151
|
Bauer R, Zubler F, Hauri A, Muir DR, Douglas RJ. Developmental origin of patchy axonal connectivity in the neocortex: a computational model. Cereb Cortex 2014; 24:487-500. [PMID: 23131803 PMCID: PMC3888370 DOI: 10.1093/cercor/bhs327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Injections of neural tracers into many mammalian neocortical areas reveal a common patchy motif of clustered axonal projections. We studied in simulation a mathematical model for neuronal development in order to investigate how this patchy connectivity could arise in layer II/III of the neocortex. In our model, individual neurons of this layer expressed the activator-inhibitor components of a Gierer-Meinhardt reaction-diffusion system. The resultant steady-state reaction-diffusion pattern across the neuronal population was approximately hexagonal. Growth cones at the tips of extending axons used the various morphogens secreted by intrapatch neurons as guidance cues to direct their growth and invoke axonal arborization, so yielding a patchy distribution of arborization across the entire layer II/III. We found that adjustment of a single parameter yields the intriguing linear relationship between average patch diameter and interpatch spacing that has been observed experimentally over many cortical areas and species. We conclude that a simple Gierer-Meinhardt system expressed by the neurons of the developing neocortex is sufficient to explain the patterns of clustered connectivity observed experimentally.
Collapse
Affiliation(s)
- Roman Bauer
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Frederic Zubler
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Andreas Hauri
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| | - Dylan R. Muir
- Department of Neurophysiology, Brain Research Institute, University of Zürich, Zürich CH-8057, Switzerland
| | - Rodney J. Douglas
- Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich
| |
Collapse
|
152
|
Chen J, Liu WB, Jia WD, Xu GL, Ma JL, Ren Y, Chen H, Sun SN, Huang M, Li JS. Embryonic morphogen nodal is associated with progression and poor prognosis of hepatocellular carcinoma. PLoS One 2014; 9:e85840. [PMID: 24465741 PMCID: PMC3897529 DOI: 10.1371/journal.pone.0085840] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
Background Nodal, a TGF-β-related embryonic morphogen, is involved in multiple biologic processes. However, the expression of Nodal in hepatocellular carcinoma (HCC) and its correlation with tumor angiogenesis, epithelial-mesenchymal transition, and prognosis is unclear. Methods We used real-time PCR and Western blotting to investigate Nodal expression in 6 HCC cell lines and 1 normal liver cell line, 16 pairs of tumor and corresponding paracarcinomatous tissues from HCC patients. Immunohistochemistry was performed to examine Nodal expression in HCC and corresponding paracarcinomatous tissues from 96 patients. CD34 and Vimentin were only examined in HCC tissues of patients mentioned above. Nodal gene was silenced by shRNA in MHCC97H and HCCLM3 cell lines, and cell migration and invasion were detected. Statistical analyses were applied to evaluate the prognostic value and associations of Nodal expression with clinical parameters. Results Nodal expression was detected in HCC cell lines with high metastatic potential alone. Nodal expression is up-regulated in HCC tissues compared with paracarcinomatous and normal liver tissues. Nodal protein was expressed in 70 of the 96 (72.9%) HCC tumors, and was associated with vascular invasion (P = 0.000), status of metastasis (P = 0.004), AFP (P = 0.049), ICGR15 (indocyanine green retention rate at 15 min) (P = 0.010) and tumor size (P = 0.000). High Nodal expression was positively correlated with high MVD (microvessal density) (P = 0.006), but not with Vimentin expression (P = 0.053). Significantly fewer migrated and invaded cells were seen in shRNA group compared with blank group and negative control group (P<0.05). High Nodal expression was found to be an independent factor for predicting overall survival of HCC. Conclusions Our study demonstrated that Nodal expression is associated with aggressive characteristics of HCC. Its aberrant expression may be a predictive factor of unfavorable prognosis for HCC after surgery.
Collapse
MESH Headings
- Aged
- Antigens, CD34/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement
- Disease Progression
- Embryo, Mammalian/metabolism
- Female
- Frozen Sections
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Multivariate Analysis
- Neoplasm Invasiveness
- Nodal Protein/genetics
- Nodal Protein/metabolism
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Vimentin/metabolism
Collapse
Affiliation(s)
- Jing Chen
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Wen-Bin Liu
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Wei-Dong Jia
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Ge-Liang Xu
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jin-Liang Ma
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yun Ren
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Hao Chen
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Si-Nan Sun
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jian-Sheng Li
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
- * E-mail:
| |
Collapse
|
153
|
Chatterjee S, Elinson RP. Commitment to nutritional endoderm in Eleutherodactylus coqui involves altered nodal signaling and global transcriptional repression. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:27-44. [PMID: 24323742 DOI: 10.1002/jez.b.22543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 01/01/2023]
Abstract
The vegetal cells of a Xenopus laevis embryo commit to mesendoderm via the Nodal-signaling pathway. In the direct developing frog Eleutherodactylus coqui, mesendoderm is specified at the marginal zone of the early gastrula, and vegetal core cells transform into nutritional endoderm. Nutritional endoderm, a novel tissue, consists of transient, yolky cells that provide nutrition but remain undifferentiated. We report a dual regulation for the generation of nutritional endoderm. First, differential expressions of the Nodal-signal transducers Smad2 and Smad4 were observed during early gastrulation between the marginal zone and the vegetal core cells. Although EcSmad2 RNA as well as total and activated Smad2 protein were detected in the vegetal core, Smad4 protein was expressed less in vegetal core during early gastrulation. Only 12% and 50% of vegetal core cells were positive for nuclear Smad2 and Smad4 signals respectively compared to 100% of marginal zone cells. These results suggest a signaling disruption in the vegetal core. Second, vegetal core cells were transcriptionally repressed. At the blastula stage, both marginal zone and vegetal core cells were transcriptionally silent, but during early gastrulation, only marginal zone cells became transcriptionally active. This indicates the occurrence of a mid-blastula transition in the marginal zone by early gastrulation, but global transcriptional repression persisted in the vegetal core and its derivative, nutritional endoderm, throughout development. We have described a novel mechanism, which prevents differentiation of the vegetal core through differential Nodal-signaling and global transcriptional repression.
Collapse
Affiliation(s)
- Suman Chatterjee
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | | |
Collapse
|
154
|
Anuppalle M, Maddirevula S, Huh TL, Rhee M. Trb3 regulates LR axis formation in zebrafish embryos. Mol Cells 2013; 36:542-7. [PMID: 24292884 PMCID: PMC3887966 DOI: 10.1007/s10059-013-0237-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 01/13/2023] Open
Abstract
Tribless family proteins are pseudokinases that lack DFG (Asp-Phe-Gly) motif in the functional kinase domain, regulating Akt and BMP pathways, insulin metabolism, hypoxia, and ubiquitination. This report concerns expression patterns and functional roles of trb3 in zebrafish embryonic development. trb3 is evolutionarily well-conserved and located on zebrafish chromosome 11. Spatiotemporal expression studies show that trb3 transcripts are abundant throughout embryogenesis, but confined to mesendodermal cells during the late blastula phase. Over-expression of trb3 ventralizes the embryos while a knockdown of trb3 using morpholino alters positioning of the heart, liver, and pancreatic buds as well as gut looping. Furthermore, constitutive activation of TGF-signaling with TARAM-A* (TGF-related type I receptor) significantly increases the level of trb3 transcripts during the late blastula phase. Over-expression of trb3 reduces the level of smurf1 transcripts, a member of TGF-signaling. We thus propose that Trb3 governs left-right (LR) axis patterning as a component of TGF-signaling in vertebrate embryonic development.
Collapse
Affiliation(s)
| | | | - Tae-Lin Huh
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | | |
Collapse
|
155
|
Age-Dependent Association between Protein Expression of the Embryonic Stem Cell Marker Cripto-1 and Survival of Glioblastoma Patients. Transl Oncol 2013; 6:732-41. [PMID: 24466376 DOI: 10.1593/tlo.13427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/26/2022] Open
Abstract
Exploring the re-emergence of embryonic signaling pathways may reveal important information for cancer biology. Nodal is a transforming growth factor-β (TGF-β)-related morphogen that plays a critical role during embryonic development. Nodal signaling is regulated by the Cripto-1 co-receptor and another TGF-β member, Lefty. Although these molecules are poorly detected in differentiated tissues, they have been found in different human cancers. Poor prognosis of glioblastomas justifies the search for novel signaling pathways that can be exploited as potential therapeutic targets. Because our intracranial glioblastoma rat xenograft model has revealed importance of gene ontology categories related to development and differentiation, we hypothesized that increased activity of Nodal signaling could be found in glioblastomas. We examined the gene expressions of Nodal, Cripto-1, and Lefty in microarrays of invasive and angiogenic xenograft samples developed from four patients with glioblastoma. Protein expression was evaluated by immunohistochemistry in 199 primary glioblastomas, and expression levels were analyzed for detection of correlations with available clinical information. Gene expression of Nodal, Lefty, and Cripto-1 was detected in the glioblastoma xenografts. Most patient samples showed significant levels of Cripto-1 detected by immunohistochemistry, whereas only weak to moderate levels were detected for Nodal and Lefty. Most importantly, the higher Cripto-1 scores were associated with shorter survival in a subset of younger patients. These findings suggest for the first time that Cripto-1, an important molecule in developmental biology, may represent a novel prognostic marker and therapeutic target in categories of younger patients with glioblastoma.
Collapse
|
156
|
Wielscher M, Liou W, Pulverer W, Singer CF, Rappaport-Fuerhauser C, Kandioler D, Egger G, Weinhäusel A. Cytosine 5-Hydroxymethylation of the LZTS1 Gene Is Reduced in Breast Cancer. Transl Oncol 2013; 6:715-21. [PMID: 24466374 PMCID: PMC3890706 DOI: 10.1593/tlo.13523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023] Open
Abstract
Change of DNA cytosine methylation (5mC) is an early event in the development of cancer, and the recent discovery of a 5-hydroxymethylated form (5hmC) of cytosine suggests a regulatory epigenetic role that might be different from 5-methylcytosine. Here, we aimed at elucidating the role of 5hmC in breast cancer. To interrogate the 5hmC levels of the leucine zipper, putative tumor suppressor 1 (LZTS1) gene in detail, we analyzed 75 primary breast cancer tissue samples from initial diagnosis and 12 normal breast tissue samples derived from healthy persons. Samples were subjected to 5hmC glucosyltransferase treatment followed by restriction digestion and segment-specific amplification of 11 polymerase chain reaction products. Nine of the 11 5'LZTS1 fragments showed significantly lower (fold change of 1.61-6.01, P < .05) 5hmC content in primary breast cancer tissue compared to normal breast tissue samples. No significant differences were observed for 5mC DNA methylation. Furthermore, both LZTS1 and TET1 mRNA expressions were significantly reduced in tumor samples (n = 75, P < .001, Student's t test), which correlated significantly with 5hmC levels in samples. 5hmC levels in breast cancer tissues were associated with unfavorable histopathologic parameters such as lymph node involvement (P < .05, Student's t test). A decrease of 5hmC levels of LZTS1, a classic tumor suppressor gene known to influence metastasis in breast cancer progression, is correlated to down-regulation of LZTS1 mRNA expression in breast cancer and might epigenetically enhance carcinogenesis. The study provides support for the novel hypothesis that suggests a strong influence of 5hmC on mRNA expression. Finally, one may also consider 5hmC as a new biomarker.
Collapse
Affiliation(s)
- Matthias Wielscher
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Willy Liou
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Walter Pulverer
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Christian F Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | | | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Weinhäusel
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
157
|
Zhang Y, Cooke A, Park S, Dewey CN, Wickens M, Sheets MD. Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. RNA (NEW YORK, N.Y.) 2013; 19:1575-82. [PMID: 24062572 PMCID: PMC3851724 DOI: 10.1261/rna.041665.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amy Cooke
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael D. Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Corresponding authorE-mail
| |
Collapse
|
158
|
The key enzyme of the sialic acid metabolism is involved in embryoid body formation and expression of marker genes of germ layer formation. Int J Mol Sci 2013; 14:20555-63. [PMID: 24129184 PMCID: PMC3821630 DOI: 10.3390/ijms141020555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 12/31/2022] Open
Abstract
The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice. Here, we report that GNE-deficient embryonic stem cells express less differentiation markers compared to wild-type embryonic stem cells. As a result, GNE-deficient embryonic stem cells fail to form proper embryoid bodies (EB) within the first day of culture. However, when culturing these cells in the presence of sialic acids for three days, also GNE-deficient embryonic stem cells form normal EBs. In contrast, when culturing these cells in sialic acid reduced medium, GNE-deficient embryonic stem cells proliferate faster and form larger EBs without any change in the expression of markers of the germ layers.
Collapse
|
159
|
Kumari P, Gilligan PC, Lim S, Tran LD, Winkler S, Philp R, Sampath K. An essential role for maternal control of Nodal signaling. eLife 2013; 2:e00683. [PMID: 24040511 PMCID: PMC3771576 DOI: 10.7554/elife.00683] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Growth factor signaling is essential for pattern formation, growth, differentiation, and maintenance of stem cell pluripotency. Nodal-related signaling factors are required for axis formation and germ layer specification from sea urchins to mammals. Maternal transcripts of the zebrafish Nodal factor, Squint (Sqt), are localized to future embryonic dorsal. The mechanisms by which maternal sqt/nodal RNA is localized and regulated have been unclear. Here, we show that maternal control of Nodal signaling via the conserved Y box-binding protein 1 (Ybx1) is essential. We identified Ybx1 via a proteomic screen. Ybx1 recognizes the 3’ untranslated region (UTR) of sqt RNA and prevents premature translation and Sqt/Nodal signaling. Maternal-effect mutations in zebrafish ybx1 lead to deregulated Nodal signaling, gastrulation failure, and embryonic lethality. Implanted Nodal-coated beads phenocopy ybx1 mutant defects. Thus, Ybx1 prevents ectopic Nodal activity, revealing a new paradigm in the regulation of Nodal signaling, which is likely to be conserved. DOI:http://dx.doi.org/10.7554/eLife.00683.001 In many organisms, embryonic development is controlled in part by RNAs that are deposited into the egg as it forms inside the mother. These ‘maternal RNAs’ may localize to particular regions of the egg or embryo, where they are then exclusively translated into protein and carry out their specific function. This helps to establish asymmetry in the developing organism—that is, to produce tissues that will eventually become the top or bottom, front or back, and left or right of the organism. One such maternal RNA encodes Nodal, a key signaling molecule that is conserved across vertebrate and some invertebrate organisms. In zebrafish, the equivalent RNA is called squint, and plays an important role in embryonic development. The squint RNA deposited by the mother localizes to the dorsal region—the embryo’s back—and signals that region to make dorsal tissues, but how squint is regulated is not well understood. Now, Kumari et al. identify a protein that controls the positioning of squint RNA, and find that it can also prevent this RNA from being translated into protein. The squint RNA contains a ‘dorsal localization element’ that recruits it to the dorsal cells of the embryo by the 4-cell stage (i.e., within two cell divisions after the egg is fertilized). Kumari et al. identified a protein called Ybx1 that could bind to this element: this protein may help to correctly position RNAs in many other organisms, including fruit flies and mammals. Strikingly, embryos formed abnormally when their maternally derived Ybx1 protein was mutant, and these mutations also prevented the squint RNA from localizing properly. This suggests that maternally derived Ybx1 protein directly regulates the squint RNA. As well as positioning the squint RNA correctly, the embryo must translate this RNA into protein at the right time. In embryos with mutant maternal Ybx1 protein, the Squint protein could be detected at the 16-cell stage, whereas in wild-type embryos this protein is not translated until the 256-cell stage; this indicates that Ybx1 protein might normally repress the translation of the squint RNA. Indeed, Kumari et al. found that Ybx1 binds to another protein—eIF4E—that recruits mRNAs to the ribosome (the cell’s translational machinery). Ybx1 might therefore prevent eIF4E from associating with other components of the ribosomal complex, and initiating the translation of the squint RNA, until additional signals have been received. It will be interesting to determine how widespread this regulatory mechanism is in other organisms. DOI:http://dx.doi.org/10.7554/eLife.00683.002
Collapse
Affiliation(s)
- Pooja Kumari
- Temasek Life Sciences Laboratory , National University of Singapore , Singapore , Singapore ; Department of Biological Sciences , National University of Singapore , Singapore , Singapore
| | | | | | | | | | | | | |
Collapse
|
160
|
Liu X, Ma Y, Zhang C, Wei S, Cao Y, Wang Q. Nodal promotes mir206 expression to control convergence and extension movements during zebrafish gastrulation. J Genet Genomics 2013; 40:515-21. [PMID: 24156917 DOI: 10.1016/j.jgg.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 11/25/2022]
Abstract
Nodal, a member of the transforming growth factor β (TGF-β) superfamily, has been shown to play a role in mesendoderm induction and gastrulation movements. The activity of Nodal signaling can be modulated by microRNAs (miRNAs) as previously reported, but little is known about which miRNAs are regulated by Nodal during gastrulation. In the present study, we found that the expression of mir206, one of the most abundant miRNAs during zebrafish early embryo development, is regulated by Nodal signaling. Abrogation of Nodal signal activity results in defective convergence and extension (CE) movements, and these cell migration defects can be rescued by supplying an excess of mir206, suggesting that mir206 acts downstream of Nodal signaling to regulate CE movements. Furthermore, in mir206 morphants, the expression of cell adhesion molecule E-cadherin is significantly increased, while the key transcriptional repressor of E-cadherin, snail1a, is depressed. Our study uncovers a novel mechanism by which Nodal-regulated mir206 modulates gastrulation movements in connection with the Snail/E-cadherin pathway.
Collapse
Affiliation(s)
- Xiuli Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
161
|
Finnson KW, McLean S, Di Guglielmo GM, Philip A. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring. Adv Wound Care (New Rochelle) 2013; 2:195-214. [PMID: 24527343 PMCID: PMC3857355 DOI: 10.1089/wound.2013.0429] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 12/12/2022] Open
Abstract
SIGNIFICANCE Wound healing is an intricate biological process in which the skin, or any other tissue, repairs itself after injury. Normal wound healing relies on the appropriate levels of cytokines and growth factors to ensure that cellular responses are mediated in a coordinated manner. Among the many growth factors studied in the context of wound healing, transforming growth factor beta (TGF-β) is thought to have the broadest spectrum of effects. RECENT ADVANCES Many of the molecular mechanisms underlying the TGF-β/Smad signaling pathway have been elucidated, and the role of TGF-β in wound healing has been well characterized. Targeting the TGF-β signaling pathway using therapeutic agents to improve wound healing and/or reduce scarring has been successful in pre-clinical studies. CRITICAL ISSUES Although TGF-β isoforms (β1, β2, β3) signal through the same cell surface receptors, they display distinct functions during wound healing in vivo through mechanisms that have not been fully elucidated. The challenge of translating preclinical studies targeting the TGF-β signaling pathway to a clinical setting may require more extensive preclinical research using animal models that more closely mimic wound healing and scarring in humans, and taking into account the spatial, temporal, and cell-type-specific aspects of TGF-β isoform expression and function. FUTURE DIRECTIONS Understanding the differences in TGF-β isoform signaling at the molecular level and identification of novel components of the TGF-β signaling pathway that critically regulate wound healing may lead to the discovery of potential therapeutic targets for treatment of impaired wound healing and pathological scarring.
Collapse
Affiliation(s)
- Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, Montreal General Hospital, McGill University, Montreal, Canada
| | - Sarah McLean
- Department of Physiology and Pharmacology, Western University, London, Canada
| | | | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, Montreal General Hospital, McGill University, Montreal, Canada
| |
Collapse
|
162
|
Abstract
The graded distribution of morphogens underlies many of the tissue patterns that form during development. How morphogens disperse from a localized source and how gradients in the target tissue form has been under debate for decades. Recent imaging studies and biophysical measurements have provided evidence for various morphogen transport models ranging from passive mechanisms, such as free or hindered extracellular diffusion, to cell-based dispersal by transcytosis or cytonemes. Here, we analyze these transport models using the morphogens Nodal, fibroblast growth factor and Decapentaplegic as case studies. We propose that most of the available data support the idea that morphogen gradients form by diffusion that is hindered by tortuosity and binding to extracellular molecules.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
163
|
Veerkamp J, Rudolph F, Cseresnyes Z, Priller F, Otten C, Renz M, Schaefer L, Abdelilah-Seyfried S. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry. Dev Cell 2013; 24:660-7. [PMID: 23499359 DOI: 10.1016/j.devcel.2013.01.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 11/19/2012] [Accepted: 01/30/2013] [Indexed: 12/29/2022]
Abstract
Signaling by Nodal and Bmp is essential for cardiac laterality. How activities of these pathways translate into left-right asymmetric organ morphogenesis is largely unknown. We show that, in zebrafish, Nodal locally reduces Bmp activity on the left side of the cardiac field. This effect is mediated by the extracellular matrix enzyme Hyaluronan synthase 2, expression of which is induced by Nodal. Unilateral reduction of Bmp signaling results in lower expression of nonmuscle myosin II and higher cell motility on the left, driving asymmetric displacement of the entire cardiac field. In silico modeling shows that left-right differences in cell motility are sufficient to induce a robust, directional migration of cardiac tissue. Thus, the mechanism underlying the formation of cardiac left-right asymmetry involves Nodal modulating an antimotogenic Bmp activity.
Collapse
Affiliation(s)
- Justus Veerkamp
- Cardiovascular Department, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Park CB, Dufort D. NODAL signaling components regulate essential events in the establishment of pregnancy. Reproduction 2013; 145:R55-64. [DOI: 10.1530/rep-12-0103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful mammalian reproduction is dependent on a receptive and nurturing uterine environment. In order to establish pregnancy in humans, the uterus must i) be adequately prepared to receive the blastocyst, ii) engage in a coordinated molecular dialog with the embryo to facilitate implantation, and iii) undergo endometrial decidualization. Although numerous factors have been implicated in these essential processes, the precise network of molecular interactions that govern receptivity, embryo implantation, and decidualization remain unclear. NODAL, a morphogen in the transforming growth factor β superfamily, is well known for its critical functions during embryogenesis; however, recent studies have demonstrated an emerging role for NODAL signaling during early mammalian reproduction. Here, we review the established data and a recent wave of new studies implicating NODAL signaling components in uterine cycling, embryo implantation, and endometrial decidualization in humans and mice.
Collapse
|
165
|
Nodal promotes invasive phenotypes via a mitogen-activated protein kinase-dependent pathway. Oncogene 2013; 33:461-73. [PMID: 23334323 PMCID: PMC5025281 DOI: 10.1038/onc.2012.608] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 10/20/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
The progression of cancer from localized to invasive disease is requisite for metastasis, and is often characterized by epithelial-to-mesenchymal transition (EMT) and alterations in cellular adhesion and migration. Studies have shown that this transition is associated with an up-regulation of embryonic stem cell-associated genes, resulting in a dedifferentiated phenotype and poor patient prognosis. Nodal is an embryonic factor that plays a critical role in promoting early invasive events during development. Nodal is silenced as stem cells differentiate; however, it re-emerges in adult life during placentation and mammary gland development, and is aberrantly expressed in many cancers. Here, we show that Nodal over-expression, in poorly-invasive breast cancer and choriocarcinoma cells, causes increased invasion and migration in vitro. Furthermore, we show that Nodal over-expression in these epithelial cancer types induces an EMT-like event concomitant with the internalization of E-Cadherin. This ability of Nodal to promote cellular invasion and EMT-like phenomena is dependent upon the phosphorylation of ERK1/2. Since Nodal normally signals through SMADs, these findings lend insight into an alternative pathway that is hijacked by this protein in cancer. To evaluate the clinical implications of our results, we show that Nodal inhibition reduces liver tumor burden in a model of spontaneous breast cancer metastasis in vivo, and that Nodal loss-of-function in aggressive breast cancer lines results in a decrease in invasive phenotypes. Our results demonstrate that Nodal is involved in promoting invasion in multiple cellular contexts, and that Nodal inhibition may be useful as a therapeutic target for patients with progressive disease.
Collapse
|
166
|
Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol 2013; 45:885-98. [PMID: 23291354 DOI: 10.1016/j.biocel.2012.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 12/22/2022]
Abstract
With few exceptions, most cells in adult organisms have lost the expression of stem cell-associated proteins and are instead characterized by tissue-specific gene expression and function. This cell fate specification is dictated spatially and temporally during embryogenesis. It has become increasingly apparent that the elegant and complicated process of cell specification is "undone" in cancer. This may be because cancer cells respond to their microenvironment and mutations by acquiring a more permissive, plastic epigenome, or because cancer cells arise from mutated stem cells. Regardless, these advanced cancer cells must use stem cell-associated proteins to sustain their phenotype. One such protein is Nodal, an embryonic morphogen belonging to the transforming growth factor-β (TGF-β) superfamily. First described in early developmental models, Nodal orchestrates embryogenesis by regulating a myriad of processes, including mesendoderm induction, left-right asymmetry and embryo implantation. Nodal is relatively restricted to embryonic and reproductive cell types and is thus absent from most normal adult tissues. However, recent studies focusing on a variety of malignancies have demonstrated that Nodal expression re-emerges during cancer progression. Moreover, in almost every cancer studied thus far, the acquisition of Nodal expression is associated with increased tumourigenesis, invasion and metastasis. As the list of cancers that express Nodal grows, it is essential that the scientific and medical communities fully understand how this morphogen is regulated in both normal and neoplastic conditions. Herein, we review the literature relating to normal and pathological Nodal signalling. In particular, we emphasize the role that this secreted protein plays during morphogenic events and how it signals to support stem cell maintenance and tumour progression.
Collapse
Affiliation(s)
- Daniela F Quail
- Department of Anatomy and Cell Biology, University of Western Ontario and Robarts Research Institute, London, ON, Canada
| | | | | | | |
Collapse
|
167
|
Jiang W, Wang J, Zhang Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. Cell Res 2013; 23:122-130. [PMID: 22907667 PMCID: PMC3541667 DOI: 10.1038/cr.2012.119] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/08/2012] [Accepted: 07/27/2012] [Indexed: 12/23/2022] Open
Abstract
Definitive endoderm differentiation is crucial for generating respiratory and gastrointestinal organs including pancreas and liver. However, whether epigenetic regulation contributes to this process is unknown. Here, we show that the H3K27me3 demethylases KDM6A and KDM6B play an important role in endoderm differentiation from human ESCs. Knockdown of KDM6A or KDM6B impairs endoderm differentiation, which can be rescued by sequential treatment with WNT agonist and antagonist. KDM6A and KDM6B contribute to the activation of WNT3 and DKK1 at different differentiation stages when WNT3 and DKK1 are required for mesendoderm and definitive endoderm differentiation, respectively. Our study not only uncovers an important role of the H3K27me3 demethylases in definitive endoderm differentiation, but also reveals that they achieve this through modulating the WNT signaling pathway.
Collapse
Affiliation(s)
- Wei Jiang
- Howard Hughes Medical Institute,
Chevy Chase, Maryland
20815-6789, USA
- Department of Biochemistry and Biophysics,
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel
Hill, Chapel Hill, NC
27599-7295, USA
| | - Jinzhao Wang
- Howard Hughes Medical Institute,
Chevy Chase, Maryland
20815-6789, USA
- Department of Biochemistry and Biophysics,
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel
Hill, Chapel Hill, NC
27599-7295, USA
| | - Yi Zhang
- Howard Hughes Medical Institute,
Chevy Chase, Maryland
20815-6789, USA
- Department of Biochemistry and Biophysics,
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel
Hill, Chapel Hill, NC
27599-7295, USA
| |
Collapse
|
168
|
Van Vliet P, Wu SM, Zaffran S, Pucéat M. Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 2012; 96:352-62. [PMID: 22893679 PMCID: PMC3500045 DOI: 10.1093/cvr/cvs270] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 12/11/2022] Open
Abstract
From the 1920s, early cardiac development has been studied in chick and, later, in mouse embryos in order to understand the first cell fate decisions that drive specification and determination of the endocardium, myocardium, and epicardium. More recently, mouse and human embryonic stem cells (ESCs) have demonstrated faithful recapitulation of early cardiogenesis and have contributed significantly to this research over the past few decades. Derived almost 15 years ago, human ESCs have provided a unique developmental model for understanding the genetic and epigenetic regulation of early human cardiogenesis. Here, we review the biological concepts underlying cell fate decisions during early cardiogenesis in model organisms and ESCs. We draw upon both pioneering and recent studies and highlight the continued role for in vitro stem cells in cardiac developmental biology.
Collapse
Affiliation(s)
- Patrick Van Vliet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, CA, USA
| | - Sean M. Wu
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stéphane Zaffran
- Aix-Marseille University, Marseille, France
- INSERM UMRS910, Faculté de Médecine de la Timone, France
| | - Michel Pucéat
- INSERM UMR633, Paris Descartes University, Campus Genopole 1, 4, rue Pierre Fontaine, Evry 91058, Paris, France
| |
Collapse
|
169
|
Abstract
Differences between the left and right sides of the brain are present in many animal species. For instance, in humans the left cerebral hemisphere is largely responsible for language and tool use and the right for processing spatial information. Zebrafish have prominent left-right asymmetries in their epithalamus that have been associated with differential left and right eye use and navigational behavior. In wild-type (WT) zebrafish embryos, Nodal pathway genes are expressed in the left side of the pineal anlage. Shortly thereafter, a parapineal organ forms to the left of the pineal. The parapineal organ causes differences in gene expression, neuropil density, and connectivity of the left and right habenula nuclei. In embryos that have an open neural tube, such as embryos that are deficient in Nodal signaling or the cell adhesion protein N-cadherin, the left and right sides of the developing epithalamus remain separated from one another. We find that the brains of these embryos often become left isomerized: both sides of the brain develop morphology and gene expression patterns that are characteristic of the left side. However, other aspects of epithalamic development, such as differentiation of specific neuronal cell types, are intact. We propose that there is a mechanism in embryos with closed neural tubes that prevents both sides from developing like the left side. This mechanism fails when the two sides of the epithalamus are widely separated from one another, suggesting that it is dependent upon a signaling protein with limited range.
Collapse
|
170
|
Sauer S, Klar AJS. Left-right symmetry breaking in mice by left-right dynein may occur via a biased chromatid segregation mechanism, without directly involving the Nodal gene. Front Oncol 2012; 2:166. [PMID: 23316472 PMCID: PMC3540932 DOI: 10.3389/fonc.2012.00166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/25/2012] [Indexed: 11/29/2022] Open
Abstract
Ever since cloning the classic iv (inversedviscerum) mutation identified the “left-right dynein” (lrd) gene in mice, most research on body laterality determination has focused on its function in motile cilia at the node embryonic organizer. This model is attractive, as it links chirality of cilia architecture to asymmetry development. However, lrd is also expressed in blastocysts and embryonic stem cells, where it was shown to bias the segregation of recombined sister chromatids away from each other in mitosis. These data suggested that lrd is part of a cellular mechanism that recognizes and selectively segregates sister chromatids based on their replication history: old “Watson” versus old “Crick” strands. We previously proposed that the mouse left-right axis is established via an asymmetric cell division prior to/or during gastrulation. In this model, left-right dynein selectively segregates epigenetically differentiated sister chromatids harboring a hypothetical “left-right axis development 1” (“lra1”) gene during the left-right axis establishing cell division. Here, asymmetry development would be ultimately governed by the chirality of the cytoskeleton and the DNA molecule. Our model predicts that randomization of chromatid segregation in lrd mutants should produce embryos with 25% situs solitus, 25% situs inversus, and 50% embryonic death due to heterotaxia and isomerism. Here we confirmed this prediction by using two distinct lrd mutant alleles. Other than lrd, thus far Nodal gene is the most upstream function implicated in visceral organs laterality determination. We next tested whether the Nodal gene constitutes the lra1 gene hypothesized in the model by testing mutant’s effect on 50% embryonic lethality observed in lrd mutants. Since Nodal mutation did not suppress lethality, we conclude that Nodal is not equivalent to the lra1 gene. In summary, we describe the origin of 50% lethality in lrd mutant mice not yet explained by any other laterality-generating hypothesis.
Collapse
Affiliation(s)
- Stephan Sauer
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick MD, USA
| | | |
Collapse
|
171
|
Spiller CM, Feng CW, Jackson A, Gillis AJM, Rolland AD, Looijenga LHJ, Koopman P, Bowles J. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development 2012; 139:4123-32. [DOI: 10.1242/dev.083006] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Germ cells, the embryonic precursors of sperm or oocytes, respond to molecular cues that regulate their sex-specific development in the fetal gonads. In males in particular, the balance between continued proliferation and cell fate commitment is crucial: defects in proliferation result in insufficient spermatogonial stem cells for fertility, but escape from commitment and prolonged pluripotency can cause testicular germ cell tumors. However, the factors that regulate this balance remain unidentified. Here, we show that signaling by the TGFβ morphogen Nodal and its co-receptor Cripto is active during a crucial window of male germ cell development. The Nodal pathway is triggered when somatic signals, including FGF9, induce testicular germ cells to upregulate Cripto. Germ cells of mutant mice with compromised Nodal signaling showed premature differentiation, reduced pluripotency marker expression and a reduced ability to form embryonic germ (EG) cell colonies in vitro. Conversely, human testicular tumors showed upregulation of NODAL and CRIPTO that was proportional to invasiveness and to the number of malignant cells. Thus, Nodal signaling provides a molecular control mechanism that regulates male germ cell potency in normal development and testicular cancer.
Collapse
Affiliation(s)
- Cassy M. Spiller
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Wei Feng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ad J. M. Gillis
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands
| | - Antoine D. Rolland
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leendert H. J. Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
172
|
Quail DF, Zhang G, Walsh LA, Siegers GM, Dieters-Castator DZ, Findlay SD, Broughton H, Putman DM, Hess DA, Postovit LM. Embryonic morphogen nodal promotes breast cancer growth and progression. PLoS One 2012; 7:e48237. [PMID: 23144858 PMCID: PMC3492336 DOI: 10.1371/journal.pone.0048237] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 09/26/2012] [Indexed: 11/23/2022] Open
Abstract
Breast cancers expressing human embryonic stem cell (hESC)-associated genes are more likely to progress than well-differentiated cancers and are thus associated with poor patient prognosis. Elevated proliferation and evasion of growth control are similarly associated with disease progression, and are classical hallmarks of cancer. In the current study we demonstrate that the hESC-associated factor Nodal promotes breast cancer growth. Specifically, we show that Nodal is elevated in aggressive MDA-MB-231, MDA-MB-468 and Hs578t human breast cancer cell lines, compared to poorly aggressive MCF-7 and T47D breast cancer cell lines. Nodal knockdown in aggressive breast cancer cells via shRNA reduces tumour incidence and significantly blunts tumour growth at primary sites. In vitro, using Trypan Blue exclusion assays, Western blot analysis of phosphorylated histone H3 and cleaved caspase-9, and real time RT-PCR analysis of BAX and BCL2 gene expression, we demonstrate that Nodal promotes expansion of breast cancer cells, likely via a combinatorial mechanism involving increased proliferation and decreased apopotosis. In an experimental model of metastasis using beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII (MPSVII) mice, we show that although Nodal is not required for the formation of small (<100 cells) micrometastases at secondary sites, it supports an elevated proliferation:apoptosis ratio (Ki67:TUNEL) in micrometastatic lesions. Indeed, at longer time points (8 weeks), we determined that Nodal is necessary for the subsequent development of macrometastatic lesions. Our findings demonstrate that Nodal supports tumour growth at primary and secondary sites by increasing the ratio of proliferation:apoptosis in breast cancer cells. As Nodal expression is relatively limited to embryonic systems and cancer, this study establishes Nodal as a potential tumour-specific target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Daniela F. Quail
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Guihua Zhang
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Logan A. Walsh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Gabrielle M. Siegers
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Scott D. Findlay
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Heather Broughton
- Department of Physiology and Pharmacology and Robarts Research Institute, London, Ontario, Canada
| | - David M. Putman
- Department of Physiology and Pharmacology and Robarts Research Institute, London, Ontario, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology and Robarts Research Institute, London, Ontario, Canada
| | - Lynne-Marie Postovit
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
173
|
Haskel-Ittah M, Ben-Zvi D, Branski-Arieli M, Schejter ED, Shilo BZ, Barkai N. Self-organized shuttling: generating sharp dorsoventral polarity in the early Drosophila embryo. Cell 2012; 150:1016-28. [PMID: 22939625 DOI: 10.1016/j.cell.2012.06.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 02/28/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Morphogen gradients pattern tissues and organs during development. When morphogen production is spatially restricted, diffusion and degradation are sufficient to generate sharp concentration gradients. It is less clear how sharp gradients can arise within the source of a broadly expressed morphogen. A recent solution relies on localized production of an inhibitor outside the domain of morphogen production, which effectively redistributes (shuttles) and concentrates the morphogen within its expression domain. Here, we study how a sharp gradient is established without a localized inhibitor, focusing on early dorsoventral patterning of the Drosophila embryo, where an active ligand and its inhibitor are concomitantly generated in a broad ventral domain. Using theory and experiments, we show that a sharp Toll activation gradient is produced through "self-organized shuttling," which dynamically relocalizes inhibitor production to lateral regions, followed by inhibitor-dependent ventral shuttling of the activating ligand Spätzle. Shuttling may represent a general paradigm for patterning early embryos.
Collapse
Affiliation(s)
- Michal Haskel-Ittah
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
174
|
Sun X, Meng Y, You T, Li P, Wu H, Yu M, Xie X. Association of growth/differentiation factor 1 gene polymorphisms with the risk of congenital heart disease in the Chinese Han population. Mol Biol Rep 2012; 40:1291-9. [PMID: 23076529 DOI: 10.1007/s11033-012-2172-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 10/08/2012] [Indexed: 01/15/2023]
Abstract
There is evidence suggesting that genetic variants of Nodal signaling may be associated with risk of congenital heart diseases (CHDs), in which several polymorphisms, such as Nodal rs1904589, have been considered to be implicated in the accumulation of the genetic burden of CHD risk with interacting genes. We hypothesized that genetic variants of GDF1, a protein that heterodimerizes with Nodal, may be related to increased CHD susceptibility. In this study, four tagSNPs of GDF1 were genotyped in 310 non-syndromic CHD patients and 320 healthy controls by using PCR-based DHPLC and RFLP. The results showed no statistically significant differences in genotype and allele frequencies between CHDs and controls with any of the analyzed variants of GDF1. However, a weak statistical association existed between GDF1 rs4808870 and conotruncal defects (CTDs) (uncorrected P = 0.027). Further stratified analysis for subtype revealed the SNP AA genotype and A allele have statistical significance in pulmonary atresia (PA) (corrected P = 1.01 × 10(-3) and 0.015, respectively), especially in pulmonary atresia with intact ventricular septum (PA + IVS) (corrected P = 1.67 × 10(-3) and 0.034, respectively). Furthermore, two haplotypes, TGGT and CAGT, were found to be significantly associated with increased CHD susceptibility (corrected P = 3.20 × 10(-3) and 2.73 × 10(-7), respectively). In summary, our results provide evidence that genetic variations of the Nodal-like factor, GDF1 may be associated with CHD risk, and these variations contribute at least in part to the development of some subtypes of CTD in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaowei Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
175
|
Ozair MZ, Kintner C, Brivanlou AH. Neural induction and early patterning in vertebrates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:479-98. [PMID: 24014419 DOI: 10.1002/wdev.90] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vertebrates, the development of the nervous system is triggered by signals from a powerful 'organizing' region of the early embryo during gastrulation. This phenomenon--neural induction--was originally discovered and given conceptual definition by experimental embryologists working with amphibian embryos. Work on the molecular circuitry underlying neural induction, also in the same model system, demonstrated that elimination of ongoing transforming growth factor-β (TGFβ) signaling in the ectoderm is the hallmark of anterior neural-fate acquisition. This observation is the basis of the 'default' model of neural induction. Endogenous neural inducers are secreted proteins that act to inhibit TGFβ ligands in the dorsal ectoderm. In the ventral ectoderm, where the signaling ligands escape the inhibitors, a non-neural fate is induced. Inhibition of the TGFβ pathway has now been demonstrated to be sufficient to directly induce neural fate in mammalian embryos as well as pluripotent mouse and human embryonic stem cells. Hence the molecular process that delineates neural from non-neural ectoderm is conserved across a broad range of organisms in the evolutionary tree. The availability of embryonic stem cells from mouse, primates, and humans will facilitate further understanding of the role of signaling pathways and their downstream mediators in neural induction in vertebrate embryos.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
176
|
Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:47-63. [PMID: 23799630 DOI: 10.1002/wdev.86] [Citation(s) in RCA: 402] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transforming growth factor (TGF)beta superfamily of secreted factors is comprised of over 30 members including Activins, Nodals, Bone Morphogenetic Proteins (BMPs), and Growth and Differentiation Factors (GDFs). Members of the family, which are found in both vertebrates and invertebrates, are ubiquitously expressed in diverse tissues and function during the earliest stages of development and throughout the lifetime of animals. Indeed, key roles in embryonic stem cell self-renewal, gastrulation, differentiation, organ morphogenesis, and adult tissue homeostasis have been delineated. Consistent with this ubiquitous activity, aberrant TGFbeta superfamily signaling is associated with a wide range of human pathologies including autoimmune, cardiovascular and fibrotic diseases, as well as cancer. TGFbeta superfamily ligands signal through cell-surface serine/threonine kinase receptors to the intracellular Smad proteins, which in turn accumulate in the nucleus to regulate gene expression. In addition to this universal cascade, Smad-independent pathways are also employed in a cell-specific manner to transduce TGFbeta signals. Ligand access to the signaling receptors is regulated by numerous secreted agonists and antagonists and by membrane-associated coreceptors that act in a context-dependent manner. Given the fundamental role of the TGFbeta superfamily in metazoans and the diversity of biological responses, it is not surprising that the signaling pathway is subject to tight and complex regulation at levels both outside and inside the cell. WIREs Dev Biol 2013, 2:47-63. doi: 10.1002/wdev.86 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexander Weiss
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
177
|
Abstract
The basic elements of the transforming growth factor-β (TGFβ) pathway were revealed more than a decade ago. Since then, the concept of how the TGFβ signal travels from the membrane to the nucleus has been enriched with additional findings, and its multifunctional nature and medical relevance have relentlessly come to light. However, an old mystery has endured: how does the context determine the cellular response to TGFβ? Solving this question is key to understanding TGFβ biology and its many malfunctions. Recent progress is pointing at answers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| |
Collapse
|
178
|
Matsui T, Bessho Y. Left-right asymmetry in zebrafish. Cell Mol Life Sci 2012; 69:3069-77. [PMID: 22527718 PMCID: PMC11115138 DOI: 10.1007/s00018-012-0985-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/04/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
In vertebrates, internal organs are positioned asymmetrically across the left-right (LR) axis, placing them in a defined area within the body. This LR asymmetric placement is a conserved feature of the vertebrate body plan. Events determining LR asymmetry occur during embryonic development, and are regulated by the coordinated action of genetic mechanisms that are evolutionarily conserved among vertebrates. Recent studies using zebrafish have provided new insights into how the Kupffer's vesicle organizer region is generated, and how it relays LR asymmetry information to the lateral plate mesoderm. In this review, we summarize recent advances in zebrafish and describe our current understanding of the mechanisms underlying these processes.
Collapse
Affiliation(s)
- Takaaki Matsui
- Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Nara, 630-0101, Japan.
| | | |
Collapse
|
179
|
Gray PC, Vale W. Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Lett 2012; 586:1836-45. [PMID: 22306319 PMCID: PMC3723343 DOI: 10.1016/j.febslet.2012.01.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
Cripto is a small, GPI-anchored signaling protein that regulates cellular survival, proliferation, differentiation and migration during normal developmental processes and tumorigenesis. Cripto functions as an obligatory co-receptor for the TGF-β ligands Nodal, GDF1 and GDF3 but attenuates signaling of others such as activin-A, activin-B and TGF-β1. Soluble, secreted forms of Cripto also activate Src, ras/raf/MAPK and PI3K/Akt pathways via a mechanism that remains largely obscure. This review describes the biological roles and signaling mechanisms of Cripto, highlighting our identification of the 78 kDa glucose regulated protein (GRP78) as a cell surface receptor/co-factor required for Cripto signaling via both TGF-β and Src/MAPK/PI3K pathways. We discuss emerging evidence indicating that Cripto/GRP78 signaling regulates normal somatic stem cells and their tumorigenic counterparts.
Collapse
Affiliation(s)
- Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | |
Collapse
|
180
|
Carlin D, Sepich D, Grover VK, Cooper MK, Solnica-Krezel L, Inbal A. Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by promoting early expression of Foxg1a and repressing Wnt signaling. Development 2012; 139:2614-24. [PMID: 22736245 PMCID: PMC3383232 DOI: 10.1242/dev.076018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 01/18/2023]
Abstract
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dan Carlin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Diane Sepich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Vandana K. Grover
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael K. Cooper
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lilianna Solnica-Krezel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Adi Inbal
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medical Neurobiology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
181
|
Park CB, DeMayo FJ, Lydon JP, Dufort D. NODAL in the uterus is necessary for proper placental development and maintenance of pregnancy. Biol Reprod 2012; 86:194. [PMID: 22378764 DOI: 10.1095/biolreprod.111.098277] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Preterm birth is the single leading cause of perinatal mortality in developed countries, affecting approximately 12% of pregnancies and accounting for 75% of neonatal loss in the United States. Despite the prevalence and severity of premature delivery, the causes and mechanisms that underlie spontaneous and idiopathic preterm birth remain unknown. Our inability to elucidate these fundamental causes has been attributed to a poor understanding of the signaling pathways associated with the premature induction of parturition and a lack of suitable animal models available for preterm birth research. In this study, we describe the generation and analysis of a novel conditional knockout of the transforming growth factor beta (TGFB) superfamily member, Nodal, from the maternal reproductive tract of mice. Strikingly, uterine Nodal knockout females exhibited a severe malformation of the maternal decidua basalis during placentation, leading to significant intrauterine growth restriction, and ultimately preterm birth and fetal loss on Day 17.5 of gestation. Using several approaches, we characterized aberrant placental development and demonstrated that reduced proliferation combined with increased apoptosis resulted in a diminished decidua basalis and compromised maternal-fetal interface. Last, we evaluated various components of the established parturition cascade and determined that preterm birth derived from the maternal Nodal knockout occurs prior to PTGS2 (COX-2) upregulation at the placental interface. Taken together, the results presented in this study highlight an in vivo role for maternal NODAL during placentation, present an interesting link between disrupted decidua basalis formation and premature parturition, and describe a potentially valuable model toward elucidating the complex processes that underlie preterm birth.
Collapse
Affiliation(s)
- Craig B Park
- Division of Experimental Medicine, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
182
|
Quail DF, Maciel TJ, Rogers K, Postovit LM. A unique 3D in vitro cellular invasion assay. ACTA ACUST UNITED AC 2012; 17:1088-95. [PMID: 22706347 DOI: 10.1177/1087057112449863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional (3D) cell culture techniques using a bioreactor have been used to co-culture various breast cancer cell lines. Comparisons between 3D co-cultures containing different proportions of breast cancer cell lines have been made with respect to cluster size, cell surface marker distribution, and Ki67 expression. Furthermore, an observed difference in invasion through collagen between co-cultures has been briefly reported. However, these assays have not yet been developed into a quantifiable methodology to assess the effects of drugs and/or microenvironments on cellular invasion. From a cancer perspective, two important aspects of cellular invasion that are often left out of in vitro assays are considerations about the 3D structural heterogeneity of the primary tumor and the ability of cells to migrate in all directions. Accordingly, we have taken advantage of the methodology previously described for 3D cell culture techniques and have developed a 3D invasion assay using cell clusters that can be used to assess the effects of different drugs and treatment conditions on cancer cell invasion. We also describe a novel whole-mount technique that permits fluorescence-based immunolocalization of proteins through the entire tumorsphere, without the need for sectioning. Our assay provides a simple, inexpensive, and physiologically relevant context to study cellular invasion in vitro, in a way that recapitulates an in vivo milieu.
Collapse
|
183
|
Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep 2012; 2:455. [PMID: 22701159 PMCID: PMC3374161 DOI: 10.1038/srep00455] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 05/22/2012] [Indexed: 12/22/2022] Open
Abstract
Directed specification and prospective isolation of chondrogenic paraxial mesoderm progeny from human pluripotent stem (PS) cells have not yet been achieved. Here we report the successful generation of KDR−PDGFRα+ progeny expressing paraxial mesoderm genes and the mesendoderm reporter MIXL1-GFP in a chemically defined medium containing the canonical WNT signaling activator, BMP-inhibitor, and the Nodal/Activin/TGFβ signaling controller. Isolated (GFP+)KDR−PDGFRα+ mesoderm cells were sensitive to sequential addition of the three chondrogenic factors PDGF, TGFβ and BMP. Under these conditions, the cells showed robust chondrogenic activity in micromass culture, and generated a hyaline-like translucent cartilage particle in serum-free medium. In contrast, both STRO1+ mesenchymal stem/stromal cells from adult human marrow and mesenchymal cells spontaneously arising from hPS cells showed a relatively weaker chondrogenic response in vitro, and formed more of the fibrotic cartilage particles. Thus, hPS cell-derived KDR−PDGFRα+ paraxial mesoderm-like cells have potential in engineered cartilage formation and cartilage repair.
Collapse
|
184
|
Strizzi L, Hardy KM, Kirschmann DA, Ahrlund-Richter L, Hendrix MJC. Nodal expression and detection in cancer: experience and challenges. Cancer Res 2012; 72:1915-20. [PMID: 22508696 DOI: 10.1158/0008-5472.can-11-3419] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nodal is a TGF-β-related embryonic morphogen that is expressed in multiple human cancers. Detection of Nodal expression in these tissues can be challenging if issues related to Nodal transcription and protein processing are not considered. Here, we discuss certain characteristics related to Nodal expression and function and how these can facilitate acquisition and interpretation of expression data, contributing to our understanding of the potential role of Nodal in human cancer. We also discuss how Nodal could be exploited clinically as a novel biomarker for cancer progression and therapeutic target.
Collapse
Affiliation(s)
- Luigi Strizzi
- Children's Memorial Research Center, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
185
|
Isaeva VV, Kasyanov NV, Presnov EV. Topological singularities and symmetry breaking in development. Biosystems 2012; 109:280-98. [PMID: 22609746 DOI: 10.1016/j.biosystems.2012.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 11/18/2022]
Abstract
The review presents a topological interpretation of some morphogenetic events through the use of well-known mathematical concepts and theorems. Spatial organization of the biological fields is analyzable in topological terms. Topological singularities inevitably emerging in biological morphogenesis are retained and transformed during pattern formation. It is the topological language that can provide strict and adequate description of various phenomena in developmental and evolutionary transformations. The relationship between local and global orders in metazoan development, i.e., between local morphogenetic processes and integral developmental patterns, is established. A topological inevitability of some developmental events through the use of classical topological concepts is discussed. This methodology reveals a topological imperative as a certain set of topological rules that constrains and directs embryogenesis. A breaking of spatial symmetry of preexisting pattern plays a critical role in biological morphogenesis in development and evolution.
Collapse
Affiliation(s)
- Valeria V Isaeva
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Science, 119071 Moscow, Russia.
| | | | | |
Collapse
|
186
|
Souquet B, Tourpin S, Messiaen S, Moison D, Habert R, Livera G. Nodal signaling regulates the entry into meiosis in fetal germ cells. Endocrinology 2012; 153:2466-73. [PMID: 22396454 DOI: 10.1210/en.2011-2056] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The mechanisms regulating the entry into meiosis in mammalian germ cells remain incompletely understood. We investigated the involvement of the TGF-β family members in fetal germ cell meiosis initiation. Nodal, a member of the TGF-β family, and its target genes are precociously expressed in embryonic gonads and show sexual dimorphism in favor of the developing testis. Nodal receptor genes, Acvr2a and Acvr2b, Alk4, and Tdgf1/Cripto, were identified in male germ cells. Nodal itself, Tdgf1, and Lefty1 and Lefty2 are targets of Nodal signaling and were all found specifically expressed in male germ cells. To elucidate the role of this signaling pathway, activin-like kinases that mediate TGF-β/Nodal/activin signaling were inhibited in 11.5 d postconception testis in organotypic culture. Activin-like kinases inhibition disrupted normal male germ cell development and induced germ cell entry into meiosis such as that observed in female germ cells at the equivalent stage. Interestingly Stra8, the gatekeeper of the mitotic/meiotic switch, was induced independently of any change of either Cyp26b1 or Fgf9 expression, the two genes currently identified as testicular meiotic inhibitors. On the other hand, recombinant Nodal significantly dampened Stra8 expression and germ cell meiosis in cultured 11.5 d postconception ovaries. Our results allowed us to propose for the first time an autocrine role of Nodal during the development of germ cells and indicate that members of the TGB-β family may reinforce the male fate and prevent meiosis in embryonic germ cells.
Collapse
Affiliation(s)
- Benoit Souquet
- Commissariat à l'Energie Atomique (CEA)/Direction des Science du Vivant (DSV), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Service Cellules Souches et Radiation (SCSR), Laboratoire de Développement des Gonades (LDG), Université Paris Diderot, Sorbonne Paris Cité, France
| | | | | | | | | | | |
Collapse
|
187
|
Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 2012; 336:721-4. [PMID: 22499809 DOI: 10.1126/science.1221920] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological systems involving short-range activators and long-range inhibitors can generate complex patterns. Reaction-diffusion models postulate that differences in signaling range are caused by differential diffusivity of inhibitor and activator. Other models suggest that differential clearance underlies different signaling ranges. To test these models, we measured the biophysical properties of the Nodal/Lefty activator/inhibitor system during zebrafish embryogenesis. Analysis of Nodal and Lefty gradients revealed that Nodals have a shorter range than Lefty proteins. Pulse-labeling analysis indicated that Nodals and Leftys have similar clearance kinetics, whereas fluorescence recovery assays revealed that Leftys have a higher effective diffusion coefficient than Nodals. These results indicate that differential diffusivity is the major determinant of the differences in Nodal/Lefty range and provide biophysical support for reaction-diffusion models of activator/inhibitor-mediated patterning.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
188
|
Chow ML, Pramparo T, Winn ME, Barnes CC, Li HR, Weiss L, Fan JB, Murray S, April C, Belinson H, Fu XD, Wynshaw-Boris A, Schork NJ, Courchesne E. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet 2012; 8:e1002592. [PMID: 22457638 PMCID: PMC3310790 DOI: 10.1371/journal.pgen.1002592] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/22/2012] [Indexed: 01/09/2023] Open
Abstract
Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. Autism is a disorder characterized by aberrant social, communication, and restricted and repetitive behaviors. It develops clinically in the first years of life. Toddlers and children with autism often exhibit early brain enlargement and excess neuron numbers in the prefrontal cortex. Adults with autism generally do not display enlargement but instead may have a smaller brain size. Thus, we investigated DNA and mRNA patterns in prefrontal cortex from young versus adult postmortem individuals with autism to identify age-related gene expression differences as well as possible genetic correlates of abnormal brain enlargement, excess neuron numbers, and abnormal functioning in this disorder. We found abnormalities in genetic pathways governing cell number, neurodevelopment, and cortical lateralization in autism. We also found that the key pathways associated with autism are different between younger and older autistic individuals. These findings suggest that dysregulated gene pathways in the early stages of neurodevelopment could lead to later behavioral and cognitive deficits associated with autism.
Collapse
Affiliation(s)
- Maggie L. Chow
- Department of Neuroscience, NIH–UCSD Autism Center of Excellence, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Tiziano Pramparo
- Department of Neuroscience, NIH–UCSD Autism Center of Excellence, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Division of Medical Genetics, Department of Pediatrics and Institute of Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Mary E. Winn
- Scripps Genomic Medicine and The Scripps Translational Sciences Institute (STSI), La Jolla, California, United States of America
- Graduate Program in Biomedical Sciences, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Cynthia Carter Barnes
- Department of Neuroscience, NIH–UCSD Autism Center of Excellence, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hai-Ri Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lauren Weiss
- Department of Psychiatry, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jian-Bing Fan
- Illumina, San Diego, California, United States of America
| | - Sarah Murray
- Scripps Genomic Medicine and The Scripps Translational Sciences Institute (STSI), La Jolla, California, United States of America
| | - Craig April
- Illumina, San Diego, California, United States of America
| | - Haim Belinson
- Division of Medical Genetics, Department of Pediatrics and Institute of Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Anthony Wynshaw-Boris
- Division of Medical Genetics, Department of Pediatrics and Institute of Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nicholas J. Schork
- Scripps Genomic Medicine and The Scripps Translational Sciences Institute (STSI), La Jolla, California, United States of America
- * E-mail: (NJS); (EC)
| | - Eric Courchesne
- Department of Neuroscience, NIH–UCSD Autism Center of Excellence, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (NJS); (EC)
| |
Collapse
|
189
|
Shi J, Zhang H, Dowell RD, Klymkowsky MW. sizzled function and secreted factor network dynamics. Biol Open 2012; 1:286-94. [PMID: 23213419 PMCID: PMC3507283 DOI: 10.1242/bio.2012019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on the role of the E-box binding transcription factor Snail2 (Slug) in the induction of neural crest by mesoderm (Shi et al., 2011) revealed an unexpected increase in the level of sizzled RNA in the dorsolateral mesodermal zone (DMLZ) of morphant Xenopus embryos. sizzled encodes a secreted protein with both Wnt and BMP inhibitor activities. Morpholino-mediated down-regulation of sizzled expression in one cell of two cell embryos or the C2/C3 blastomeres of 32-cell embryos, which give rise to the DLMZ, revealed decreased expression of the mesodermal marker brachyury and subsequent defects in neural crest induction, pronephros formation, and muscle patterning. Loss of sizzled expression led to decreases in RNAs encoding the secreted Wnt inhibitor SFRP2 and the secreted BMP inhibitor Noggin; the sizzled morphant phenotype could be rescued by co-injection of RNAs encoding Noggin and either SFRP2 or Dickkopf (a mechanistically distinct Wnt inhibitor). Together, these observations reveal that sizzled, in addition to its established role in dorsal-ventral patterning, is also part of a dynamic BMP and Wnt signaling network involved in both mesodermal patterning and neural crest induction.
Collapse
Affiliation(s)
- Jianli Shi
- Molecular, Cellular and Developmental Biology, University of Colorado , Boulder, CO 80309-0347 , USA
| | | | | | | |
Collapse
|
190
|
Abstract
Communication is essential. It is vital between cells in multi-cellular organisms, and within cells. A signaling molecule binds to a receptor protein, and initiates a cascade of dynamic events. Signaling is a multistep pathway, which allows signal amplification: if some of the molecules in a pathway transmit the signal to multiple molecules, the result can be a large number of activated molecules across the cell and multiple reactions. That is how a small number of extracellular signaling molecules can produce a major cellular response. The pathway can relay signals from the extracellular space to the nucleus. How do signals travel efficiently over long-distances across the cell? Here we argue that evolution has utilized three properties: a modular functional organization of the cellular network; sequences in some key regions of proteins, such as linkers or loops, which were pre-encoded by evolution to facilitate signaling among domains; and compact interactions between proteins which is achieved via conformational disorder.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
191
|
De Silva T, Ye G, Liang YY, Fu G, Xu G, Peng C. Nodal promotes glioblastoma cell growth. Front Endocrinol (Lausanne) 2012; 3:59. [PMID: 22645523 PMCID: PMC3355829 DOI: 10.3389/fendo.2012.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 04/11/2012] [Indexed: 11/22/2022] Open
Abstract
Nodal is a member of the transforming growth factor-β (TGF-β) superfamily that plays critical roles during embryogenesis. Recent studies in ovarian, breast, prostate, and skin cancer cells suggest that Nodal also regulates cell proliferation, apoptosis, and invasion in cancer cells. However, it appears to exert both tumor-suppressing and tumor-promoting effects, depending on the cell type. To further understand the role of Nodal in tumorigenesis, we examined the effect of Nodal in glioblastoma cell growth and spheroid formation using U87 cell line. Treatment of U87 with recombinant Nodal significantly increased U87 cell growth. In U87 cells stably transfected with the plasmid encoding Nodal, Smad2 phosphorylation was strongly induced and cell growth was significantly enhanced. Overexpression of Nodal also resulted in tight spheroid formation. On the other hand, the cells stably transfected with Nodal siRNA formed loose spheroids. Nodal is known to signal through activin receptor-like kinase 4 (ALK4) and ALK7 and the Smad2/3 pathway. To determine which receptor and Smad mediate the growth promoting effect of Nodal, we transfected siRNAs targeting ALK4, ALK7, Smad2, or Smad3 into Nodal-overexpressing cells and observed that cell growth was significantly inhibited by ALK4, ALK7, and Smad3 siRNAs. Taken together, these findings suggest that Nodal may have tumor-promoting effects on glioblastoma cells and these effects are mediated by ALK4, ALK7, and Smad3.
Collapse
Affiliation(s)
- Tanya De Silva
- Department of Biology, York UniversityToronto, ON, Canada
| | - Gang Ye
- Department of Biology, York UniversityToronto, ON, Canada
| | - Yao-Yun Liang
- Department of Biology, York UniversityToronto, ON, Canada
| | - Guodong Fu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Guoxiong Xu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Chun Peng
- Department of Biology, York UniversityToronto, ON, Canada
- *Correspondence: Chun Peng, Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3. e-mail:
| |
Collapse
|
192
|
Okada S, Ochiai H, Saito A, Sato Y, Azuma T. Regulation of Nodal-Lefty Expression by TGF-^|^beta; Induced Pluripotent Stem (iPS) Cells Derived from Mouse Oral Mucosal Tissue. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
193
|
Christian JL. Morphogen gradients in development: from form to function. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:3-15. [PMID: 23801664 PMCID: PMC3957335 DOI: 10.1002/wdev.2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Morphogens are substances that establish a graded distribution and elicit distinct cellular responses in a dose-dependent manner. They function to provide individual cells within a field with positional information, which is interpreted to give rise to spatial patterns. Morphogens can consist of intracellular factors that set up a concentration gradient by diffusion in the cytoplasm. More commonly, morphogens comprise secreted proteins that form an extracellular gradient across a field of cells. Experimental studies and computational analyses have provided support for a number of diverse strategies by which extracellular morphogen gradients are formed. These include free diffusion in the extracellular space, restricted diffusion aided by interactions with heparan sulfate proteoglycans, transport on lipid-containing carriers or transport aided by soluble binding partners. More specialized modes of transport have also been postulated such as transcytosis, in which repeated rounds of secretion, endocytosis, and intracellular trafficking move morphogens through cells rather than around them, or cytonemes, which consist of filopodial extensions from signal-receiving cells that are hypothesized to reach out to morphogen-sending cells. Once the gradient has formed, cells must distinguish small differences in morphogen concentration and store this information even after the gradient has dissipated. This is often achieved by translating ligand concentration into a proportional increase in numbers of activated cell surface receptors that are internalized and continue to signal from endosomal compartments. Ultimately, this leads to activation of one or a few transcription factors that transduce this information into qualitatively distinct gene responses inside the nucleus.
Collapse
Affiliation(s)
- Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematological Malignancies, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
194
|
Linking early determinants and cilia-driven leftward flow in left-right axis specification of Xenopus laevis: a theoretical approach. Differentiation 2011; 83:S67-77. [PMID: 22136958 DOI: 10.1016/j.diff.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 11/23/2022]
Abstract
In vertebrates, laterality - the asymmetric placement of the viscera including organs of the gastrointestinal system, heart and lungs - is under the genetic control of a conserved signaling pathway in the left lateral plate mesoderm (LPM). A key feature of this pathway, shared by embryos of all non-avian vertebrate classes analyzed to date (e.g. fish, amphibia and mammals) is the formation of a transitory midline epithelial structure. Remarkably, the motility of cilia projecting from this epithelium produce a leftward-directed movement of extracellular liquid. This leftward flow precedes any sign of asymmetry in gene expression. Numerous analyses have shown that this leftward flow is not only necessary, but indeed sufficient to direct laterality. Interestingly, however, cilia-independent mechanisms acting much earlier in development in the frog Xenopus have been reported during the earliest cleavage stages, a period before any major zygotic gene transcription. The relationship between these two distinct mechanisms is not understood. In this review we present the conserved and critical steps of Xenopus LR axis formation. Next, we address the basic question of how an early asymmetric activity might contribute to, feed into, or regulate the conserved cilia-dependent pathway. Finally, we discuss the possibility that Spemann's organizer is itself polarized in the left-right dimension. In attempting to reconcile the sufficiency of the cilia-dependent pathway with potential earlier-acting asymmetries, we offer a general practical experimental checklist for the Xenopus community working on the process of left-right determination. This approach indicates areas where work still needs to be done to clarify the relationship between early determinants and cilia-driven leftward flow.
Collapse
|
195
|
Kruithof-de Julio M, Alvarez MJ, Galli A, Chu J, Price SM, Califano A, Shen MM. Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling. Development 2011; 138:3885-95. [PMID: 21862554 DOI: 10.1242/dev.065656] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The signaling pathway for Nodal, a ligand of the TGFβ superfamily, plays a central role in regulating the differentiation and/or maintenance of stem cell types that can be derived from the peri-implantation mouse embryo. Extra-embryonic endoderm stem (XEN) cells resemble the primitive endoderm of the blastocyst, which normally gives rise to the parietal and the visceral endoderm in vivo, but XEN cells do not contribute efficiently to the visceral endoderm in chimeric embryos. We have found that XEN cells treated with Nodal or Cripto (Tdgf1), an EGF-CFC co-receptor for Nodal, display upregulation of markers for visceral endoderm as well as anterior visceral endoderm (AVE), and can contribute to visceral endoderm and AVE in chimeric embryos. In culture, XEN cells do not express Cripto, but do express the related EGF-CFC co-receptor Cryptic (Cfc1), and require Cryptic for Nodal signaling. Notably, the response to Nodal is inhibited by the Alk4/Alk5/Alk7 inhibitor SB431542, but the response to Cripto is unaffected, suggesting that the activity of Cripto is at least partially independent of type I receptor kinase activity. Gene set enrichment analysis of genome-wide expression signatures generated from XEN cells under these treatment conditions confirmed the differing responses of Nodal- and Cripto-treated XEN cells to SB431542. Our findings define distinct pathways for Nodal and Cripto in the differentiation of visceral endoderm and AVE from XEN cells and provide new insights into the specification of these cell types in vivo.
Collapse
|
196
|
Quail DF, Taylor MJ, Walsh LA, Dieters-Castator D, Das P, Jewer M, Zhang G, Postovit LM. Low oxygen levels induce the expression of the embryonic morphogen Nodal. Mol Biol Cell 2011; 22:4809-21. [PMID: 22031289 PMCID: PMC3237624 DOI: 10.1091/mbc.e11-03-0263] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Low oxygen (O(2)) levels characterize the microenvironment of both stem cells and rapidly growing tumors. Moreover, hypoxia is associated with the maintenance of stem cell-like phenotypes and increased invasion, angiogenesis and metastasis in cancer patients. Metastatic cancers, such as breast cancer and melanoma, aberrantly express the embryonic morphogen Nodal, and the presence of this protein is correlated with metastatic disease. In this paper, we demonstrate that hypoxia induces Nodal expression in melanoma and breast cancer cells concomitant with increased cellular invasion and angiogenic phenotypes. Of note, Nodal expression remains up-regulated up to 48 h following reoxygenation. The oxygen-mediated regulation of Nodal expression occurs via a combinatorial mechanism. Within the first 24 h of exposure to low O(2), there is an increase in protein stability. This increase in stability is accompanied by an induction of transcription, mediated by the HIF-1α-dependent activation of Notch-responsive elements in the node-specific enhancer of the Nodal gene locus. Finally, Nodal expression is maintained upon reoxygenation by a canonical SMAD-dependent feed-forward mechanism. This work provides insight into the O(2)-mediated regulation of Nodal, a key stem cell-associated factor, and reveals that Nodal may be a target for the treatment and prevention of hypoxia-induced tumor progression.
Collapse
Affiliation(s)
- Daniela F Quail
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Mesnard D, Donnison M, Fuerer C, Pfeffer PL, Constam DB. The microenvironment patterns the pluripotent mouse epiblast through paracrine Furin and Pace4 proteolytic activities. Genes Dev 2011; 25:1871-80. [PMID: 21896659 DOI: 10.1101/gad.16738711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fate of pluripotent cells in early mouse embryos is controlled by graded Nodal signals that are activated by the endoproteases Furin and Pace4. Soluble forms of Furin and Pace4 cleave proNodal in vitro and after secretion in transfected cells, but direct evidence for paracrine activity in vivo is elusive. Here, we show that Furin and Pace4 are released by the extraembryonic microenvironment, and that they cleave a membrane-bound reporter substrate in adjacent epiblast cells and activate Nodal to maintain pluripotency. Secreted Pace4 and Furin also stimulated mesoderm formation, whereas endoderm was only induced by Pace4, correlating with a difference in the spatiotemporal distribution of these proteolytic activities. Our analysis of paracrine Furin and Pace4 activities and their in vivo functions significantly advances our understanding of how the epiblast is patterned by its microenvironment. Adding cell-cell communication to the pleiotropic portfolio of these proteases provides a new framework to study proprotein processing also in other relevant contexts.
Collapse
Affiliation(s)
- Daniel Mesnard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
198
|
Kanodia JS, Kim Y, Tomer R, Khan Z, Chung K, Storey JD, Lu H, Keller PJ, Shvartsman SY. A computational statistics approach for estimating the spatial range of morphogen gradients. Development 2011; 138:4867-74. [PMID: 22007136 DOI: 10.1242/dev.071571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo.
Collapse
Affiliation(s)
- Jitendra S Kanodia
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Li C, Sun SY, Khuri FR, Li R. Pleiotropic functions of EAPII/TTRAP/TDP2: cancer development, chemoresistance and beyond. Cell Cycle 2011; 10:3274-83. [PMID: 21926483 DOI: 10.4161/cc.10.19.17763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
EAPII (also called TTRAP, TDP2), a protein identified a decade ago, has recently been shown to function as an oncogenic factor. This protein was also proven to be the first 5'- tyrosyl-DNA phosphodiesterase. EAPII has been demonstrated to have promiscuous protein associations, broad responsiveness to various extracellular signals, and pleiotropic functions in the development of human diseases including cancer and neurodegenerative disease. Emerging data suggest that EAPII is a multi-functional protein: EAPII repairs enzyme (topoisomerase)-mediated DNA damage by removing phosphotyrosine from DNA adducts; EAPII is involved in multiple signal transduction pathways such as TNF-TNFR, TGFβ and MAPK, and EAPII is responsive to immune defense, inflammatory response, virus infection and DNA toxins (chemo or radiation therapy). This review focuses on the current understanding of EAPII biology and its potential relations to many aspects of cancer development, including chromosome instability, tumorigenesis, tumor metastasis and chemoresistance, suggesting it as a potential target for intervention in cancer and other human diseases.
Collapse
Affiliation(s)
- Chunyang Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
200
|
Smith KA, Noël E, Thurlings I, Rehmann H, Chocron S, Bakkers J. Bmp and nodal independently regulate lefty1 expression to maintain unilateral nodal activity during left-right axis specification in zebrafish. PLoS Genet 2011; 7:e1002289. [PMID: 21980297 PMCID: PMC3183088 DOI: 10.1371/journal.pgen.1002289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/30/2011] [Indexed: 11/21/2022] Open
Abstract
In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning. Although vertebrates are bilaterally symmetric when observed from the outside, inside the body cavity the organs are positioned asymmetrically with respect to the left and right sides. Cases where all the organs are mirror imaged, known as situs inversus, are not associated with any medical defects. Severe medical problems occur however in infants with a partial organ reversal (situs ambigious or heterotaxia), which arises during embryonic development. Left-right asymmetry in the embryo is established by unilateral expression of Nodal, a member of the Tgf-ß superfamily of secreted growth factors, a role that has been conserved from human to snails. By performing a genetic screen in zebrafish for laterality mutants, we have identified the linkspoot mutant, which displayed partial defects in asymmetric left-right positioning of the internal organs. The gene disrupted in the linkspoot mutant encodes a receptor for bone morphogenetic proteins (Bmp), another member of the Tgf-ß superfamily of secreted growth factors. Further analysis of Bmp over-expression or knock-down models demonstrate that Bmp signalling is required for unilateral Nodal expression, through the initiation and maintenance of an embryonic midline barrier. Our results demonstrate a novel and important mechanism by which left-right asymmetry in the vertebrate embryo is established and regulated.
Collapse
Affiliation(s)
- Kelly A. Smith
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emily Noël
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ingrid Thurlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Holger Rehmann
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sonja Chocron
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|