151
|
Hillmann F, Novohradská S, Mattern DJ, Forberger T, Heinekamp T, Westermann M, Winckler T, Brakhage AA. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ Microbiol 2015; 17:2858-69. [PMID: 25684622 DOI: 10.1111/1462-2920.12808] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 02/06/2023]
Abstract
Filamentous fungi represent classical examples for environmentally acquired human pathogens whose major virulence mechanisms are likely to have emerged long before the appearance of innate immune systems. In natural habitats, amoeba predation could impose a major selection pressure towards the acquisition of virulence attributes. To test this hypothesis, we exploited the amoeba Dictyostelium discoideum to study its interaction with Aspergillus fumigatus, two abundant soil inhabitants for which we found co-occurrence in various sites. Fungal conidia were efficiently taken up by D. discoideum, but ingestion was higher when conidia were devoid of the green fungal spore pigment dihydroxynaphtalene melanin, in line with earlier results obtained for immune cells. Conidia were able to survive phagocytic processing, and intracellular germination was initiated only after several hours of co-incubation which eventually led to a lethal disruption of the host cell. Besides phagocytic interactions, both amoeba and fungus secreted cross inhibitory factors which suppressed fungal growth or induced amoeba aggregation with subsequent cell lysis, respectively. On the fungal side, we identified gliotoxin as the major fungal factor killing Dictyostelium, supporting the idea that major virulence attributes, such as escape from phagocytosis and the secretion of mycotoxins are beneficial to escape from environmental predators.
Collapse
Affiliation(s)
- Falk Hillmann
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Silvia Novohradská
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Derek J Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | - Tilmann Forberger
- Department of Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| | | | - Thomas Winckler
- Department of Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology
| |
Collapse
|
152
|
Crutcher FK, Liu J, Puckhaber LS, Stipanovic RD, Bell AA, Nichols RL. FUBT, a putative MFS transporter, promotes secretion of fusaric acid in the cotton pathogen Fusarium oxysporum f. sp. vasinfectum. MICROBIOLOGY-SGM 2015; 161:875-83. [PMID: 25627440 DOI: 10.1099/mic.0.000043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/20/2015] [Indexed: 01/23/2023]
Abstract
Fusaric acid (FA) is a key component in virulence and symptom development in cotton during infection by Fusarium oxysporum. A putative major facilitator superfamily (MFS) transporter gene was identified downstream of the polyketide synthase gene responsible for the biosynthesis of FA in a region previously believed to be unrelated to the known FA gene cluster. Disruption of the transporter gene, designated FUBT, resulted in loss of FA secretion, decrease in FA production and a decrease in resistance to high concentrations of FA. Uptake of exogenous FA was unaffected in the disruption transformants, suggesting that FA enters the cell in Fusarium by an independent mechanism. Thus, FUBT is involved both in the extracellular transport of FA and in resistance of F. oxysporum to this non-specific toxin. A potential secondary resistance mechanism, the production of FA derivatives, was observed in FUBT deletion mutants. Molecular analysis of key biochemical processes in the production of FA could lead to future host plant resistance to Fusarium pathogens.
Collapse
Affiliation(s)
- Frankie K Crutcher
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX 77845, USA
| | - Jinggao Liu
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX 77845, USA
| | - Lorraine S Puckhaber
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX 77845, USA
| | - Robert D Stipanovic
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX 77845, USA
| | - Alois A Bell
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX 77845, USA
| | | |
Collapse
|
153
|
Sheridan KJ, Dolan SK, Doyle S. Endogenous cross-talk of fungal metabolites. Front Microbiol 2015; 5:732. [PMID: 25601857 PMCID: PMC4283610 DOI: 10.3389/fmicb.2014.00732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
Non-ribosomal peptide (NRP) synthesis in fungi requires a ready supply of proteogenic and non-proteogenic amino acids which are subsequently incorporated into the nascent NRP via a thiotemplate mechanism catalyzed by NRP synthetases. Substrate amino acids can be modified prior to or during incorporation into the NRP, or following incorporation into an early stage amino acid-containing biosynthetic intermediate. These post-incorporation modifications involve a range of additional enzymatic activities including but not exclusively, monooxygenases, methyltransferases, epimerases, oxidoreductases, and glutathione S-transferases which are essential to effect biosynthesis of the final NRP. Likewise, polyketide biosynthesis is directly by polyketide synthase megaenzymes and cluster-encoded ancillary decorating enzymes. Additionally, a suite of additional primary metabolites, for example: coenzyme A (CoA), acetyl CoA, S-adenosylmethionine, glutathione (GSH), NADPH, malonyl CoA, and molecular oxygen, amongst others are required for NRP and polyketide synthesis (PKS). Clearly these processes must involve exquisite orchestration to facilitate the simultaneous biosynthesis of different types of NRPs, polyketides, and related metabolites requiring identical or similar biosynthetic precursors or co-factors. Moreover, the near identical structures of many natural products within a given family (e.g., ergot alkaloids), along with localization to similar regions within fungi (e.g., conidia) suggests that cross-talk may exist, in terms of biosynthesis and functionality. Finally, we speculate if certain biosynthetic steps involved in NRP and PKS play a role in cellular protection or environmental adaptation, and wonder if these enzymatic reactions are of equivalent importance to the actual biosynthesis of the final metabolite.
Collapse
Affiliation(s)
| | - Stephen K Dolan
- Department of Biology, Maynooth University Maynooth, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University Maynooth, Ireland
| |
Collapse
|
154
|
|
155
|
Baumann M, Dieskau AP, Loertscher BM, Walton MC, Nam S, Xie J, Horne D, Overman LE. Tricyclic Analogues of Epidithiodioxopiperazine Alkaloids with Promising In Vitro and In Vivo Antitumor Activity. Chem Sci 2015; 6:4451-4457. [PMID: 26301062 PMCID: PMC4540405 DOI: 10.1039/c5sc01536g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A short synthesis of 1,4-dioxohexahydro-6H-3,8a-epidithiopyrrolo[1,2-a]pyrazines will enable future mechanistic and translational studies of these structurally novel and promising clinical antitumor candidates.
Epipolythiodioxopiperazine (ETP) alkaloids are structurally elaborate alkaloids that show potent antitumor activity. However, their high toxicity and demonstrated interactions with various biological receptors compromises their therapeutic potential. In an effort to mitigate these disadvantages, a short stereocontrolled construction of tricyclic analogues of epidithiodioxopiperazine alkaloids was developed. Evaluation of a small library of such structures against two invasive cancer cell lines defined initial structure–activity relationships (SAR), which identified 1,4-dioxohexahydro-6H-3,8a-epidithiopyrrolo[1,2-a]pyrazine 3c and related structures as particularly promising antitumor agents. ETP alkaloid analogue 3c exhibits low nanomolar activity against both solid and blood tumors in vitro. In addition, 3c significantly suppresses tumor growth in mouse xenograft models of melanoma and lung cancer, without obvious signs of toxicity, following either intraperitoneal (IP) or oral administration. The short synthesis of molecules in this series will enable future mechanistic and translational studies of these structurally novel and highly promising clinical antitumor candidates.
Collapse
Affiliation(s)
- Marcus Baumann
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| | - André P Dieskau
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| | - Brad M Loertscher
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| | - Mary C Walton
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| | - Sangkil Nam
- Department of Molecular Medicine, Beckman Research Institute of City Hope Comprehensive Cancer Center, Beckman Research Institute, Department of Molecular Medicine, 1500 E. Duarte Road, Duarte, California 91010
| | - Jun Xie
- Department of Molecular Medicine, Beckman Research Institute of City Hope Comprehensive Cancer Center, Beckman Research Institute, Department of Molecular Medicine, 1500 E. Duarte Road, Duarte, California 91010
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City Hope Comprehensive Cancer Center, Beckman Research Institute, Department of Molecular Medicine, 1500 E. Duarte Road, Duarte, California 91010
| | - Larry E Overman
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| |
Collapse
|
156
|
Chagas FO, Caraballo-Rodriguez AM, Pupo MT. Endophytic Fungi as a Source of Novel Metabolites. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
157
|
Abstract
Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | | | | |
Collapse
|
158
|
He PX, Zhang J, Che YS, He QJ, Chen Y, Ding J. G226, a new epipolythiodioxopiperazine derivative, triggers DNA damage and apoptosis in human cancer cells in vitro via ROS generation. Acta Pharmacol Sin 2014; 35:1546-55. [PMID: 25468822 DOI: 10.1038/aps.2014.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 01/01/2023]
Abstract
AIM G226 is a novel derivative of epipolythiodioxopiperazines with potent inhibitory activity against cancer cells. Here, we sought to identify potential targets involved in the anti-cancer activity of G226. METHODS Cell proliferation assay was conducted in a panel of 12 human cancer cell lines. The activities of topoisomerase I (Topo I) and Topo II were studied using supercoiled pBR322 DNA relaxation and kDNA decatenation assays. ROS production was assessed with probes DCFH-DA and H&E. Western blot analysis and flow cytometry were used to examine DNA damage, apoptosis and cell cycle changes. RESULTS G226 displayed potent cytotoxicity in the 12 human cancer cell lines with a mean IC50 value of 92.7 nmol/L. This compound (1-100 μmol/L) selectively inhibited the activity of Topo II, and elevated the expression of phosphorylated-H2AX in a dose-dependent manner. In Topo II-deficient HL60/MX2 cells, however, G226-induced DNA damage, apoptosis and cytotoxicity were only partially reduced, suggesting that Topo II was not essential for the anti-tumor effects of G226. Furthermore, G226 (0.125-2 μmol/L) dose-dependently elevated the intracellular levels of H2O2 and in the cancer cells, and pretreatment with GSH, NAC or DTT not only blocked G226-induced intracellular accumulation of ROS, but also abrogated G226-mediated phosphorylation of H2AX, apoptosis and cytotoxicity. CONCLUSION G226-mediated ROS production contributes to the anti-cancer activity of this compound.
Collapse
|
159
|
Welch TR, Williams RM. Epidithiodioxopiperazines. occurrence, synthesis and biogenesis. Nat Prod Rep 2014; 31:1376-404. [PMID: 24816491 DOI: 10.1039/c3np70097f] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epidithiodioxopiperazine alkaloids possess an astonishing array of molecular architecture and generally exhibit potent biological activity. Nearly twenty distinct families have been isolated and characterized since the seminal discovery of gliotoxin in 1936. Numerous biosynthetic investigations offer a glimpse at the relative ease with which Nature is able to assemble this class of molecules, while providing synthetic chemists inspiration for the development of more efficient syntheses. Herein, we discuss the isolation and characterization, proposed fungal biogeneses, and total syntheses of epidithiodioxopiperazines.
Collapse
Affiliation(s)
- Timothy R Welch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | |
Collapse
|
160
|
Wiemann P, Lechner BE, Baccile JA, Velk TA, Yin WB, Bok JW, Pakala S, Losada L, Nierman WC, Schroeder FC, Haas H, Keller NP. Perturbations in small molecule synthesis uncovers an iron-responsive secondary metabolite network in Aspergillus fumigatus. Front Microbiol 2014; 5:530. [PMID: 25386169 PMCID: PMC4208449 DOI: 10.3389/fmicb.2014.00530] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/23/2014] [Indexed: 11/13/2022] Open
Abstract
Iron plays a critical role in survival and virulence of the opportunistic pathogen Aspergillus fumigatus. Two transcription factors, the GATA-factor SreA and the bZip-factor HapX oppositely monitor iron homeostasis with HapX activating iron acquisition pathways (e.g., siderophores) and shutting down iron consumptive pathways (and SreA) during iron starvation conditions whereas SreA negatively regulates HapX and corresponding pathways during iron sufficiency. Recently the non-ribosomal peptide, hexadehydroastechrome (HAS; a tryptophan-derived iron (III)-complex), has been found important in A. fumigatus virulence. We found that HAS overproduction caused an iron starvation phenotype, from alteration of siderophore pools to regulation of iron homeostasis gene expression including sreA. Moreover, we uncovered an iron dependent secondary metabolism network where both SreA and HapX oppositely regulate multiple other secondary metabolites including HAS. This circuitry links iron-acquisition and consumption pathways with secondary metabolism-thus placing HAS as part of a metabolic feedback circuitry designed to balance iron pools in the fungus and presenting iron availability as one environmental trigger of secondary metabolism.
Collapse
Affiliation(s)
- Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA
| | - Beatrix E Lechner
- Division of Molecular Biology/Biocenter, Innsbruck Medical University Innsbruck, Austria
| | - Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University Ithaca, NY, USA
| | - Thomas A Velk
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA
| | - Wen-Bing Yin
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA
| | - Suman Pakala
- The J. Craig Venter Institute Rockville, MD, USA
| | | | | | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University Ithaca, NY, USA
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University Innsbruck, Austria
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA ; Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
161
|
Kim YJ, Park HB, Yoo JH, Kwon HC, Kim J, Yang HO. Glionitrin A, a new diketopiperazine disulfide, activates ATM-ATR-Chk1/2 via 53BP1 phosphorylation in DU145 cells and shows antitumor effect in xenograft model. Biol Pharm Bull 2014; 37:378-86. [PMID: 24583858 DOI: 10.1248/bpb.b13-00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a recent study, we isolated the diketopiperazine disulfide glionitrin A from the co-culture broth of a mine drainage-derived fungus (Aspergillus fumigatus KMC901) and bacterium (Sphingomonas KMK001). Here, we investigated the antitumor activity of glionitrin A and its underlying molecular mechanisms in human prostate cancer DU145 cells. Glionitrin A showed significant cytotoxicity, promoting cell cycle arrest and apoptosis. Glionitrin A-treated cells exhibited elevated levels of phospho-histone 2AX (Ser139), a marker of DNA damage, and accumulated in both S phase and G2/M phase due to the activation of checkpoints associated with the ataxia-telangiectasia-mutated and ataxia-telangiectasia-mutated-Rad3-related Chk1/2 pathway downstream of p53-binding protein 1 phosphorylation at Ser1778. In addition, glionitrin A induced apoptosis through both caspase-dependent and -independent pathways. Glionitrin A activated caspase-8, -9 and -3 and also released endonuclease G from the mitochondria to the nucleus in a dose-dependent manner. Our in vivo study performed in nude mice bearing xenografts of DU145 cells showed that glionitrin A dramatically reduced the tumor volume by an average of 38.2% (5 mg/kg, per os (p.o.)) and 71.3% (10 mg/kg, p.o.) at 27 d after the beginning of treatment. Taken together, these findings provide a detailed description of the mechanism underlying the biological activity of the new natural product glionitrin A, which has the potential to be developed as an anti-prostate cancer agent.
Collapse
Affiliation(s)
- Young-Joo Kim
- Natural Medicine Center, Korea Institute of Science and Technology
| | | | | | | | | | | |
Collapse
|
162
|
The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One 2014; 9:e110311. [PMID: 25333987 PMCID: PMC4198257 DOI: 10.1371/journal.pone.0110311] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination.
Collapse
|
163
|
Chankhamjon P, Boettger-Schmidt D, Scherlach K, Urbansky B, Lackner G, Kalb D, Dahse HM, Hoffmeister D, Hertweck C. Biosynthesis of the Halogenated Mycotoxin Aspirochlorine in Koji Mold Involves a Cryptic Amino Acid Conversion. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
164
|
Chankhamjon P, Boettger-Schmidt D, Scherlach K, Urbansky B, Lackner G, Kalb D, Dahse HM, Hoffmeister D, Hertweck C. Biosynthesis of the halogenated mycotoxin aspirochlorine in koji mold involves a cryptic amino acid conversion. Angew Chem Int Ed Engl 2014; 53:13409-13. [PMID: 25302411 DOI: 10.1002/anie.201407624] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Aspirochlorine (1) is an epidithiodiketopiperazine (ETP) toxin produced from koji mold (Aspergillus oryzae), which has been used in the oriental cuisine for over two millennia. Considering its potential risk for food safety, we have elucidated the molecular basis of aspirochlorine biosynthesis. By a combination of genetic and chemical analyses we found the acl gene locus and identified the key role of AclH as a chlorinase. Stable isotope labeling, biotransformation, and mutational experiments, analysis of intermediates and an in vitro adenylation domain assay gave totally unexpected insights into the acl pathway: Instead of one Phe and one Gly, two Phe units are assembled by an iterative non-ribosomal peptide synthetase (NRPS, AclP), followed by halogenation and an unprecedented Phe to Gly amino acid conversion. Biological assays showed that both amino acid transformations are required to confer cytotoxicity and antifungal activity to the mycotoxin.
Collapse
Affiliation(s)
- Pranatchareeya Chankhamjon
- Leibniz Institute for Natural Product Chemistry and Infection Biology, Departments Biomolecular Chemistry and Infection Biology, Beutenbergstr. 11a, 07745 Jena (Germany) http://www.hki-jena.de
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Miceli M, Bontempo P, Nebbioso A, Altucci L. Natural compounds in epigenetics: a current view. Food Chem Toxicol 2014; 73:71-83. [PMID: 25139119 DOI: 10.1016/j.fct.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 01/03/2023]
Abstract
The successful treatment of many human diseases, including cancer, has come to be considered a major challenge, as patient response to therapy is difficult to predict. Recently, considerable efforts are being focused on the development of new tools to meet the growing demand for personalized medicine. With few exceptions, synthetic compounds have been unable to meet initial expectations for their clinical use. The last twenty years have been characterized by the failure of several drugs in advanced clinical development, possibly due to the insufficient understanding of molecular pathways underlying their mechanism of action. Although the biodiversity of compounds found in nature has been poorly explored until now, the field of naturally occurring drugs is rapidly expanding. Here, we review the current knowledge on the use of natural compounds with particular emphasis on those that display a chromatin remodeling effect coupled with anticancer action.
Collapse
Affiliation(s)
- Marco Miceli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Bontempo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
166
|
Scharf DH, Habel A, Heinekamp T, Brakhage AA, Hertweck C. Opposed effects of enzymatic gliotoxin N- and S-methylations. J Am Chem Soc 2014; 136:11674-9. [PMID: 25062268 DOI: 10.1021/ja5033106] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gliotoxin (1), a virulence factor of the human pathogenic fungus Aspergillus fumigatus, is the prototype of epipoly(thiodioxopiperazine) (ETP) toxins. Here we report the discovery and functional analysis of two methyl transferases (MTs) that play crucial roles for ETP toxicity. Genome comparisons, knockouts, and in vitro enzyme studies identified a new S-adenosyl-l-methionine-dependent S-MT (TmtA) that is, surprisingly, encoded outside the gli gene cluster. We found that TmtA irreversibly inactivates ETP by S-alkylation and that this detoxification strategy appears to be not only limited to ETP producers. Furthermore, we unveiled that GliN functions as a freestanding amide N-MT. GliN-mediated amide methylation confers stability to ETP, damping the spontaneous formation of tri- and tetrasulfides. In addition, enzymatic N-alkylation constitutes the last step in gliotoxin biosynthesis and is a prerequisite for the cytotoxicity of the molecule. Thus, these specialized alkylating enzymes have dramatic and fully opposed effects: complete activation or inactivation of the toxin.
Collapse
Affiliation(s)
- Daniel H Scharf
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute , Beutenbergstrasse 11a, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
167
|
He PX, Che YS, He QJ, Chen Y, Ding J. G226, a novel epipolythiodioxopiperazine derivative, induces autophagy and caspase-dependent apoptosis in human breast cancer cells in vitro. Acta Pharmacol Sin 2014; 35:1055-64. [PMID: 25066322 DOI: 10.1038/aps.2014.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/12/2014] [Indexed: 02/08/2023]
Abstract
AIM To investigate the effects of G226, a novel epipolythiodioxopiperazine derivative, on human breast cancer cells in vitro, and to explore its anticancer mechanisms. METHODS A panel of human breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF-7, ZR-75-30, BT474, BT549, SK-BR-3, T47D and HBL100) was examined. Cell proliferation was measured using sulforhodamine B assay, and cell apoptosis was detected with flow cytometry and caspase activity assay. Western blotting, immunofluorescence and targeted gene knockdowns were used to study autophagy in the cells. RESULTS G226 suppressed proliferation of the 9 breast cancer cell lines with a mean IC50 value of 48.5 nmol/L (the mean IC50 value of adriamycin, a reference compound, was 170.6 nmol/L). G226 induced dose-dependent apoptosis of MDA-MB-231 and MCF-7 cells, accompanied by markedly increased activities of caspase-8 and caspase-3/7, which were abolished by caspase inhibitors zVAD or zIETD. G226 also induced mitochondrial outer membrane permeabilization, resulted in the caspase-9 activation. Moreover, G226 dose-dependently enhanced the autophagy marker LC3-II and autophagy substrate p62 accumulation in the cells, which were co-localized with caspase-8. Silencing of p62 or LC3 partially diminished caspase-8 and subsequent caspase-3 activation. LC3 silencing partially reversed G226-induced apoptosis, but p62 silencing elicited a subtle effect on G226-induced apoptosis. CONCLUSION The novel epipolythiodioxopiperazine derivative G226 exerts potent anticancer action against human breast cancer cells in vitro, via triggering autophagy and caspase-dependent apoptosis.
Collapse
|
168
|
Vargas WA, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM. Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. MICROBIOLOGY-SGM 2014; 160:2319-2330. [PMID: 25082950 DOI: 10.1099/mic.0.079210-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using a gene disruption strategy, we generated mutants in the gliP locus of the plant-beneficial fungus Trichoderma virens that were no longer capable of producing gliotoxin. Phenotypic assays demonstrated that the gliP-disrupted mutants grew faster, were more sensitive to oxidative stress and exhibited a sparse colony edge compared with the WT strain. In a plate confrontation assay, the mutants deficient in gliotoxin production were ineffective as mycoparasites against the oomycete, Pythium ultimum, and the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, but retained mycoparasitic ability against Rhizoctonia solani. Biocontrol assays in soil showed that the mutants were incapable of protecting cotton seedlings from attack by P. ultimum, against which the WT strain was highly effective. The mutants, however, were as effective as the WT strain in protecting cotton seedlings against R. solani. Loss of gliotoxin production also resulted in a reduced ability of the mutants to attack the sclerotia of S. sclerotiorum compared with the WT. The addition of exogenous gliotoxin to the sclerotia colonized by the mutants partially restored their degradative abilities. Interestingly, as in Aspergillus fumigatus, an opportunistic human pathogen, gliotoxin was found to be involved in pathogenicity of T. virens against larvae of the wax moth, Galleria mellonella. The loss of gliotoxin production in T. virens was restored by complementation with the gliP gene from A. fumigatus. We have, thus, demonstrated that the putative gliP cluster of T. virens is responsible for the biosynthesis of gliotoxin, and gliotoxin is involved in mycoparasitism and biocontrol properties of this plant-beneficial fungus.
Collapse
Affiliation(s)
- Walter A Vargas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - David Laughlin
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | - Aric Wiest
- Fungal Genetics Stock Center, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Maria E Moran-Diez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| |
Collapse
|
169
|
Overy DP, Berrue F, Correa H, Hanif N, Hay K, Lanteigne M, Mquilian K, Duffy S, Boland P, Jagannathan R, Carr GS, Vansteeland M, Kerr RG. Sea foam as a source of fungal inoculum for the isolation of biologically active natural products. Mycology 2014; 5:130-144. [PMID: 25379337 PMCID: PMC4205912 DOI: 10.1080/21501203.2014.931893] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/02/2014] [Indexed: 02/05/2023] Open
Abstract
Due to a rate increase in the resistance of microbial pathogens to currently used antibiotics, there is a need in society for the discovery of novel antimicrobials. Historically, fungi are a proven source for antimicrobial compounds. The main goals of this study were to investigate the fungal diversity associated with sea foam collected around the coast of Prince Edward Island and the utility of this resource for the production of antimicrobial natural products. Obtained isolates were identified using ITS and nLSU rDNA sequences, fermented on four media, extracted and fractions enriched in secondary metabolites were screened for antimicrobial activity. The majority of the isolates obtained were ascomycetes, consisting of four recognized marine taxa along with other ubiquitous genera and many 'unknown' isolates that could not be identified to the species level using rDNA gene sequences. Secondary metabolite isolation efforts lead to the purification of the metabolites epolones A and B, pycnidione and coniothyrione from a strain of Neosetophoma samarorum; brefeldin A, leptosin J and the metabolite TMC-264 from an unknown fungus (probably representative of an Edenia sp.); and 1-hydroxy-6-methyl-8-hydroxymethylxanthone, chrysophanol and chrysophanol bianthrone from a Phaeospheria spartinae isolate. The biological activity of each of these metabolites was assessed against a panel of microbial pathogens as well as several cell lines.
Collapse
Affiliation(s)
- David P Overy
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3 ; Department of Chemistry, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3 ; Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Fabrice Berrue
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3 ; Department of Chemistry, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Hebelin Correa
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Novriyandi Hanif
- Department of Chemistry, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Kathryn Hay
- Department of Biology, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Martin Lanteigne
- Department of Chemistry, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Kathrine Mquilian
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Stephanie Duffy
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Patricia Boland
- Department of Chemistry, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Ramesh Jagannathan
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Gavin S Carr
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Marieke Vansteeland
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| | - Russell G Kerr
- Nautilus Biosciences Canada Inc., Duffy Research Center , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3 ; Department of Chemistry, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3 ; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island , 550 University Ave., Charlottetown , PEI , Canada C1A 4P3
| |
Collapse
|
170
|
Zhang J, Pan Z, Moloney S, Sheppard A. RNA-Seq analysis implicates detoxification pathways in ovine mycotoxin resistance. PLoS One 2014; 9:e99975. [PMID: 24936865 PMCID: PMC4061066 DOI: 10.1371/journal.pone.0099975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
Mycotoxin induced hepatoxocity has been linked to oxidative stress, resulting from either an increase in levels of reactive oxygen species (ROS) above normal levels and/or the suppression of antioxidant protective pathways. However, few detailed molecular studies of mycotoxicoses in animals have been carried out. This study use current RNA-seq based approaches to investigate the effects of mycotoxin exposure in a ruminant model. Having first assembled a de novo reference transcriptome, we use RNA-Seq technology to define in vivo hepatic gene expression changes resulting from mycotoxin exposure in relationship to pathological effect. As expected, characteristic oxidative stress related gene expression is markedly different in animals exhibiting poorer outcomes. However, expression of multiple genes critical for detoxification, particularly members of the cytochrome P450 gene family, was significantly higher in animals exhibiting mycotoxin tolerance ('resistance'). Further, we present novel evidence for the amplification of Wnt signalling pathway activity in 'resistant' animals, resulting from the marked suppression of multiple key Wnt inhibitor genes. Notably, 'resistance' may be determined primarily by the ability of an individual to detoxify secondary metabolites generated by the metabolism of mycotoxins and the potentiation of Wnt signalling may be pivotal to achieving a favourable outcome upon challenge.
Collapse
Affiliation(s)
- Jinbi Zhang
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Zengxiang Pan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Allan Sheppard
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
171
|
Wang DN, Toyotome T, Muraosa Y, Watanabe A, Wuren T, Bunsupa S, Aoyagi K, Yamazaki M, Takino M, Kamei K. GliA in Aspergillus fumigatus is required for its tolerance to gliotoxin and affects the amount of extracellular and intracellular gliotoxin. Med Mycol 2014; 52:506-18. [DOI: 10.1093/mmy/myu007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
172
|
Zipfel HF, Carreira EM. An Efficient Synthesis Strategy to the Core Structure of 6–5–6–5–6-Membered Epipolythiodiketopiperazines. Org Lett 2014; 16:2854-7. [DOI: 10.1021/ol500990f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hannes F. Zipfel
- Laboratorium für Organische
Chemie, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische
Chemie, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
173
|
Li J, Wang J, Jiang CS, Li G, Guo YW. (+)-Cyclopenol, a new naturally occurring 7-membered 2,5-dioxopiperazine alkaloid from the fungus Penicillium sclerotiorum endogenous with the Chinese mangrove Bruguiera gymnorrhiza. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:542-548. [PMID: 24773150 DOI: 10.1080/10286020.2014.911290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
One new naturally occurring 7-membered 2,5-dioxopiperazine alkaloid named (+)-cyclopenol (1), along with nine known compounds including viridicatol (2), 3-(dimethylaminomethyl)-1-(1,1-dimethyl-2-propenyl)indole (3), anacine (4), aurantiomide C (5), viridicatin (6), 3-O-methylviridicatin (7), verrucosidin (8), ergosterol (9), and ergosterol peroxide (10), was isolated from the EtOAc extract of fungus Penicillium sclerotiorum, an endophytic fungal strain isolated from Chinese mangrove Bruguiera gymnorrhiza. The chemical structure of the new compound 1 was elucidated on the basis of detailed spectroscopic analysis. The absolute configuration of 1 was determined by single-crystal X-ray analysis with Cu Kα radiation (λ = 1.54178 Å). To our knowledge, (+)-cyclopenol (1) represents the first example of 7-membered 2,5-dioxopiperazine isolated from mangrove endophytic fungus.
Collapse
Affiliation(s)
- Jing Li
- a School of Biological and Chemical Engineering, Jiangsu University of Science and Technology , Zhenjiang 212018 , China
| | | | | | | | | |
Collapse
|
174
|
Thornton CR. Breaking the mould - novel diagnostic and therapeutic strategies for invasive pulmonary aspergillosis in the immune deficient patient. Expert Rev Clin Immunol 2014; 10:771-80. [PMID: 24689528 DOI: 10.1586/1744666x.2014.904747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive pulmonary aspergillosis (IPA) caused by the ubiquitous environmental fungus Aspergillus is a frequently fatal lung disease of immunocompromised humans accounting for more than 200,000 infections each year, with an associated mortality rate of 30-90%. This review addresses the current status of IPA diagnosis and treatment and the urgent need to develop accurate, non-invasive strategies for identifying pulmonary infections in the ever-expanding population of immune deficient patients at risk of acquiring opportunistic fungal infections including hematological malignancy and hematopoetic stem cell transplant patients. Recent advances in the use of an Aspergillus-specific monoclonal antibody, JF5, for point-of-care diagnosis of IPA using lateral-flow technology is examined, as is its use in PET/MRI bioimaging and radio-immunotherapy using radionuclide-labeled single chain antibody fragments, Fab fragments, and a fully humanized JF5 derivative.
Collapse
|
175
|
Bugli F, Paroni Sterbini F, Cacaci M, Martini C, Lancellotti S, Stigliano E, Torelli R, Arena V, Caira M, Posteraro P, Sanguinetti M, Posteraro B. Increased production of gliotoxin is related to the formation of biofilm by Aspergillus fumigatus: an immunological approach. Pathog Dis 2014; 70:379-89. [PMID: 24623580 DOI: 10.1111/2049-632x.12152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/05/2014] [Accepted: 02/03/2014] [Indexed: 11/28/2022] Open
Abstract
Gliotoxin (GT) belongs to the epipolythiodioxopiperazine class of toxins secreted from certain fungi including Aspergillus fumigatus, which is the most prolific producer of this secondary metabolite. Recently, enhanced amounts of GT were found in in vitro biofilm-grown A. fumigatus mycelium. To further correlate the A. fumigatus biofilm growth phenotype with the enhanced secretion of GT, a polyclonal antibody (pAb) was produced by immunizing mice against GT. By an indirect immunofluorescent assay, pAb was then able to recognize specifically GT onto A. fumigatus Af293 biofilm formed on human pulmonary epithelial cells. Then, treating Af293 biofilms with a compound which reduces the GT disulfide bonds provoked shutdown of the GT-specific immunofluorescence (IF) signals along the hyphae. To explore the potential of GT for diagnostic use, pAb was shown to react with GT on hyphae into Aspergillus culture-positive respiratory tract specimens from patients with probable invasive aspergillosis (IA) and into tissue specimens from the lungs of patients with proven IA. As the presence of fungal hyphae in clinical specimens strongly indicates the in vivo A. fumigatus growth as a biofilm, anti-GT antibodies could be a specific and sensitive diagnostic tool for detecting A. fumigatus biofilm-associated clinical infections.
Collapse
Affiliation(s)
- Francesca Bugli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Jia X, Chen F, Pan W, Yu R, Tian S, Han G, Fang H, Wang S, Zhao J, Li X, Zheng D, Tao S, Liao W, Han X, Han L. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation. Microbes Infect 2014; 16:491-501. [PMID: 24637030 DOI: 10.1016/j.micinf.2014.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Xiaodong Jia
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Fangyan Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rentao Yu
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China; Patent Examination Cooperation Center of the Patent Office, Beijing, China
| | - Shuguang Tian
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Gaige Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Haiqin Fang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Shuo Wang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Jingya Zhao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Xianping Li
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Dongyu Zheng
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Sha Tao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| | - Li Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
177
|
|
178
|
Amatov T, Jahn U. Gliotoxin: Nature’s Way of Making the Epidithio Bridge. Angew Chem Int Ed Engl 2014; 53:3312-4. [DOI: 10.1002/anie.201310982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 01/25/2023]
|
179
|
Herter I, Geginat G, Hof H, Kupfahl C. Modulation of innate and antigen-specific immune functions directed against Listeria monocytogenes by fungal toxins in vitro. Mycotoxin Res 2014; 30:79-87. [PMID: 24526341 DOI: 10.1007/s12550-014-0191-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/19/2014] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
Abstract
Mycotoxins, a large group of secondary fungal metabolites, are ubiquitously present in the environment and are potentially harmful to exposed humans and animals. Despite increasing interest in this group of fungal metabolites it is still difficult to estimate the relative toxic potential of one individual mycotoxin compared with others. We therefore compared the effects of some of the most important mycotoxins on effector cells of the innate and adaptive immune system in an in vitro model. Our data show clear differences of various mycotoxins in regard of their immunotoxic potential on mouse macrophages and T cells. Our results also indicate differences in the susceptibility of specific immune effector functions of macrophages and T cells exposed to mycotoxins. Thus, our results enhance the understanding of role of mycotoxins in the pathogenesis of human and animal diseases.
Collapse
Affiliation(s)
- I Herter
- Institute for Medical Microbiology and Hygiene, Medical Faculty Mannheim of the University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | |
Collapse
|
180
|
Mezzelani A, Landini M, Facchiano F, Raggi ME, Villa L, Molteni M, De Santis B, Brera C, Caroli AM, Milanesi L, Marabotti A. Environment, dysbiosis, immunity and sex-specific susceptibility: a translational hypothesis for regressive autism pathogenesis. Nutr Neurosci 2014; 18:145-61. [PMID: 24621061 PMCID: PMC4485698 DOI: 10.1179/1476830513y.0000000108] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Autism is an increasing neurodevelopmental disease that appears by 3 years of age, has genetic and/or environmental etiology, and often shows comorbid situations, such as gastrointestinal (GI) disorders. Autism has also a striking sex-bias, not fully genetically explainable. Objective Our goal was to explain how and in which predisposing conditions some compounds can impair neurodevelopment, why this occurs in the first years of age, and, primarily, why more in males than females. Methods We reviewed articles regarding the genetic and environmental etiology of autism and toxins effects on animal models selected from PubMed and databases about autism and toxicology. Discussion Our hypothesis proposes that in the first year of life, the decreasing of maternal immune protection and child immune-system immaturity create an immune vulnerability to infection diseases that, especially if treated with antibiotics, could facilitate dysbiosis and GI disorders. This condition triggers a vicious circle between immune system impairment and increasing dysbiosis that leads to leaky gut and neurochemical compounds and/or neurotoxic xenobiotics production and absorption. This alteration affects the ‘gut-brain axis’ communication that connects gut with central nervous system via immune system. Thus, metabolic pathways impaired in autistic children can be affected by genetic alterations or by environment–xenobiotics interference. In addition, in animal models many xenobiotics exert their neurotoxicity in a sex-dependent manner. Conclusions We integrate fragmented and multi-disciplinary information in a unique hypothesis and first disclose a possible environmental origin for the imbalance of male:female distribution of autism, reinforcing the idea that exogenous factors are related to the recent rise of this disease.
Collapse
Affiliation(s)
- Alessandra Mezzelani
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
- Correspondence to: Alessandra Mezzelani, Institute for Biomedical Technologies, National Research Council, Milan, Segrate, Italy.
| | - Martina Landini
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Francesco Facchiano
- Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Roma, Italy
| | - Maria Elisabetta Raggi
- IRCCS “E. Medea” – Ass. “La Nostra Famiglia”, Via Don Luigi Monza, 20, 23842 Bosisio Parini (LC), Italy
| | - Laura Villa
- IRCCS “E. Medea” – Ass. “La Nostra Famiglia”, Via Don Luigi Monza, 20, 23842 Bosisio Parini (LC), Italy
| | - Massimo Molteni
- IRCCS “E. Medea” – Ass. “La Nostra Famiglia”, Via Don Luigi Monza, 20, 23842 Bosisio Parini (LC), Italy
| | - Barbara De Santis
- Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Roma, Italy
| | - Carlo Brera
- Istituto Superiore di Sanità, Rome, Viale Regina Elena 299, 00161 Roma, Italy
| | - Anna Maria Caroli
- Dip. Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia (BS), Italy
| | - Luciano Milanesi
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Anna Marabotti
- IRCCS “E. Medea” – Ass. “La Nostra Famiglia”, Via Don Luigi Monza, 20, 23842 Bosisio Parini (LC), Italy
| |
Collapse
|
181
|
Scharf DH, Groll M, Habel A, Heinekamp T, Hertweck C, Brakhage AA, Huber EM. Flavoenzym-katalysierte Bildung von Disulfidbrücken in Naturstoffen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
182
|
Scharf DH, Groll M, Habel A, Heinekamp T, Hertweck C, Brakhage AA, Huber EM. Flavoenzyme-Catalyzed Formation of Disulfide Bonds in Natural Products. Angew Chem Int Ed Engl 2014; 53:2221-4. [DOI: 10.1002/anie.201309302] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Indexed: 12/16/2022]
|
183
|
Abstract
Gene transfer has been identified as a prevalent and pervasive phenomenon and an important source of genomic innovation in bacteria. The role of gene transfer in microbial eukaryotes seems to be of a reduced magnitude but in some cases can drive important evolutionary innovations, such as new functions that underpin the colonization of different niches. The aim of this review is to summarize published cases that support the hypothesis that horizontal gene transfer (HGT) has played a role in the evolution of phytopathogenic traits in fungi and oomycetes. Our survey of the literature identifies 46 proposed cases of transfer of genes that have a putative or experimentally demonstrable phytopathogenic function. When considering the life-cycle steps through which a pathogen must progress, the majority of the HGTs identified are associated with invading, degrading, and manipulating the host. Taken together, these data suggest HGT has played a role in shaping how fungi and oomycetes colonize plant hosts.
Collapse
Affiliation(s)
- Darren Soanes
- Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom;
| | | |
Collapse
|
184
|
Takeuchi R, Shimokawa J, Fukuyama T. Development of a route to chiral epidithiodioxopiperazine moieties and application to the asymmetric synthesis of (+)-hyalodendrin. Chem Sci 2014. [DOI: 10.1039/c3sc53222d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of a novel methodology that takes advantage of the bridgehead carbanion and the traceless transfer of the stereochemistry of l-cysteine allowed the first asymmetric synthesis of hyalodendrin.
Collapse
Affiliation(s)
- Ren Takeuchi
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Aichi 464-8601, Japan
| | - Jun Shimokawa
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Aichi 464-8601, Japan
| | - Tohru Fukuyama
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Aichi 464-8601, Japan
| |
Collapse
|
185
|
Xu YM, Espinosa-Artiles P, Liu MX, Arnold AE, Gunatilaka AAL. Secoemestrin D, a cytotoxic epitetrathiodioxopiperizine, and emericellenes A-E, five sesterterpenoids from Emericella sp. AST0036, a fungal endophyte of Astragalus lentiginosus1. JOURNAL OF NATURAL PRODUCTS 2013; 76:2330-6. [PMID: 24251417 PMCID: PMC3946369 DOI: 10.1021/np400762k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A new epitetrathiodioxopiperizine, secoemestrin D (1), and five sesterterpenoids bearing a new carbon skeleton, emericellenes A-E (2-6), together with previously known fungal metabolites, sterigmatocystin (7), arugosin C (8), and epiisoshamixanthone (9), were obtained from the endophytic fungal strain Emericella sp. AST0036 isolated from a healthy leaf tissue of Astragalus lentiginosus. The planar structures and relative configurations of the new metabolites 1-6 were elucidated using MS and 1D and 2D NMR spectroscopic data. All compounds were evaluated for their potential anticancer activity using a panel of six tumor cell lines and normal human fibroblast cells. Only metabolites 1 and 7 showed cytotoxic activity. More importantly, secoemestrin D (1) exhibited significant cytotoxicity with IC50 values ranging from 0.06 to 0.24 μM and moderate selectivity to human glioma (SF-268) and metastatic breast adenocarcinoma (MDA-MB-231) cell lines.
Collapse
Affiliation(s)
- Ya-ming Xu
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Patricia Espinosa-Artiles
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Mangping X. Liu
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - A. Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
- Corresponding Author: Tel: (520) 621-9932. Fax: (520) 621-8378.
| |
Collapse
|
186
|
Rudolf JD, Poulter CD. Tyrosine O-prenyltransferase SirD catalyzes S-, C-, and N-prenylations on tyrosine and tryptophan derivatives. ACS Chem Biol 2013; 8:2707-14. [PMID: 24083562 DOI: 10.1021/cb400691z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tyrosine O-prenyltransferase SirD in Leptosphaeria maculans catalyzes normal prenylation of the hydroxyl group in tyrosine as the first committed step in the biosynthesis of the phytotoxin sirodesmin PL. SirD also catalyzes normal N-prenylation of 4-aminophenylalanine and normal C-prenylation at C7 of tryptophan. In this study, we found that 4-mercaptophenylalanine and several derivatives of tryptophan are also substrates for prenylation by dimethylallyl diphosphate. Incubation of SirD with 4-mercaptophenylalanine gave normal S-prenylated mercaptophenylalanine. We found that incubation of the enzyme with tryptophan gave reverse prenylation at N1 in addition to the previously reported normal prenylation at C7. 4-Methyltryptophan also gave normal prenylation at C7 and reverse prenylation at N1, whereas 4-methoxytryptophan gave normal and reverse prenylation at C7, and 7-methyltryptophan gave normal prenylation at C6 and reverse prenylation at N1. The ability of SirD to prenylate at three different sites on the indole nucleus, with normal and reverse prenylation at one of the sites, is similar to behavior seen for dimethylallyltryptophan synthase. The multiple products produced by SirD suggests it and dimethylallyltryptophan synthase use a dissociative electrophilic mechanism for alkylation of amino acid substrates.
Collapse
Affiliation(s)
- Jeffrey D. Rudolf
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112, United States
| | - C. Dale Poulter
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
187
|
Cherblanc FL, Chapman KL, Reid J, Borg AJ, Sundriyal S, Alcazar-Fuoli L, Bignell E, Demetriades M, Schofield CJ, DiMaggio PA, Brown R, Fuchter MJ. On the Histone Lysine Methyltransferase Activity of Fungal Metabolite Chaetocin. J Med Chem 2013; 56:8616-25. [DOI: 10.1021/jm401063r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fanny L. Cherblanc
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Kathryn L. Chapman
- Mechanism
and Functional Screening Facility, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12
ONN, United Kingdom
| | - Jim Reid
- Domainex
Ltd., 162 Cambridge Science
Park, Milton Road, Cambridge CB4 0GH, United Kingdom
| | - Aaron J. Borg
- Department
of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sandeep Sundriyal
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Laura Alcazar-Fuoli
- Centre
for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, United Kingdom
| | - Elaine Bignell
- Centre
for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, United Kingdom
| | - Marina Demetriades
- Department
of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Department
of Chemistry and the Oxford Centre for Integrative Systems Biology, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Peter A. DiMaggio
- Department
of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Robert Brown
- Ovarian
Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12
ONN, United Kingdom
| | - Matthew J. Fuchter
- Department
of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
188
|
Grimaldi TB, Back DF, Zeni G. Potassium tert-Butoxide Promoted Annulation of 2-Alkynylphenyl Propargyl Ethers: Selective Synthesis of Benzofuran and 12H-Benzoannulene Derivatives. J Org Chem 2013; 78:11017-31. [DOI: 10.1021/jo4020062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tamiris B. Grimaldi
- Laboratório de Síntese, Reatividade,
Avaliação Farmacológica e Toxicológica
de Organocalcogênios and ‡Laboratório de Materiais
Inorgânicos, CCNE, UFSM, Santa Maria, Rio Grande
do Sul, Brazil 97105-900
| | - Davi F. Back
- Laboratório de Síntese, Reatividade,
Avaliação Farmacológica e Toxicológica
de Organocalcogênios and ‡Laboratório de Materiais
Inorgânicos, CCNE, UFSM, Santa Maria, Rio Grande
do Sul, Brazil 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade,
Avaliação Farmacológica e Toxicológica
de Organocalcogênios and ‡Laboratório de Materiais
Inorgânicos, CCNE, UFSM, Santa Maria, Rio Grande
do Sul, Brazil 97105-900
| |
Collapse
|
189
|
Gerken T, Walsh CT. Cloning and Sequencing of the Chaetocin Biosynthetic Gene Cluster. Chembiochem 2013; 14:2256-8. [DOI: 10.1002/cbic.201300513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Indexed: 12/18/2022]
|
190
|
Abstract
Evolution of the synthetic strategy that culminated in the first total syntheses of the structurally unique plectosphaeroic acids B (2) and C (3) is described. The successful enantioselective route to (+)-2 and (+)-3 proceeds in 6 and 11 steps from the known hexahydro-2H-pyrazinopyrrolo[2,3-b]indole-1,4-dione 39, which in turn is available in enantiomerically pure form by chemical synthesis. The central challenge in this synthesis endeavor was uniting the hexahydro-2H-pyrazinopyrrolo[2,3-b]indole-1,4-dione and cinnabarinic acid fragments of these marine alkaloids. Critical for achieving this successful C-N bond formation was the use of an iodocinnabarinic acid diester in which the amino group was masked with two Boc substituents, a Cu(I) carboxylate complex and the weak base KOAc. The highly congested C-N bond generated in this coupling, in conjunction with the delicate nature of the densely functionalized coupling partners, provided a striking testament to the power of modern copper-mediated amination methods. Two approaches, one stereoselective, for introducing the methylthio substituents of (+)-plectosphaeroic acid B were developed. The epitrisulfide ring of (+)-plectosphaeroic acid C was formed by ring expansion of an epidisulfide precursor.
Collapse
Affiliation(s)
- Salman Y. Jabri
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| | - Larry E. Overman
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025
| |
Collapse
|
191
|
Scharf DH, Chankhamjon P, Scherlach K, Heinekamp T, Willing K, Brakhage AA, Hertweck C. Epidithiodiketopiperazine biosynthesis: a four-enzyme cascade converts glutathione conjugates into transannular disulfide bridges. Angew Chem Int Ed Engl 2013; 52:11092-5. [PMID: 24039048 DOI: 10.1002/anie.201305059] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Indexed: 01/13/2023]
Abstract
Enzyme quartet: Isolation of the first sulfur-bearing intermediate of the gliotoxin pathway in Aspergillus fumigatus and successful in vitro conversion of the bisglutathione adduct into an intact epidithiodiketopiperazine by a four-enzyme cascade (including glutamyltransferase GliK and dipeptidase GliJ) revealed an outstanding adaptation of a primary metabolic pathway into natural product biosynthesis that is widespread in fungi.
Collapse
Affiliation(s)
- Daniel H Scharf
- Depts. of Molecular and Applied Microbiology, Biomolecular Chemistry, and Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena (Germany)
| | | | | | | | | | | | | |
Collapse
|
192
|
Scharf DH, Chankhamjon P, Scherlach K, Heinekamp T, Willing K, Brakhage AA, Hertweck C. Epidithiodiketopiperazine Biosynthesis: A Four-Enzyme Cascade Converts Glutathione Conjugates into Transannular Disulfide Bridges. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
193
|
Gu B, He S, Yan X, Zhang L. Tentative biosynthetic pathways of some microbial diketopiperazines. Appl Microbiol Biotechnol 2013; 97:8439-53. [DOI: 10.1007/s00253-013-5175-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 01/20/2023]
|
194
|
Coste A, Kim J, Adams TC, Movassaghi M. Concise Total Synthesis of (+)-Bionectins A and C. Chem Sci 2013; 4:3191-3197. [PMID: 23878720 PMCID: PMC3713796 DOI: 10.1039/c3sc51150b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The concise and efficient total synthesis of (+)-bionectins A and C is described. Our approach to these natural products features a new and scalable method for erythro-β-hydroxytryptophan amino acid synthesis, an intramolecular Friedel-Crafts reaction of a silyl-tethered indole, and a new mercaptan reagent for epipolythiodiketopiperazine (ETP) synthesis that can be unravelled under very mild conditions. In evaluating the impact of C12-hydroxylation, we have identified a unique need for an intramolecular variant of our Friedel-Crafts indolylation chemistry. Several key discoveries including the first example of permanganate-mediated stereoinvertive hydroxylation of the α-stereocenters of diketopiperazines as well as the first example of a direct triketopiperazine synthesis from a parent cyclo-dipeptide are discussed. Finally, the synthesis of (+)-bionectin A and its unambiguous structural assignment through X-ray analysis provides motivation for the reevaluation of its original characterization data and assignment.
Collapse
Affiliation(s)
- Alexis Coste
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue 18-292, Cambridge, MA 02139-4307, USA.
| | | | | | | |
Collapse
|
195
|
Kang DH, Lee DJ, Kim J, Lee JY, Kim HW, Kwon K, Taylor WR, Jo H, Kang SW. Vascular injury involves the overoxidation of peroxiredoxin type II and is recovered by the peroxiredoxin activity mimetic that induces reendothelialization. Circulation 2013; 128:834-44. [PMID: 23820076 DOI: 10.1161/circulationaha.113.001725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Typical 2-Cys peroxiredoxin (Prx) is inactivated by overoxidation of the peroxidatic cysteine residue under oxidative stress. However, the significance in the context of vascular disease is unknown. METHODS AND RESULTS Immunohistochemical analyses revealed that 2-Cys Prxs, particularly Prx type II, are heavily overoxidized in balloon-injured rodent carotid vessels and in human atherosclerotic lesions. Consistent with this observation, the selective depletion of Prx II exacerbated neointimal hyperplasia in injured carotid vessels. We also found that the epipolythiodioxopiperazine class of fungal metabolites exhibited an enzyme-like activity mimicking 2-Cys Prx peroxidase and manifestly eliminated the intracellular H₂O₂ in the vascular cells. Functionally, the epipolythiodioxopiperazines reciprocally regulated the platelet-derived growth factor receptor-β- and vascular endothelial growth factor receptor-mediated signaling in these vascular cells by replacing Prx II. As a consequence, the epipolythiodioxopiperazines inhibited the proliferative and migratory activities of smooth muscle cells but promoted those of endothelial cells in vitro. Moreover, administration of the epipolythiodioxopiperazines to the injured carotid vessels resulted in a successful recovery by inhibiting neointimal hyperplasia without causing cytotoxicity and simultaneously inducing reendothelialization. CONCLUSIONS This study reveals for the first time the involvement of the 2-Cys Prx overoxidation and thus the therapeutic use of their activity mimetic in vascular injuries like stenting.
Collapse
Affiliation(s)
- Dong Hoon Kang
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
|
197
|
Guo CJ, Yeh HH, Chiang YM, Sanchez JF, Chang SL, Bruno KS, Wang CCC. Biosynthetic pathway for the epipolythiodioxopiperazine acetylaranotin in Aspergillus terreus revealed by genome-based deletion analysis. J Am Chem Soc 2013; 135:7205-13. [PMID: 23586797 DOI: 10.1021/ja3123653] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from diketopiperazines. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered 4,5-dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase the production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of nine genes (including one nonribosomal peptide synthetase gene, ataP) that is required for acetylaranotin biosynthesis. Chemical analysis of the wild-type and mutant strains enabled us to isolate 17 natural products from the acetylaranotin biosynthesis pathway. Nine of the compounds identified in this study are natural products that have not been reported previously. Our data have allowed us to propose a biosynthetic pathway for acetylaranotin and related natural products.
Collapse
Affiliation(s)
- Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Ortega HE, Graupner PR, Asai Y, Tendyke K, Qiu D, Shen YY, Rios N, Arnold AE, Coley PD, Kursar TA, Gerwick WH, Cubilla-Rios L. Mycoleptodiscins A and B, cytotoxic alkaloids from the endophytic fungus Mycoleptodiscus sp. F0194. JOURNAL OF NATURAL PRODUCTS 2013; 76:741-744. [PMID: 23560689 DOI: 10.1021/np300792t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two novel reddish-orange alkaloids, mycoleptodiscin A (1) and mycoleptodiscin B (2), were isolated from liquid cultures of the endophytic fungus Mycoleptodiscus sp. that had been isolated from Desmotes incomparabilis in Panama. Elucidation of their structures was accomplished using 1D and 2D NMR spectroscopy in combination with IR spectroscopic and MS data. These compounds are indole-terpenes with a new skeleton uncommon in nature. Mycoleptodiscin B (2) was active in inhibiting the growth of cancer cell lines with IC50 values in the range 0.60-0.78 μM.
Collapse
Affiliation(s)
- Humberto E Ortega
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Science and Technology, University of Panama, Panama
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Boyer N, Morrison KC, Kim J, Hergenrother PJ, Movassaghi M. Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids. Chem Sci 2013; 4:1646-1657. [PMID: 23914293 PMCID: PMC3728915 DOI: 10.1039/c3sc50174d] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure-activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo.
Collapse
Affiliation(s)
- Nicolas Boyer
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, USA
| | - Karen C. Morrison
- University of Illinois at Urbana-Champaign, Department of Chemistry, Urbana, Illinois 61801, USA
| | - Justin Kim
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, USA
| | - Paul J. Hergenrother
- University of Illinois at Urbana-Champaign, Department of Chemistry, Urbana, Illinois 61801, USA
| | - Mohammad Movassaghi
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
200
|
A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 2013; 18:3641-73. [PMID: 23529027 PMCID: PMC6270579 DOI: 10.3390/molecules18043641] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Cancer continues to be a major public health problem despite the efforts that have been made in the search for novel drugs and treatments. The current sources sought for the discovery of new molecules are plants, animals and minerals. During the past decade, the search for anticancer agents of marine origin to fight chemo-resistance has increased greatly. Each year, several novel anticancer molecules are isolated from marine organisms and represent a renewed hope for cancer therapy. The study of structure-function relationships has allowed synthesis of analogues with increased efficacy and less toxicity. In this report, we aim to review 42 compounds of marine origin and their derivatives that were published in 2011 as promising anticancer compounds.
Collapse
|