151
|
Nunez Y, Balalian A, Parks RM, He MZ, Hansen J, Raaschou-Nielsen O, Ketzel M, Khan J, Brandt J, Vermeulen R, Peters S, Weisskopf MG, Re DB, Goldsmith J, Kioumourtzoglou MA. Exploring Relevant Time Windows in the Association Between PM2.5 Exposure and Amyotrophic Lateral Sclerosis: A Case-Control Study in Denmark. Am J Epidemiol 2023; 192:1499-1508. [PMID: 37092253 PMCID: PMC10666968 DOI: 10.1093/aje/kwad099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/08/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Studies suggest a link between particulate matter less than or equal to 2.5 μm in diameter (PM2.5) and amyotrophic lateral sclerosis (ALS), but to our knowledge critical exposure windows have not been examined. We performed a case-control study in the Danish population spanning the years 1989-2013. Cases were selected from the Danish National Patient Registry based on International Classification of Diseases codes. Five controls were randomly selected from the Danish Civil Registry and matched to a case on vital status, age, and sex. PM2.5 concentration at residential addresses was assigned using monthly predictions from a dispersion model. We used conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for confounding. We evaluated exposure to averaged PM2.5 concentrations 12-24 months, 2-6 years, and 2-11 years pre-ALS diagnosis; annual lagged exposures up to 11 years prediagnosis; and cumulative associations for exposure in lags 1-5 years and 1-10 years prediagnosis, allowing for varying association estimates by year. We identified 3,983 cases and 19,915 controls. Cumulative exposure to PM2.5 in the period 2-6 years prediagnosis was associated with ALS (OR = 1.06, 95% CI: 0.99, 1.13). Exposures in the second, third, and fourth years prediagnosis were individually associated with higher odds of ALS (e.g., for lag 1, OR = 1.04, 95% CI: 1.00, 1.08). Exposure to PM2.5 within 6 years before diagnosis may represent a critical exposure window for ALS.
Collapse
Affiliation(s)
- Yanelli Nunez
- Correspondence to Dr. Yanelli Nunez, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th Street, New York, NY 10032 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Zheng C, Li W, Ali T, Peng Z, Liu J, Pan Z, Feng J, Li S. Ibrutinib Delays ALS Installation and Increases Survival of SOD1 G93A Mice by Modulating PI3K/mTOR/Akt Signaling. J Neuroimmune Pharmacol 2023; 18:383-396. [PMID: 37326908 DOI: 10.1007/s11481-023-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal multisystem degenerative disorder with minimal available therapeutic. However, some recent studies showed promising results of immunological-based treatment. Here, we aimed to evaluate the efficacy of ibrutinib against ALS-associated abnormalities by targeting inflammation and muscular atrophy. Ibrutinib was administrated orally to SOD1 G93A mice from 6 to 19 weeks for prophylactic administration and 13 to 19 weeks for therapeutic administration. Our results demonstrated that ibrutinib treatment significantly delayed ALS-like symptom onset in the SOD1 G93A mice, as shown by improved survival time and reduced behavioral impairments. Ibrutinib treatment significantly reduced muscular atrophy by increasing muscle/body weight and decreasing muscular necrosis. The ibrutinib treatment also considerably reduced pro-inflammatory cytokine production, IBA-1, and GFAP expression, possibly mediated by mTOR/Akt/Pi3k signaling in the medulla, motor cortex and spinal cord of the ALS mice. In conclusion, our study demonstrated that ibrutinib could delay ALS onset, increase survival time, and reduce ALS progression by targeting inflammation and muscular atrophy via mTOR/Akt/PI3K modulation.
Collapse
Affiliation(s)
- Chengyou Zheng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weifen Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science, Center. No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Ziting Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jieli Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
153
|
Barbalho IMP, Fonseca ALA, Fernandes F, Henriques J, Gil P, Nagem D, Lindquist R, Lima T, dos Santos JPQ, Paiva J, Morais AHF, Dourado Júnior MET, Valentim RAM. Digital health solution for monitoring and surveillance of Amyotrophic Lateral Sclerosis in Brazil. Front Public Health 2023; 11:1209633. [PMID: 37693725 PMCID: PMC10485256 DOI: 10.3389/fpubh.2023.1209633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex and rare neurodegenerative disease given its heterogeneity. Despite being known for many years, few countries have accurate information about the characteristics of people diagnosed with ALS, such as data regarding diagnosis and clinical features of the disease. In Brazil, the lack of information about ALS limits data for the research progress and public policy development that benefits people affected by this health condition. In this context, this article aims to show a digital health solution development and application for research, intervention, and strengthening of the response to ALS in the Brazilian Health System. The proposed solution is composed of two platforms: the Brazilian National ALS Registry, responsible for the data collection in a structured way from ALS patients all over Brazil; and the Brazilian National ALS Observatory, responsible for processing the data collected in the National Registry and for providing a monitoring room with indicators on people diagnosed with ALS in Brazil. The development of this solution was supported by the Brazilian Ministry of Health (MoH) and was carried out by a multidisciplinary team with expertise in ALS. This solution represents a tool with great potential for strengthening public policies and stands out for being the only public database on the disease, besides containing innovations that allow data collection by health professionals and/or patients. By using both platforms, it is believed that it will be possible to understand the demographic and epidemiological data of ALS in Brazil, since the data will be able to be analyzed by care teams and also by public health managers, both in the individual and collective monitoring of people living with ALS in Brazil.
Collapse
Affiliation(s)
- Ingridy M. P. Barbalho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Aleika L. A. Fonseca
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Jorge Henriques
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Paulo Gil
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Danilo Nagem
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Raquel Lindquist
- Department of Physical Therapy, Rio Grande do Norte Federal University, Natal, Brazil
| | - Thaisa Lima
- Brazilian Ministry of Health, Brasília, Brazil
| | - João Paulo Queiroz dos Santos
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Education Science and Technology, Natal, Brazil
| | - Jailton Paiva
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Antonio H. F. Morais
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
154
|
Reimer RJ, Goncalves A, Soper B, Cadena J, Wilson JL, Gryshuk AL, Suarez P, Osborne TF, Grimes KV, Ray P. An electronic health record cohort of Veterans with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-7. [PMID: 37555559 DOI: 10.1080/21678421.2023.2239300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
Objective: To assemble and characterize an electronic health record (EHR) dataset for a large cohort of US military Veterans diagnosed with ALS (Amyotrophic Lateral Sclerosis). Methods: An EHR dataset for 19,662 Veterans diagnosed with ALS between January 1, 2000 to December 31, 2020 was compiled from the Veterans Health Administration (VHA) EHR database by a query for ICD9 diagnosis (335.20) or ICD10 diagnosis (G12.21) for Amyotrophic Lateral Sclerosis. Results: The cohort is predominantly male (98.94%) and white (72.37%) with a median age at disease onset of 68 years and median survival from the date of diagnosis of 590 days. With the designation of ALS as a compensable illness in 2009, there was a subsequent increase in the number of Veterans diagnosed per year in the VHA, but no change in median survival. The cohort included a greater-than-expected proportion of individuals whose branch of service at the time of separation was the Army. Conclusions: The composition of the cohort reflects the VHA population who are at greatest risk for ALS. The greater than expected proportion of individuals whose branch of service at the time of separation was the Army suggests the possibility of a branch-specific risk factor for ALS.
Collapse
Affiliation(s)
- Richard J Reimer
- Department of Neurology and Neurological Sciences, Stanford and Division of Neurology, Stanford University School of Medicine, Veterans Affairs Palo Alto Health Care System, Stanford, CA, USA
| | - Andre Goncalves
- Computational Engineering, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Braden Soper
- Center for Applied Scientific Computing, Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Cadena
- Computational Engineering, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer L Wilson
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy L Gryshuk
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Paola Suarez
- National Center for Collaborative Healthcare Innovation, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas F Osborne
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- National Center for Collaborative Healthcare Innovation and Division of Radiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA, and
| | - Kevin V Grimes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyadip Ray
- Computational Engineering, Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
155
|
Kioutchoukova IP, Foster D, Thakkar RN, Kurz HN, Lucke-Wold B. Amyotrophic Lateral Sclerosis: From Mechanisms to Current, Emerging, and Alternative Therapeutics. MED DISCOVERIES 2023; 2:1059. [PMID: 37799543 PMCID: PMC10552707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting the motor neurons. Although the etiology remains unknown, mutations in superoxide dismutase 1 have been observed in patients with familial ALS, resulting in increased calcium in the cells and leading to cell death. Additionally, studies in patients with the C9orf72 repeat expansion have shown lower age of onset, cognitive and behavioral impairments, and reduced survival. Accumulation of TDP-43 in the cytoplasm of neurons and glial cells caused by the loss of UBQLN2 has been shown to lead to mitotoxicity and proteasomal overload. Early diagnosis of ALS is necessary for the optimization of care between a patient's neurologist and interdisciplinary team members to ensure the best outcomes possible. Proper management between physical therapy, occupation therapy, and pharmaceutical medications can improve ALS symptoms, achieving the highest quality of life possible for the patient. The current therapeutic medication recommended for ALS is Riluzole, but new therapies are emerging. This paper analyzes mechanisms of injury and progression of ALS along while analyzing current, emerging, and alternative therapeutics targeting ALS.
Collapse
Affiliation(s)
| | - Devon Foster
- University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Rajvi N Thakkar
- University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Hayley N Kurz
- University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
156
|
Rowe HP, Shellikeri S, Yunusova Y, Chenausky KV, Green JR. Quantifying articulatory impairments in neurodegenerative motor diseases: A scoping review and meta-analysis of interpretable acoustic features. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 25:486-499. [PMID: 36001500 PMCID: PMC9950294 DOI: 10.1080/17549507.2022.2089234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
PURPOSE Neurodegenerative motor diseases (NMDs) have devastating effects on the lives of patients and their loved ones, in part due to the impact of neurologic abnormalities on speech, which significantly limits functional communication. Clinical speech researchers have thus spent decades investigating speech features in populations suffering from NMDs. Features of impaired articulatory function are of particular interest given their detrimental impact on intelligibility, their ability to encode a variety of distinct movement disorders, and their potential as diagnostic indicators of neurodegenerative diseases. The objectives of this scoping review were to identify (1) which components of articulation (i.e. coordination, consistency, speed, precision, and repetition rate) are the most represented in the acoustic literature on NMDs; (2) which acoustic articulatory features demonstrate the most potential for detecting speech motor dysfunction in NMDs; and (3) which articulatory components are the most impaired within each NMD. METHOD This review examined literature published between 1976 and 2020. Studies were identified from six electronic databases using predefined key search terms. The first research objective was addressed using a frequency count of studies investigating each articulatory component, while the second and third objectives were addressed using meta-analyses. RESULT Findings from 126 studies revealed a considerable emphasis on articulatory precision. Of the 24 features included in the meta-analyses, vowel dispersion/distance and stop gap duration exhibited the largest effects when comparing the NMD population to controls. The meta-analyses also revealed divergent patterns of articulatory performance across disease types, providing evidence of unique profiles of articulatory impairment. CONCLUSION This review illustrates the current state of the literature on acoustic articulatory features in NMDs. By highlighting the areas of need within each articulatory component and disease group, this work provides a foundation on which clinical researchers, speech scientists, neurologists, and computer science engineers can develop research questions that will both broaden and deepen the understanding of articulatory impairments in NMDs.
Collapse
Affiliation(s)
- Hannah P Rowe
- MGH Institute of Health Professions, Boston, MA, USA
| | - Sanjana Shellikeri
- Department of Speech-Language Pathology & Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yana Yunusova
- Department of Speech-Language Pathology & Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Karen V Chenausky
- MGH Institute of Health Professions, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA, and
| | - Jordan R Green
- MGH Institute of Health Professions, Boston, MA, USA
- Speech and Hearing Biosciences and Technology Program, Harvard University, Cambridge, MA, USA
| |
Collapse
|
157
|
Caballero-Eraso C, Carrera-Cueva C, de Benito Zorrero E, Lopez-Ramirez C, Marin-Romero S, Asensio-Cruz MI, Barrot-Cortes E, Jara-Palomares L. Prospective study to evaluate quality of life in amyotrophic lateral sclerosis. Sci Rep 2023; 13:12074. [PMID: 37495641 PMCID: PMC10372064 DOI: 10.1038/s41598-023-39147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative rare disease characterized by symptoms and signs in the upper and lower motor neurons, leading to progressive neuro-degeneration and muscle atrophy. Our objective was to analyse the quality of life (QoL) in patients with ALS and compare with general population and with patients with cancer. Prospective study from consecutive ALS patients in one center. In order to assess quality of life, during the first visit three questionnaires were administered: Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R), Short Form-36 (SF-36) and EuroQoL 5D (EQ-5D). We compared SF-36 of ALS patients with a reference population (n = 9151), and we compared the EQ-5D index score of ALS patients versus patients with cancer in the same area and in the same period (2015-2018). Between June 2015 and September 2017, 23 were included. The mean age was 65.1 ± 12.6 years and 56.5% were women. Compared with the general population, patients with ALS showed lowest QoL (p < 0.05) in all the dimensions, with a very important impairment in physical function (median: 0; p25-75: 0-10) and physical role (median: 0; p25-75: 0-6.25). In EQ-5D questionnaire, patients with ALS presented an EQ-5D index score of 0.21 ± 0.39 (mean ± standard deviation) with a visual analog scale (VAS) score of 0.32 ± 0.24. Compared with an oncological population, patients with ALS had a worse EQ-5D index score both clinically and statistically (0.21 ± 0.39 vs. 0.77 ± 0.27; p < 0.05). We demonstrate a poorer quality of life in patients with ALS is poor, and clinically and statistically worse than in patients with cancer or general population. New studies need to evaluate the impact of strategies in this population to improve the quality of life.
Collapse
Affiliation(s)
- Candela Caballero-Eraso
- Medical Surgical Unit of Respiratory Diseases, Hospital Virgen del Rocío, Av. Manuel Siurot S/N, 41013, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Carlos III Health Institute, Madrid, Spain
| | - Carlos Carrera-Cueva
- Medical Surgical Unit of Respiratory Diseases, Hospital Virgen del Rocío, Av. Manuel Siurot S/N, 41013, Seville, Spain
| | - Esther de Benito Zorrero
- Medical Surgical Unit of Respiratory Diseases, Hospital Virgen del Rocío, Av. Manuel Siurot S/N, 41013, Seville, Spain
| | - Cecilia Lopez-Ramirez
- Medical Surgical Unit of Respiratory Diseases, Hospital Virgen del Rocío, Av. Manuel Siurot S/N, 41013, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Carlos III Health Institute, Madrid, Spain
| | - Samira Marin-Romero
- Medical Surgical Unit of Respiratory Diseases, Hospital Virgen del Rocío, Av. Manuel Siurot S/N, 41013, Seville, Spain
| | - Maria Isabel Asensio-Cruz
- Medical Surgical Unit of Respiratory Diseases, Hospital Virgen del Rocío, Av. Manuel Siurot S/N, 41013, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Carlos III Health Institute, Madrid, Spain
| | - Emilia Barrot-Cortes
- Medical Surgical Unit of Respiratory Diseases, Hospital Virgen del Rocío, Av. Manuel Siurot S/N, 41013, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Carlos III Health Institute, Madrid, Spain
| | - Luis Jara-Palomares
- Medical Surgical Unit of Respiratory Diseases, Hospital Virgen del Rocío, Av. Manuel Siurot S/N, 41013, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
158
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
159
|
Pamphlett R, Bishop DP. The toxic metal hypothesis for neurological disorders. Front Neurol 2023; 14:1173779. [PMID: 37426441 PMCID: PMC10328356 DOI: 10.3389/fneur.2023.1173779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Multiple sclerosis and the major sporadic neurogenerative disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer disease are considered to have both genetic and environmental components. Advances have been made in finding genetic predispositions to these disorders, but it has been difficult to pin down environmental agents that trigger them. Environmental toxic metals have been implicated in neurological disorders, since human exposure to toxic metals is common from anthropogenic and natural sources, and toxic metals have damaging properties that are suspected to underlie many of these disorders. Questions remain, however, as to how toxic metals enter the nervous system, if one or combinations of metals are sufficient to precipitate disease, and how toxic metal exposure results in different patterns of neuronal and white matter loss. The hypothesis presented here is that damage to selective locus ceruleus neurons from toxic metals causes dysfunction of the blood-brain barrier. This allows circulating toxicants to enter astrocytes, from where they are transferred to, and damage, oligodendrocytes, and neurons. The type of neurological disorder that arises depends on (i) which locus ceruleus neurons are damaged, (ii) genetic variants that give rise to susceptibility to toxic metal uptake, cytotoxicity, or clearance, (iii) the age, frequency, and duration of toxicant exposure, and (iv) the uptake of various mixtures of toxic metals. Evidence supporting this hypothesis is presented, concentrating on studies that have examined the distribution of toxic metals in the human nervous system. Clinicopathological features shared between neurological disorders are listed that can be linked to toxic metals. Details are provided on how the hypothesis applies to multiple sclerosis and the major neurodegenerative disorders. Further avenues to explore the toxic metal hypothesis for neurological disorders are suggested. In conclusion, environmental toxic metals may play a part in several common neurological disorders. While further evidence to support this hypothesis is needed, to protect the nervous system it would be prudent to take steps to reduce environmental toxic metal pollution from industrial, mining, and manufacturing sources, and from the burning of fossil fuels.
Collapse
Affiliation(s)
- Roger Pamphlett
- Department of Pathology, Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
160
|
Piccoli T, Castro F, La Bella V, Meraviglia S, Di Simone M, Salemi G, Dieli F, Spataro R. Role of the immune system in amyotrophic lateral sclerosis. Analysis of the natural killer cells and other circulating lymphocytes in a cohort of ALS patients. BMC Neurol 2023; 23:222. [PMID: 37296379 DOI: 10.1186/s12883-023-03255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
AIMS Neuroinflammation might be involved in the degeneration and progression of Amyotrophic Lateral Sclerosis (ALS). Here, we studied the role of the circulating lymphocytes in ALS, in particular the NK cells. We focused on the relationship between blood lymphocytes, ALS clinical subtype and disease severity. SUBJECTS AND METHODS Blood samples were collected from 92 patients with sporadic ALS, 21 patients with Primary Lateral Sclerosis (PLS) and 37 patients affected by primary progressive multiple sclerosis (PPMS) with inactive plaques. Blood was taken from ALS and controls at the time of diagnosis/referral. Circulating lymphocytes were analyzed by flow cytometry with specific antibodies. Values were expressed as absolute number (n°/µl) of viable lymphocytes subpopulations in ALS were compared with controls. Multivariable analysis was made using site of onset, gender changes in ALSFRS-R and disease progression rate (calculated as ΔFS score). RESULTS Age at onset was 65y (58-71) in ALS (spinal 67.4%; bulbar, 32.6%), 57y (48-78) in PLS and 56y (44-68) PPMS. Absolute blood levels of the lymphocytes in the different cohorts were within normal range. Furthermore, while levels of lymphocytes T and B were not different between disease groups, NK cells were increased in the ALS cohort (ALS = 236 [158-360] vs. Controls = 174[113-240], p < 0.001). In ALS, blood levels of NK cells were not related with the main clinical-demographic variables, including the rate of disease progression. Multivariable analysis suggested that male gender and bulbar onset were independently associated with a risk of high blood NK cells levels. CONCLUSIONS We show that blood NK cells are selectively increased in ALS, though their level appear unaffected in patients with an estimated rapidly progressing disease. Being of a male gender and with a bulbar onset seems to confer higher susceptibility to have increased NK lymphocytes levels at diagnosis/referral. Our experiments provides a further clear-cut evidence of the role of the NK lymphocytes as a significant player in ALS pathogenesis.
Collapse
Affiliation(s)
- Tommaso Piccoli
- Cognitive and Memory Disorders Clinic, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Francesca Castro
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy.
- ALS Clinical Research Center, Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, via Gaetano La Loggia, 1, Palermo, I-90129, Italy.
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Multiple Sclerosis Clinic, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Rossella Spataro
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| |
Collapse
|
161
|
Barone C, Qi X. Altered Metabolism in Motor Neuron Diseases: Mechanism and Potential Therapeutic Target. Cells 2023; 12:1536. [PMID: 37296656 PMCID: PMC10252517 DOI: 10.3390/cells12111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of varying motor neurons resulting in decreased physical capabilities. Current research is focused on hindering disease progression by determining causes of motor neuron death. Metabolic malfunction has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing the importance of a cohesive system. Finding metabolism changes consistent throughout both neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for future intervention.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine Case Western Reserve University, Cleveland, OH 44106-4970, USA;
| |
Collapse
|
162
|
Boostani R, Olfati N, Shamshiri H, Salimi Z, Fatehi F, Hedjazi SA, Fakharian A, Ghasemi M, Okhovat AA, Basiri K, Haghi Ashtiani B, Ansari B, Raissi GR, Khatoonabadi SA, Sarraf P, Movahed S, Panahi A, Ziaadini B, Yazdchi M, Bakhtiyari J, Nafissi S. Iranian clinical practice guideline for amyotrophic lateral sclerosis. Front Neurol 2023; 14:1154579. [PMID: 37333000 PMCID: PMC10272856 DOI: 10.3389/fneur.2023.1154579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegeneration involving motor neurons. The 3-5 years that patients have to live is marked by day-to-day loss of motor and sometimes cognitive abilities. Enormous amounts of healthcare services and resources are necessary to support patients and their caregivers during this relatively short but burdensome journey. Organization and management of these resources need to best meet patients' expectations and health system efficiency mandates. This can only occur in the setting of multidisciplinary ALS clinics which are known as the gold standard of ALS care worldwide. To introduce this standard to the care of Iranian ALS patients, which is an inevitable quality milestone, a national ALS clinical practice guideline is the necessary first step. The National ALS guideline will serve as the knowledge base for the development of local clinical pathways to guide patient journeys in multidisciplinary ALS clinics. To this end, we gathered a team of national neuromuscular experts as well as experts in related specialties necessary for delivering multidisciplinary care to ALS patients to develop the Iranian ALS clinical practice guideline. Clinical questions were prepared in the Patient, Intervention, Comparison, and Outcome (PICO) format to serve as a guide for the literature search. Considering the lack of adequate national/local studies at this time, a consensus-based approach was taken to evaluate the quality of the retrieved evidence and summarize recommendations.
Collapse
Affiliation(s)
- Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Shamshiri
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zanireh Salimi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Fatehi
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Arya Hedjazi
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Atefeh Fakharian
- Pulmonary Rehabilitation Research Center (PRRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Ghasemi
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asghar Okhovat
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keivan Basiri
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ansari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- AL Zahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholam Reza Raissi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Payam Sarraf
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Movahed
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Panahi
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Ziaadini
- Department of Neurology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Yazdchi
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Bakhtiyari
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
163
|
Mata S, Bussotti M, Del Mastio M, Barilaro A, Piersanti P, Lombardi M, Cincotta M, Torricelli S, Leccese D, Sperti M, Rodolico GR, Nacmias B, Sorbi S. Epidemiology of amyotrophic lateral sclerosis in the north east Tuscany in the 2018–2021 period. eNeurologicalSci 2023; 31:100457. [PMID: 37008534 PMCID: PMC10063398 DOI: 10.1016/j.ensci.2023.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Background The incidence of Amyotrophic Lateral Sclerosis (ALS) varies among different geographical areas and seems to increase over time. This study aimed to examine the epidemiologic data of ALS in the north-east Tuscany and compare the results with those of similar surveys. Methods Data from ALS cases diagnosed in Florence and Prato Hospitals were prospectively collected from 1st June 2018 to 31st May 2021. Results The age- and sex-adjusted incidence rate of ALS in cases per 100,000 population was 2.71 (M/F ratio: 1.21), significantly higher as compared to that reported in the 1967-1976 decade in the same geographical area (0.714). The age- and sex-adjusted incidence rate among resident strangers was similar to that of the general population (2.69). A slightly higher incidence rate (4.36) was observed in the north-east area of Florence province, which includes the Mugello valley. The mean prevalence was of 7.17/100,00. The mean age at diagnosis was 69.7 years, with a peak between 70 and 79 years among men and a smoother age curve among women. Conclusions ALS epidemiological features in north-east Tuscany are in line with other Italian and European Centers. The dramatic increase of the local disease burden over the last decades probably reflects better ascertainment methods and health system.
Collapse
|
164
|
Vautier A, Lebreton AL, Codron P, Awada Z, Gohier P, Cassereau J. Retinal vessels as a window on amyotrophic lateral sclerosis pathophysiology: A systematic review. Rev Neurol (Paris) 2023; 179:548-562. [PMID: 36842953 DOI: 10.1016/j.neurol.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 02/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare fatal motor neuron disease. Although many potential mechanisms have been proposed, the pathophysiology of the disease remains unknown. Currently available treatments can only delay the progression of the disease and prolong life expectancy by a few months. There is still no definitive cure for ALS, and the development of new treatments is limited by a lack of understanding of the underlying biological processes that trigger and promote neurodegeneration. Several scientific results suggest a neurovascular impairment in ALS providing perspectives for the development of new biomarkers and treatments. In this article, we performed a systematic review using PRISMA guidelines including PubMed, EmBase, GoogleScholar, and Web of Science Core Collection to analyze the scientific literature published between 2000 and 2021 discussing the neurocardiovascular involvement and ophthalmologic abnormalities in ALS. In total, 122 articles were included to establish this systematic review. Indeed, microvascular pathology seems to be involved in ALS, affecting all the neurovascular unit components. Retinal changes have also been recently highlighted without significant alteration of the visual pathways. Despite the peripheral location of the retina, it is considered as an extension of the central nervous system (CNS) as it displays similarities to the brain, the inner blood-retinal barrier, and the blood-brain barrier. This suggests that the eye could be considered as a 'window' into the brain in many CNS disorders. Thus, studying ocular manifestations of brain pathologies seems very promising in understanding neurodegenerative disorders, mainly ALS. Optical coherence tomography angiography (OCT-A) could therefore be a powerful approach for exploration of retinal microvascularization allowing to obtain new diagnostic and prognostic biomarkers of ALS.
Collapse
Affiliation(s)
- A Vautier
- Department of Ophthalmology, University Hospital, Angers, France.
| | - A L Lebreton
- Department of Ophthalmology, University Hospital, Angers, France
| | - P Codron
- Amyotrophic Lateral Sclerosis (ALS) Center, Department of Neurology, University Hospital, Angers, France; Department of Neurobiology and Neuropathology, University Hospital, Angers, France; University of Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Z Awada
- Department of neuroscience, LHH-SIUH, New York, USA
| | - P Gohier
- Department of Ophthalmology, University Hospital, Angers, France
| | - J Cassereau
- Amyotrophic Lateral Sclerosis (ALS) Center, Department of Neurology, University Hospital, Angers, France; University of Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France.
| |
Collapse
|
165
|
Dučić T, Koch JC. Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy of Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients Reveals a Unique Biomolecular Profile. Cells 2023; 12:1451. [PMID: 37296572 PMCID: PMC10253168 DOI: 10.3390/cells12111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, with the most common adult-onset neurodegenerative disorder affecting motoneurons. Although disruptions in macromolecular conformation and homeostasis have been described in association with ALS, the underlying pathological mechanisms are still not completely understood, and unambiguous biomarkers are lacking. Fourier Transform Infrared Spectroscopy (FTIR) of cerebrospinal fluid (CSF) is appealing to extensive interest due to its potential to resolve biomolecular conformation and content, as this approach offers a non-invasive, label-free identification of specific biologically relevant molecules in a few microliters of CSF sample. Here, we analyzed the CSF of 33 ALS patients compared to 32 matched controls using FTIR spectroscopy and multivariate analysis and demonstrated major differences in the molecular contents. A significant change in the conformation and concentration of RNA is demonstrated. Moreover, significantly increased glutamate and carbohydrates are found in ALS. Moreover, key markers of lipid metabolism are strongly altered; specifically, we find a decrease in unsaturated lipids and an increase in peroxidation of lipids in ALS, whereas the total amount of lipids compared to proteins is reduced. Our study demonstrates that FTIR characterization of CSF could represent a powerful tool for ALS diagnosis and reveals central features of ALS pathophysiology.
Collapse
Affiliation(s)
- Tanja Dučić
- CELLS−ALBA, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Jan Christoph Koch
- Department of Neurology, University Medicine Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
166
|
Zhu Q, Zhou J, Zhang Y, Huang H, Han J, Cao B, Xu D, Zhao Y, Chen G. Risk factors associated with amyotrophic lateral sclerosis based on the observational study: a systematic review and meta-analysis. Front Neurosci 2023; 17:1196722. [PMID: 37284659 PMCID: PMC10239956 DOI: 10.3389/fnins.2023.1196722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Objective Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the upper and lower motor neurons. Though the pathogenesis of ALS is still unclear, exploring the associations between risk factors and ALS can provide reliable evidence to find the pathogenesis. This meta-analysis aims to synthesize all related risk factors of ALS to understand this disease comprehensively. Methods We searched the following databases: PubMed, EMBASE, Cochrane library, Web of Science, and Scopus. Moreover, observational studies, including cohort studies, and case-control studies, were included in this meta-analysis. Results A total of 36 eligible observational studies were included, and 10 of them were cohort studies and the rest were case-control studies. We found six factors exacerbated the progression of disease: head trauma (OR = 1.26, 95% CI = 1.13, 1.40), physical activity (OR = 1.06, 95% CI = 1.04, 1.09), electric shock (OR = 2.72, 95% CI = 1.62, 4.56), military service (OR = 1.34, 95% CI = 1.11, 1.61), pesticides (OR = 1.96, 95% CI = 1.7, 2.26), and lead exposure (OR = 2.31, 95% CI = 1.44, 3.71). Of note, type 2 diabetes mellitus was a protective factor for ALS. However, cerebrovascular disease (OR = 0.99, 95% CI = 0.75, 1.29), agriculture (OR = 1.22, 95% CI = 0.74, 1.99), industry (OR = 1.24, 95% CI = 0.81, 1.91), service (OR = 0.47, 95% CI = 0.19, 1.17), smoking (OR = 1.25, 95% CI = 0.5, 3.09), chemicals (OR = 2.45, 95% CI = 0.89, 6.77), and heavy metal (OR = 1.5, 95% CI = 0.47, 4.84) were not risk factors for ALS based on meta-analyses. Conclusions Head trauma, physical activity, electric shock, military service, pesticides, and lead were risk factors for ALS onset and progression. But DM was a protective factor. This finding provides a better understanding of ALS risk factors with strong evidence for clinicians to rationalize clinical intervention strategies. INPLSY registration number https://inplasy.com/inplasy-2022-9-0118/, INPLASY202290118.
Collapse
Affiliation(s)
- Qiaochu Zhu
- Department of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Zhou
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Yijie Zhang
- School of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Hai Huang
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Jie Han
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Biwei Cao
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Dandan Xu
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Yan Zhao
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Gang Chen
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Department of Tuina and Rehabilitation Medicine, Hubei Institute of Traditional Chinese Medicine, Wuhan, China
- Department of First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
167
|
Li B, Liu H, Li C, Yang M, Zhang T. Combined Tui na and Western medicine treatment improves pulmonary function and quality of life in patients with amyotrophic lateral sclerosis: A case report. Medicine (Baltimore) 2023; 102:e33612. [PMID: 37083797 PMCID: PMC10118367 DOI: 10.1097/md.0000000000033612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
RATIONALE Amyotrophic lateral sclerosis is a rare disease that cannot be cured. We report a case of a patient with amyotrophic lateral sclerosis whose pulmonary function and quality of life were improved by a combined tui na treatment and Western medicine. PATIENT CONCERNS A 48-year-old male was diagnosed with ALS 1 year ago and was treated with western medicine and herbal medicine with no significant effect. This time, he was admitted to our department because of slurred speech, coughing and choking, and weakness of the left upper limb for more than 1 year. INTERVENTION AND OUTCOME After 1 month of treatment with tui na and traditional western medicine, the patient's lung function and quality of life improved and he was discharged from the hospital. DIAGNOSES Motor neuron disease. Amyotrophic lateral sclerosis. LESSONS The physiological function of ALS patients can be improved through the intervention of tui na.
Collapse
Affiliation(s)
- Bei Li
- Zhijiang People’s Hospital, Yichang, China
| | - Haijing Liu
- Yunnan University of Chinese Medicine, Kunming, China
| | - Cuiling Li
- Zhijiang People’s Hospital, Yichang, China
| | - Meidi Yang
- Zhijiang Hospital of Chinese Medicine, Yichang, China
| | - Tingting Zhang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Academy of Traditional Chinese Medicine, Wuhan, China
- Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
168
|
Antonioni A, Govoni V, Brancaleoni L, Donà A, Granieri E, Bergamini M, Gerdol R, Pugliatti M. Amyotrophic Lateral Sclerosis and Air Pollutants in the Province of Ferrara, Northern Italy: An Ecological Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085591. [PMID: 37107873 PMCID: PMC10138704 DOI: 10.3390/ijerph20085591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
The etiopathogenesis of amyotrophic lateral sclerosis (ALS) is still largely unknown, but likely depends on gene-environment interactions. Among the putative sources of environmental exposure are air pollutants and especially heavy metals. We aimed to investigate the relationship between ALS density and the concentration of air pollution heavy metals in Ferrara, northern Italy. An ecological study was designed to correlate the map of ALS distribution and that of air pollutants. All ALS cases diagnosed between 2000 and 2017 (Ferrara University Hospital administrative data) were plotted by residency in 100 sub-areas, and grouped in 4 sectors: urban, rural, northwestern and along the motorway. The concentrations of silver, aluminium, cadmium, chrome, copper, iron, manganese, lead, and selenium in moss and lichens were measured and monitored in 2006 and 2011. Based on 62 ALS patients, a strong and direct correlation of ALS density was observed only with copper concentrations in all sectors and in both sexes (Pearson coefficient (ρ) = 0.758; p = 0.000002). The correlation was higher in the urban sector (ρ = 0.767; p = 0.000128), in women for the overall population (ρ = 0.782, p = 0.000028) and in the urban (ρ = 0.872, p = 0.000047) population, and for the older cohort of diagnosed patients (2000-2009) the assessment correlated with the first assessment of air pollutants in 2006 (ρ = 0.724, p = 0.008). Our data is, in part, consistent with a hypothesis linking copper pollution to ALS.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Vittorio Govoni
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
| | - Lisa Brancaleoni
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Donà
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
| | - Enrico Granieri
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
| | - Mauro Bergamini
- Preventive Medicine and Risk Assessment, University of Ferrara, 44121 Ferrara, Italy
| | - Renato Gerdol
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
- Correspondence: ; Tel.: +39-0532-239309
| |
Collapse
|
169
|
Sanchez-Tejerina D, Llaurado A, Sotoca J, Lopez-Diego V, Vidal Taboada JM, Salvado M, Juntas-Morales R. Biofluid Biomarkers in the Prognosis of Amyotrophic Lateral Sclerosis: Recent Developments and Therapeutic Applications. Cells 2023; 12:cells12081180. [PMID: 37190090 DOI: 10.3390/cells12081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons for which effective therapies are lacking. One of the most explored areas of research in ALS is the discovery and validation of biomarkers that can be applied to clinical practice and incorporated into the development of innovative therapies. The study of biomarkers requires an adequate theoretical and operational framework, highlighting the "fit-for-purpose" concept and distinguishing different types of biomarkers based on common terminology. In this review, we aim to discuss the current status of fluid-based prognostic and predictive biomarkers in ALS, with particular emphasis on those that are the most promising ones for clinical trial design and routine clinical practice. Neurofilaments in cerebrospinal fluid and blood are the main prognostic and pharmacodynamic biomarkers. Furthermore, several candidates exist covering various pathological aspects of the disease, such as immune, metabolic and muscle damage markers. Urine has been studied less often and should be explored for its possible advantages. New advances in the knowledge of cryptic exons introduce the possibility of discovering new biomarkers. Collaborative efforts, prospective studies and standardized procedures are needed to validate candidate biomarkers. A combined biomarkers panel can provide a more detailed disease status.
Collapse
Affiliation(s)
- Daniel Sanchez-Tejerina
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Arnau Llaurado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Veronica Lopez-Diego
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Jose M Vidal Taboada
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Maria Salvado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| |
Collapse
|
170
|
Marshall KL, Rajbhandari L, Venkatesan A, Maragakis NJ, Farah MH. Enhanced axonal regeneration of ALS patient iPSC-derived motor neurons harboring SOD1 A4V mutation. Sci Rep 2023; 13:5597. [PMID: 37020097 PMCID: PMC10076424 DOI: 10.1038/s41598-023-31720-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by degeneration of upper and lower motor neurons that leads to muscle weakness, paralysis, and death, but the effects of disease-causing mutations on axonal outgrowth of neurons derived from human induced pluripotent stem cells (iPSC)-derived motor neurons (hiPSC-MN) are poorly understood. The use of hiPSC-MN is a promising tool to develop more relevant models for target identification and drug development in ALS research, but questions remain concerning the effects of distinct disease-causing mutations on axon regeneration. Mutations in superoxide dismutase 1 (SOD1) were the first to be discovered in ALS patients. Here, we investigated the effect of the SOD1A4V mutation on axonal regeneration of hiPSC-MNs, utilizing compartmentalized microfluidic devices, which are powerful tools for studying hiPSC-MN distal axons. Surprisingly, SOD1+/A4V hiPSC-MNs regenerated axons more quickly following axotomy than those expressing the native form of SOD1. Though initial axon regrowth was not significantly different following axotomy, enhanced regeneration was apparent at later time points, indicating an increased rate of outgrowth. This regeneration model could be used to identify factors that enhance the rate of human axon regeneration.
Collapse
Affiliation(s)
- Katherine L Marshall
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Labchan Rajbhandari
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Arun Venkatesan
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Nicholas J Maragakis
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
171
|
Gianferrari G, Martinelli I, Simonini C, Zucchi E, Fini N, Caputo M, Ghezzi A, Gessani A, Canali E, Casmiro M, De Massis P, Curro' Dossi M, De Pasqua S, Liguori R, Longoni M, Medici D, Morresi S, Patuelli A, Pugliatti M, Santangelo M, Sette E, Stragliati F, Terlizzi E, Vacchiano V, Zinno L, Ferro S, Amedei A, Filippini T, Vinceti M, Mandrioli J. Insight into Elderly ALS Patients in the Emilia Romagna Region: Epidemiological and Clinical Features of Late-Onset ALS in a Prospective, Population-Based Study. Life (Basel) 2023; 13:life13040942. [PMID: 37109471 PMCID: PMC10144747 DOI: 10.3390/life13040942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Few studies have focused on elderly (>80 years) amyotrophic lateral sclerosis (ALS) patients, who represent a fragile subgroup generally not included in clinical trials and often neglected because they are more difficult to diagnose and manage. We analyzed the clinical and genetic features of very late-onset ALS patients through a prospective, population-based study in the Emilia Romagna Region of Italy. From 2009 to 2019, 222 (13.76%) out of 1613 patients in incident cases were over 80 years old at diagnosis, with a female predominance (F:M = 1.18). Elderly ALS patients represented 12.02% of patients before 2015 and 15.91% from 2015 onwards (p = 0.024). This group presented with bulbar onset in 38.29% of cases and had worse clinical conditions at diagnosis compared to younger patients, with a lower average BMI (23.12 vs. 24.57 Kg/m2), a higher progression rate (1.43 vs. 0.95 points/month), and a shorter length of survival (a median of 20.77 vs. 36 months). For this subgroup, genetic analyses have seldom been carried out (25% vs. 39.11%) and are generally negative. Finally, elderly patients underwent less frequent nutritional- and respiratory-supporting procedures, and multidisciplinary teams were less involved at follow-up, except for specialist palliative care. The genotypic and phenotypic features of elderly ALS patients could help identify the different environmental and genetic risk factors that determine the age at which disease onset occurs. Since multidisciplinary management can improve a patient's prognosis, it should be more extensively applied to this fragile group of patients.
Collapse
Affiliation(s)
- Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
- Neuroscience Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Maria Caputo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Annalisa Gessani
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| | - Elena Canali
- Department of Neurology, IRCCS Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy
| | - Mario Casmiro
- Department of Neurology, Faenza and Ravenna Hospital, 48100 Ravenna, Italy
| | | | | | | | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40126 Bologna, Italy
| | - Marco Longoni
- Department of Neurology, Infermi Hospital, 48018 Rimini, Italy
- Department of Neurology, Bufalini Hospital, 47521 Cesena, Italy
| | - Doriana Medici
- Department of Neurology, Fidenza Hospital, 43036 Parma, Italy
| | | | | | - Maura Pugliatti
- Department of Neurosciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Neurology, St. Anna Hospital, 44124 Ferrara, Italy
| | | | - Elisabetta Sette
- Department of Neurology, St. Anna Hospital, 44124 Ferrara, Italy
| | - Filippo Stragliati
- Department of General and Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Emilio Terlizzi
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy
| | - Veria Vacchiano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40126 Bologna, Italy
| | - Lucia Zinno
- Department of General and Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Salvatore Ferro
- Department of Hospital Services, Emilia Romagna Regional Health Authority, 40127 Bologna, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Tommaso Filippini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Research Centre in Environmental, Genetic and Nutritional Epidemiology-CREAGEN, University of Modena and Reggio Emilia, 41125 Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Research Centre in Environmental, Genetic and Nutritional Epidemiology-CREAGEN, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, 41124 Modena, Italy
| |
Collapse
|
172
|
Ketabforoush AHME, Chegini R, Barati S, Tahmasebi F, Moghisseh B, Joghataei MT, Faghihi F, Azedi F. Masitinib: The promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series. Biomed Pharmacother 2023; 160:114378. [PMID: 36774721 DOI: 10.1016/j.biopha.2023.114378] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with high mortality and morbidity rate affecting both upper and lower motor neurons (MN). Muscle force reduction, behavioral change, pseudobulbar affect, and cognitive impairments are the most common clinical manifestations of ALS. The main physiopathology of ALS is still unclear, though several studies have identified that oxidative stress, proteinopathies, glutamate-related excitotoxicity, microglial activation, and neuroinflammation may be involved in the pathogenesis of ALS. From 1995 until October 2022, only Riluzole, Dextromethorphan Hydrobromide (DH) with Quinidine sulfate (Q), Edaravone, and Sodium phenylbutyrate with Taurursodiol (PB/TUDCO) have achieved FDA approval for ALS treatment. Despite the use of these four approved agents, the survival rate and quality of life of ALS patients are still low. Thus, finding novel treatments for ALS patients is an urgent requirement. Masitinib, a tyrosine kinase inhibitor, emphasizes the neuro-inflammatory activity of ALS by targeting macrophages, mast cells, and microglia cells. Masitinib downregulates the proinflammatory cytokines, indirectly reduces inflammation, and induces neuroprotection. Also, it was effective in phase 2/3 and 3 clinical trials (CTs) by increasing overall survival and delaying motor, bulbar, and respiratory function deterioration. This review describes the pathophysiology of ALS, focusing on Masitinib's mechanism of action and explaining why Masitinib could be a promising actor in the treatment of ALS patients. In addition, Masitinib CTs and other competitor drugs in phase 3 CTs have been discussed.
Collapse
Affiliation(s)
| | - Rojin Chegini
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bardia Moghisseh
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
173
|
De Marchi F, Saraceno M, Sarnelli MF, Virgilio E, Cantello R, Mazzini L. Potential role of vitamin D levels in amyotrophic lateral sclerosis cognitive impairment. Neurol Sci 2023:10.1007/s10072-023-06751-7. [PMID: 36949299 DOI: 10.1007/s10072-023-06751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Cognitive impairment (CI) is common in amyotrophic lateral sclerosis (ALS): a keystone is identifying factors that could potentially modify the CI course. In recent years, vitamin D is becoming a potential modificatory factor for CI in many neurological disorders. This study aimed to highlight if vitamin D deficiency correlated with CI and clinical features in a cohort of ALS patients. We included 55 ALS patients with a neuropsychological evaluation (classified with the Strong Criteria) and a vitamin D dosage at the diagnosis. We also reviewed medical records and completed data for medical history, physical and neurological examination, and functional scales. At the diagnosis, 30 patients (54%) had CI. Most patients (82%) displayed low vitamin D levels (19.87 ± 9.80 ng/ml). Comparing the vitamin D level between patients with and without CI, we observed significantly lower values in the first group (15.8 ± 8.2 vs. 22.0 ± 9.7 ng/ml, p: 0.04). In the spinal female subgroup (n = 15), we found an inverse correlation between vitamin D and bizarreness score in the cognitive estimates test (r = 0.58; p: 0.04) and a positive correlation with the Corrected Raven's Standard Progressive Matrices (r = 0.53, p: 0.04). Conversely, in the bulbar female group, we observed a correlation with the corrected direct span (r = 0.84, p: 0.03). With the log-rank survival analysis, we found that the patients with vitamin D < 10 ng/ml had a shorter disease duration (Chi: 5.78, p: 0.02). Our results indicate that levels of vitamin D can influence the cognitive status of people living with ALS and that severe deficits might be an adverse prognostic survival factor.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy.
| | - Massimo Saraceno
- ALS Centre, Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Maria Francesca Sarnelli
- ALS Centre, Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Eleonora Virgilio
- Neurology Unit, Department of Translational Medicine, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Roberto Cantello
- Neurology Unit, Department of Translational Medicine, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Letizia Mazzini
- ALS Centre, Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
174
|
Monroy GR, Murguiondo Pérez R, Weintraub Ben Zión E, Vidal Alcántar-Garibay O, Loza-López EC, Tejerina Marion E, Blancarte Hernández E, Navarro-Torres L, Ibarra A. Immunization with Neural-Derived Peptides in Neurodegenerative Diseases: A Narrative Review. Biomedicines 2023; 11:biomedicines11030919. [PMID: 36979898 PMCID: PMC10046177 DOI: 10.3390/biomedicines11030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are a major health problem worldwide. Statistics suggest that in America in 2030 there will be more than 12 million people suffering from a neurodegenerative pathology. Furthermore, the increase in life expectancy enhances the importance of finding new and better therapies for these pathologies. NDDs could be classified into chronic or acute, depending on the time required for the development of clinical symptoms and brain degeneration. Nevertheless, both chronic and acute stages share a common immune and inflammatory pathway in their pathophysiology. Immunization with neural-derived peptides (INDP) is a novel therapy that has been studied during the last decade. By inoculating neural-derived peptides obtained from the central nervous system (CNS), this therapy aims to boost protective autoimmunity, an autoreactive response that leads to a protective phenotype that produces a healing environment and neuroregeneration instead of causing damage. INDP has shown promising findings in studies performed either in vitro, in vivo or even in some pre-clinical trials of different NDDs, standing as a potentially beneficial therapy. In this review, we will describe some of the studies in which the effect of INDP strategies have been explored in different (chronic and acute) neurodegenerative diseases.
Collapse
Affiliation(s)
- Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Efraín Weintraub Ben Zión
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Oscar Vidal Alcántar-Garibay
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Ericka Cristina Loza-López
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Emilio Tejerina Marion
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Enrique Blancarte Hernández
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Lisset Navarro-Torres
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
- Neuroimmunology Department, Proyecto CAMINA A.C., Ciudad de México 14370, Mexico
- Correspondence:
| |
Collapse
|
175
|
Zahir F, Hanman A, Yazdani N, La Rosa S, Sleik G, Sullivan B, Mehdipour A, Malouka S, Kuspinar A. Assessing the psychometric properties of quality of life measures in individuals with amyotrophic lateral sclerosis: a systematic review. Qual Life Res 2023:10.1007/s11136-023-03377-2. [PMID: 36881218 DOI: 10.1007/s11136-023-03377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults. There are many patient-reported outcome measures (PROMs) for measuring quality of life (QoL) and health-related QoL (HRQoL) within this population; however, there is limited consensus regarding which are most valid, reliable, responsive, and interpretable. This systematic review assesses the psychometric properties and interpretability of QoL and HRQoL PROMs for individuals with ALS. METHODS This review was conducted following the Consensus-based Standards for the selection of health Measurement Instruments (COSMIN) methodology for systematic reviews of PROMs. MEDLINE, EMBASE, and CINAHL databases were searched. Studies were included if their aim was to evaluate one or more psychometric properties or the interpretability of QoL or HRQoL PROMs in individuals with ALS. RESULTS We screened 2713 abstracts, reviewed 60 full-text articles, and included 37 articles. Fifteen PROMs were evaluated including generic HRQoL (e.g., SF-36), ALS-specific HRQoL (e.g., ALSAQ-40), and individualized QoL (e.g., SEIQoL) measures. Evidence for internal consistency and test-retest reliability were acceptable. For convergent validity, 84% of hypotheses were met. For known-groups validity, outcomes were able to distinguish between healthy cohorts and other conditions. Responsiveness results ranged from low to high correlations with other measures over 3-24 months. Evidence for content validity, structural validity, measurement error, and divergent validity was limited. CONCLUSION This review identified evidence in support of the ALSAQ-40 or ALSAQ-5 for individuals with ALS. These findings can guide healthcare practitioners when selecting evidence-based QoL and HRQoL PROMs for patients and provide researchers with insight into gaps in the literature.
Collapse
Affiliation(s)
- Faryal Zahir
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada
| | - Alicia Hanman
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada
| | - Nazmehr Yazdani
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada
| | - Sabrina La Rosa
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada
| | - Gemma Sleik
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada
| | - Brooke Sullivan
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada
| | - Ava Mehdipour
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada
| | - Selina Malouka
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada
| | - Ayse Kuspinar
- School of Rehabilitation Science, McMaster University, 1400 Main St. W., IAHS, Hamilton, ON, L8S 1C7, Canada.
| |
Collapse
|
176
|
Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules 2023; 13:biom13030478. [PMID: 36979413 PMCID: PMC10046667 DOI: 10.3390/biom13030478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In recent years, advances in science and technology have improved our quality of life, enabling us to tackle diseases and increase human life expectancy. However, longevity is accompanied by an accretion in the frequency of age-related neurodegenerative diseases, creating a growing burden, with pervasive social impact for human societies. The cost of managing such chronic disorders and the lack of effective treatments highlight the need to decipher their molecular and genetic underpinnings, in order to discover new therapeutic targets. In this effort, the nematode Caenorhabditis elegans serves as a powerful tool to recapitulate several disease-related phenotypes and provides a highly malleable genetic model that allows the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screens. Its anatomical transparency allows the use of co-expressed fluorescent proteins to track the progress of neurodegeneration. Moreover, the functional conservation of neuronal processes, along with the high homology between nematode and human genomes, render C. elegans extremely suitable for the study of human neurodegenerative disorders. This review describes nematode models used to study neurodegeneration and underscores their contribution in the effort to dissect the molecular basis of human diseases and identify novel gene targets with therapeutic potential.
Collapse
|
177
|
Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov 2023; 22:185-212. [PMID: 36543887 PMCID: PMC9768794 DOI: 10.1038/s41573-022-00612-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10-15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly.
Collapse
Affiliation(s)
- Richard J Mead
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK
| | - Ning Shan
- Aclipse Therapeutics, Radnor, PA, US
| | | | - Fiona Marshall
- MSD UK Discovery Centre, Merck, Sharp and Dohme (UK) Limited, London, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK.
| |
Collapse
|
178
|
Aishwarya R, Abdullah CS, Remex NS, Nitu S, Hartman B, King J, Bhuiyan MAN, Rom O, Miriyala S, Panchatcharam M, Orr AW, Kevil CG, Bhuiyan MS. Pathological Sequelae Associated with Skeletal Muscle Atrophy and Histopathology in G93A*SOD1 Mice. MUSCLES (BASEL, SWITZERLAND) 2023; 2:51-74. [PMID: 38516553 PMCID: PMC10956373 DOI: 10.3390/muscles2010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex systemic disease that primarily involves motor neuron dysfunction and skeletal muscle atrophy. One commonly used mouse model to study ALS was generated by transgenic expression of a mutant form of human superoxide dismutase 1 (SOD1) gene harboring a single amino acid substitution of glycine to alanine at codon 93 (G93A*SOD1). Although mutant-SOD1 is ubiquitously expressed in G93A*SOD1 mice, a detailed analysis of the skeletal muscle expression pattern of the mutant protein and the resultant muscle pathology were never performed. Using different skeletal muscles isolated from G93A*SOD1 mice, we extensively characterized the pathological sequelae of histological, molecular, ultrastructural, and biochemical alterations. Muscle atrophy in G93A*SOD1 mice was associated with increased and differential expression of mutant-SOD1 across myofibers and increased MuRF1 protein level. In addition, high collagen deposition and myopathic changes sections accompanied the reduced muscle strength in the G93A*SOD1 mice. Furthermore, all the muscles in G93A*SOD1 mice showed altered protein levels associated with different signaling pathways, including inflammation, mitochondrial membrane transport, mitochondrial lipid uptake, and antioxidant enzymes. In addition, the mutant-SOD1 protein was found in the mitochondrial fraction in the muscles from G93A*SOD1 mice, which was accompanied by vacuolized and abnormal mitochondria, altered OXPHOS and PDH complex protein levels, and defects in mitochondrial respiration. Overall, we reported the pathological sequelae observed in the skeletal muscles of G93A*SOD1 mice resulting from the whole-body mutant-SOD1 protein expression.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | | | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Christopher G. Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
179
|
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:736. [PMID: 36899872 PMCID: PMC10000757 DOI: 10.3390/cells12050736] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Department of Neuroimmunology, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
180
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
181
|
Chen L, Wang N, Zhang Y, Li D, He C, Li Z, Zhang J, Guo Y. Proteomics analysis indicates the involvement of immunity and inflammation in the onset stage of SOD1-G93A mouse model of ALS. J Proteomics 2023; 272:104776. [PMID: 36423857 DOI: 10.1016/j.jprot.2022.104776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease, and the pathogenic mechanism that underlies ALS is still unclear. We analyzed the differentially expressed proteins (DEPs) in the spinal cord between SOD1-G93A transgenic mice at the onset stage and non-transgenic (NTG) littermates based on 4D label-free quantitative proteomics (4D-LFQ) with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In our study, 189 DEPs were screened, of which 166 were up-regulated and 23 down-regulated. Clusters of Orthologous Groups (COG)/ EuKaryotic Orthologous Groups (KOG) classification, subcellular localization annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, clustering analysis and protein-protein interaction (PPI) network analyses were performed. Parallel reaction monitoring (PRM) analysis validated 48 proteins from immunity and inflammation-related pathways of KEGG. We described the function and distribution of DEPs, most of which were involved in the following pathways: complement and coagulation cascades, antigen processing and presentation, NF-kappa B signaling pathway, Retinoic acid-inducible gene I (RIG) -I-like receptor signaling pathway, the extracellular matrix-receptor (ECM-receptor) interaction, focal adhesion, phagosome and lysosome. PPI network analysis identified Fn1, Fga, Serpina1e and Serpina3n as potential biomarkers. Our discoveries broaden the view and expand our understanding of immunity and inflammation in ALS. SIGNIFICANCE: This study gives a comprehensive description of DEPs in the spinal cord proteomics of SOD1-G93A mice at the onset period. Compared with a previous study focusing on progressive stage, we showed that immunity and inflammation play an important role at the onset stage of ALS. Several pathways validated by PRM bring new insight to the pathological mechanisms of ALS. The participation of RIG-I-like signaling pathway in ALS and potential biomarkers Fga, Fn1, Serpina1e and Serpina3n are supplements to existing knowledge.
Collapse
Affiliation(s)
- Lin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China; Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Ningyuan Wang
- Xiangya School of Medicine, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410013, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Dongxiao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Caili He
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Jian Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
182
|
Weng YT, Chang YM, Chern Y. The Impact of Dysregulated microRNA Biogenesis Machinery and microRNA Sorting on Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24043443. [PMID: 36834853 PMCID: PMC9959302 DOI: 10.3390/ijms24043443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs involved in the differentiation, development, and function of cells in the body by targeting the 3'- untranslated regions (UTR) of mRNAs for degradation or translational inhibition. miRNAs not only affect gene expression inside the cells but also, when sorted into exosomes, systemically mediate the communication between different types of cells. Neurodegenerative diseases (NDs) are age-associated, chronic neurological diseases characterized by the aggregation of misfolded proteins, which results in the progressive degeneration of selected neuronal population(s). The dysregulation of biogenesis and/or sorting of miRNAs into exosomes was reported in several NDs, including Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Many studies support the possible roles of dysregulated miRNAs in NDs as biomarkers and therapeutic treatments. Understanding the molecular mechanisms underlying the dysregulated miRNAs in NDs is therefore timely and important for the development of diagnostic and therapeutic interventions. In this review, we focus on the dysregulated miRNA machinery and the role of RNA-binding proteins (RBPs) in NDs. The tools that are available to identify the target miRNA-mRNA axes in NDs in an unbiased manner are also discussed.
Collapse
|
183
|
Berry JD, Blanchard M, Bonar K, Drane E, Murton M, Ploug U, Ricchetti-Masterson K, Savic N, Worthington E, Heiman-Patterson T. Epidemiology and economic burden of amyotrophic lateral sclerosis in the United States: a literature review. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-13. [PMID: 36748473 DOI: 10.1080/21678421.2023.2165947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: This review sought to gain a comprehensive, up-to-date understanding of the epidemiology and cost and healthcare resource use (HCRU) burden of amyotrophic lateral sclerosis (ALS) in the US, at a patient and national level. Methods: A targeted literature review (TLR) to identify epidemiological evidence (prevalence, incidence, mortality, survival), and systematic literature review (SLR) to identify cost and HCRU data published since January 2016, were performed. MEDLINE databases and Embase searches were conducted in January 2021. Key congresses (2019-2020) and bibliographies of relevant SLRs were hand-searched. Two high-quality SLRs were reviewed for additional cost data published between January 2001-2015. Registry and database studies were prioritized for epidemiological evidence. To allow comparison between studies in this publication, only evidence from the US was considered, with costs inflated to the 2020/2021 cost-year and converted to US dollars. Results: Eight studies from the epidemiology TLR, and eighteen from the cost and HCRU SLR, were extracted. Reported ALS incidence in the US was ∼1.5 per 100,000 person-years, and point prevalence ranged from 3.84-5.56 per 100,000 population. Total US national costs spanned ∼$212 million-∼$1.4 billion USD/year, and variably consisted of direct costs associated with HCRU and indirect costs. Conclusions: The national cost of ∼$1.02 billion USD/year (estimated using a prevalence of 16,055 cases) best aligns with prevalence estimates found in the TLR (equating to ∼13,000-18,000 cases). However, large-scale, population-based studies are necessary to precisely assess US epidemiology of ALS and capture all costs needed to inform cost-effectiveness models and resource planning.
Collapse
Affiliation(s)
- James D Berry
- Neurological Clinical Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Bao Y, Chen Y, Piao S, Hu B, Yang L, Li H, Geng D, Li Y. Iron quantitative analysis of motor combined with bulbar region in M1 cortex may improve diagnosis performance in ALS. Eur Radiol 2023; 33:1132-1142. [PMID: 35951045 DOI: 10.1007/s00330-022-09045-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/08/2022] [Accepted: 07/09/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To explore whether the combined analysis of motor and bulbar region of M1 on susceptibility-weighted imaging (SWI) can be a valid biomarker for amyotrophic lateral sclerosis (ALS). METHODS Thirty-two non-demented ALS patients and 35 age- and gender-matched healthy controls (HC) were retrospectively recruited. SWI and 3D-T1-MPRAGE images were obtained from all individuals using a 3.0-T MRI scan. The bilateral posterior band of M1 was manually delineated by three neuroradiologists on phase images and subdivided into the motor and bulbar regions. We compared the phase values in two groups and performed a stratification analysis (ALSFRS-R score, duration, disease progression rate, and onset). Receiver operating characteristic (ROC) curves were also constructed. RESULTS ALS group showed significantly increased phase values in M1 and the two subregions than the HC group, on the all and elderly level (p < 0.001, respectively). On all-age level comparison, negative correlations were found between phase values of M1 and clinical score and duration (p < 0.05, respectively). Similar associations were found in the motor region (p < 0.05, respectively). On both the total (p < 0.01) and elderly (p < 0.05) levels, there were positive relationships between disease progression rate and M1 phase values. In comparing ROC curves, the entire M1 showed the best diagnostic performance. CONCLUSIONS Combining motor and bulbar analyses as an integral M1 region on SWI can improve ALS diagnosis performance, especially in the elderly. The phase value could be a valuable biomarker for ALS evaluation. KEY POINTS • Integrated analysis of the motor and bulbar as an entire M1 region on SWI can improve the diagnosis performance in ALS. • Quantitative analysis of iron deposition by SWI measurement helps the clinical evaluation, especially for the elderly patients. • Phase value, when combined with the disease progression rate, could be a valuable biomarker for ALS.
Collapse
Affiliation(s)
- Yifang Bao
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Yan Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Liqin Yang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China. .,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China.
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China. .,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
185
|
Katiyar D, Singhal S, Bansal P, Nagarajan K, Grover P. Nutraceuticals and phytotherapeutics for holistic management of amyotrophic lateral sclerosis. 3 Biotech 2023; 13:62. [PMID: 36714551 PMCID: PMC9880136 DOI: 10.1007/s13205-023-03475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Amyotrophic lateral sclerosis" (ALS) is a progressive neuronal disorder that affects sensory neurons in the brain and spinal cord, causing loss of muscle control. Moreover, additional neuronal subgroups as well as glial cells such as microglia, astrocytes, and oligodendrocytes are also thought to play a role in the aetiology. The disease affects upper motor neurons and lowers motor neurons and leads to that either lead to muscle weakness and wasting in the arms, legs, trunk and periventricular area. Oxidative stress, excitotoxicity, programmed cell death, altered neurofilament activity, anomalies in neurotransmission, abnormal protein processing and deterioration, increased inflammation, and mitochondrial dysfunction may all play a role in the progression of ALS. There are presently hardly FDA-approved drugs used to treat ALS, and they are only beneficial in slowing the progression of the disease and enhancing functions in certain individuals with ALS, not really in curing or preventing the illness. These days, researchers focus on understanding the pathogenesis of the disease by targeting several mechanisms aiming to develop successful treatments for ALS. This review discusses the epidemiology, risk factors, diagnosis, clinical features, pathophysiology, and disease management. The compilation focuses on alternative methods for the management of symptoms of ALS with nutraceuticals and phytotherapeutics.
Collapse
Affiliation(s)
- Deepti Katiyar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Shipra Singhal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Priya Bansal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - K. Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| |
Collapse
|
186
|
Oliveira RTGD, Santana GC, Gonçalves MDJ, Fregonezi GADF, Vale SHDL, Leite-Lais L, Dourado MET. A geographical study on amyotrophic lateral sclerosis in Rio Grande Do Norte, Brazil, from 2005 to 2018. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:117-124. [PMID: 35916197 DOI: 10.1080/21678421.2022.2102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE amyotrophic lateral sclerosis (ALS) is a rare and fatal neurodegenerative disorder with variable incidence and prevalence worldwide. However, clinical-epidemiological studies on ALS are scarce in Brazil. Thus, this study investigated whether ALS incidence had uniform spatial distribution in population-based cluster analysis in Rio Grande do Norte state (Brazil), from 2005 to 2018. METHODS new cases of ALS were identified in a database of the ALS multidisciplinary care center of the Onofre Lopes University Hospital in Natal (Rio Grande do Norte, Brazil). Approaches were based on incidence (empirical Bayes estimator and Moran's I analysis) and cluster analyses (Moran scatter plot and spatial correlogram). RESULTS a total of 177 patients (59% males) participated in the study; the mean age of ALS onset was 57 years. Mean annual incidence of ALS was 0.3769 per 100,000 inhabitants (95% confidence interval of 0.0889), higher in males than in females (0.4516 per 100,000 vs. 0.3044 per 100,000). According to spatial statistics, patients were homogeneously distributed throughout the studied area. CONCLUSION a low estimate was observed compared with other populations. Results did not indicate areas of increased risk or significant spatial geographic dependence, suggesting a random ALS incidence in Rio Grande do Norte.
Collapse
Affiliation(s)
| | | | - Maria De Jesus Gonçalves
- Department of Speech-Language Pathology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Sancha Helena De Lima Vale
- Department of Nutrition, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil, and
| | - Lucia Leite-Lais
- Department of Nutrition, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil, and
| | - Mário Emílio Teixeira Dourado
- Department of Integrated Medicine, Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
187
|
Zhou Y, Tang J, Lan J, Zhang Y, Wang H, Chen Q, Kang Y, Sun Y, Feng X, Wu L, Jin H, Chen S, Peng Y. Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis. Acta Pharm Sin B 2023; 13:577-597. [PMID: 36873166 PMCID: PMC9979194 DOI: 10.1016/j.apsb.2022.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting both upper and lower motor neurons (MNs) with large unmet medical needs. Multiple pathological mechanisms are considered to contribute to the progression of ALS, including neuronal oxidative stress and mitochondrial dysfunction. Honokiol (HNK) has been reported to exert therapeutic effects in several neurologic disease models including ischemia stroke, Alzheimer's disease and Parkinson's disease. Here we found that honokiol also exhibited protective effects in ALS disease models both in vitro and in vivo. Honokiol improved the viability of NSC-34 motor neuron-like cells that expressed the mutant G93A SOD1 proteins (SOD1-G93A cells for short). Mechanistical studies revealed that honokiol alleviated cellular oxidative stress by enhancing glutathione (GSH) synthesis and activating the nuclear factor erythroid 2-related factor 2 (NRF2)-antioxidant response element (ARE) pathway. Also, honokiol improved both mitochondrial function and morphology via fine-tuning mitochondrial dynamics in SOD1-G93A cells. Importantly, honokiol extended the lifespan of the SOD1-G93A transgenic mice and improved the motor function. The improvement of antioxidant capacity and mitochondrial function was further confirmed in the spinal cord and gastrocnemius muscle in mice. Overall, honokiol showed promising preclinical potential as a multiple target drug for ALS treatment.
Collapse
Affiliation(s)
- Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiuyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yang Sun
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
188
|
Young CA, Ealing J, McDermott CJ, Williams TL, Al-Chalabi A, Majeed T, Talbot K, Harrower T, Faull C, Malaspina A, Annadale J, Mills RJ, Tennant A. Prevalence of depression in amyotrophic lateral sclerosis/motor neuron disease: multi-attribute ascertainment and trajectories over 30 months. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:82-90. [PMID: 36066075 DOI: 10.1080/21678421.2022.2096410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Objective: Evidence is equivocal about the prevalence of depression in amyotrophic lateral sclerosis (ALS). This study uses a multi-attribute ascertainment of the prevalence of depression and examines this prevalence over time. Methods: Patients with ALS were recruited into the Trajectories of Outcome in Neurological Conditions (TONiC-ALS) study. Caseness was identified by the Modified-Hospital Anxiety and Depression Scale (M-HADS). In addition, participants provided data on co-morbidities and medication use. A combination of the three was used to derive the estimate for the prevalence of depression, treated or untreated. Longitudinal data were analyzed by trajectory analysis of interval level M-HADS-Depression data. Results: Among 1120 participants, the mean age was 65.0 years (SD 10.7), 60.4% male, and the median duration since diagnosis was 9 months (IQR 4-24). Caseness of probable depression at baseline, defined by M-HADS-Depression, was 6.45% (95%CI: 5.1-8.0). Taken together with antidepressant medication and co-morbidity data, the prevalence of depression was 23.1% (95%CI: 20.7-25.6). Of those with depression, 17.8% were untreated. Trajectory analysis identified three groups, one of which contained the most cases; the level of depression for each group remained almost constant over time. Conclusion: Depression affects almost a quarter of those with ALS, largely confined to a single trajectory group. Prevalence estimates based on screening for current depressive symptoms substantially under-estimate the population experiencing depression. Future prevalence studies should differentiate data based on current symptoms from those including treated patients. Both have their place in assessing depression and the response by the health care system, including medication, depending upon the hypothesis under test.
Collapse
Affiliation(s)
- C A Young
- Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, UK
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - J Ealing
- Greater Manchester Centre for Clinical Neurosciences, Salford, UK
| | - C J McDermott
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - T L Williams
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - A Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - T Majeed
- Lancashire Teaching Hospital, Preston, UK
| | - K Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - T Harrower
- University of Exeter, Exeter Medical School, Exeter, UK
| | - C Faull
- LOROS Hospice, Leicester, UK
| | - A Malaspina
- UCL Queen Square Institute of Neurology, London, UK
| | - J Annadale
- Hywel Dda University Health Board, Wales, UK, and
| | - R J Mills
- Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, UK
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - A Tennant
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
189
|
Steinruecke M, Lonergan RM, Selvaraj BT, Chandran S, Diaz-Castro B, Stavrou M. Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: Proposed mechanisms and clinical implications. J Cereb Blood Flow Metab 2023; 43:642-654. [PMID: 36704819 PMCID: PMC10108188 DOI: 10.1177/0271678x231153281] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There is strong evidence for blood-brain and blood-spinal cord barrier dysfunction at the early stages of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Since impairment of the blood-central nervous system barrier (BCNSB) occurs during the pre-symptomatic stages of ALS, the mechanisms underlying this pathology are likely also involved in the ALS disease process. In this review, we explore how drivers of ALS disease, particularly mitochondrial dysfunction, astrocyte pathology and neuroinflammation, may contribute to BCNSB impairment. Mitochondria are highly abundant in BCNSB tissue and mitochondrial dysfunction in ALS contributes to motor neuron death. Likewise, astrocytes adopt key physical, transport and metabolic functions at the barrier, many of which are impaired in ALS. Astrocytes also show raised expression of inflammatory markers in ALS and ablating ALS-causing transgenes in astrocytes slows disease progression. In addition, key drivers of neuroinflammation, including TAR DNA-binding protein 43 (TDP-43) pathology, matrix metalloproteinase activation and systemic inflammation, affect BCNSB integrity in ALS. Finally, we discuss the translational implications of BCNSB dysfunction in ALS, including the development of biomarkers for disease onset and progression, approaches aimed at restoring BCNSB integrity and in vitro modelling of the neurogliovascular system.
Collapse
Affiliation(s)
- Moritz Steinruecke
- Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.,University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Bhuvaneish T Selvaraj
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Blanca Diaz-Castro
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- Euan MacDonald Centre for MND Research, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
190
|
Segura T, Medrano IH, Collazo S, Maté C, Sguera C, Del Rio-Bermudez C, Casero H, Salcedo I, García-García J, Alcahut-Rodríguez C, Taberna M. Symptoms timeline and outcomes in amyotrophic lateral sclerosis using artificial intelligence. Sci Rep 2023; 13:702. [PMID: 36639403 PMCID: PMC9839769 DOI: 10.1038/s41598-023-27863-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative motor neuron disease. Although an early diagnosis is crucial to provide adequate care and improve survival, patients with ALS experience a significant diagnostic delay. This study aimed to use real-world data to describe the clinical profile and timing between symptom onset, diagnosis, and relevant outcomes in ALS. Retrospective and multicenter study in 5 representative hospitals and Primary Care services in the SESCAM Healthcare Network (Castilla-La Mancha, Spain). Using Natural Language Processing (NLP), the clinical information in electronic health records of all patients with ALS was extracted between January 2014 and December 2018. From a source population of all individuals attended in the participating hospitals, 250 ALS patients were identified (61.6% male, mean age 64.7 years). Of these, 64% had spinal and 36% bulbar ALS. For most defining symptoms, including dyspnea, dysarthria, dysphagia and fasciculations, the overall diagnostic delay from symptom onset was 11 (6-18) months. Prior to diagnosis, only 38.8% of patients had visited the neurologist. In a median post-diagnosis follow-up of 25 months, 52% underwent gastrostomy, 64% non-invasive ventilation, 16.4% tracheostomy, and 87.6% riluzole treatment; these were more commonly reported (all Ps < 0.05) and showed greater probability of occurrence (all Ps < 0.03) in bulbar ALS. Our results highlight the diagnostic delay in ALS and revealed differences in the clinical characteristics and occurrence of major disease-specific events across ALS subtypes. NLP holds great promise for its application in the wider context of rare neurological diseases.
Collapse
Affiliation(s)
- Tomás Segura
- University Hospital of Albacete, Albacete, Spain.
| | | | | | | | - Carlo Sguera
- Savana Research, Madrid, Spain.,UC3M-Santander Big Data Institute, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Andrade S, Nunes D, Dabur M, Ramalho MJ, Pereira MC, Loureiro JA. Therapeutic Potential of Natural Compounds in Neurodegenerative Diseases: Insights from Clinical Trials. Pharmaceutics 2023; 15:pharmaceutics15010212. [PMID: 36678841 PMCID: PMC9860553 DOI: 10.3390/pharmaceutics15010212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases are caused by the gradual loss of neurons' function. These neurological illnesses remain incurable, and current medicines only alleviate the symptoms. Given the social and economic burden caused by the rising frequency of neurodegenerative diseases, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compounds' therapeutic effects for neurodegenerative disease treatment have been investigated in numerous in vitro and in vivo studies, only few have moved to clinical trials. This article provides the first systematic review of the clinical trials evaluating natural compounds' safety and efficacy for the treatment of the five most prevalent neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Meghna Dabur
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J. Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (M.C.P.); (J.A.L.)
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (M.C.P.); (J.A.L.)
| |
Collapse
|
192
|
Chen X, Zhou L, Cui C, Sun J. Evolving markers in amyotrophic lateral sclerosis. Adv Clin Chem 2023. [DOI: 10.1016/bs.acc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
193
|
Rodrigues RB, Orsini M, Neves SV, de Rezende Pinto WBV, da Silva Catarino AM, Pereira DA, Oliveira ASB. Differential Diagnosis or Etiology: A Case Report on Amyotrophic Lateral Sclerosis-like Neuropathy Associated with HIV Infection. Curr HIV Res 2023; 21:323-329. [PMID: 37711011 DOI: 10.2174/1570162x21666230914104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Retroviruses are described as a risk factor for chronic neuropathy. However, it is still unknown if they can work as amyotrophic lateral sclerosis triggers. Over the years, some cases of this association have been described with heterogenous disclosures. CASE REPRESENTATION This study aimed to report a case of HIV and ALS-like neuropathy and briefly discuss peculiarities of clinical aspects, such as physiopathology and treatment options. The patient underwent neurological examination associated with blood tests, electromyography, analysis of cerebrospinal fluid, and imaging studies. DISCUSSION A non-systematic review was performed in major databases regarding the topic. The case presented mixed upper and lower motor neuron signs and was framed as a probable case of ALS following the present criteria. CONCLUSION After a short follow-up and viral load cleansing, neurological stabilization was achieved.
Collapse
Affiliation(s)
| | - Marco Orsini
- Neurology Department, Iguaçu University, Nova Iguaçu, Brazil
- Neurology Department, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
194
|
Verde F, Aiello EN, Adobbati L, Poletti B, Solca F, Tiloca C, Sangalli D, Maranzano A, Muscio C, Ratti A, Zago S, Ticozzi N, Frisoni GB, Silani V. Coexistence of Amyotrophic Lateral Sclerosis and Alzheimer's Disease: Case Report and Review of the Literature. J Alzheimers Dis 2023; 95:1383-1399. [PMID: 37694369 DOI: 10.3233/jad-230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We describe a case of amyotrophic lateral sclerosis (ALS) associated with Alzheimer's disease (AD) and review the literature about the coexistence of the two entities, highlighting the following: mean age at onset is 63.8 years, with slight female predominance; ALS tends to manifest after cognitive impairment and often begins in the bulbar region; average disease duration is 3 years; cognitive phenotype is mostly amnestic; the pattern of brain involvement is, in most cases, consistent with AD. Our case and the reviewed ones suggest that patients with ALS and dementia lacking unequivocal features of FTD should undergo additional examinations in order to recognize AD.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Adobbati
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Sangalli
- Department of Neurology and Stroke Unit, Azienda Socio Sanitaria Territoriale Lecco, Lecco, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Muscio
- Neurology-5 (Neuropathology) Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Stefano Zago
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Battista Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
195
|
Hong D, Zhang C, Wu W, Lu X, Zhang L. Modulation of the gut-brain axis via the gut microbiota: a new era in treatment of amyotrophic lateral sclerosis. Front Neurol 2023; 14:1133546. [PMID: 37153665 PMCID: PMC10157060 DOI: 10.3389/fneur.2023.1133546] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
There are trillions of different microorganisms in the human digestive system. These gut microbes are involved in the digestion of food and its conversion into the nutrients required by the body. In addition, the gut microbiota communicates with other parts of the body to maintain overall health. The connection between the gut microbiota and the brain is known as the gut-brain axis (GBA), and involves connections via the central nervous system (CNS), the enteric nervous system (ENS), and endocrine and immune pathways. The gut microbiota regulates the central nervous system bottom-up through the GBA, which has prompted researchers to pay considerable attention to the potential pathways by which the gut microbiota might play a role in the prevention and treatment of amyotrophic lateral sclerosis (ALS). Studies with animal models of ALS have shown that dysregulation of the gut ecology leads to dysregulation of brain-gut signaling. This, in turn, induces changes in the intestinal barrier, endotoxemia, and systemic inflammation, which contribute to the development of ALS. Through the use of antibiotics, probiotic supplementation, phage therapy, and other methods of inducing changes in the intestinal microbiota that can inhibit inflammation and delay neuronal degeneration, the clinical symptoms of ALS can be alleviated, and the progression of the disease can be delayed. Therefore, the gut microbiota may be a key target for effective management and treatment of ALS.
Collapse
Affiliation(s)
- Du Hong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wenshuo Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohui Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Liping Zhang
| |
Collapse
|
196
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
197
|
Malek AM, Arena VC, Song R, Whitsel EA, Rager JR, Stewart J, Yanosky JD, Liao D, Talbott EO. Long-term air pollution and risk of amyotrophic lateral sclerosis mortality in the Women's Health Initiative cohort. ENVIRONMENTAL RESEARCH 2023; 216:114510. [PMID: 36220441 DOI: 10.1016/j.envres.2022.114510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no cure. Although the etiology of sporadic ALS is largely unknown, environmental exposures may affect ALS risk. OBJECTIVE We investigated relationships between exposure to long-term ambient particulate matter (PM) and gaseous air pollution (AP) and ALS mortality. METHODS Within the Women's Health Initiative (WHI) cohort of 161,808 postmenopausal women aged 50-79 years at baseline (1993-1998), we performed a nested case-control study of 256 ALS deaths and 2486 matched controls with emphasis on PM constituents (PM2.5, PM10, and coarse PM [PM10-2.5]) and gaseous pollutants (NOx, NO2, SO2, and ozone). Time-varying AP exposures estimates were averaged 5, 7.5, and 10 years prior to ALS death using both a GIS-based spatiotemporal generalized additive mixed model and ordinary kriging (empirical and multiple imputation, MI). Conditional logistic regression was used to estimate the relative risk of ALS death. RESULTS In general, PM2.5 and PM10-related risks were not significantly elevated using either method. However, for PM10-2.5, odds ratios (ORs) were >1.0 for both methods at all time periods using MI and empirical data for PM10-2.5 (coarse) except for 5 and 7.5 years using the kriging method with covariate adjustment. CONCLUSION This investigation adds to the body of information on long-term ambient AP exposure and ALS mortality. Specifically, the 2019 US Environmental Protection Agency (EPA) Integrated Science Assessment summarized the neurotoxic effects of PM2.5, PM10, and PM10-2.5. The conclusion was that evidence of an effect of coarse PM is suggestive but the data is presently not sufficient to infer a causal relationship. Further research on AP and ALS is warranted. As time from symptom onset to death in ALS is ∼2-4 years, earlier AP measures may also be of interest to ALS development. This is the first study of ALS and AP in postmenopausal women controlling for individual-level confounders.
Collapse
Affiliation(s)
- Angela M Malek
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Vincent C Arena
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ruopu Song
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health and Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Judith R Rager
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - James Stewart
- Department of Epidemiology, Gillings School of Global Public Health and Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, Penn State University, Hershey, PA, 17033, USA
| | - Duanping Liao
- Department of Public Health Sciences, Penn State University, Hershey, PA, 17033, USA
| | - Evelyn O Talbott
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
198
|
Kumar R, Malik Z, Singh M, Rachana R, Mani S, Ponnusamy K, Haider S. Amyotrophic Lateral Sclerosis Risk Genes and Suppressor. Curr Gene Ther 2023; 23:148-162. [PMID: 36366843 DOI: 10.2174/1566523223666221108113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to death by progressive paralysis and respiratory failure within 2-4 years of onset. About 90-95% of ALS cases are sporadic (sALS), and 5-10% are inherited through family (fALS). Though the mechanisms of the disease are still poorly understood, so far, approximately 40 genes have been reported as ALS causative genes. The mutations in some crucial genes, like SOD1, C9ORF72, FUS, and TDP-43, are majorly associated with ALS, resulting in ROS-associated oxidative stress, excitotoxicity, protein aggregation, altered RNA processing, axonal and vesicular trafficking dysregulation, and mitochondrial dysfunction. Recent studies show that dysfunctional cellular pathways get restored as a result of the repair of a single pathway in ALS. In this review article, our aim is to identify putative targets for therapeutic development and the importance of a single suppressor to reduce multiple symptoms by focusing on important mutations and the phenotypic suppressors of dysfunctional cellular pathways in crucial genes as reported by other studies.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - Zubbair Malik
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi-110067, India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - R Rachana
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | | | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| |
Collapse
|
199
|
Antunes M, Folgado D, Barandas M, Carreiro A, Quintão C, de Carvalho M, Gamboa H. A morphology-based feature set for automated Amyotrophic Lateral Sclerosis diagnosis on surface electromyography. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
200
|
Gomes NA, Lima e Silva FDC, de Oliveira Volpe CM, Villar-Delfino PH, de Sousa CF, Rocha-Silva F, Nogueira-Machado JA. Overexpression of mTOR in Leukocytes from ALS8 Patients. Curr Neuropharmacol 2023; 21:482-490. [PMID: 36722478 PMCID: PMC10207909 DOI: 10.2174/1570159x21666230201151016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The mutated VAPBP56S (vesicle B associated membrane protein - P56S) protein has been described in a Brazilian family and classified as Amyotrophic Lateral Sclerosis type 8 (ALS8). OBJECTIVE We aimed to study altered biochemical and immunological parameters in cells from ALS8 patients to identify possible biomarkers or therapeutic targets. METHODS Wild-type VAPB, VAPBP56S, mTOR, proinflammatory cytokines, and oxidant/reducing levels in serum, leucocytes, and cellular lysate from ALS8 patients and health Controls were performed by ELISA, fluorimetry, and spectrophotometry. RESULTS Our results showed similar levels of mutant and wild-type VAPB in serum and intracellular lysate (p > 0.05) when ALS8 patients and Controls were compared. IL-1β, IL-6, and IL-18 levels in patients and Controls showed no difference, suggesting an absence of peripheral inflammation (p > 0.05). Oxidative metabolic response, assessed by mitochondrial ROS production, and reductive response by MTT reduction, were higher in the ALS8 group compared to Controls (p < 0.05), although not characterizing typical oxidative stress in ALS8 patients. Total mTOR levels (phosphorylated or non-phosphorylated) of ALS8 patients were significantly lower in serum and higher in intracellular lysate than the mean equivalents in Controls (p < 0.05). A similar result was observed when we quantified the phosphorylated protein (p < 0.05). CONCLUSION We demonstrate the possibility of using these biochemical and immunological parameters as potential therapeutic targets or biomarkers. Furthermore, by hypothesis, we suggest a hormetic response in which both VAPB forms could coexist in different proportions throughout life. The mutated VAPBP56S production would increase with aging and predominate over the wild-type VAPB levels, determining the onset of symptoms and aggravating the disease.
Collapse
Affiliation(s)
- Nathália Augusta Gomes
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | | | - Caroline Maria de Oliveira Volpe
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Henrique Villar-Delfino
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Ferreira de Sousa
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - José Augusto Nogueira-Machado
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|