of pathological angiogenesis. Recent insights indicate that, due to the strict biochemical and functional relationship between VEGFs and related receptors, the development of a new generation of agents able to target contemporarily more than one member of VEGFs might amplify the antiangiogenic response representing an advantage in term of therapeutic outcome. To identify molecules that are able to prevent the interaction of VEGFs with related receptors, we have screened small molecule collections consisting of >100 plant extracts. Here, we report the isolation and identification from an extract of the Malian plant Chrozophora senegalensis of the biflavonoid amentoflavone as an antiangiogenic bioactive molecule. Amentoflavone can to bind VEGFs preventing the interaction and phosphorylation of VEGF receptor 1 and 2 (VEGFR-1,VEGFR-2) and to inhibit endothelial cell migration and capillary-like tube formation induced by VEGF-A or placental growth factor 1 (PlGF-1) at low μm concentration. In vivo, amentoflavone is able to inhibit VEGF-A-induced chorioallantoic membrane neovascularization as well as tumor growth and associated neovascularization, as assessed in orthotropic melanoma and xenograft colon carcinoma models. In addition structural studies performed on the amentoflavone·PlGF-1 complex have provided evidence that this biflavonoid effectively interacts with the growth factor area crucial for VEGFR-1 receptor recognition. In conclusion, our results demonstrate that amentoflavone represents an interesting new antiangiogenic molecule that is able to prevent the activity of proangiogenic VEGF family members and that the biflavonoid structure is a new chemical scaffold to develop powerful new antiangiogenic molecules.
Collapse
Affiliation(s)
- Valeria Tarallo
- From the Angiogenesis Lab and Stem Cell Fate Lab, Institute of Genetics and Biophysics, “Adriano Buzzati-Traverso,” 80131 Napoli, Italy
| | - Laura Lepore
- the Department of Pharmaceutical Sciences, University of Salerno, 84084 Fisciano (Salerno), Italy
| | - Marcella Marcellini
- the Research and Development Oncology Area, Sigma-Tau s.p.a., Industrie Farmaceutiche Riunite, 00040 Pomezia (Roma), Italy
| | - Fabrizio Dal Piaz
- the Department of Pharmaceutical Sciences, University of Salerno, 84084 Fisciano (Salerno), Italy
| | - Laura Tudisco
- From the Angiogenesis Lab and Stem Cell Fate Lab, Institute of Genetics and Biophysics, “Adriano Buzzati-Traverso,” 80131 Napoli, Italy
| | - Salvatore Ponticelli
- From the Angiogenesis Lab and Stem Cell Fate Lab, Institute of Genetics and Biophysics, “Adriano Buzzati-Traverso,” 80131 Napoli, Italy
| | - Frederik Wendelboe Lund
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark, and
| | - Peter Roepstorff
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark, and
| | - Augusto Orlandi
- the Department of Biopathology and Image Diagnostics, Anatomic Pathology Institute, Tor Vergata University, 00133 Roma, Italy
| | - Claudio Pisano
- the Research and Development Oncology Area, Sigma-Tau s.p.a., Industrie Farmaceutiche Riunite, 00040 Pomezia (Roma), Italy
| | - Nunziatina De Tommasi
- the Department of Pharmaceutical Sciences, University of Salerno, 84084 Fisciano (Salerno), Italy
| | - Sandro De Falco
- From the Angiogenesis Lab and Stem Cell Fate Lab, Institute of Genetics and Biophysics, “Adriano Buzzati-Traverso,” 80131 Napoli, Italy
| |
Collapse
|
155
|
Xue Y, Li NL, Yang JY, Chen Y, Yang LL, Liu WC. Phosphatidylinositol 3′-kinase signaling pathway is essential for Rac1-induced hypoxia-inducible factor-1α and vascular endothelial growth factor expression. Am J Physiol Heart Circ Physiol 2011; 300:H2169-76. [DOI: 10.1152/ajpheart.00970.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated the roles of RhoA, Rac1, and Cdc42 in hypoxia-driven angiogenesis. However, the role of oncogenes in hypoxia signaling is poorly understood. Given the importance of Rho proteins in the hypoxic response, we hypothesized that Rho family members could act as mediators of hypoxic signal transduction. We investigated the cross-talk between hypoxia and oncogene-driven signal transduction pathways and explored the role of Rac1 on hypoxia-induced hypoxia-inducible factor (HIF)-1α and VEGF expression. Since the phosphatidylinositol 3′-kinase (PI3K) pathway is involved in signal transduction of many oncogenes, we explored the role of PI3K on Rac1-mediated expression of HIF-1α and VEGF in hypoxia. We showed that LY-294002, a PI3K inhibitor, suppressed HIF-1α and VEGF induction under hypoxic conditions by up to 50%. Activation of Rac1 resulted in an upregulation of hypoxia-induced HIF-1α expression, which was blocked by LY-294002. These data suggested that Rac1 is an intermediate in the PI3K-mediated induction of HIF-1α. Interestingly, there was a significant downregulation of the tumor suppressor genes p53 and von Hippel-Lindau tumor suppressor (VHL) in cells expressing a constitutively active form of Rac1. Rac1-mediated inhibition of p53 and VHL could therefore be implicated in the upregulation of HIF-1α expression.
Collapse
Affiliation(s)
- Yan Xue
- Departments of 1Clinical Oncology and
| | - Nan-Lin Li
- Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | - Yan Chen
- Departments of 1Clinical Oncology and
| | | | | |
Collapse
|
156
|
Fernand VE, Losso JN, Truax RE, Villar EE, Bwambok DK, Fakayode SO, Lowry M, Warner IM. Rhein inhibits angiogenesis and the viability of hormone-dependent and -independent cancer cells under normoxic or hypoxic conditions in vitro. Chem Biol Interact 2011; 192:220-32. [PMID: 21457705 DOI: 10.1016/j.cbi.2011.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 01/09/2023]
Abstract
Hypoxia is a hallmark of solid tumors, including breast cancer, and the extent of tumor hypoxia is associated with treatment resistance and poor prognosis. Considering the limited treatment of hypoxic tumor cells and hence a poor prognosis of breast cancer, the investigation of natural products as potential chemopreventive anti-angiogenic agents is of paramount interest. Rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid), the primary anthraquinone in the roots of Cassia alata L., is a naturally occurring quinone which exhibits a variety of biologic activities including anti-cancer activity. However, the effect of rhein on endothelial or cancer cells under hypoxic conditions has never been delineated. Therefore, the aim of this study was to investigate whether rhein inhibits angiogenesis and the viability of hormone-dependent (MCF-7) or -independent (MDA-MB-435s) breast cancer cells in vitro under normoxic or hypoxic conditions. Rhein inhibited vascular endothelial growth factor (VEGF(165))-stimulated human umbilical vein endothelial cell (HUVEC) tube formation, proliferation and migration under normoxic and hypoxic conditions. In addition, rhein inhibited in vitro angiogenesis by suppressing the activation of phosphatidylinositol 3-kinase (PI3K), phosphorylated-AKT (p-AKT) and phosphorylated extracellular signal-regulated kinase (p-ERK) but showed no inhibitory effects on total AKT or ERK. Rhein dose-dependently inhibited the viability of MCF-7 and MDA-MB-435s breast cancer cells under normoxic or hypoxic conditions, and inhibited cell cycle in both cell lines. Furthermore, Western blotting demonstrated that rhein inhibited heat shock protein 90alpha (Hsp90α) activity to induce degradation of Hsp90 client proteins including nuclear factor-kappa B (NF-κB), COX-2, and HER-2. Rhein also inhibited the expression of hypoxia-inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF(165)), epidermal growth factor (EGF), and the phosphorylation of inhibitor of NF-κB (I-κB) under normoxic or hypoxic conditions. Taken together, these data indicate that rhein is a promising anti-angiogenic compound for breast cancer cell viability and growth. Therefore, further studies including in vivo and pre-clinical need to be performed.
Collapse
Affiliation(s)
- Vivian E Fernand
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Henkels KM, Frondorf K, Gonzalez-Mejia ME, Doseff AL, Gomez-Cambronero J. IL-8-induced neutrophil chemotaxis is mediated by Janus kinase 3 (JAK3). FEBS Lett 2011; 585:159-66. [PMID: 21095188 PMCID: PMC3021320 DOI: 10.1016/j.febslet.2010.11.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 12/11/2022]
Abstract
Janus kinase 3 (JAK3) is a non-receptor tyrosine kinase vital to the regulation of T-cells. We report that JAK3 is a mediator of interleukin-8 (IL-8) stimulation of a different class of hematopoietic relevant cells: human neutrophils. IL-8 induced a time- and concentration-dependent activation of JAK3 activity in neutrophils and differentiated HL-60 leukemic cells. JAK3 was more robustly activated by IL-8 than other kinases: p70S6K, mTOR, MAPK or PKC. JAK3 silencing severely inhibited IL-8-mediated chemotaxis. Thus, IL-8 stimulates chemotaxis through a mechanism mediated by JAK3. Further, JAK3 activity and chemotaxis were inhibited by the flavonoid apigenin (4',5,7-trihydroxyflavone) at ∼5nM IC(50). These new findings lay the basis for understanding the molecular mechanism of cell migration as it relates to neutrophil-mediated chronic inflammatory processes.
Collapse
Affiliation(s)
- Karen M. Henkels
- Dept. Biochemistry & Molecular Biology, Wright State University School Medicine, Dayton, OH 45435
| | - Kathleen Frondorf
- Dept. Biochemistry & Molecular Biology, Wright State University School Medicine, Dayton, OH 45435
| | - M. Elba Gonzalez-Mejia
- Davis Heart and Lung Research Institute, Department Molecular Genetics, Department Internal Medicine, Div. Pulmonary and Critical Care, Ohio State University, Columbus, Ohio 43210
| | - Andrea L. Doseff
- Davis Heart and Lung Research Institute, Department Molecular Genetics, Department Internal Medicine, Div. Pulmonary and Critical Care, Ohio State University, Columbus, Ohio 43210
| | - Julian Gomez-Cambronero
- Dept. Biochemistry & Molecular Biology, Wright State University School Medicine, Dayton, OH 45435
| |
Collapse
|
158
|
Yao H, Xu W, Shi X, Zhang Z. Dietary flavonoids as cancer prevention agents. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:1-31. [PMID: 21424974 DOI: 10.1080/10590501.2011.551317] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Dietary agents identified from fruits and vegetables contribute to keeping balanced cell proliferation and preventing cell carcinogenesis. Dietary flavonoids, combined with other components such as various vitamins, play an important role in cancer prevention. Flavonoids act on reactive oxygen species, cell signal transduction pathways related to cellular proliferation, apoptosis, and angiogenesis. Many studies demonstrate that flavonoids are responsible for chemoprevention, although mechanisms of action remain to be investigated. Overall, exciting data show that dietary flavonoids could be considered as a useful cancer preventive approach. This review summarizes recent advancements on potential cancer preventive effects and mechanic insight of dietary flavonoids.
Collapse
Affiliation(s)
- Hua Yao
- Department of Stomatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | |
Collapse
|
159
|
Melstrom LG, Salabat MR, Ding XZ, Strouch MJ, Grippo PJ, Mirzoeva S, Pelling JC, Bentrem DJ. Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res 2010; 167:173-81. [PMID: 21227456 DOI: 10.1016/j.jss.2010.10.041] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND The flavonoid apigenin exhibits anti-proliferative and anti-angiogenic activities. Our objective was to evaluate the effect of apigenin on hypoxia responsive genes important in pancreatic cancer cell proliferation. MATERIALS AND METHODS Immunohistochemistry for GLUT-1 expression was conducted on human pancreatic cancer samples and adjacent controls. Real-time RT-PCR, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were conducted on CD18 and S2-013 human pancreatic cancer cells treated with apigenin (0-50 μM) in normoxic and hypoxic conditions to evaluate HIF-1α, GLUT-1, and VEGF mRNA and protein expression and secretion. RESULTS GLUT-1 expression was significantly increased in pancreatic adenocarcinoma samples versus adjacent controls (P < 0.001). Hypoxic conditions induced HIF-1α, GLUT-1, and VEGF protein expression in both CD18 and S2-013 pancreatic cancer cells. Apigenin (50 μM) blocked hypoxia induced up-regulation of all three proteins in both cell lines. Apigenin also impeded hypoxia-mediated induction of GLUT-1 and VEGF mRNA in both cell lines (P < 0.05). CONCLUSIONS Apigenin inhibits HIF-1α, GLUT-1, and VEGF mRNA and protein expression in pancreatic cancer cells in both normoxic and hypoxic conditions. This may account for the mechanism of apigenin's anti-proliferative and anti-angiogenic effects and further supports the potential of apigenin as a future chemopreventive agent for pancreatic cancer.
Collapse
Affiliation(s)
- Laleh G Melstrom
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Lu CY, Li CC, Lii CK, Yao HT, Liu KL, Tsai CW, Chen HW. Andrographolide-induced pi class of glutathione S-transferase gene expression via PI3K/Akt pathway in rat primary hepatocytes. Food Chem Toxicol 2010; 49:281-9. [PMID: 21056613 DOI: 10.1016/j.fct.2010.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 10/08/2010] [Accepted: 10/31/2010] [Indexed: 01/18/2023]
Abstract
Andrographis paniculata is an herb widely used in China, Korea, and India for its anti-hepatotoxic, anti-viral, and anti-inflammatory effects. Andrographolide is the major bioactive diterpene lactone in A. paniculata. The pi class of glutathione S-transferase (GSTP) is one of the phase II biotransformation enzymes. Our previous study indicated that andrographolide upregulates the expression of GSTP. The aim of this study was to investigate the mechanism by which andrographolide induces GSTP gene expression in rat primary hepatocytes. In hepatocytes treated with 40 μM andrographolide, immunoblots showed maximal Akt phosphorylation at 0.5 h and maximal c-jun phosphorylation at 3 h. However, pretreatment with PI3K inhibitors, wortmannin and LY294002, or siPI3K inhibited the andrographolide-induced phosphorylation of c-jun and GSTP protein expression. EMSA showed that pretreatment with wortmannin, LY294002, or siPI3K attenuated the AP-1-DNA-binding activity caused by andrographolide. Results of immunoprecipitation indicated that nuclear c-fos/c-jun heterodimer increases with andrographolide treatment. Addition of antibodies against c-jun and c-fos decreased nuclear protein bound to the AP-1 consensus DNA sequence. In summary, andrographolide induces GSTP gene expression in rat primary hepatocytes through activation of the PI3K/Akt, phosphorylation of c-jun, nuclear accumulation of AP-1, and subsequent binding to the response element in the gene promoter region.
Collapse
Affiliation(s)
- Chia-Yang Lu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
161
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
162
|
Lu HF, Chie YJ, Yang MS, Lu KW, Fu JJ, Yang JS, Chen HY, Hsia TC, Ma CY, Ip SW, Chung JG. Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways. Hum Exp Toxicol 2010; 30:1053-61. [DOI: 10.1177/0960327110386258] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apigenin (4,5,7-trihydroxyflavone), a promising chemopreventive agent presented in fruits and vegetables, has been shown to induce cell cycle arrest and apoptosis in many types of human cancer cell lines. However, there is no available information to address the effects of apigenin on human lung cancer H460 cells. In the present studies, H460 cells were treated with apigenin for different time and then were analyzed for the morphological changes, induction of apoptosis, protein levels associated with apoptosis and results in dose-dependent induction of morphological changes, decrease in the percentage of viability, induced DNA damage and apoptosis; down-modulation of the protein expression of Bid, Bcl-2, procaspase-8; up-regulation of protein levels of Bax, caspase-3, AIF, cytochrome c, GRP78 and GADD153; decreased the levels of mitochondrial membrane potential and increased the productions of reactive oxygen species (ROS) and Ca2+ in H460 cells. Taken together, this is the first systematic in vitro study showing the involvement of apoptosis regulatory proteins as potential molecular targets of apigenin in human lung cancer H460 cells.
Collapse
Affiliation(s)
- Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, Taipei, Taiwan
| | - Yu-Jie Chie
- Department of Biological science and Technology, China Medical University, Taichung, Taiwan
| | - Ming-Sung Yang
- Department of General Thoracic Surgery, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jene-John Fu
- Chief Medical Office, Landseed International Medical Group, Taoyuan, Taiwan
| | - Jai-Sing Yang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Hung-Yi Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Yu Ma
- Department of Food and Beverage Management, Technology and Science Institute of Northern Taiwan, Taipei, Taiwan
| | - Siu-Wan Ip
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological science and Technology, China Medical University, Taichung, Taiwan, Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan,
| |
Collapse
|
163
|
Park HS, Kim SR, Kim JO, Lee YC. The roles of phytochemicals in bronchial asthma. Molecules 2010; 15:6810-34. [PMID: 20924320 PMCID: PMC6259268 DOI: 10.3390/molecules15106810] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 02/02/2023] Open
Abstract
Despite gaps in our knowledge of how phytochemicals interfere with cellular functions, several natural plant products are utilized to prevent or treat a wide range of diseases. Identification of an agent with therapeutic potential requires multiple steps involving in vitro studies, efficacy and toxicity studies in animal models, and then human clinical trials. This review provides a brief introduction on natural products that may help to treat and/or prevent bronchial asthma and describes our current understanding of their molecular mechanisms based on various in vitro, in vivo, and clinical studies. We focus on the anti-inflammatory and anti-vascular actions of the plant products and other roles beyond the anti-oxidative effects.
Collapse
Affiliation(s)
- Hee Sun Park
- Department of Internal Medicine, Chungnam National University Medical School, Daejeon, Korea
| | | | | | | |
Collapse
|
164
|
Li L, Lu Y. Inhibition of Hypoxia-Induced Cell Motility by p16 in MDA-MB-231 Breast Cancer Cells. J Cancer 2010; 1:126-35. [PMID: 20922054 PMCID: PMC2948217 DOI: 10.7150/jca.1.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/31/2010] [Indexed: 12/28/2022] Open
Abstract
Our previous studies indicated that p16 suppresses breast cancer angiogenesis and metastasis, and downregulates VEGF gene expression by neutralizing the transactivation of the VEGF transcriptional factor HIF-1α. Hypoxia stimulates tumor malignant progression and induces HIF-1α. Because p16 neutralizes effect of HIF-1α and attenuates tumor metastatic progression, we intended to investigate whether p16 directly affects one or more aspects of the malignant process such as adhesion and migration of breast cancer cells. To approach this aim, MDA-MB-231 and other breast cancer cells stably transfected with Tet-on inducible p16 were used to study the p16 effect on growth, adhesion and migration of the cancer cells. We found that p16 inhibits breast cancer cell proliferation and migration, but has no apparent effect on cell adhesion. Importantly, p16 inhibits hypoxia-induced cell migration in breast cancer in parallel with its inhibition of HIF-1α transactivation activity. This study suggests that p16's ability to suppress tumor metastasis may be partially resulted from p16's inhibition on cell migration, in addition to its known functions on inhibition of cell proliferation, angiogenesis and induction of apoptosis.
Collapse
Affiliation(s)
- Liyuan Li
- Department of Pathology and Laboratory Medicine, University of Tennessee Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | |
Collapse
|
165
|
Hamamdzic D, Fenning RS, Patel D, Mohler ER, Orlova KA, Wright AC, Llano R, Keane MG, Shannon RP, Birnbaum MJ, Wilensky RL. Akt pathway is hypoactivated by synergistic actions of diabetes mellitus and hypercholesterolemia resulting in advanced coronary artery disease. Am J Physiol Heart Circ Physiol 2010; 299:H699-706. [PMID: 20601459 DOI: 10.1152/ajpheart.00071.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is an inflammatory process leading to enhanced cellular proliferation, apoptosis, and vasa vasorum (VV) neovascularization. While both diabetes mellitus (DM) and hypercholesterolemia (HC) predispose to atherosclerosis, the precise interaction of these risk factors is unclear. Akt is a central node in signaling pathways important for inflammation, and we hypothesized that DM/HC would lead to aberrant Akt signaling and advanced, complex atherosclerosis. DM was induced in pigs by streptozotocin and HC by a high-fat diet. Animals were randomized to control (non-DM, non-HC), DM only, HC only, and DM/HC groups. Coronary artery homogenates were analyzed by immunoblotting for proteins involved in the Akt pathway, including phosphorylated (p)-Akt (Ser473), p-GSK-3beta (Ser9), activated NF-kappaB p65, and VEGF. Immunohistochemical staining for Ki67 (cell proliferation), terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) (apoptosis), and von Willebrand factor (vWF) (neovascularization) was performed. Neovascularization was visualized with micro-computerized tomography (CT). Only DM/HC animals developed advanced atherosclerosis and showed decreased p-Akt (Ser473) and p-GSK-3beta (Ser9) levels (P < 0.01 and P < 0.05, respectively). DM/HC arteries demonstrated increased cellular proliferation (P < 0.001), apoptosis (P < 0.01), and activation of NF-kappaB p65 (P < 0.05). Induction of DM/HC also resulted in significant VV neovascularization by enhanced VEGF expression (P < 0.05), increased vWF staining (P < 0.01), and increased density by micro-CT. In conclusion, DM and HC synergistically resulted in complex atherosclerosis associated with attenuated p-Akt (Ser473) levels. Aberrant Akt signaling correlated with increased inflammation, cellular proliferation, apoptosis, and VV neovascularization. Our results revealed a synergistic effect of DM and HC in triggering abnormal Akt signaling, resulting in advanced atherosclerosis.
Collapse
Affiliation(s)
- Damir Hamamdzic
- Cardiovascular Division, Hospital of University of Pennsylvania and Cardiovascular Institute, University of Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Q39, a quinoxaline 1,4-Di-N-oxide derivative, inhibits hypoxia-inducible factor-1α expression and the Akt/mTOR/4E-BP1 signaling pathway in human hepatoma cells. Invest New Drugs 2010; 29:1177-87. [PMID: 20524035 DOI: 10.1007/s10637-010-9462-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/17/2010] [Indexed: 12/25/2022]
Abstract
Cumulative evidence has established that hypoxia-inducible factor-1α (HIF-1α) and its downstream target, vascular endothelial growth factor (VEGF), play a critical role in hepatocellular carcinoma angiogenesis, invasiveness and metastasis. 3-(4-bromophenyl)-2-(ethylsulfonyl)-6-methylquinoxaline 1,4-dioxide (Q39) has recently shown great antiproliferative activity in extensive cell lines in normoxia and hypoxia. In this study, Q39 exhibited high antiproliferative activity against hepatoma both in vitro and in vivo, mainly by inducing apoptosis. In addition, suppression of HIF-1α by Q39 resulted in a drastic decrease in VEGF expression. These results indicate that Q39 is an effective inhibitor of HIF-1α and provide new perspectives into the mechanism of its anticancer activity. Interestingly, neither the HIF-1α degradation rate nor the HIF-1α steady-state mRNA level was affected by Q39. Instead, suppression of HIF-1α accumulation by Q39 correlated with prominent dephosphorylation of mTOR and 4E-BP1, a pathway known to regulate protein expression at the translational level.
Collapse
|
167
|
Q39, a quinoxaline 1,4-Di-N-oxide derivative, inhibits hypoxia-inducible factor-1α expression and the Akt/mTOR/4E-BP1 signaling pathway in human hepatoma cells. Invest New Drugs 2010. [PMID: 20524035 DOI: 10.1007/s10637-010-9462-y.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cumulative evidence has established that hypoxia-inducible factor-1α (HIF-1α) and its downstream target, vascular endothelial growth factor (VEGF), play a critical role in hepatocellular carcinoma angiogenesis, invasiveness and metastasis. 3-(4-bromophenyl)-2-(ethylsulfonyl)-6-methylquinoxaline 1,4-dioxide (Q39) has recently shown great antiproliferative activity in extensive cell lines in normoxia and hypoxia. In this study, Q39 exhibited high antiproliferative activity against hepatoma both in vitro and in vivo, mainly by inducing apoptosis. In addition, suppression of HIF-1α by Q39 resulted in a drastic decrease in VEGF expression. These results indicate that Q39 is an effective inhibitor of HIF-1α and provide new perspectives into the mechanism of its anticancer activity. Interestingly, neither the HIF-1α degradation rate nor the HIF-1α steady-state mRNA level was affected by Q39. Instead, suppression of HIF-1α accumulation by Q39 correlated with prominent dephosphorylation of mTOR and 4E-BP1, a pathway known to regulate protein expression at the translational level.
Collapse
|
168
|
Abstract
Apigenin, a naturally occurring plant flavone, abundantly present in common fruits and vegetables, is recognized as a bioactive flavonoid shown to possess anti-inflammatory, antioxidant and anticancer properties. Epidemiologic studies suggest that a diet rich in flavones is related to a decreased risk of certain cancers, particularly cancers of the breast, digestive tract, skin, prostate and certain hematological malignancies. It has been suggested that apigenin may be protective in other diseases that are affected by oxidative process, such as cardiovascular and neurological disorders, although more research needs to be conducted in this regard. Human clinical trials examining the effect of supplementation of apigenin on disease prevention have not been conducted, although there is considerable potential for apigenin to be developed as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology & Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Urology & Nutrition, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Sanjay Gupta
- Department of Urology & Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Urology & Nutrition, University Hospitals Case Medical Center, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106
| |
Collapse
|
169
|
Ansó E, Zuazo A, Irigoyen M, Urdaci MC, Rouzaut A, Martínez-Irujo JJ. Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism. Biochem Pharmacol 2010; 79:1600-9. [PMID: 20153296 DOI: 10.1016/j.bcp.2010.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
Flavonoids are a group of polyphenolic dietary compounds that have been proposed to possess chemopreventive properties against lung cancer. In this work we analyzed the effect of a group of 20 structurally related flavonoids, including flavones, flavonols and isoflavones, on the production of vascular endothelial growth factor (VEGF) induced by hypoxia in NCI-H157 cells. VEGF is the main regulator of physiological and pathological angiogenesis and is highly stimulated by hypoxia-inducible factor 1 (HIF-1). We found that apigenin, luteolin, fisetin and quercetin inhibited hypoxia-induced VEGF expression in the low micromolar range. Structure-activity relationships demonstrated that flavone derivatives were the most active compounds and that hydroxylation of the A ring at the positions 5 and 7 and of the B ring at the 4' position were important for this activity. Interestingly, only a group of VEGF inhibitors, including apigenin, flavone and 4',7-dihydroxiflavone, reduced the expression of HIF-1alpha under these conditions, whereas others, such as fisetin, luteolin, galangin or quercetin, induced HIF-1alpha expression while reducing those of VEGF. When cells were exposed to hypoxia in the presence of these flavonoids, HIF-1alpha translocated to the nucleus and interacted with p300/CBP, but this complex was transcriptionally inactive. Taken together these findings indicate that flavonoids impair VEGF transcription by an alternative mechanism that did not depend on nuclear HIF levels. We also found that flavonoids suppressed hypoxia-induced STAT3 tyrosine phosphorylation and that this activity correlated with their potency as VEGF inhibitors, suggesting that inhibition of STAT3 function may play a role in this process.
Collapse
Affiliation(s)
- Elena Ansó
- Department of Biochemistry and Molecular Biology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
170
|
Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver. Toxicol Appl Pharmacol 2010; 245:143-52. [PMID: 20144634 DOI: 10.1016/j.taap.2010.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/27/2010] [Accepted: 02/01/2010] [Indexed: 01/08/2023]
Abstract
The emergence of silymarin (SMN) as a natural remedy for liver diseases, coupled with its entry into NIH clinical trial, signifies its hepatoprotective potential. SMN is noted for its ability to interfere with apoptotic signaling while acting as an antioxidant. This in vivo study was designed to explore the hepatotoxic potential of Doxorubicin (Dox), the well-known cardiotoxin, and in particular whether pre-exposures to SMN can prevent hepatotoxicity by reducing Dox-induced free radical mediated oxidative stress, by modulating expression of apoptotic signaling proteins like Bcl-xL, and by minimizing liver cell death occurring by apoptosis or necrosis. Groups of male ICR mice included Control, Dox alone, SMN alone, and Dox with SMN pre/co-treatment. Control and Dox groups received saline i.p. for 14 days. SMN was administered p.o. for 14 days at 16 mg/kg/day. An approximate LD(50) dose of Dox, 60 mg/kg, was administered i.p. on day 12 to animals receiving saline or SMN. Animals were euthanized 48 h later. Dox alone induced frank liver injury (>50-fold increase in serum ALT) and oxidative stress (>20-fold increase in malondialdehyde [MDA]), as well as direct damage to DNA (>15-fold increase in DNA fragmentation). Coincident genomic damage and oxidative stress influenced genomic stability, reflected in increased PARP activity and p53 expression. Decreases in Bcl-xL protein coupled with enhanced accumulation of cytochrome c in the cytosol accompanied elevated indexes of apoptotic and necrotic cell death. Significantly, SMN exposure reduced Dox hepatotoxicity and associated apoptotic and necrotic cell death. The effects of SMN on Dox were broad, including the ability to modulate changes in both Bcl-xL and p53 expression. In animals treated with SMN, tissue Bcl-xL expression exceeded control values after Dox treatment. Taken together, these results demonstrated that SMN (i) reduced, delayed onset, or prevented toxic effects of Dox which are typically associated with hydroxyl radical production, (ii) performed as an antioxidant limiting oxidative stress, (iii) protected the integrity of the genome, and (iv) antagonized apoptotic and necrotic cell death while increasing antiapoptotic Bcl-xL protein levels and minimizing the leakage of proapoptotic cytochrome c from liver mitochondria. These observations demonstrate the protective actions of SMN in liver, and raise the possibility that such protection may extend to other organs during Dox treatment including the heart.
Collapse
|
171
|
Xue J, Li X, Jiao S, Wei Y, Wu G, Fang J. Prolyl hydroxylase-3 is down-regulated in colorectal cancer cells and inhibits IKKbeta independent of hydroxylase activity. Gastroenterology 2010; 138:606-15. [PMID: 19786027 DOI: 10.1053/j.gastro.2009.09.049] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 09/02/2009] [Accepted: 09/10/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Prolyl hydroxylase (PHD) hydroxylates hypoxia inducible factor (HIF) alpha, leading to HIFalpha degradation. The PHD family comprises PHD1, PHD2, and PHD3. The enzymatic activity of PHDs is O(2)-dependent, so PHDs are believed to be oxygen sensors as well as tumor suppressors. However, the expression pattern of PHDs in colorectal cancer and the correlation between their expression level and tumorigenesis is unclear. METHODS We determined the expression of PHDs in 60 human primary colorectal carcinoma tissues, paired with normal colorectal tissues. PHD3 expression levels were knocked down using small interfering RNA (siRNA); cells were analyzed by immunoblotting, immunoprecipitation, and histochemical analyses. In vivo tumor growth was analyzed in nu/nu mice. RESULTS Expression of PHD3 is decreased in colorectal cancer tissues. Decreased expression of PHD3 is associated with higher tumor grade and metastasis. PHD3 inhibits phosphorylation of inhibitor of kappaB (IkappaB) kinase (IKK) beta and activation of (NF) kappaB, independent of its hydroxylase activity. PHD3 associates with IKKbeta but does not target it for destruction; instead, PHD3 blocks the interaction between IKKbeta and Hsp90 that is required for phosphorylation of IKKbeta. Knockdown of PHD3 increased resistance of colorectal cancer cells to the effects of tumor necrosis factor-alpha and tumorigenesis. CONCLUSIONS PHD3 appears to be a tumor suppressor in colorectal cancer cells that inhibits IKKbeta/NF-kappaB signaling, independent of its hydroxylase activity. Activation of NF-kappaB has been observed in colon cancer. Determination of PHD3 status could aid targeted therapy selection for patients with colorectal tumors that have increased NF-kappaB activity.
Collapse
Affiliation(s)
- Jing Xue
- Key Laboratory of Nutrition and Metabolisms, Institute of Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
172
|
Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int J Mol Sci 2009; 10:5002-5019. [PMID: 20087474 PMCID: PMC2808020 DOI: 10.3390/ijms10115002] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/16/2009] [Indexed: 12/27/2022] Open
Abstract
Dietary flavones have promising chemoprotective properties, in particular with regard to cancer, but problems with low oral bioavailability and sometimes unacceptable toxicity have made their use as protective additives to normal diets questionable. However, methylation of free phenolic hydroxyl groups leads to derivatives not susceptible to glucuronic acid or sulfate conjugation, resulting in increased metabolic stability. Methylation also leads to greatly improved transport through biological membranes, such as in intestinal absorption, and much increased oral bioavailability. Recent studies also indicate that methylation results in derivatives with increasing potency to kill cancer cells. They also show high potency towards inhibition of hormone-regulating enzymes, e.g., aromatase, important in the causation of breast cancer. Methylation of the flavones may also result in derivatives with diminished toxic side-effects and improved aqueous solubility. In conclusion, it appears that methylation of dietary flavones as well as of other food products may produce derivatives with much improved health effects.
Collapse
|
173
|
Rayburn ER, Ezell SJ, Zhang R. Recent advances in validating MDM2 as a cancer target. Anticancer Agents Med Chem 2009; 9:882-903. [PMID: 19538162 PMCID: PMC6728151 DOI: 10.2174/187152009789124628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/14/2008] [Indexed: 12/26/2022]
Abstract
The MDM2 oncogene is overexpressed in various human cancers. Its expression correlates with the phenotypes of high-grade, late-stage, and more resistant tumors. The auto-regulatory loop between MDM2 and the tumor suppressor p53 has long been considered the epitome of a rational target for cancer therapy. As such, many novel agents have been generated to interfere with the interaction of the two proteins, which results in the activation of p53. Among these agents are several small molecule inhibitors synthesized based upon the crystal structures of the MDM2-p53 complex. With use of high-throughput screening, several specific and effective agents for inhibition of the protein-protein interaction were discovered. Recent investigations, however, have demonstrated that many proteins regulate the MDM2-p53 interaction, and that MDM2 may have p53-independent oncogenic functions. In order for novel MDM2 inhibitors to be translated to the clinic, it is necessary to obtain a better understanding of the regulation of MDM2 and of the MDM2-p53 interaction. In particular, the implications of various interactions between certain regulator(s) and MDM2/p53 under different circumstances need to be elucidated to determine which pathway(s) represent the best targets for therapy. Targeting both MDM2 itself and regulators of MDM2 and the MDM2-p53 interaction, or use of MDM2 inhibitors in combination with conventional treatments, may improve prospects for tumor eradication.
Collapse
Affiliation(s)
- Elizabeth R. Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| | - Scharri J. Ezell
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| | - Ruiwen Zhang
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| |
Collapse
|
174
|
Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood) 2009; 234:825-49. [PMID: 19491364 PMCID: PMC3141288 DOI: 10.3181/0902-mr-78] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the fact cancer is primarily a preventable disease, recent statistics indicate cancer will become the number one killer worldwide in 2010. Since certain cancers are more prevalent in the people of some countries than others, suggests the role of lifestyle. For instance cancer incidence among people from the Indian subcontinent, where most spices are consumed, is much lower than that in the Western World. Spices have been consumed for centuries for a variety of purposes-as flavoring agents, colorants, and preservatives. However, there is increasing evidence for the importance of plant-based foods in regular diet to lowering the risk of most chronic diseases, so spices are now emerging as more than just flavor aids, but as agents that can not only prevent but may even treat disease. In this article, we discuss the role of 41 common dietary spices with over 182 spice-derived nutraceuticals for their effects against different stages of tumorigenesis. Besides suppressing inflammatory pathways, spice-derived nutraceuticals can suppress survival, proliferation, invasion, and angiogenesis of tumor cells. We discuss how spice-derived nutraceuticals mediate such diverse effects and what their molecular targets are. Overall our review suggests "adding spice to your life" may serve as a healthy and delicious way to ward off cancer and other chronic diseases.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, BOX 143, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
175
|
Pan MH, Lai CS, Dushenkov S, Ho CT. Modulation of inflammatory genes by natural dietary bioactive compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4467-77. [PMID: 19489612 DOI: 10.1021/jf900612n] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several epidemiologic studies have shown that chronic inflammation predisposes individuals to various types of cancer. Many cancers arise from sites of infection, chronic irritation, and inflammation. Conversely, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumors. Natural bioactive compounds in dietary plant products including fruits, vegetables, grains, legumes, tea, and wine are claimed to help prevent cancer, degenerative diseases, and chronic and acute inflammation. Modern methods in cell and molecular biology allow us to understand the interactions of different natural bioactive compounds with basic mechanisms of inflammatory response. The molecular pathways of this cancer-related inflammation are now unraveled. Natural bioactive compounds exert anti-inflammatory activity by modulating pro-inflammatory gene expressions have shown promising chemopreventive activity. This review summarizes current knowledge on natural bioactive compounds that act through the signaling pathways and modulate inflammatory gene expressions, thus providing evidence for these substances in cancer chemopreventive action.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | | | | | | |
Collapse
|
176
|
Zhou Q, Yan B, Hu X, Li XB, Zhang J, Fang J. Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Mol Cancer Ther 2009; 8:1684-91. [DOI: 10.1158/1535-7163.mct-09-0191] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
177
|
Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Lett 2009; 583:1999-2003. [PMID: 19447105 DOI: 10.1016/j.febslet.2009.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 11/22/2022]
Abstract
Apigenin, a common dietary flavonoid, has been shown to possess anti-tumor properties. However, the mechanism by which apigenin inhibits cancer cells is not fully understood. Id1 (inhibitor of differentiation or DNA binding protein 1) contributes to tumorigenesis by stimulating cell proliferation, inhibiting cell differentiation and facilitating tumor neoangiogenesis. Elevated Id1 is found in ovarian cancers and its level correlates with the malignant potential of ovarian tumors. Therefore, Id1 is a potential target for ovarian cancer treatment. Here, we demonstrate that apigenin inhibits proliferation and tumorigenesis of human ovarian cancer A2780 cells through Id1. Apigenin suppressed the expression of Id1 through activating transcription factor 3 (ATF3). Our results may elucidate a new mechanism underlying the inhibitory effects of apigenin on cancer cells.
Collapse
|
178
|
Shukla S, Gupta S. Apigenin suppresses insulin-like growth factor I receptor signaling in human prostate cancer: an in vitro and in vivo study. Mol Carcinog 2009; 48:243-252. [PMID: 18726972 PMCID: PMC2647985 DOI: 10.1002/mc.20475] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Deregulation of insulin-like growth factor (IGF)-I/IGF-IR signaling has been implicated in the development and progression of prostate cancer. Agents that can suppress the mitogenic activity of the IGF/IGF-IR growth axis may be of preventive or therapeutic value. We have previously demonstrated that apigenin, a plant flavone, modulates IGF signaling through upregulation of IGFBP-3. In this study, we investigated the mechanism(s) of apigenin action on the IGF/IGF-IR signaling pathway. Exposure of human prostate cancer DU145 cells to apigenin markedly reduced IGF-I-stimulated cell proliferation and induced apoptosis. Apigenin inhibited IGF-I-induced activation of IGF-IR and Akt in DU145 cells. Similar growth inhibitory and apoptotic responses were observed in PC-3 cells, which constitutively overexpress this pathway. This effect of apigenin appears to be due partially to reduced autophosphorylation of IGF-IR. Inhibition of p-Akt by apigenin resulted in decreased phosphorylation of GSK-3beta along with decreased expression of cyclin D1 and increased expression of p27/kip1. In vivo administration of apigenin to PC-3 tumor xenografts inhibited tumor growth, resulted in IGF-IR inactivation and dephosphorylation of Akt and its downstream signaling. These results suggest that inhibition of cell proliferation and induction of apoptosis by apigenin are mediated, at least in part, by its ability to inhibit IGF/IGF-IR signaling and the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH
- University Hospitals Case Medical Center, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
| |
Collapse
|
179
|
Abstract
Phosphatidylinositol 3-kinase (PI3K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway play an important role in multiple cellular functions such as cell metabolism, proliferation, cell-cycle progression, and survival. PI3K is activated by growth factors and angiogenesis inducers such as vascular endothelial growth factor (VEGF) and angiopoietins. The amplification and mutations of PI3K and the loss of the tumor suppressor PTEN are common in various kinds of human solid tumors. The genetic alterations of upstream and downstream of PI3K signaling molecules such as receptor tyrosine kinases and AKT, respectively, are also frequently altered in human cancer. PI3K signaling regulates tumor growth and angiogenesis by activating AKT and other targets, and by inducing HIF-1 and VEGF expression. Angiogenesis is required for tumor growth and metastasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and PTEN in regulating tumorigenesis and angiogenesis, and the roles of the downstream targets of PI3K for transmitting the signals. We also discuss the crosstalk of these signaling molecules and cellular events during tumor growth, metastasis, and tumor angiogenesis. Finally, we summarize the potential applications of PI3K, AKT, and mTOR inhibitors and their outcome in clinical trials for cancer treatment.
Collapse
Affiliation(s)
- Bing-Hua Jiang
- Mary Babb Randolph Cancer Center and Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
180
|
Luo H, Rankin GO, Liu L, Daddysman MK, Jiang BH, Chen YC. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr Cancer 2009; 61:554-63. [PMID: 19838928 PMCID: PMC2770884 DOI: 10.1080/01635580802666281] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ovarian cancer is 1 of the most significant malignancies in the Western world, and the antiangiogenesis strategy has been postulated for prevention and treatment of ovarian cancers. Kaempferol is a natural flavonoid present in many fruits and vegetables. The antiangiogenesis potential of kaempferol and its underlying mechanisms were investigated in two ovarian cancer cell lines, OVCAR-3 and A2780/CP70. Kaempferol mildly inhibits cell viability but significantly reduces VEGF gene expression at mRNA and protein levels in both ovarian cancer cell lines. In chorioallantoic membranes of chicken embryos, kaempferol significantly inhibits OVCAR-3-induced angiogenesis and tumor growth. HIF-1alpha, a regulator of VEGF, is downregulated by kaempferol treatment in both ovarian cancer cell lines. Kaempferol also represses AKT phosphorylation dose dependently at 5 to 20 muM concentrations. ESRRA is a HIF-independent VEGF regulator, and it is also downregulated by kaempferol in a dose-dependent manner. Overall, this study demonstrated that kaempferol is low in cytotoxicity but inhibits angiogenesis and VEGF expression in human ovarian cancer cells through both HIF-dependent (Akt/HIF) and HIF-independent (ESRRA) pathways and deserves further studies for possible application in angio prevention and treatment of ovarian cancers.
Collapse
Affiliation(s)
- Haitao Luo
- Alderson-Broaddus College, Philippi, West Virginia, USA
| | | | | | | | | | | |
Collapse
|
181
|
Luo H, Jiang BH, King SM, Chen YC. Inhibition of Cell Growth and VEGF Expression in Ovarian Cancer Cells by Flavonoids. Nutr Cancer 2008; 60:800-9. [DOI: 10.1080/01635580802100851] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
182
|
Lamy S, Bédard V, Labbé D, Sartelet H, Barthomeuf C, Gingras D, Béliveau R. The Dietary Flavones Apigenin and Luteolin Impair Smooth Muscle Cell Migration and VEGF Expression through Inhibition of PDGFR-β Phosphorylation. Cancer Prev Res (Phila) 2008; 1:452-9. [DOI: 10.1158/1940-6207.capr-08-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
183
|
Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer cells. Pancreas 2008; 37:426-31. [PMID: 18953257 DOI: 10.1097/mpa.0b013e3181735ccb] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The antiproliferative mechanisms of flavonoid drugs inpancreatic cancer cells remain unclear. In this study, we evaluated the effects of the flavonoid apigenin on glucose uptake, on the expression of the glucose transporter 1 (GLUT-1), and on the phosphoinositide 3-kinase (PI3K)/Akt pathway in human pancreatic cancer cells. METHODS Human pancreatic cancer cells were treated with apigenin and then underwent glucose uptake assays. Real-time reverse transcription-polymerase chain reaction and Western blot analysis were conducted to evaluate GLUT-1 and pAkt expression in CD18 and S2-013 human pancreatic cancer cells after treatment with apigenin or PI3K inhibitors (LY294002 and wortmannin). RESULTS Apigenin (0-100 microM) significantly inhibited, in a dose-dependent fashion, glucose uptake in CD18 and S2-013 human pancreatic cancer cell lines. Apigenin inhibited both GLUT-1 mRNA and protein expression in a concentration- and time-dependent fashion. The PI3K inhibitors, like apigenin, downregulated both GLUT-1 mRNA and protein expression. CONCLUSIONS Our results demonstrate that the flavonoid apigenin decreases glucose uptake and downregulates the GLUT-1 glucose transporter in human pancreatic cancer cells. In addition, the inhibitory effects of apigenin and the PI3K inhibitors on GLUT-1 are similar, indicating that the PI3K/Akt pathway is involved in mediating apigenin's effects on downstream targets such as GLUT-1.
Collapse
|
184
|
Suzuki S, Oguro A, Osada-Oka M, Funae Y, Imaoka S. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. J Pharmacol Sci 2008; 108:79-88. [PMID: 18776712 DOI: 10.1254/jphs.08122fp] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), including 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET, are produced by cytochrome P450 (P450) such as CYP2C8 and 2C9; and they are hydrolyzed to dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolase. Particular interest in the epoxygenase reaction has developed because of the potent biological activities (modulation of vascular tone and anti-inflammatory activity, etc.) attributed to EETs. We focused on a new biological function of EETs and DHETs, which induce vascular endothelial growth factor (VEGF) and erythropoietin (EPO) under hypoxia. Human hepatoma cells, Hep3B, and human umbilical artery endothelial cells (HUAEC) were used in this study. An inhibitor of phospholipase A(2), methyl arachidonyl fluorophosphonate (MAFP), and inhibitors of P450s inhibited the VEGF and EPO induction of HUAEC and Hep3B, respectively, under hypoxia. Overexpression of CYP2C8 in Hep3B induced EPO and VEGF under hypoxia. Sulfaphenazole, an inhibitor of CYP2C8/2C9 suppressed luciferase promoter activity with the hypoxia response element (HRE) of VEGF in HUAEC. Exogenous 11,12-EET and 14,15-DHET induced reporter activity in HUAEC and Hep3B cells concomitant with increased levels of hypoxia-inducible factor-1alpha (HIF-1alpha), which is a key factor in the hypoxia response, but 11,12-DHET and 14,15-EET did not. These results suggested that EETs and DHETs play an important role in the hypoxia response of cells.
Collapse
Affiliation(s)
- Sachiko Suzuki
- Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Japan
| | | | | | | | | |
Collapse
|
185
|
Mirzoeva S, Kim ND, Chiu K, Franzen CA, Bergan RC, Pelling JC. Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. Mol Carcinog 2008; 47:686-700. [PMID: 18240292 DOI: 10.1002/mc.20421] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression of cancer leads to hypoxic solid tumors that mount specific cell signaling responses to low oxygen conditions. An important objective of anti-cancer therapy is the development of new drugs that suppress hypoxic responses in solid tumors. Apigenin is a natural flavone that has been shown to have chemopreventive and/or anti-cancer properties against a number of tumor types. However, the mechanisms underlying apigenin's chemopreventive properties are not yet completely understood. In this study, we have investigated the effects of apigenin on expression of hypoxia-inducible factor-1 (HIF-1) in human metastatic prostate PC3-M cancer cells. We found that hypoxia induced a time-dependent increase in the level of HIF-1alpha subunit protein in PC3-M cells, and treatment with apigenin markedly decreased HIF-1alpha expression under both normoxic and hypoxic conditions. Further, apigenin prevented the activation of the HIF-1 downstream target gene vascular endothelial growth factor (VEGF). We then showed that apigenin inhibited expression of HIF-1alpha by reducing stability of the protein as well as by reducing the level of HIF-1alpha mRNA. We also found that apigenin inhibited Akt and GSK-3beta phosphorylation in PC3-M cells. Further experiments demonstrated that constitutively active Akt blunted the effect of apigenin on HIF-1alpha expression. Taken together, our results identify apigenin as a bioflavonoid that inhibits hypoxia-activated pathways linked to cancer progression in human prostate cancer, in particular the PI3K/Akt/GSK-3 pathway. Further studies on the mechanism of action of apigenin will likely provide new insight into its applicability for pharmacologic targeting of HIF-1alpha for cancer therapeutic or chemopreventive purposes.
Collapse
Affiliation(s)
- Salida Mirzoeva
- Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
186
|
Yao H, Wang H, Zhang Z, Jiang BH, Luo J, Shi X. Sulforaphane inhibited expression of hypoxia-inducible factor-1alpha in human tongue squamous cancer cells and prostate cancer cells. Int J Cancer 2008; 123:1255-61. [PMID: 18561315 DOI: 10.1002/ijc.23647] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies show that a number of natural compounds from our diet have anticancer effects. Sulforaphane is the most characterized isothiocyanates (ITCs), which are identified in cruciferous vegetables. Sulforaphane is viewed as a conceptually promising agent in cancer prevention. Because of its ability to induce cancer cell apoptosis, it inhibits progression of benign tumors to malignant tumors and interrupts metastasis. However, the effect of sulforaphane on tongue cancer cell proliferation has not yet been reported, and the mechanisms that sulforaphane inhibits cancer development are still unclear. Hypoxia-inducible factor 1 (HIF-1) expression is associated with tumorigenesis and angiogenesis. It regulates the expression of many genes including vascular endothelial growth factor (VEGF), inducible nitric oxide synthase, and lactate dehydrogenase A. In our study, we investigated the effects of sulforaphane on expression of hypoxia-inducible factor-1alpha (HIF-1alpha), which was overexpressed in many human malignant tumors, human tongue squamous cell carcinoma and prostate cancer DU145 cells. Sulforaphane inhibited hypoxia induced expression of HIF-1alpha via inhibiting synthesis of HIF-1alpha. Sulforaphane was also found to inhibit hypoxia induced HIF-1alpha expression through activating JNK and ERK signaling pathways, but not AKT pathway. Inhibition of HIF-1alpha by sulforaphane resulted in decreasing expression of VEGF. Taken together, these results suggest that sulforaphane is an effective chemopreventive compound against tongue cancers and prostate cell angiogenesis in vitro, and that the HIF-1alpha target provides a new sight into the mechanisms of sulforaphane's inhibition against tumor cell proliferation.
Collapse
Affiliation(s)
- Hua Yao
- Graduate Center for Toxicology, College of Medicine, The University of Kentucky, Lexington, KY 40503, USA
| | | | | | | | | | | |
Collapse
|
187
|
Benavente-García O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6185-205. [PMID: 18593176 DOI: 10.1021/jf8006568] [Citation(s) in RCA: 732] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significantly, much of the activity of Citrus flavonoids appears to impact blood and microvascular endothelial cells, and it is not surprising that the two main areas of research on the biological actions of Citrus flavonoids have been inflammation and cancer. Epidemiological and animal studies point to a possible protective effect of flavonoids against cardiovascular diseases and some types of cancer. Although flavonoids have been studied for about 50 years, the cellular mechanisms involved in their biological action are still not completely known. Many of the pharmacological properties of Citrus flavonoids can be linked to the abilities of these compounds to inhibit enzymes involved in cell activation. Attempts to control cancer involve a variety of means, including the use of suppressing, blocking, and transforming agents. Suppressing agents prevent the formation of new cancers from procarcinogens, and blocking agents prevent carcinogenic compounds from reaching critical initiation sites, while transformation agents act to facilitate the metabolism of carcinogenic components into less toxic materials or prevent their biological actions. Flavonoids can act as all three types of agent. Many epidemiological studies have shown that regular flavonoid intake is associated with a reduced risk of cardiovascular diseases. In coronary heart disease, the protective effects of flavonoids include mainly antithrombotic, anti-ischemic, anti-oxidant, and vasorelaxant. It is suggested that flavonoids decrease the risk of coronary heart disease by three major actions: improving coronary vasodilatation, decreasing the ability of platelets in the blood to clot, and preventing low-density lipoproteins (LDLs) from oxidizing. The anti-inflammatory properties of the Citrus flavonoids have also been studied. Several key studies have shown that the anti-inflammatory properties of Citrus flavonoids are due to its inhibition of the synthesis and biological activities of different pro-inflammatory mediators, mainly the arachidonic acid derivatives, prostaglandins E 2, F 2, and thromboxane A 2. The anti-oxidant and anti-inflammatory properties of Citrus flavonoids can play a key role in their activity against several degenerative diseases and particularly brain diseases. The most abundant Citrus flavonoids are flavanones, such as hesperidin, naringin, or neohesperidin. However, generally, the flavones, such as diosmin, apigenin, or luteolin, exhibit higher biological activity, even though they occur in much lower concentrations. Diosmin and rutin have a demonstrated activity as a venotonic agent and are present in several pharmaceutical products. Apigenin and their glucosides have been shown a good anti-inflammatory activity without the side effects of other anti-inflammatory products. In this paper, we discuss the relation between each structural factor of Citrus flavonoids and the anticancer, anti-inflammatory, and cardiovascular protection activity of Citrus flavonoids and their role in degenerative diseases.
Collapse
Affiliation(s)
- O Benavente-García
- Research and Development Department of Nutrafur-Furfural Español S.A., Camino Viejo de Pliego s/n, 80320 Alcantarilla, Murcia, Spain.
| | | |
Collapse
|
188
|
Choi EJ, Kim GH. Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. J Nutr Biochem 2008; 20:285-90. [PMID: 18656338 DOI: 10.1016/j.jnutbio.2008.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/22/2023]
Abstract
We studied the effects of apigenin on the cell cycle distribution and apoptosis of human breast cancer cells and explored the mechanisms underlying these effects. We first investigated the antiproliferative effects in SK-BR-3 cells exposed to between 1 and 100 microM apigenin for 24, 48 and 72 h. Apigenin significantly inhibited cell proliferation at concentrations over 50 microM, regardless of exposure time (P<.05), and resulted in significant cell cycle arrest in the G(2)/M phase after 48 h of treatment at high concentrations (50 and 100 microM; P<.05). To investigate the regulatory proteins of cell cycle arrest affected by apigenin, we treated cells with 50 and 100 microM apigenin for 72 h. Apigenin caused a slight decrease in cyclin D and cyclin E expression, with no change in CDK2 and CDK4. In addition, the apigenin-induced accumulation of the cell population in the G(2)/M phase resulted in a decrease in CDK1 together with cyclin A and cyclin B. In an additional study, apigenin also increased the accumulation of p53 and further enhanced the level of p21(Cip1), with no change in p27(Kip1). The expression of Bax and cytochrome c of p53 downstream target was increased markedly at high concentration treatment over 50 microM apigenin. Based on our findings, the mechanism by which apigenin causes cell cycle arrest via the regulation of CDK1 and p21(Cip1) and induction of apoptosis seems to be involved in the p53-dependent pathway.
Collapse
Affiliation(s)
- Eun Jeong Choi
- Plant Resources Research Institute, Duksung Women's University,Tobong-ku, Seoul, South Korea.
| | | |
Collapse
|
189
|
Long X, Fan M, Bigsby RM, Nephew KP. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms. Mol Cancer Ther 2008; 7:2096-108. [PMID: 18645020 PMCID: PMC2559959 DOI: 10.1158/1535-7163.mct-07-2350] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer resistance to the antiestrogens tamoxifen (OHT) and fulvestrant is accompanied by alterations in both estrogen-dependent and estrogen-independent signaling pathways. Consequently, effective inhibition of both pathways may be necessary to block proliferation of antiestrogen-resistant breast cancer cells. In this study, we examined the effects of apigenin, a dietary plant flavonoid with potential anticancer properties, on estrogen-responsive, antiestrogen-sensitive MCF7 breast cancer cells and two MCF7 sublines with acquired resistance to either OHT or fulvestrant. We found that apigenin can function as both an estrogen and an antiestrogen in a dose-dependent manner. At low concentrations (1 mumol/L), apigenin stimulated MCF7 cell growth but had no effect on the antiestrogen-resistant MCF7 sublines. In contrast, at high concentrations (>10 mumol/L), the drug inhibited growth of MCF7 cells and the antiestrogen-resistant sublines, and the combination of apigenin with either OHT or fulvestrant showed synergistic, growth-inhibitory effects on both antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. To further elucidate the molecular mechanism of apigenin as either an estrogen or an antiestrogen, effects of the drug on estrogen receptor-alpha (ERalpha); transactivation activity, mobility, stability, and ERalpha-coactivator interactions were investigated. Low-dose apigenin enhanced receptor transcriptional activity by promoting interaction between ERalpha and its coactivator amplified in breast cancer-1. However, higher doses (>10 mumol/L) of apigenin inhibited ERalpha mobility (as determined by fluorescence recovery after photobleaching assays), down-regulated ERalpha and amplified in breast cancer-1 expression levels, and inhibited multiple protein kinases, including p38, protein kinase A, mitogen-activated protein kinase, and AKT. Collectively, these results show that apigenin can function as both an antiestrogen and a protein kinase inhibitor with activity against breast cancer cells with acquired resistance to OHT or fulvestrant. We conclude that apigenin, through its ability to target both ERalpha-dependent and ERalpha-independent pathways, holds promise as a new therapeutic agent against antiestrogen-resistant breast cancer.
Collapse
Affiliation(s)
- Xinghua Long
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405
| | - Meiyun Fan
- Department of Pathology, University of Tennessee-Memphis, Memphis, TN 38163
| | - Robert M. Bigsby
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
190
|
Jiang BH, Liu LZ. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat 2008; 11:63-76. [PMID: 18440854 PMCID: PMC2519122 DOI: 10.1016/j.drup.2008.03.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 02/06/2023]
Abstract
The mammalian target of rapamycin (mTOR) pathway plays a central role in regulating protein synthesis, ribosomal protein translation, and cap-dependent translation. Deregulations in mTOR signaling are frequently associated with tumorigenesis, angiogenesis, tumor growth and metastasis. This review highlights the role of the mTOR in anticancer drug resistance. We discuss the network of signaling pathways in which the mTOR kinase is involved, including the structure and activation of the mTOR complex and the pathways upstream and downstream of mTOR as well as other molecular interactions of mTOR. Major upstream signaling components in control of mTOR activity are PI3K/PTEN/AKT and Ras/Raf/MEK/ERK pathways. We discuss the central role of mTOR in mediating the translation of mRNAs of proteins related to cell cycle progression, those involved in cell survival such as c-myc, hypoxia inducible factor 1* (HIF-1*) and vascular endothelial growth factor (VEGF), cyclin A, cyclin dependent kinases (cdk1/2), cdk inhibitors (p21(Cip1) and p27(Kip1)), retinoblastoma (Rb) protein, and RNA polymerases I and III. We then discuss the potential therapeutic opportunities for using mTOR inhibitors rapamycin, CCI-779, RAD001, and AP-23573 in cancer therapy as single agents or in combinations to reverse drug resistance.
Collapse
Affiliation(s)
- Bing-Hua Jiang
- Department of Microbiology, Mary Babb Randolph Cancer Center, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA.
| | | |
Collapse
|
191
|
Shukla S, Gupta S. Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic Biol Med 2008; 44:1833-45. [PMID: 18342637 PMCID: PMC2538676 DOI: 10.1016/j.freeradbiomed.2008.02.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/24/2008] [Accepted: 02/06/2008] [Indexed: 11/20/2022]
Abstract
Apigenin, a plant flavone, potentially activates wild-type p53 and induces apoptosis in cancer cells. We conducted detailed studies to understand its mechanism of action. Exposure of human prostate cancer 22Rv1 cells, harboring wild-type p53, to growth-suppressive concentrations (10-80 microM) of apigenin resulted in the stabilization of p53 by phosphorylation on critical serine sites, p14ARF-mediated downregulation of MDM2 protein, inhibition of NF-kappaB/p65 transcriptional activity, and induction of p21/WAF-1 in a dose- and time-dependent manner. Apigenin at these doses resulted in ROS generation, which was accompanied by rapid glutathione depletion, disruption of mitochondrial membrane potential, cytosolic release of cytochrome c, and apoptosis. Interestingly, we observed accumulation of a p53 fraction to the mitochondria, which was rapid and occurred between 1 and 3 h after apigenin treatment. All these effects were significantly blocked by pretreatment of cells with the antioxidant N-acetylcysteine, p53 inhibitor pifithrin-alpha, and enzyme catalase. Apigenin-mediated p53 activation and apoptosis were further attenuated by p53 antisense oligonucleotide treatment. Exposure of cells to apigenin led to a decrease in the levels of Bcl-XL and Bcl-2 and increase in Bax, triggering caspase activation. Treatment with the caspase inhibitors Z-VAD-FMK and DEVD-CHO partially rescued these cells from apigenin-induced apoptosis. In vivo, apigenin administration demonstrated p53-mediated induction of apoptosis in 22Rv1 tumors. These results indicate that apigenin-induced apoptosis in 22Rv1 cells is initiated by a ROS-dependent disruption of the mitochondrial membrane potential through transcriptional-dependent and -independent p53 pathways.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
192
|
Wunderlich L, Paragh G, Wikonkál NM, Bánhegyi G, Kárpáti S, Mandl J. UVB induces a biphasic response of HIF-1α in cultured human keratinocytes. Exp Dermatol 2008; 17:335-42. [DOI: 10.1111/j.1600-0625.2007.00640.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
193
|
Zitzmann K, Vlotides G, Göke B, Auernhammer CJ. PI(3)K-Akt-mTOR pathway as a potential therapeutic target in neuroendocrine tumors. Expert Rev Endocrinol Metab 2008; 3:207-222. [PMID: 30764093 DOI: 10.1586/17446651.3.2.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Constitutive activation of PI(3)K-Akt-mTOR signaling is a frequently occurring event in human cancer and has also been detected in the majority of neuroendocrine tumors (NETs) of the gastroenteropancreatic system. Molecular analysis of NETs suggests, that in addition to mutations in certain tumor-suppressor genes (e.g., PTEN), multiple autocrine growth factor loops contribute to hyperactive PI(3)K-Akt-mTOR signaling, thus promoting unrestricted proliferation and resistance to apoptosis. These insights opened new perspectives for targeted therapy in NETs. In particular, several novel small-molecule inhibitors of tyrosine and serine/threonine kinases have demonstrated potent anti-tumor activity. This review will summarize current knowledge on PI(3)K-Akt-mTOR signaling, its role in proliferation and apoptosis, as well as novel therapeutic approaches targeting PI(3)K-Akt-mTOR pathway components in NET disease.
Collapse
Affiliation(s)
- Kathrin Zitzmann
- a Department of Internal Medicine II - Grosshadern, Ludwig-Maximilians- University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | - George Vlotides
- b Department of Medicine, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, CA 90048, USA.
| | - Burkhard Göke
- c Department of Internal Medicine II - Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | - Christoph J Auernhammer
- d Department of Internal Medicine II - Grosshadern, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| |
Collapse
|
194
|
Abstract
The oncogene HDM2 has been implicated in the regulation of the transcription factor, hypoxia inducible factor (HIF). We show in von Hippel-Lindau (VHL)-defective renal carcinoma cells that express constitutively high levels of HIF-1 alpha and HIF-2 alpha that down-regulation of HDM2 by siRNA leads to decreased levels of both HIF-1 alpha and HIF-2 alpha protein levels. However, we show a differential regulation of HDM2 on the HIF angiogenic targets, vascular endothelial growth factor (VEGF), plasminogen activator inhibitor-1 (PAI-1), and endothelin-1 (ET-1): siRNA to HDM2 leads to increased expression of VEGF and PAI-1 proteins but decreased levels of ET-1. We show that HDM2-mediated regulation of these proteins is independent of VHL and p53 but dependent on a novel action of HDM2. Ablation of HDM2 leads to phosphorylation of extracellular-regulated kinase (ERK)1/2 in renal carcinoma cells. We show that regulation of these angiogenic factors is dependent on ERK1/2 phosphorylation, which can be reversed by addition of the MAP/ERK1/2 kinase inhibitors PD98059 and PD184352. This study identifies a novel role for the HDM2 oncoprotein in the regulation of angiogenic factors in renal cell carcinoma.
Collapse
Affiliation(s)
- Veronica A Carroll
- Cell Growth Regulation and Angiogenesis Laboratory, Cancer Research UK Centre for Cancer Therapeutics, Surrey, United Kingdom
| | | |
Collapse
|
195
|
Yi LT, Li JM, Li YC, Pan Y, Xu Q, Kong LD. Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci 2008; 82:741-51. [PMID: 18308340 DOI: 10.1016/j.lfs.2008.01.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 01/12/2008] [Accepted: 01/16/2008] [Indexed: 12/13/2022]
Abstract
Apigenin is one type of bioflavonoid widely found in citrus fruits, which possesses a variety of pharmacological actions on the central nervous system. A previous study showed that acute intraperitoneal administration of apigenin had antidepressant-like effects in the forced swimming test (FST) in ddY mice. To better understand its pharmacological activity, we investigated the behavioral effects of chronic oral apigenin treatment in the FST in male ICR mice and male Wistar rats exposed to chronic mild stress (CMS). The effects of apigenin on central monoaminergic neurotransmitter systems, the hypothalamic-pituitary-adrenal (HPA) axis and platelet adenylyl cyclase activity were simultaneously examined in the CMS rats. Apigenin reduced immobility time in the mouse FST and reversed CMS-induced decrease in sucrose intake of rats. Apigenin also attenuated CMS-induced alterations in serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA) levels and 5-HIAA/5-HT ratio in distinct rat brain regions. Moreover, apigenin reversed CMS-induced elevation in serum corticosterone concentrations and reduction in platelet adenylyl cyclase activity in rats. These results suggest that the antidepressant-like actions of oral apigenin treatment could be related to a combination of multiple biochemical effects, and might help to elucidate its mechanisms of action that are involved in normalization of stress-induced changes in brain monoamine levels, the HPA axis, and the platelet adenylyl cyclase activity.
Collapse
Affiliation(s)
- Li-Tao Yi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
196
|
Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 2007; 67:10823-30. [PMID: 18006827 DOI: 10.1158/0008-5472.can-07-0783] [Citation(s) in RCA: 368] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. However, the direct roles of endogenous ROS production still remain to be elucidated. In this study, we found that high levels of ROS were spontaneously produced by ovarian and prostate cancer cells. This elevated ROS production was inhibited by NADPH oxidase inhibitor diphenylene iodonium (DPI) and mitochondria electron chain inhibitor rotenone in the cells. To further analyze the source of ROS production, we found that ovarian cancer cells have much higher expression of NOX4 NADPH oxidase, and that specific inhibition of NADPH oxidase subunit p47(phox) diminished ROS production. To analyze the functional relevance of ROS production, we showed that ROS regulated hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF) expression in ovarian cancer cells. Elevated levels of endogenous ROS were required for inducing angiogenesis and tumor growth. NOX4 knockdown in ovarian cancer cells decreased the levels of VEGF and HIF-1 alpha and tumor angiogenesis. This study suggests a new mechanism of higher ROS production in ovarian cancer cells and provides strong evidence that endogenous ROS play an important role for cancer cells to induce angiogenesis and tumor growth. This information may be useful to understand the new mechanism of cancer cells in inducing tumorigenesis and to develop new therapeutic strategy by targeting ROS signaling in human cancer in the future.
Collapse
Affiliation(s)
- Chang Xia
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
197
|
Fang J, Ding M, Yang L, Liu LZ, Jiang BH. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal 2007; 19:2487-97. [PMID: 17826033 PMCID: PMC2094004 DOI: 10.1016/j.cellsig.2007.07.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1alpha, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1alpha and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.
Collapse
Affiliation(s)
- Jing Fang
- Mary Babb Randolph Cancer Center, Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | | | |
Collapse
|
198
|
Svarcova I, Heinrich J, Valentova K. BERRY FRUITS AS A SOURCE OF BIOLOGICALLY ACTIVE COMPOUNDS: THE CASE OF LONICERA CAERULEA. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2007; 151:163-74. [DOI: 10.5507/bp.2007.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
199
|
Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer 2007; 121:2225-32. [PMID: 17471564 DOI: 10.1002/ijc.22790] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flavonoids are antioxidant compounds found in plants, including fruits, vegetables and tea. No prior prospective studies have examined the association between intake of flavonoids in the flavonol and flavone subclasses and ovarian cancer risk. We analyzed the association between intake of 5 common dietary flavonoids and incidence of epithelial ovarian cancer among 66,940 women in the Nurses' Health Study. We calculated each participant's intake of myricetin, kaempferol, quercetin, luteolin and apigenin from dietary data collected at multiple time points, and used Cox proportional hazards regression to model the incidence rate ratio (RR) of ovarian cancer for each quintile of intake. Our analysis included 347 cases diagnosed between 1984 and 2002, and 950,347 person-years of follow-up. There was no clear association between total intake of the 5 flavonoids examined and incidence of ovarian cancer (RR = 0.75 for the highest versus lowest quintile, 95% confidence interval [CI] = 0.51-1.09). However, there was a significant 40% decrease in ovarian cancer incidence for the highest versus lowest quintile of kaempferol intake (RR = 0.60, 95% CI = 0.42-0.87; p-trend = 0.002), and a significant 34% decrease in incidence for the highest versus lowest quintile of luteolin intake (RR = 0.66, 95% CI = 0.49-0.91; p-trend = 0.01). There was evidence of an inverse association with consumption of tea (nonherbal) and broccoli, the primary contributors to kaempferol intake in our population. These data suggest that dietary intake of certain flavonoids may reduce ovarian cancer risk, although additional prospective studies are needed to further evaluate this association. If confirmed, these results would provide an important target for ovarian cancer prevention.
Collapse
Affiliation(s)
- Margaret A Gates
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | |
Collapse
|
200
|
Lee SH, Ryu JK, Lee KY, Woo SM, Park JK, Yoo JW, Kim YT, Yoon YB. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett 2007; 259:39-49. [PMID: 17967505 DOI: 10.1016/j.canlet.2007.09.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/16/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
Abstract
Apigenin is a dietary flavonoid possessing therapeutic potential against cancers. This study was designed to investigate whether combination therapy with gemcitabine and apigenin enhanced anti-tumor efficacy in pancreatic cancer. In vitro, the combination treatment resulted in more growth inhibition and apoptosis through the down-regulation of NF-kappa B activity with suppression of Akt activation in pancreatic cancer cell lines (MiaPaca-2, AsPC-1). In vivo, the combination therapy augmented tumor growth inhibition through the down-regulation of NF-kappa B activity with the suppression of Akt in tumor tissue. The combination of gemcitabine and apigenin enhanced anti-tumor efficacy through Akt and NF-kappa B activity suppression and apoptosis induction.
Collapse
Affiliation(s)
- Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 110-744, Yeongeon-dong 28, Jongno-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|