151
|
Stem cell-based therapies for ischemic stroke. BIOMED RESEARCH INTERNATIONAL 2014; 2014:468748. [PMID: 24719869 PMCID: PMC3955655 DOI: 10.1155/2014/468748] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
Abstract
In recent years, stem cell-based approaches have attracted more attention from scientists and clinicians due to their possible therapeutical effect on stroke. Animal studies have demonstrated that the beneficial effects of stem cells including embryonic stem cells (ESCs), inducible pluripotent stem cells (iPSCs), neural stem cells (NSCs), and mesenchymal stem cell (MSCs) might be due to cell replacement, neuroprotection, endogenous neurogenesis, angiogenesis, and modulation on inflammation and immune response. Although several clinical studies have shown the high efficiency and safety of stem cell in stroke management, mainly MSCs, some issues regarding to cell homing, survival, tracking, safety, and optimal cell transplantation protocol, such as cell dose and time window, should be addressed. Undoubtably, stem cell-based gene therapy represents a novel potential therapeutic strategy for stroke in future.
Collapse
|
152
|
Golledge J, Clancy P, Maguire J, Lincz L, Koblar S, McEvoy M, Attia J, Levi C, Sturm J, Almeida OP, Yeap BB, Flicker L, Norman PE, Hankey GJ. Plasma angiopoietin-1 is lower after ischemic stroke and associated with major disability but not stroke incidence. Stroke 2014; 45:1064-8. [PMID: 24569814 DOI: 10.1161/strokeaha.113.004339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Studies in rodent models suggest that upregulating angiopoietin-1 (Angpt1) improves stroke outcomes. The aims of this study were to assess the association of plasma Angpt1 with stroke occurrence and outcome. METHODS Plasma Angpt1 was measured in 336 patients who had experienced a recent stroke and 321 healthy controls with no stroke history. Patients with stroke (n=285) were reassessed at 3 months and plasma Angpt1 concentration on admission compared between those with severe and minor disability as assessed by the modified Rankin scale. In a separate cohort of 4032 community-acquired older men prospectively followed for a minimum of 6 years, the association of plasma Angpt1 with stroke incidence was examined. RESULTS Median plasma Angpt1 was 3-fold lower in patients who had experienced a recent stroke (6.42, interquartile range, 4.26-9.53 compared with 17.36; interquartile range, 14.01-22.46 ng/mL; P<0.001) and remained associated with stroke after adjustment for other risk factors. Plasma Angpt1 concentrations on admission were lower in patients who had severe disability or died at 3 months (median, 5.52; interquartile range, 3.81-8.75 ng/mL for modified Rankin scale 3-6; n=91) compared with those with minor disability (median, 7.04; interquartile range, 4.75-9.92 ng/mL for modified Rankin scale 0-2; n=194), P=0.012, and remained negatively associated with severe disability or death after adjusting for other risk factors. Plasma Angpt1 was not predictive of stroke incidence in community-dwelling older men. CONCLUSIONS Plasma Angpt1 concentrations are low after ischemic stroke particularly in patients with poor stroke outcomes at 3 months. Interventions effective at upregulating Angpt1 could potentially improve stroke outcomes.
Collapse
Affiliation(s)
- Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Australia (J.G., P.C.); Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Australia (J.G.); Faculty of Health and Medicine, School of Nursing and Midwifery (J.M.) and Faculty of Health, School of Health Sciences (C.L., J.S.), The University of Newcastle, Newcastle, Australia; The Hunter Medical Research Institute, Newcastle, New South Wales, Australia (J.M., L.L., M.M., J.A.); Hunter Haematology Research Group, Calvary Mater Newcastle, Waratah, New South Wales, Australia (L.L.); Stroke Research Programme, University of Adelaide, The Queen Elizabeth Hospital campus, Adelaide, Australia (S.K.); The Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, New South Wales, Australia (M.M., J.A.); Department of Neurosciences, Central Coast Health District, Gosford, New South Wales, Australia (J.S.); School of Psychiatry and Clinical Neurosciences (O.P.A.), School of Medicine and Pharmacology (B.B.Y.), Western Australian Centre for Health and Ageing, Centre for Medical Research (L.F.), School of Surgery (P.E.N.), and School of Medicine and Pharmacology (G.J.H.), University of Western Australia, Perth, Western Australia, Australia; and Department of Endocrinology and Diabetes, Fremantle Hospital, Fremantle, Australia (B.B.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
PET Demonstrates Functional Recovery after Treatment by Danhong Injection in a Rat Model of Cerebral Ischemic-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:430757. [PMID: 24707308 PMCID: PMC3953511 DOI: 10.1155/2014/430757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 01/07/2023]
Abstract
This study aimed to investigate neuroprotection of Danhong injection (DHI) in a rat model of cerebral ischemia using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). Method. Rats were divided into 5 groups: sham group, ischemia-reperfusion untreated (IRU) group, DHI-1 group (DHI 1 mL/kg/d), DHI-2 group (DHI 2 mL/kg/d), and DHI-4 group (DHI 4 mL/kg/d). AII the treated groups were intraperitoneally injected with DHI daily for 14 days. The therapeutic effects in terms of cerebral infarct volume, neurological function, and cerebral glucose metabolism were evaluated. Expression of TNF-α and IL-1β was detected with enzyme-linked immunosorbent assay (ELISA). Levels of mature neuronal marker (NeuN), glial marker (GFAP), vascular density factor (vWF), and glucose transporter 1 (GLUT1) were assessed by immunohistochemistry. Results. Compared with the IRU group, rats treated with DHI showed dose dependent reductions in cerebral infarct volume and levels of proinflammatory cytokines, improvement of neurological function, and recovery of cerebral glucose metabolism. Meanwhile, the significantly increased numbers of neurons, gliocytes, and vessels and the recovery of glucose utilization were found in the peri-infarct region after DHI treatment using immunohistochemical analysis. Conclusion. This study demonstrated the metabolic recovery after DHI treatment by micro-PET imaging with 18F-FDG and the neuroprotective effects of DHI in a rat model of cerebral ischemic-reperfusion injury.
Collapse
|
154
|
Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab 2014; 34:185-99. [PMID: 24281743 PMCID: PMC3915212 DOI: 10.1038/jcbfm.2013.203] [Citation(s) in RCA: 408] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/10/2013] [Accepted: 10/28/2013] [Indexed: 01/12/2023]
Abstract
Hemorrhagic transformation (HT) is a common complication of ischemic stroke that is exacerbated by thrombolytic therapy. Methods to better prevent, predict, and treat HT are needed. In this review, we summarize studies of HT in both animals and humans. We propose that early HT (<18 to 24 hours after stroke onset) relates to leukocyte-derived matrix metalloproteinase-9 (MMP-9) and brain-derived MMP-2 that damage the neurovascular unit and promote blood-brain barrier (BBB) disruption. This contrasts to delayed HT (>18 to 24 hours after stroke) that relates to ischemia activation of brain proteases (MMP-2, MMP-3, MMP-9, and endogenous tissue plasminogen activator), neuroinflammation, and factors that promote vascular remodeling (vascular endothelial growth factor and high-moblity-group-box-1). Processes that mediate BBB repair and reduce HT risk are discussed, including transforming growth factor beta signaling in monocytes, Src kinase signaling, MMP inhibitors, and inhibitors of reactive oxygen species. Finally, clinical features associated with HT in patients with stroke are reviewed, including approaches to predict HT by clinical factors, brain imaging, and blood biomarkers. Though remarkable advances in our understanding of HT have been made, additional efforts are needed to translate these discoveries to the clinic and reduce the impact of HT on patients with ischemic stroke.
Collapse
|
155
|
Abstract
Stroke usually affects people with underlying medical conditions. In particular, diabetics are significantly more likely to have a stroke and the prognosis for recovery is poor. Because diabetes is associated with degenerative changes in the vasculature of many organs, we sought to determine how hyperglycemia affects blood flow dynamics after an ischemic stroke. Longitudinal in vivo two-photon imaging was used to track microvessels before and after photothrombotic stroke in a diabetic mouse model. Chronic hyperglycemia exacerbated acute (3-7 d) ischemia-induced increases in blood flow velocity, vessel lumen diameter, and red blood cell flux in peri-infarct regions. These changes in blood flow dynamics were most evident in superficial blood vessels within 500 μm from the infarct, rather than deeper or more distant cortical regions. Long-term imaging of diabetic mice not subjected to stroke indicated that these acute stroke-related changes in vascular function could not be attributed to complications from hyperglycemia alone. Treating diabetic mice with insulin immediately after stroke resulted in less severe alterations in blood flow within the first 7 d of recovery, but had more variable results at later time points. Analysis of microvessel branching patterns revealed that stroke led to a pruning of microvessels in peri-infarct cortex, with very few instances of sprouting. These results indicate that chronic hyperglycemia significantly affects the vascular response to ischemic stroke and that insulin only partially mitigates these changes. The combination of these acute and chronic alterations in blood flow dynamics could underlie diabetes-related deficits in cortical plasticity and stroke recovery.
Collapse
|
156
|
Abstract
Quantitative measurement of blood-brain barrier (BBB) permeability using MRI and its application to cerebral ischemia are reviewed. Measurement of BBB permeability using MRI has been employed to evaluate ischemic damage during acute and subacute phases of stroke and to predict hemorrhagic transformation. There is also an emerging interest on the development and use of MRI to monitor vascular structural changes and angiogenesis during stroke recovery. In this review, we describe MRI BBB permeability and susceptibility-weighted MRI measurements and its applications to evaluate ischemic damage during the acute and subacute phases of stroke and vascular remodeling during stroke recovery.
Collapse
|
157
|
Shehadah A, Chen J, Pal A, He S, Zeitlin A, Cui X, Zacharek A, Cui Y, Roberts C, Lu M, Hariri R, Chopp M. Human placenta-derived adherent cell treatment of experimental stroke promotes functional recovery after stroke in young adult and older rats. PLoS One 2014; 9:e86621. [PMID: 24466174 PMCID: PMC3897748 DOI: 10.1371/journal.pone.0086621] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/16/2013] [Indexed: 12/29/2022] Open
Abstract
Background Human Placenta-Derived Adherent Cells (PDAC®) are a novel mesenchymal-like cell population derived from normal human placental tissue. PDA-001 is a clinical formulation of PDAC® developed for intravenous administration. In this study, we investigated the efficacy of PDA-001 treatment in a rat model of transient middle cerebral artery occlusion (MCAo) in young adult (2–3 month old) and older rats (10–12 months old). Methods To evaluate efficacy and determine the optimal number of transplanted cells, young adult Wistar rats were subjected to MCAo and treated 1 day post MCAo with 1×106, 4×106 or 8×106 PDA-001 cells (i.v.), vehicle or cell control. 4×106 or 8×106 PDA-001 cells were also tested in older rats after MCAo. Treatment response was evaluated using a battery of functional outcome tests, consisting of adhesive-removal test, modified Neurological Severity Score (mNSS) and foot-fault test. Young adult rats were sacrificed 56 days after MCAo, older rats were sacrificed 29 days after MCAo, and lesion volumes were measured using H&E. Immunohistochemical stainings for bromodeoxyuridine (BrdU) and von Willebrand Factor (vWF), and synaptophysin were performed. Results In young adult rats, treatment with 4×106 PDA-001 cells significantly improved functional outcome after stroke (p<0.05). In older rats, significant functional improvement was observed with PDA-001 cell therapy in both of the 4×106 and 8×106 treatment groups. Functional benefits in young adult and older rats were associated with significant increases in the number of BrdU immunoreactive endothelial cells, vascular density and perimeter in the ischemic brain, as well as significantly increased synaptophysin expression in the ischemic border zone (p<0.05). Conclusion PDA-001 treatment significantly improved functional outcome after stroke in both young adult and older rats. The neurorestorative effects induced by PDA-001 treatment may be related to increased vascular density and synaptic plasticity.
Collapse
Affiliation(s)
- Amjad Shehadah
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| | - Ajai Pal
- Celgene Cellular Therapeutics, Warren, New Jersey, United States of America
| | - Shuyang He
- Celgene Cellular Therapeutics, Warren, New Jersey, United States of America
| | - Andrew Zeitlin
- Celgene Cellular Therapeutics, Warren, New Jersey, United States of America
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Yisheng Cui
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Cynthia Roberts
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Robert Hariri
- Celgene Cellular Therapeutics, Warren, New Jersey, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
158
|
Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab 2014; 34:72-80. [PMID: 24045404 PMCID: PMC3887344 DOI: 10.1038/jcbfm.2013.163] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022]
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved treatment for acute stroke, but its use remains limited. Progesterone (PROG) has shown neuroprotection in ischemia, but before clinical testing, we must determine how it affects hemorrhagic transformation in tPA-treated ischemic rats. Male Sprague-Dawley rats underwent middle cerebral artery occlusion with reperfusion at 4.5 hours and tPA treatment at 4.5 hours, or PROG treatment intraperitoneally at 2 hours followed by subcutaneous injection at 6 hours post occlusion. Rats were killed at 24 hours and brains evaluated for cerebral hemorrhage, swelling, blood-brain barrier (BBB) permeability, and levels of matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor level (VEGF), and tight junction (TJ) proteins. We also evaluated PROG's efficacy in preventing tPA-induced impairment of transendothelial electrical resistance (TEER) and TJ proteins under hypoxia/reoxygenation in the endothelial cells. Delayed tPA treatment induced significant hemorrhagic conversion and brain swelling. Treatment with PROG plus tPA ameliorated hemorrhage, hemispheric swelling, BBB permeability, MMP-9 induction, and VEGF levels compared with controls. Progesterone treatment significantly prevented tPA-induced decrease in TEER and expression of occludin and claudin-5, and attenuated VEGF levels in culture media subjected to hypoxia. The study concluded that PROG may extend the time window for tPA administration in ischemic stroke and reduce hemorrhagic conversion.
Collapse
|
159
|
Lee SR, Wang X, Tsuji K, Lo EH. Extracellular proteolytic pathophysiology in the neurovascular unit after stroke. Neurol Res 2013; 26:854-61. [PMID: 15727269 DOI: 10.1179/016164104x3806] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NINDS Stroke Progress Review Group recommended a shift in emphasis from a purely neurocentric view of cell death towards a more integrative approach whereby responses in all brain cells and matrix are considered. The neurovascular unit (fundamentally comprising endothelium, astrocyte, and neuron) provides a conceptual framework where cell-cell and cell-matrix signaling underlies the overall tissue response to stroke and its treatments. Here, we briefly review recent data on extracellular proteolytic dysfunction in the neurovascular unit after a stroke. The breakdown of neurovascular matrix initiates blood-brain barrier disruption with edema and/or hemorrhage. Endothelial dysfunction amplifies inflammatory responses. Perturbation of cell-matrix homeostasis triggers multiple cell death pathways. Interactions between the major classes of extracellular proteases from the plasminogen and matrix metalloprotease families may underlie processes responsible for some of the hemorrhagic complications of thrombolytic stroke therapy. Targeting the proteolytic imbalance within the neurovascular unit may provide new approaches for improving the safety and efficacy of thrombolytic reperfusion therapy for stroke.
Collapse
Affiliation(s)
- Sun-Ryung Lee
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, MA 02129, USA
| | | | | | | |
Collapse
|
160
|
Easton AS. Neutrophils and stroke – Can neutrophils mitigate disease in the central nervous system? Int Immunopharmacol 2013; 17:1218-25. [DOI: 10.1016/j.intimp.2013.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 02/15/2013] [Accepted: 06/09/2013] [Indexed: 12/19/2022]
|
161
|
Huang XT, Zhang YQ, Li SJ, Li SH, Tang Q, Wang ZT, Dong JF, Zhang JN. Intracerebroventricular transplantation of ex vivo expanded endothelial colony-forming cells restores blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury. J Neurotrauma 2013; 30:2080-8. [PMID: 23957220 DOI: 10.1089/neu.2013.2996] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPCs) play a key role in tissue repair and regeneration. Previous studies have shown a positive correlation between the number of circulating EPCs and clinical outcomes of patients with traumatic brain injury (TBI). A recent study has further shown that intravenous infusion of human umbilical cord blood-derived endothelial colony-forming cells (ECFCs) improves outcomes of mice subjected to experimental TBI. This follow-up study was designed to determine whether intracerebroventricular (i.c.v.) infusion of ECFCs, which may reduce systemic effects of these cells, could repair the blood-brain barrier (BBB) and promote angiogenesis of mice with TBI. Adult nude mice were exposed to fluid percussion injury and transplanted i.c.v. with ECFCs on day 1 post-TBI. These ECFCs were detected at the TBI zone 3 days after transplantation by SP-DiIC18(3) and fluorescence in situ hybridization. Mice with ECFCs transplant had reduced Evans blue extravasation and brain water content, increased expression of ZO-1 and claudin-5, and showed a higher expression of angiopoietin 1. Consistent with the previous report, mice with ECFCs transplant had also increased microvascular density. Modified neurological severity score and Morris water maze test indicated significant improvements in motor ability, spatial acquisition and reference memory in mice receiving ECFCs, compared to those receiving saline. These data demonstrate the beneficial effects of ECFC transplant on BBB integrity and angiogenesis in mice with TBI.
Collapse
Affiliation(s)
- Xin-Tao Huang
- 1 Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital , Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Shinozaki M, Nakamura M, Konomi T, Kobayashi Y, Takano M, Saito N, Toyama Y, Okano H. Distinct roles of endogenous vascular endothelial factor receptor 1 and 2 in neural protection after spinal cord injury. Neurosci Res 2013; 78:55-64. [PMID: 24107617 DOI: 10.1016/j.neures.2013.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 01/19/2023]
Abstract
Secondary degeneration after spinal cord injury (SCI) is caused by increased vascular permeability, infiltration of inflammatory cells, and subsequent focal edema. Therapeutic interventions using neurotrophic factors have focused on the prevention of such reactions to reduce cell death and promote tissue regeneration. Vascular endothelial growth factor (VEGF) is a potent angiogenic and vascular permeability factor. However, the effect of VEGF on SCI remains controversial. VEGF signaling is primarily regulated through two primary receptors, VEGF receptor 1 (VEGF-R1) and VEGF receptor 2 (VEGF-R2). The purpose of this study was to examine the effects of intraperitoneal administration of VEGF-R1- and VEGF-R2-neutralizing antibodies on a mouse model of SCI. VEGF-R1 blockade, but not VEGF-R2 blockade, decreased the permeability and infiltration of inflammatory cells, and VEGF-R2 blockade caused a significant increase in neuronal apoptosis in the acute phase of SCI. VEGF-R2 blockade decreased the residual tissue area and the number of neural fibers in the chronic phase of SCI. VEGF-R2 blockade worsened the functional recovery and prolonged the latency of motor evoked potentials. These data suggest that endogenous VEGF-R2 plays a crucial role in neuronal protection after SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Tsunehiko Konomi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiomi Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Morito Takano
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
163
|
Extracellular signal-regulated kinase1/2-dependent changes in tight junctions after ischemic preconditioning contributes to tolerance induction after ischemic stroke. Brain Struct Funct 2013; 220:13-26. [DOI: 10.1007/s00429-013-0632-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
|
164
|
Lee JH, Cui HS, Shin SK, Kim JM, Kim SY, Lee JE, Koo BN. Effect of propofol post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats. Neurochem Res 2013; 38:2276-86. [PMID: 23990224 DOI: 10.1007/s11064-013-1136-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/05/2013] [Accepted: 08/17/2013] [Indexed: 11/28/2022]
Abstract
Although propofol has been reported to offer neuroprotection against cerebral ischemia injury, its impact on cerebral edema following ischemia is not clear. The objective of this investigation is to evaluate the effects of propofol post-treatment on blood-brain barrier (BBB) integrity and cerebral edema after transient cerebral ischemia and its mechanism of action, focusing on modulation of aquaporins (AQPs), matrix metalloproteinases (MMPs), and hypoxia inducible factor (HIF)-1α. Cerebral ischemia was induced in male Sprague-Dawley rats (n = 78) by occlusion of the right middle cerebral artery for 1 h. For post-treatment with propofol, 1 mg kg(-1) min(-1) of propofol was administered for 1 h from the start of reperfusion. Nineteen rats undergoing sham surgery were also included in the investigation. Edema and BBB integrity were assessed by quantification of cerebral water content and extravasation of Evans blue, respectively, following 24 h of reperfusion. In addition, the expression of AQP-1, AQP-4, MMP-2, and MMP-9 was determined 24 h after reperfusion and the expression of HIF-1α was determined 8 h after reperfusion. Propofol post-treatment significantly reduced cerebral edema (P < 0.05) and BBB disruption (P < 0.05) compared with the saline-treated control. The expression of AQP-1, AQP-4, MMP-2, and MMP-9 at 24 h and of HIF-1α at 8 h following ischemia/reperfusion was significantly suppressed in the propofol post-treatment group (P < 0.05). Propofol post-treatment attenuated cerebral edema after transient cerebral ischemia, in association with reduced expression of AQP-1, AQP-4, MMP-2, and MMP-9. The decreased expression of AQPs and MMPs after propofol post-treatment might result from suppression of HIF-1α expression.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
165
|
Mesenchymal stem cells for treatment of neurological disorders: a paracrine effect. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-1087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
166
|
Zhao Y, Li Z, Wang R, Wei J, Li G, Zhao H. Angiopoietin 1 counteracts vascular endothelial growth factor-induced blood–brain barrier permeability and alleviates ischemic injury in the early stages of transient focal cerebral ischemia in rats. Neurol Res 2013; 32:748-55. [DOI: 10.1179/016164109x12445616596562] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
167
|
Chi OZ, Hunter C, Liu X, Weiss HR. Effects of deferoxamine on blood–brain barrier disruption and VEGF in focal cerebral ischemia. Neurol Res 2013; 30:288-93. [PMID: 17767813 DOI: 10.1179/016164107x230135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Deferoxamine, an iron chelator, is reported to induce hypoxia-inducible factor 1 (HIF-1) that leads to transcriptional activation of numerous genes including vascular endothelial growth factor (VEGF) that is known to increase blood-brain barrier (BBB) permeability. This study was performed to test whether deferoxamine would disrupt BBB further in focal cerebral ischemia by altering the level of VEGF. METHODS Rats were injected intraperitoneally with normal saline (control group), 300 mg/kg deferoxamine mesylate 18 (deferoxamine 18 group) or 48 (deferoxamine 48 group) hours before middle cerebral artery (MCA) occlusion. The transfer coefficient (Ki) of 14C-alpha-aminoisobutyric acid (14C-AIB) and the volume of 3H-dextran distribution were determined to measure the degree of BBB disruption 1 hour after MCA occlusion. Immunohistochemistry using a monoclonal VEGF antibody was performed to determine the protein level of VEGF. RESULTS In all groups of animals, the Ki of the ischemic cortex (IC) was higher than that of the corresponding contralateral cortex (CC). In the deferoxamine 18 group, the Ki of the IC was significantly higher than that in the control group (+52%, p<0.05) or deferoxamine 48 group (+72%, p<0.05). The Ki of the CC of all experimental groups were similar. The volume of dextran distribution of the IC was significantly higher than that of the CC only in the deferoxamine 18 group. The number of areas that were stained with VEGF antibody in the deferoxamine 18 group (106 +/- 5/mm2) was significantly higher than that in the control group (54 +/- 2/mm2) or deferoxamine 48 group (58 +/- 1/mm2). DISCUSSION Our data suggest that deferoxamine induced an increase in VEGF but that its effect depends on the time of administration. The increase in VEGF by deferoxamine could aggravate the disruption of BBB in focal cerebral ischemia.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesia, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901-1977, USA.
| | | | | | | |
Collapse
|
168
|
Chi OZ, Hunter C, Liu X, Weiss HR. Effects of VEGF and nitric oxide synthase inhibition on blood–brain barrier disruption in the ischemic and non-ischemic cerebral cortex. Neurol Res 2013; 27:864-8. [PMID: 16354548 DOI: 10.1179/016164105x49418] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES This study was performed to compare the effects of exogenous vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS) inhibition on blood-brain barrier (BBB) disruption in the ischemic cortex (IC) and non-ischemic contralateral cortex (CC) during the early stage of focal cerebral ischemia in rats. METHODS A middle cerebral artery (MCA) was occluded after a craniotomy in each rat under isoflurane anesthesia. Two more craniotomies were performed over the contralateral non-ischemic hemisphere to expose cerebral cortex. For the control rats, the normal saline patches were applied to all three craniotomy holes (control group). To inhibit NOS, NG-nitro-L-arginine-methyl ester (L-NAME) (10 mg/kg) was administered i.v. 20 minutes after MCA occlusion (L-NAME group). In another group, VEGF (10(-10) M) was topically applied 30 minutes after MCA occlusion on the IC as well as one of the holes of the contralateral cortex (VEGF group). To investigate the effects of the combination of VEGF and L-NAME, both L-NAME and VEGF were administered as described above (L-NAME+ VEGF group). The transfer coefficient (Ki) of 14C-alpha-aminoisobutyric acid and the volume of 3H-dextran (70 000 Da) distribution were determined to measure the degree of BBB disruption at 1 hour after MCA occlusion. RESULTS In the control group, Ki of the IC was significantly higher than the contralateral cortex (CC) (p<0.005). VEGF application increased the Ki of the IC further when compared with the control group (+51%, p<0.05%). L-NAME administration produced no significant decrease in the Ki of the IC when compared with the control group. With L-NAME+ VEGF administration, the Ki of the IC became significantly lower than that of the VEGF alone (-38%, p<0.005). Thus, L-NAME produced a much greater decrease in the Ki of the IC in the VEGF treated than the control animals (p<0.05). In the non-IC, VEGF, L-NAME, or their combination did not affect BBB disruption. The volume of dextran distribution followed a similar pattern to Ki. DISCUSSION Our data suggest that even in the early stage of focal cerebral ischemia, the degree of BBB disruption in response to the exogenous VEGF is much greater in the ischemic than in the non-IC and that the mechanism of the increase of BBB disruption by VEGF in the IC involves the NOS pathway.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesia, University of Medicine and Dentistry of New Jersey. Robert Wood Johnson Medical School, New Brunswick, NJ 08901-1977, USA.
| | | | | | | |
Collapse
|
169
|
Abstract
It is being increasingly suggested that the microcirculation, which is known to be in a large part responsible for maintaining an adequate and constant microenvironment for function of the central nervous system, functions as part of a neurovascular unit. The neurovascular unit includes neurons, astrocytes and elements of capillaries. The cerebral circulation exhibits unique functional characteristics and critical elements for the pathogenesis of cerebrovascular disease. For example, the blood-brain barrier formed by epithelial-like high resistance tight junctions within the endothelium is a key feature of microvessels of the central nervous system. Alterations in the microcirculation after ischemia/reperfusion include disruption of the blood-brain barrier, edema and swelling of perivascular astrocyte foot processes, decrease in arteriole endothelium-dependent relaxation and reduced inwardly-rectifying potassium channel function, altered expression of proteases and matrix metalloproteinases, increased inflammatory mediators and inflammation. Experiments studying the microcirculation in ischemia are few compared with those examining neuroprotection, although the two overlap because protection of the microcirculation might achieve some degree of neuroprotection and both processes may be mediated by at least some mechanisms in common.
Collapse
Affiliation(s)
- Masataka Takahashi
- Section of Neurosurgery, Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, IL 60637, USA
| | | |
Collapse
|
170
|
The angiopoietin:Tie 2 interaction: a potential target for future therapies in human vascular disease. Cytokine Growth Factor Rev 2013; 24:579-92. [PMID: 23838360 DOI: 10.1016/j.cytogfr.2013.05.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 01/06/2023]
Abstract
Angiopoietin-1 and -2 are endogenous ligands for the vascular endothelial receptor tyrosine kinase Tie2. Signalling by angiopoietin-1 promotes vascular endothelial cell survival and the sprouting and reorganisation of blood vessels, as well as inhibiting activation of the vascular endothelial barrier to reduce leakage and leucocyte migration into tissues. Angiopoietin-2 generally has an opposing action, and is released naturally at times of vascular growth and inflammation. There is a significant body of emerging evidence that promoting the actions of angiopoietin-1 through Tie2 is of benefit in pathologies of vascular activation, such as sepsis, stroke, diabetic retinopathy and asthma. Similarly, methods to inhibit the actions of angiopoietin-2 are emerging and have been demonstrated to be of preclinical and clinical benefit in reducing tumour angiogenesis. Here the author reviews the evidence for potential benefits of modulation of the interaction of angiopoietins with Tie2, and the potential applications. Additionally, methods for delivery of the complex protein angiopoietin-1 are discussed, as well as potentially deleterious consequences of administering angiopoietin-1.
Collapse
|
171
|
Abstract
INTRODUCTION Stroke is a major cause of mortality and disability in adults worldwide. Unfortunately, current therapy which targets vessel recanalization has a narrow treatment window, and at this time neuroprotective approaches are not effective for stroke treatment. However, after stroke the parenchymal and endothelial cells in the central nervous system (CNS) respond in concert to ischemic stressors and create a microenvironment in which successful recovery may ensue. Neurogenesis, synaptogenesis, axonal sprouting, glial cell activation, angiogenesis and vascular remodeling within the brain and the spinal cord are stimulated post stroke. Cell based-therapy amplifies these endogenous restorative effects within the CNS to promote functional outcome. AREAS COVERED This article reviews current knowledge of cell-based therapy in the adult brain after stroke, including transplanted cell type, benefits and risks, with an emphasis on mechanisms of action. EXPERT OPINION Experimental studies and clinical trials with cell-based therapy in stroke appear promising. Cell-based therapy is not intended for the replacement of damaged cells, but for the remodeling of the CNS by promoting neuroplasticity, angiogenesis and immunomodulation. However, there are risks associated with the use of cell-based therapy, and adequate evaluation of these potential risks is a prerequisite before clinical application for stroke patients.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, Henry Ford Health System, Education & Research Building, #3056, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | |
Collapse
|
172
|
Zhang P, Yu H, Zhou N, Zhang J, Wu Y, Zhang Y, Bai Y, Jia J, Zhang Q, Tian S, Wu J, Hu Y. Early exercise improves cerebral blood flow through increased angiogenesis in experimental stroke rat model. J Neuroeng Rehabil 2013; 10:43. [PMID: 23622352 PMCID: PMC3648391 DOI: 10.1186/1743-0003-10-43] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/22/2013] [Indexed: 01/15/2023] Open
Abstract
Background Early exercise after stroke promoted angiogenesis and increased microvessles density. However, whether these newly formatted vessels indeed give rise to functional vascular and improve the cerebral blood flow (CBF) in impaired brain region is still unclear. The present study aimed to determine the effect of early exercise on angiogenesis and CBF in ischemic region. Methods Adult male Sprague Dawley rats were subjected to 90 min middle cerebral artery occlusion(MCAO)and randomly divided into early exercise and non-exercised control group 24 h later. Two weeks later, CBF in ischemic region was determined by laser speckle flowmetry(LSF). Meantime, micro vessels density, the expression of tie-2, total Akt and phosphorylated Akt (p-Akt), and infarct volume were detected with immunohistochemistry, 2,3,5 triphenyltetrazolium chloride (TTC) staining and western blotting respectively. The function was evaluated by seven point’s method. Results Our results showed that CBF, vessel density and expression of Tie-2, p-Akt in ischemic region were higher in early exercise group compared with those in non-exercise group. Consistent with these results, rats in early exercise group had a significantly reduced infarct volume and better functional outcomes than those in non-exercise group. Conclusions Our results indicated that early exercise after MCAO improved the CBF in ischemic region, reduced infarct volume and promoted the functional outcomes, the underlying mechanism was correlated with angiogenesis in the ischemic cortex.
Collapse
Affiliation(s)
- Pengyue Zhang
- Department of Rehabilitation of Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Tong N, Zhang Z, Zhang W, Qiu Y, Gong Y, Yin L, Qiu Q, Wu X. Diosmin alleviates retinal edema by protecting the blood-retinal barrier and reducing retinal vascular permeability during ischemia/reperfusion injury. PLoS One 2013; 8:e61794. [PMID: 23637907 PMCID: PMC3634841 DOI: 10.1371/journal.pone.0061794] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/13/2013] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury. Methods Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy. Results Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio. Conclusions Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio.
Collapse
Affiliation(s)
- Nianting Tong
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Zhenzhen Zhang
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Wei Zhang
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Yating Qiu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Yuanyuan Gong
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Lili Yin
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Shanghai First People’s Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
174
|
Xie L, Mao X, Jin K, Greenberg DA. Vascular endothelial growth factor-B expression in postischemic rat brain. Vasc Cell 2013; 5:8. [PMID: 23601533 PMCID: PMC3671984 DOI: 10.1186/2045-824x-5-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/19/2013] [Indexed: 01/27/2023] Open
Abstract
Background Vascular endothelial growth factor-B (VEGF-B) protects against experimental stroke, but the effect of stroke on VEGF-B expression is uncertain. Methods We examined VEGF-B expression by immunohistochemistry in the ischemic border zone 1–7 days after middle cerebral artery occlusion in rats. Results VEGF-B immunoreactivity in the border zone was increased after middle cerebral artery occlusion and was associated with neurons and macrophages/microglia, but not astrocytes or endothelial cells. Conclusions These findings provide additional evidence for a role of VEGF-B in the endogenous response to cerebral ischemia.
Collapse
Affiliation(s)
- Lin Xie
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Xiaoou Mao
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Kunlin Jin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA ; Department of Pharmacology & Neuroscience, University of North Texas, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - David A Greenberg
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| |
Collapse
|
175
|
Zhang RL, Zhang ZG, Chopp M. Targeting nitric oxide in the subacute restorative treatment of ischemic stroke. Expert Opin Investig Drugs 2013; 22:843-51. [PMID: 23597052 DOI: 10.1517/13543784.2013.793672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Stroke remains the leading cause of adult disability. Thus, it is imperative to develop restorative therapies for ischemic stroke designed specifically to treat the intact brain tissue to stimulate functional benefit. Therapies targeting amplification of brain repair processes with nitric oxide (NO) donors and phosphodiesterase type 5 (PDE5) inhibitors in preclinical studies are emerging and showing improvement of functional recovery after stroke. AREAS COVERED This review will mainly cover the effect of NO donors, which produce NO, and PDE5 inhibitors, which elevate cyclic guanosine 3',5'-monophosphate (cGMP), on neural restorative events in ischemic brain and highlight mechanisms underlying their restorative therapeutic activity. EXPERT OPINION During stroke recovery, interwoven restorative events occur in ischemic brain, which include angiogenesis, neurogenesis, oligodendrogenesis, astrogliosis and neurite outgrowth. Emerging preclinical data indicate that restorative therapies targeting multiple parenchymal cells including neural stem cells, cerebral endothelial cells, astrocytes, oligodendrocytes, neurons would be more effective than agents with a single cell target. Preclinical data suggest that elevated cGMP levels induced by NO donors and PDE5 inhibitors act on cerebral endothelial cells, neural stem cells and oligodendrocyte progenitor cells to enhance stroke-induced angiogenesis, neurogenesis and oligodendrogenesis, respectively. These interacting remodeling events collectively improve neurological function after stroke.
Collapse
Affiliation(s)
- Rui Lan Zhang
- Henry Ford Hospital, Department of Neurology, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | |
Collapse
|
176
|
Matsuo R, Ago T, Kamouchi M, Kuroda J, Kuwashiro T, Hata J, Sugimori H, Fukuda K, Gotoh S, Makihara N, Fukuhara M, Awano H, Isomura T, Suzuki K, Yasaka M, Okada Y, Kiyohara Y, Kitazono T. Clinical significance of plasma VEGF value in ischemic stroke - research for biomarkers in ischemic stroke (REBIOS) study. BMC Neurol 2013; 13:32. [PMID: 23566234 PMCID: PMC3637234 DOI: 10.1186/1471-2377-13-32] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 03/27/2013] [Indexed: 12/31/2022] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is a well-known molecule mediating neuronal survival and angiogenesis. However, its clinical significance in ischemic stroke is still controversial. The goal of this study was to examine the temporal profile of plasma VEGF value and its clinical significance in ischemic stroke with taking its subtypes into consideration. Methods We prospectively enrolled 171 patients with ischemic stroke and age- and gender-matched healthy subjects. The stroke patients were divided into 4 subtypes: atherothrombotic infarction (ATBI, n = 34), lacunar infarction (LAC, n = 45), cardioembolic infarction (CE, n = 49) and other types (OT, n = 43). Plasma VEGF values were measured as a part of multiplex immunoassay (Human MAP v1.6) and we obtained clinical information at 5 time points (days 0, 3, 7, 14 and 90) after the stroke onset. Results Plasma VEGF values were significantly higher in all stroke subtypes but OT than those in the controls throughout 90 days after stroke onset. There was no significant difference in the average VEGF values among ATBI, LAC, and CE. VEGF values were positively associated with neurological severity in CE patients, while a negative association was found in ATBI patients. After adjustment for possible confounding factors, plasma VEGF value was an independent predictor of poor functional outcome in CE patients. Conclusions Although plasma VEGF value increases immediately after the stroke onset equally in all stroke subtypes, its significance in functional outcome may be different among the stroke subtypes.
Collapse
Affiliation(s)
- Ryu Matsuo
- Department of Medicine and Clinical Science, Kyushu University, 3-1-1 Maidashi, higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Kundi S, Bicknell R, Ahmed Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci Res 2013; 76:1-9. [PMID: 23562792 DOI: 10.1016/j.neures.2013.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Patients with spinal cord injury (SCI) are permanently paralysed and anaesthetic below the lesion. This morbidity is attributed to the deposition of a dense scar at the injury site, the cellular components of which secrete axon growth inhibitory ligands that prevent severed axons reconnecting with denervated targets. Another complication of SCI is wound cavitation where a fluid filled cyst forms in the peri-lesion neuropil, enlarging over the first few months after injury and causes secondary axonal damage. Wound healing after SCI is accompanied by angiogenesis, which is regulated by angiogenic proteins, produced in response to oxygen deprivation. Necrosis in and about the SCI lesion sites may be suppressed by promoting angiogenesis and the resulting neuropil protection will enhance recovery after SCI. This review addresses the use of angiogenic/wound-healing related proteins including vascular endothelial growth factor, fibroblast growth factor, angiopoietin-1, angiopoietin-2 and transforming growth factor-β to moderate necrosis and axon sparing after SCI, providing a conducive environment for growth essential to functional recovery.
Collapse
Affiliation(s)
- Sarina Kundi
- Neurotrauma and Neurodegeneration, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
178
|
Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 2013; 70:1753-61. [PMID: 23475070 DOI: 10.1007/s00018-013-1282-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factors (VEGFs) have been shown to participate in atherosclerosis, arteriogenesis, cerebral edema, neuroprotection, neurogenesis, angiogenesis, postischemic brain and vessel repair, and the effects of transplanted stem cells in experimental stroke. Most of these actions involve VEGF-A and the VEGFR-2 receptor, but VEGF-B, placental growth factor, and VEGFR-1 have been implicated in some cases as well. VEGF signaling pathways represent important potential targets for the acute and chronic treatment of stroke.
Collapse
|
179
|
Abstract
BACKGROUND Fetal hypoxia contributes significantly to the pathogenesis of permanent perinatal brain injury. We hypothesized that hypoxia-induced cerebral angiogenesis and microvascular changes would occur in fetal sheep subjected to a severe hypoxic insult produced by umbilical cord occlusion (UCO) for 10 min. METHODS At 124-126 d of gestation, singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10-min UCO or sham UCO (n = 5) was induced at 130 d gestation. The fetal brain was collected at 24 h (n = 5) or 48 h (n = 4) after UCO for immunohistochemical analysis of vascular endothelial growth factor (VEGF), Ki67, and serum albumin. RESULTS By 48 h after UCO, the percentage of blood vessels expressing VEGF had increased in the subventricular zone, periventricular and subcortical white matter, corpus callosum, and cortex. Alterations in vascular permeability (albumin extravasation) were observed only in the periventricular and subcortical white matter and the subventricular zone following UCO. CONCLUSION The upregulation of VEGF expression and increased leakage of plasma protein in the fetal sheep brain show that the microvasculature in white matter is sensitive to hypoxia in the near-term brain.
Collapse
|
180
|
Efficacy of single and multiple injections of human umbilical tissue-derived cells following experimental stroke in rats. PLoS One 2013; 8:e54083. [PMID: 23342081 PMCID: PMC3544758 DOI: 10.1371/journal.pone.0054083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
Introduction Human umbilical tissue-derived cells (hUTC) are a promising source of cells for regenerative treatment of stroke. In this study, we tested the efficacy of hUTC in experimental stroke and whether multiple injections of hUTC provide additional therapeutic benefits as compared to a single injection. Methods Adult male Wistar rats were subjected to 2 hours of middle cerebral artery occlusion (MCAo), and randomly selected animals were injected (i.v) with 3×106 hUTC or with vehicle control (at day: 1, 1&3 or 1&7 after MCAo, n = 8–9/group). A battery of functional outcome tests was performed at days 1, 7, 14, 21, 28, 35, 42, 49, 56 and 63 after MCAo. Rats were sacrificed at 63 days after MCAo and lesion volumes were measured. To investigate the underlying mechanism of hUTC treatment of stroke, Von Willebrand Factor (vWF), and Synaptophysin immunostaining were performed. Results All hUTC treated groups, single or multiple injections, had better functional recovery compared to control (p<0.01). There was no statistically significant difference between a single and multiple injections of hUTC (p = 0.23) or between different multiple injections groups (p>0.07) in functional outcome. All hUTC treatment groups showed significant increases in Synaptophysin, vascular density and perimeter compared to the control group (p<0.05). There was no statistically significant difference between a single and multiple injections of hUTC or between the two groups of multiple injections in all immunohistochemical measurements (p>0.1). Conclusion hUTC treatment significantly improves long term functional outcome after stroke and promotes vascular density and synaptic plasticity. At the proscribed doses, multiple injections of hUTC were not superior to single injection therapy in both functional outcome and histological assessments.
Collapse
|
181
|
Easton AS. Regulation of permeability across the blood-brain barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:1-19. [PMID: 23397617 DOI: 10.1007/978-1-4614-4711-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier refers to the very low permeability across microvessels in the Central Nervous System (CNS), created by the interaction between vascular endothelial cells and surrounding cells of the neurovascular unit. Permeability can be modulated (increased and decreased) by a variety of factors including inflammatory mediators, inflammatory cells such as neutrophils and through alterations in the phenotype of blood vessels during angiogenesis and apoptosis. In this chapter, some of these factors are discussed as well as the challenge of treating harmful increases in permeability that result in brain swelling (vasogenic cerebral edema).
Collapse
Affiliation(s)
- Alexander S Easton
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
182
|
Zhao YH, Yuan B, Chen J, Feng DH, Zhao B, Qin C, Chen YF. Endothelial progenitor cells: therapeutic perspective for ischemic stroke. CNS Neurosci Ther 2012; 19:67-75. [PMID: 23230897 DOI: 10.1111/cns.12040] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022] Open
Abstract
Endothelial progenitor cells (EPCs), which can be cultured in vitro from mononuclear cells in peripheral blood or bone marrow, express both hematopoietic stem cell and endothelial cell markers on their surface. They are believed to participate in endothelial repair and postnatal angiogenesis due to their abilities of differentiating into endothelial cells and secreting protective cytokines and growth factors. Mounting evidence suggests that circulating EPCs are reduced and dysfunctional in various diseases including hypertension, diabetes, coronary heart disease, and ischemic stroke. Therefore, EPCs have been documented to be a potential biomarker for vascular diseases and a hopeful candidate for regenerative medicine. Ischemic stroke, as the major cause of disability and death, still has limited therapeutics based on the approaches of vascular recanalization or neuronal protection. Emerging evidence indicates that transplantation of EPCs is beneficial for the recovery of ischemic cerebral injury. EPC-based therapy could open a new avenue for ischemic cerebrovascular disease. Currently, clinical trials for evaluating EPC transfusion in treating ischemic stroke are underway. In this review, we summarize the general conceptions and the characteristics of EPCs, and highlight the recent research developments on EPCs. More importantly, the rationale, perspectives, and strategies for using them to treat ischemic stroke will be discussed.
Collapse
Affiliation(s)
- Yu-Hui Zhao
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | | | | | | | |
Collapse
|
183
|
Baburamani AA, Ek CJ, Walker DW, Castillo-Melendez M. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Front Physiol 2012; 3:424. [PMID: 23162470 PMCID: PMC3493883 DOI: 10.3389/fphys.2012.00424] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/17/2012] [Indexed: 11/13/2022] Open
Abstract
As clinicians attempt to understand the underlying reasons for the vulnerability of different regions of the developing brain to injury, it is apparent that little is known as to how hypoxia-ischemia may affect the cerebrovasculature in the developing infant. Most of the research investigating the pathogenesis of perinatal brain injury following hypoxia-ischemia has focused on excitotoxicity, oxidative stress and an inflammatory response, with the response of the developing cerebrovasculature receiving less attention. This is surprising as the presentation of devastating and permanent injury such as germinal matrix-intraventricular haemorrhage (GM-IVH) and perinatal stroke are of vascular origin, and the origin of periventricular leukomalacia (PVL) may also arise from poor perfusion of the white matter. This highlights that cerebrovasculature injury following hypoxia could primarily be responsible for the injury seen in the brain of many infants diagnosed with hypoxic-ischemic encephalopathy (HIE). Interestingly the highly dynamic nature of the cerebral blood vessels in the fetus, and the fluctuations of cerebral blood flow and metabolic demand that occur following hypoxia suggest that the response of blood vessels could explain both regional protection and vulnerability in the developing brain. However, research into how blood vessels respond following hypoxia-ischemia have mostly been conducted in adult models of ischemia or stroke, further highlighting the need to investigate how the developing cerebrovasculature responds and the possible contribution to perinatal brain injury following hypoxia. This review discusses the current concepts on the pathogenesis of perinatal brain injury, the development of the fetal cerebrovasculature and the blood brain barrier (BBB), and key mediators involved with the response of cerebral blood vessels to hypoxia.
Collapse
Affiliation(s)
- Ana A Baburamani
- The Ritchie Centre, Monash Medical Centre, Monash Institute of Medical Research, Clayton Melbourne, VIC, Australia ; Sahlgrenska Academy, Gothenburg University Göteborg, Sweden
| | | | | | | |
Collapse
|
184
|
Dedeurwaerdere S, Callaghan PD, Pham T, Rahardjo GL, Amhaoul H, Berghofer P, Quinlivan M, Mattner F, Loc'h C, Katsifis A, Grégoire MC. PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res 2012; 2:60. [PMID: 23136853 PMCID: PMC3570346 DOI: 10.1186/2191-219x-2-60] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, inflammatory cascades have been suggested as a target for epilepsy therapy. Positron emission tomography (PET) imaging offers the unique possibility to evaluate brain inflammation longitudinally in a non-invasive translational manner. This study investigated brain inflammation during early epileptogenesis in the post-kainic acid-induced status epilepticus (KASE) model with post-mortem histology and in vivo with [18F]-PBR111 PET. METHODS Status epilepticus (SE) was induced (N = 13) by low-dose injections of KA, while controls (N = 9) received saline. Translocator protein (TSPO) expression and microglia activation were assessed with [125I]-CLINDE autoradiography and OX-42 immunohistochemistry, respectively, 7 days post-SE. In a subgroup of rats, [18F]-PBR111 PET imaging with metabolite-corrected input function was performed before post-mortem evaluation. [18F]-PBR111 volume of distribution (Vt) in volume of interests (VOIs) was quantified by means of kinetic modelling and a VOI/metabolite-corrected plasma activity ratio. RESULTS Animals with substantial SE showed huge overexpression of TSPO in vitro in relevant brain regions such as the hippocampus and amygdala (P < 0.001), while animals with mild symptoms displayed a smaller increase in TSPO in amygdala only (P < 0.001). TSPO expression was associated with OX-42 signal but without obvious cell loss. Similar in vivo [18F]-PBR111 increases in Vt and the simplified ratio were found in key regions such as the hippocampus (P < 0.05) and amygdala (P < 0.01). CONCLUSION Both post-mortem and in vivo methods substantiate that the brain regions important in seizure generation display significant brain inflammation during epileptogenesis in the KASE model. This work enables future longitudinal investigation of the role of brain inflammation during epileptogenesis and evaluation of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Stefanie Dedeurwaerdere
- Department of Translational Neuroscience, University of Antwerp, FGEN CDE T4.20, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- LifeSciences, ANSTO, Locked Bag, Kirrawee DC, NSW, 2232, Australia
| | - Paul D Callaghan
- LifeSciences, ANSTO, Locked Bag, Kirrawee DC, NSW, 2232, Australia
| | - Tien Pham
- LifeSciences, ANSTO, Locked Bag, Kirrawee DC, NSW, 2232, Australia
| | - Gita L Rahardjo
- LifeSciences, ANSTO, Locked Bag, Kirrawee DC, NSW, 2232, Australia
| | - Halima Amhaoul
- Department of Translational Neuroscience, University of Antwerp, FGEN CDE T4.20, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Paula Berghofer
- LifeSciences, ANSTO, Locked Bag, Kirrawee DC, NSW, 2232, Australia
| | | | - Filomena Mattner
- LifeSciences, ANSTO, Locked Bag, Kirrawee DC, NSW, 2232, Australia
| | - Christian Loc'h
- LifeSciences, ANSTO, Locked Bag, Kirrawee DC, NSW, 2232, Australia
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW, 2050, Australia
| | | |
Collapse
|
185
|
Udan RS, Culver JC, Dickinson ME. Understanding vascular development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:327-46. [PMID: 23799579 DOI: 10.1002/wdev.91] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vasculature of an organism has the daunting task of connecting all the organ systems to nourish tissue and sustain life. This complex network of vessels and associated cells must maintain blood flow, but constantly adapt to acute and chronic changes within tissues. While the vasculature has been studied for over a century, we are just beginning to understand the processes that regulate its formation and how genetic hierarchies are influenced by mechanical and metabolic cues to refine vessel structure and optimize efficiency. As we gain insights into the developmental mechanisms, it is clear that the processes that regulate blood vessel development can also enable the adult to adapt to changes in tissues that can be elicited by exercise, aging, injury, or pathology. Thus, research in vessel development has provided tremendous insights into therapies for vascular diseases and disorders, cancer interventions, wound repair and tissue engineering, and in turn, these models have clearly impacted our understanding of development. Here we provide an overview of the development of the vascular system, highlighting several areas of active investigation and key questions that remain to be answered.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
186
|
Sztriha LK, O'Gorman RL, Modo M, Barker GJ, Williams SCR, Kalra L. Monitoring brain repair in stroke using advanced magnetic resonance imaging. Stroke 2012; 43:3124-31. [PMID: 23010674 DOI: 10.1161/strokeaha.111.649244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laszlo K Sztriha
- Department of clinical Neuroscience, Institute of Psychiatry, King's College London, Denmark Hill, SE5 8AF, London, UK.
| | | | | | | | | | | |
Collapse
|
187
|
Increase of 20-HETE synthase after brain ischemia in rats revealed by PET study with 11C-labeled 20-HETE synthase-specific inhibitor. J Cereb Blood Flow Metab 2012; 32:1737-46. [PMID: 22669478 PMCID: PMC3434634 DOI: 10.1038/jcbfm.2012.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), an arachidonic acid metabolite known to be produced after cerebral ischemia, has been implicated in ischemic and reperfusion injury by mediating vasoconstriction. To develop a positron emission tomography (PET) probe for 20-HETE synthase imaging, which might be useful for monitoring vasoconstrictive processes in patients with brain ischemia, we synthesized a (11)C-labeled specific 20-HETE synthase inhibitor, N'(4-dimethylaminohexyloxy)phenyl imidazole ([(11)C]TROA). Autoradiographic study showed that [(11)C]TROA has high-specific binding in the kidney and liver consistent with the previously reported distribution of 20-HETE synthase. Using transient middle cerebral artery occlusion in rats, PET study showed significant increases in the binding of [(11)C]TROA in the ipsilateral hemisphere of rat brains after 7 and 10 days, which was blocked by co-injection of excess amounts of TROA (10 mg/kg). The increased [(11)C]TROA binding on the ipsilateral side returned to basal levels within 14 days. In addition, quantitative real-time PCR revealed that increased expression of 20-HETE synthase was only shown on the ipsilateral side on day 7. These results indicate that [(11)C]TROA might be a useful PET probe for imaging of 20-HETE synthase in patients with cerebral ischemia.
Collapse
|
188
|
Nih LR, Deroide N, Leré-Déan C, Lerouet D, Soustrat M, Levy BI, Silvestre JS, Merkulova-Rainon T, Pocard M, Margaill I, Kubis N. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration. Eur J Neurosci 2012; 35:1208-17. [PMID: 22512253 DOI: 10.1111/j.1460-9568.2012.08041.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke.
Collapse
Affiliation(s)
- Lina R Nih
- INSERM U965, Angiogenesis and Translational Research Center, Hôpital Lariboisière, 41 Bld de Chapelle, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Koyama Y, Maebara Y, Hayashi M, Nagae R, Tokuyama S, Michinaga S. Endothelins reciprocally regulate VEGF-A and angiopoietin-1 production in cultured rat astrocytes: implications on astrocytic proliferation. Glia 2012; 60:1954-63. [PMID: 22927341 DOI: 10.1002/glia.22411] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/11/2012] [Accepted: 07/31/2012] [Indexed: 11/07/2022]
Abstract
Vascular endothelial growth factors (VEGFs) and angiopoietins (ANGs) are involved in pathophysiological responses in damaged nerve tissues. Astrocytes produce VEGFs and ANGs upon brain ischemia and traumatic injury. To clarify the extracellular signals regulating VEGF and ANG production, effects of endothelins (ETs), a family of endothelium-derived peptides, were examined in cultured rat astrocytes. ET-1 (100 nM) and Ala(1,3,11,15)-ET-1 (100 nM), an ET(B) receptor agonist, increased VEGF-A mRNA levels in cultured astrocytes, while ANG-1 mRNA was decreased by ETs. ET-1 did not affect astrocytic VEGF-B, placental growth factor (PLGF), and ANG-2 mRNA levels. The effects of ET-1 on VEGF-A and ANG-1 mRNAs were inhibited by BQ788, an ET(B) antagonist. Release of VEGF-A proteins from cultured astrocytes was increased by ET-1. In contrast, ET-1 reduced release of astrocytic ANG-1. Exogenous ET-1 (100 nM) and VEGF(165) (100 ng/mL), an isopeptide of VEGF-A, stimulated bromodeoxyuridine (BrdU) incorporation into cultured astrocytes. Treatment with ET-1 and VEGF(165) increased the numbers of cyclin D1-positive astrocytes. Exogenous ANG-1 (250 ng/mL) did not stimulate the BrdU incorporation. Increases in BrdU incorporation by ET-1 and VEGF(165) were not affected by ANG-1. In 60-70% confluent cultures, SU4312 (10 μM), a VEGF receptor tyrosine kinase inhibitor, partially reduced the effects of ET-1 on BrdU incorporation and cyclin D1 expression. ET-induced BrdU incorporation and cyclin D1 expression were reduced by a neutralizing antibody against VEGF-A. Our findings suggest that ET-1 is a factor regulating astrocytic VEGF-A and ANG-1, and that increased VEGF-A production potentiates ET-induced astrocytic proliferation by an autocrine mechanism.
Collapse
Affiliation(s)
- Yutaka Koyama
- Faculty of Pharmacy, Laboratory of Pharmacology, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tonda-bayashi, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
190
|
Jiang Q, Thiffault C, Kramer BC, Ding GL, Zhang L, Nejad-Davarani SP, Li L, Arbab AS, Lu M, Navia B, Victor SJ, Hong K, Li QJ, Wang SY, Li Y, Chopp M. MRI detects brain reorganization after human umbilical tissue-derived cells (hUTC) treatment of stroke in rat. PLoS One 2012; 7:e42845. [PMID: 22900057 PMCID: PMC3416784 DOI: 10.1371/journal.pone.0042845] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022] Open
Abstract
Human umbilical tissue-derived cells (hUTC) represent an attractive cell source and a potential technology for neurorestoration and improvement of functional outcomes following stroke. Male Wistar rats were subjected to a transient middle cerebral artery occlusion (tMCAo) and were intravenously administered hUTC (N = 11) or vehicle (N = 10) 48 hrs after stroke. White matter and vascular reorganization was monitored over a 12-week period using MRI and histopathology. MRI results were correlated with neurological functional and histology outcomes to demonstrate that MRI can be a useful tool to measure structural recovery after stroke. MRI revealed a significant reduction in the ventricular volume expansion and improvement in cerebral blood flow (CBF) in the hUTC treated group compared to vehicle treated group. Treatment with hUTC resulted in histological and functional improvements as evidenced by enhanced expression of vWF and synaptophysin, and improved outcomes on behavioral tests. Significant correlations were detected between MRI ventricular volumes and histological lesion volume as well as number of apoptotic cells. A positive correlation was also observed between MRI CBF or cerebral blood volume (CBV) and histological synaptic density. Neurological functional tests were also significantly correlated with MRI ventricular volume and CBV. Our data demonstrated that MRI measurements can detect the effect of hUTC therapy on the brain reorganization and exhibited positive correlation with histological measurements of brain structural changes and functional behavioral tests after stroke. MRI ventricular volumes provided the most sensitive index in monitoring brain remodeling and treatment effects and highly correlated with histological and functional measurements.
Collapse
Affiliation(s)
- Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Ulbrich C, Zendedel A, Habib P, Kipp M, Beyer C, Dang J. Long-term cerebral cortex protection and behavioral stabilization by gonadal steroid hormones after transient focal hypoxia. J Steroid Biochem Mol Biol 2012; 131:10-6. [PMID: 22326729 DOI: 10.1016/j.jsbmb.2012.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/15/2012] [Indexed: 01/15/2023]
Abstract
Sex steroids are neuroprotective following traumatic brain injury or during neurodegenerative processes. In a recent short-term study, we have shown that 17β-estradiol (E) and progesterone (P) applied directly after ischemia reduced the infarct volume by more than 70%. This protection might primarily result from the anti-inflammatory effects of steroids. Here, we focus on the long-term neuroprotection by both steroids with respect to the infarct volume, functional recovery, and vessel density in the penumbra. The application of E/P during the first 48h after stroke (transient middle cerebral artery occlusion, tMCAO) revealed neuroprotection after two weeks. The infarct area was reduced by 70% and motor activity was preserved compared to placebo-treated animals. Blood vessel density in the penumbra using immunohistochemistry for von Willebrand factor showed increased vessel density after tMCAO which was not affected by hormones. Expression of vascular endothelial growth factor (VEGF) and its receptor (R1) was increased at 24h after tMCAO and up-regulated by E/P but not changed 14 days after stroke. These findings suggest that the neuroprotective potency of both steroids is sustained and persists for at least two weeks. Besides anti-inflammatory and anti-apoptotic actions, angiogenesis in the damaged area appears to be initially affected early after ischemia and is manifested up to two weeks. This article is part of a Special Issue entitled 'Neurosteroids'.
Collapse
Affiliation(s)
- Cordula Ulbrich
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
192
|
Wang Z, Tsai LK, Munasinghe J, Leng Y, Fessler EB, Chibane F, Leeds P, Chuang DM. Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 2012; 43:2430-6. [PMID: 22811460 DOI: 10.1161/strokeaha.112.652545] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Enhanced angiogenesis facilitates neurovascular remodeling processes and promotes brain functional recovery after stroke. Previous studies from our laboratory demonstrated that valproate (VPA), a histone deacetylase inhibitor, protects against experimental brain ischemia. The present study investigated whether VPA could enhance angiogenesis and promote long-term functional recovery after ischemic stroke. METHODS Male rats underwent middle cerebral artery occlusion for 60 minutes followed by reperfusion for up to 14 days. Assessed parameters were: locomotor function through the Rotarod test; infarct volume through T2-weighted MRI; microvessel density through immunohistochemistry; relative cerebral blood flow through perfusion-weighted imaging; protein levels of proangiogenic factors through Western blotting; and matrix metalloproteinase-2/9 activities through gelatin zymography. RESULTS Postischemic VPA treatment robustly improved the Rotarod performance of middle cerebral artery occlusion rats on Days 7 and 14 after ischemia and significantly reduced brain infarction on Day 14. Concurrently, VPA markedly enhanced microvessel density, facilitated endothelial cell proliferation, and increased relative cerebral blood flow in the ipsilateral cortex. The transcription factor hypoxia-inducible factor-1α and its downstream proangiogenic factors, vascular endothelial growth factor and matrix metalloproteinase-2/9, were upregulated after middle cerebral artery occlusion and significantly potentiated by VPA in the ipsilateral cortex. Acetylation of histone-H3 and H4 was robustly increased by chronic VPA treatment. The beneficial effects of VPA on Rotarod performance and microvessel density were abolished by hypoxia-inducible factor-1α inhibition. CONCLUSIONS Chronic VPA treatment enhances angiogenesis and promotes functional recovery after brain ischemia. These effects may involve histone deacetylase inhibition and upregulation of hypoxia-inducible factor-1α and its downstream proangiogenic factors vascular endothelial growth factor and matrix metalloproteinase-2/9.
Collapse
Affiliation(s)
- Zhifei Wang
- Molecular Neurobiology Section, NIMH, NIH, 10 Center Drive, MSC 1363, Bethesda, MD 20892-1363, USA
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Ishii T, Asai T, Oyama D, Fukuta T, Yasuda N, Shimizu K, Minamino T, Oku N. Amelioration of cerebral ischemia–reperfusion injury based on liposomal drug delivery system with asialo-erythropoietin. J Control Release 2012; 160:81-7. [DOI: 10.1016/j.jconrel.2012.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/06/2012] [Indexed: 11/29/2022]
|
194
|
Savignon T, Costa E, Tenorio F, Manhães AC, Barradas PC. Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum. PLoS One 2012; 7:e35786. [PMID: 22540005 PMCID: PMC3335161 DOI: 10.1371/journal.pone.0035786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/22/2012] [Indexed: 12/03/2022] Open
Abstract
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.
Collapse
Affiliation(s)
- Tiago Savignon
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Everton Costa
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenorio
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
195
|
Teng H, Chopp M, Hozeska-Solgot A, Shen L, Lu M, Tang C, Zhang ZG. Tissue plasminogen activator and plasminogen activator inhibitor 1 contribute to sonic hedgehog-induced in vitro cerebral angiogenesis. PLoS One 2012; 7:e33444. [PMID: 22432023 PMCID: PMC3303815 DOI: 10.1371/journal.pone.0033444] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/09/2012] [Indexed: 01/14/2023] Open
Abstract
The molecular mechanisms underlying cerebral angiogenesis have not been fully investigated. Using primary mouse brain endothelial cells (MBECs) and a capillary-like tube formation assay, we investigated whether the sonic hedgehog (Shh) signaling pathway is coupled with the plasminogen/plasmin system in mediating cerebral angiogenesis. We found that incubation of MBECs with recombinant human Shh (rhShh) substantially increased the tube formation in naïve MBECs. This was associated with increases in tissue plasminogen activator (tPA) activation and reduction of plasminogen activator inhibitor 1 (PAI-1). Blockage of the Shh pathway with cyclopamine abolished the induction of tube formation and the effect of rhShh on tPA and PAI-1. Addition of PAI-1 reduced rhShh-augmented tube formation. Genetic ablation of tPA in MBECs impaired tube formation and downregulated of vascular endothelial growth factor (VEGF) and angiopoietin 1 (Ang1). Addition of rhShh to tPA−/− MBECs only partially restored the tube formation and upregulated Ang1, but not VEGF, although rhShh increased VEGF and Ang1 expression on wild-type MBECs. Complete restoration of tube formation in tPA−/− MBECs was observed only when both exogenous Shh and tPA were added. The present study provides evidence that tPA and PAI-1 contribute to Shh-induced in vitro cerebral angiogenesis.
Collapse
Affiliation(s)
- Hua Teng
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Ann Hozeska-Solgot
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Lihong Shen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Clark Tang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
196
|
Kamouchi M, Ago T, Kuroda J, Kitazono T. The possible roles of brain pericytes in brain ischemia and stroke. Cell Mol Neurobiol 2012; 32:159-65. [PMID: 21830084 PMCID: PMC11498554 DOI: 10.1007/s10571-011-9747-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023]
Abstract
Brain pericytes regulate a variety of functions, such as microcirculation, angiogenesis, and the blood brain barrier in the brain. Recent studies have also shown that they are pluripotent in a manner similar to mesenchymal stem cells. Since, brain pericytes actively control these functions, these cells probably play an important role not only during brain ischemia, but also in the post-stroke period.
Collapse
Affiliation(s)
- Masahiro Kamouchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
197
|
The Translation Procedure of Low-Level Laser Therapy in Acute Ischemic Stroke: A Nonpharmaceutics Noninvasive Method. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
198
|
Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM, Steinberg GK. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 2011; 29:274-85. [PMID: 21732485 DOI: 10.1002/stem.584] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell transplantation offers a novel therapeutic strategy for stroke; however, how transplanted cells function in vivo is poorly understood. We show for the first time that after subacute transplantation into the ischemic brain of human central nervous system stem cells grown as neurospheres (hCNS-SCns), the stem cell-secreted factor, human vascular endothelial growth factor (hVEGF), is necessary for cell-induced functional recovery. We correlate this functional recovery to hVEGF-induced effects on the host brain including multiple facets of vascular repair and its unexpected suppression of the inflammatory response. We found that transplanted hCNS-SCns affected multiple parameters in the brain with different kinetics: early improvement in blood-brain barrier integrity and suppression of inflammation was followed by a delayed spatiotemporal regulated increase in neovascularization. These events coincided with a bimodal pattern of functional recovery, with, an early recovery independent of neovascularization, and a delayed hVEGF-dependent recovery coincident with neovascularization. Therefore, cell transplantation therapy offers an exciting multimodal strategy for brain repair in stroke and potentially other disorders with a vascular or inflammatory component.
Collapse
Affiliation(s)
- Nobutaka Horie
- Department of Neurosurgery and Stanford Stroke Center, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California 94305-5487, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume. J Cereb Blood Flow Metab 2011; 31:2343-51. [PMID: 21772310 PMCID: PMC3323197 DOI: 10.1038/jcbfm.2011.97] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular endothelial growth factor (VEGF)-induced neovasculature is immature and leaky. We tested if coexpression of angiopoietin-1 (ANG1) with VEGF improves blood-brain barrier (BBB) integrity and VEGF neuroprotective and neurorestorative effects using a permanent distal middle cerebral artery occlusion (pMCAO) model. Adult CD-1 mice were injected with 2 × 10(9) virus genomes of adeno-associated viral vectors expressing VEGF (AAV-VEGF) or ANG1 (AAV-ANG1) individually or together in a 1:1 ratio into the ischemic penumbra 1 hour after pMCAO. AAV-LacZ was used as vector control. Samples were collected 3 weeks later. Compared with AAV-LacZ, coinjection of AAV-VEGF and AAV-ANG1 reduced atrophy volume (46%, P=0.004); injection of AAV-VEGF or AAV-ANG1 individually reduced atrophy volume slightly (36%, P=0.08 and 33%, P=0.09, respectively). Overexpression of VEGF reduced tight junction protein expression and increased Evans blue extravasation. Compared with VEGF expression alone, coexpression of ANG1 with VEGF resulted in upregulation of tight junction protein expression and reduction of Evans blue leakage (AAV-ANG1/AAV-VEGF: 1.4 ± 0.3 versus AAV-VEGF: 2.8 ± 0.7, P=0.001). Coinjection of AAV-VEGF and AAV-ANG1 induced a similar degree of angiogenesis as injection of AAV-VEGF alone (P=0.85). Thus, coexpression of ANG1 with VEGF improved BBB integrity and resulted in better neuroprotection compared with VEGF expression alone.
Collapse
|
200
|
|